1. Field of the Invention
The present inventive concepts relate generally to systems and methods for the analysis and treatment of a lumen. More particularly, the present inventive concepts relate to balloon catheter systems that are used to perform methods of analysis and angioplasty of endovascular lesions.
2. Description of the Related Art
With the continual expansion of minimally-invasive procedures in medicine, one procedure that has been highlighted in recent years has been percutaneous transluminal angioplasty, or “PTA”. The most prevalent use of this procedure is in the coronary arteries, which is more specifically called a percutaneous coronary transluminal angioplasty, or “PTCA”. These procedures utilize a flexible catheter with an inflation lumen to expand, under relatively high pressure, a balloon at the distal end of the catheter to expand a stenotic lesion.
The PTA and PTCA procedures are now commonly used in conjunction with expandable tubular structures known as stents, and an angioplasty balloon is often used to expand and permanently place the stent within the lumen. An angioplasty balloon utilized with a stent is referred to as a stent delivery system. Conventional stents have been shown to be more effective than angioplasty alone in maintaining patency in most types of lesions and also reducing other near-term endovascular events. A risk with a conventional stent, however, is the reduction in efficacy of the stent due to the growth of the tissues surrounding the stent which can again result in the stenosis of the lumen, often referred to as restenosis. In recent years, new stents that are coated with pharmaceutical agents, often in combination with a polymer, have been introduced and shown to significantly reduce the rate of restenosis. These coated stents are generally referred to as drug-eluting stents, though some coated stents have a passive coating instead of an active pharmaceutical agent.
With the advent of these advanced technologies for PTA and PTCA, there has been a substantial amount of clinical and pathology literature published about the pathophysiologic or morphologic factors within an endovascular lesion that contribute to its restenosis or other acute events such as thrombosis. These features include, but are not limited to, collagen content, lipid content, calcium content, inflammatory factors, and the relative positioning of these features within the plaque. Several studies have been provided showing the promise of identifying the above factors through the use of visible and/or near infrared spectroscopy, i.e., across wavelengths ranging between about 250 to 2500 nm, including those studies referenced in U.S. Publication No. US2004/0111016A1 by Casscells, III et al., U.S. Publication No. US2004/0077950A1 by Marshik-Geurts et al., U.S. Pat. No. 5,304,173 by Kittrell et al., and U.S. Pat. No. 6,095,982 by Richards-Kortum, et al., the contents of each of which are herein incorporated by reference. However, there are very few, if any, highly safe and commercially viable applications making use of this spectroscopic data for combining diagnosis and treatment in a PTA or PTCA procedure.
In addition, dynamic and optimal control over the expansion of the balloon during angioplasty procedures is very limited, including during pre-dilation of the vasculature prior to stent delivery, dilation during stent delivery, and post-dilation after delivery of a stent. For example, under-expansion of an angioplasty balloon may require deployment of an additional catheter and stent in order to complete the desired treatment and/or to ensure that an under-expanded stent is not blocking blood flow through a vessel, which can complicate procedures, resulting in increased risks, and added expense. Information about the apposition and expansion of the balloon against the vessel walls during these procedures could therefore be highly useful for mitigating these risks.
Typical technologies used for monitoring angioplasty and stenting procedures include angiography by fluoroscopy, which supplies an X-ray image of the blood flow within a lumen. However, this technology has a limited resolution of about 300 micrometers. As a result, many angioplasty and stenting procedures over-expand the lumen, which can result in unnecessary trauma and damage to the lumen wall, complicating post-deployment recovery, and increasing the likelihood of re-closure of the lumen (restenosis).
Angioscope technology is also generally used for identifying a stenosis, but provides no information about the endovascular wall of the plaque. Some important diseases located on non- or minor stenosis regions, such as a vulnerable plaque which is fatal to a patient life, are often missed. Moreover, radiation delivered by an angiography procedure can have negative side-effects on patients.
Other technologies, such as intravascular ultrasound, require expensive additional catheters and potentially dangerous additional procedures that can cause more harm than good and still not supply sufficient information about the plaque to be beneficial. Currently, there are needs for physicians to gain this useful information about the lumen wall, including accurately locating diseased tissue for purposes of conducting angioplasty procedures in an accurate, cost-effective, and efficient manner that presents a reasonable risk profile for the patient.
Conventional balloon catheters are not generally used for purposes other than for performing traditional angioplasty procedures including pre-dilation of the vasculature prior to stent delivery, stent delivery, and post-stent delivery dilation. A capability that is not presently available in conventional balloon catheters, which would be highly valuable before, during, and after such procedures, would be the ability to assess the optimal type of stent and/or stent coating, if any, to be deployed within a patient. The availability of the aforementioned pathophysiologic or morphologic factors could be used to help such assessments.
Furthermore, the level and uniformity of expansion of balloons during such procedures is only roughly determined, e.g., with use of an angiogram and a balloon expansion estimation charts, and is often unnecessarily exceeded in order to avoid issues associated with under-expansion as previously discussed. Over-expansion, however, carries its own risks including, for example, rupture of a lesion or excessive damage to a weakened vessel wall. For these reasons, stent deployment may be avoided altogether and substituted with less risky but less effective procedures.
Prior use of optical fibers within an angioplasty catheter permit functions such as visualization to occur, but limited information from such techniques can be obtained. Conventional balloon catheters generally have no capacity to collect any information beyond the surface of the endovascular wall, which can be critical to proper diagnosis and treatment of diseased vessels. While lower-pressure balloon catheters are available to occlude the blood flow proximal to the optical analysis window of a catheter, no lumen expansion is performed and no analysis can be performed within the balloon itself. Other systems support the use of optical feedback within a balloon catheter to atraumatically minimize the blood path between the balloon catheter and the endovascular wall. However, these systems likewise provide no ability to perform a complete optical analysis of the lumen wall.
Embodiments of the present inventive concepts are directed to systems and methods that provide physicians performing lumen-expansion procedures with useful information about the lumen wall without any significant increase in their procedure time or cost, and with little to no additional risk to the patient. Included are a number of implementations of distal fiber-optic configurations to optimally facilitate analysis of the lumen wall and angioplasty balloon characteristics. These implementations also provide manufacturability and relatively low-cost production required for a disposable medical device.
In an embodiment, the distal fiber optical configuration distributes at least one delivery waveguide and at least one collection waveguide with distal ends arranged such that, upon expansion of the balloon catheter in a body lumen, the distal waveguide ends can be positioned proximate to the perimeter of the catheter's treatment end by one or more expandable, flexible whisker arms. The embodiment permits positioning of the waveguide ends with little or no media fluid or bodily fluid positioned between the distal waveguide ends and the lumen wall.
In an embodiment, the apparatus includes a single balloon to which the waveguide ends are held against by the whiskers such that fiber ends remain proximate to the balloon's wall during expansion with fluid media.
In an embodiment, the delivery and collection ends of fibers of the optical configuration are adapted for near-field, wide scope use. The adaptation is particularly advantageous where the delivery and/or collection ends are to be positioned closely to targeted tissue and/or blood during deployment as in various embodiments described herein. In an embodiment, at least one delivery and/or a collection end is manufactured using a controlled etching process. In an embodiment, fiber tips are formed through emersion in a liquefied etchant such as, for example, hydrofluoric acid over a pre-determined period of time.
In one embodiment, optical analysis of the plaque is performed within the same catheter utilized for angioplasty during a PTA or PTCA procedure. This optical analysis could include, but not limited to, Raman spectroscopy, infrared spectroscopy, fluorescence spectroscopy, optical coherence reflectometery, optical coherence tomography, but most preferably, diffuse-reflective, near-infrared spectroscopy. The embodiment provides optical analysis, and thus the pathophysiologic or morphologic features diagnosis, of a plaque during an angioplasty procedure without any significant additional cost, risk, or work for the physician. With access to this information, a physician could potentially choose from a selection of drug-eluting stents with different doses or agents, or even select a stent without a drug if indicated. During typical angioplasty procedures performed on a patient, including pre-dilation of a lumen, stent delivery, and/or post-dilation, a physician could learn more about the general status of the patient's vasculature which can guide systemic therapies. New emerging technologies such as bioabsorbable stents could be enabled by the embodiments of the invention to optimize their use in the correct type of lesion.
In addition to obtaining information useful to diagnosis, an embodiment obtains information about the level of expansion of the balloon within the lumen. In an embodiment, information is collected about the amount of blood between the balloon wall and a lumen or between a delivery output and collection input of waveguides so as to determine if and when the balloon is fully apposed to the lumen wall and/or to help diagnose and locate pathophysiologic or morphologic factors including the size of the lumen. Information about the balloon with respect to the lumen can be used to control the balloon's expansion so that it does not under-expand or over-expand during treatment or for selecting an appropriately sized stent for subsequent placement. In certain circumstances, a lesion and/or deposit can cause an angioplasty balloon to become mal-apposed upon expansion. In an embodiment, levels of blood are measured about the balloon perimeter to help diagnose hard lesions.
In one aspect, a system for analyzing a body lumen comprises a flexible conduit that is elongated along a longitudinal axis, the flexible conduit having a proximal end and a distal end; at least one delivery waveguide and at least one collection waveguide extending along the flexible conduit, a transmission output of the at least one delivery waveguide and a transmission input of the at least one collection waveguide located along a distal portion of the conduit; a spectrometer connected to the at least one delivery waveguide and the at least one collection waveguide, the spectrometer configured to perform diffuse reflectance spectroscopy, wherein the spectrometer emits at least one primary radiation signal of a wavelength having an absorption coefficient of between about 8 cm−1 and about 10 cm−1 when transmitted through a highly aqueous media; a controller system configured to calculate at least one of an extent, area, and volume of highly aqueous media based on the amount of absorption of the at least one primary radiation signal measured through the highly aqueous media by the spectrometer.
In an embodiment, the at least one primary radiation signal comprises a wavelength between about 1350 nanometers and about 1850 nanometers.
In an embodiment, the at least one primary radiation signal further comprises a wavelength of about 1550 nanometers.
In an embodiment, the spectrometer is further configured to perform spectroscopy of at least one reference radiation signal of a wavelength having an absorption coefficient of less than about 8 cm−1, and wherein the controller system is further configured to calculate a ratio of absorption between the amount of absorption of the at least one primary radiation signal and an amount of absorption of the at least one reference radiation signal measured through the highly aqueous media by the spectrometer in order to calculate the volume of highly aqueous media.
In an embodiment, the at least one reference radiation signal comprises a wavelength having an absorption coefficient of about 1 cm−1 when transmitted through a highly aqueous media.
In an embodiment, the at least one primary radiation signal comprises a wavelength of about 1550 nanometers and the at least one reference radiation signal comprises a wavelength of about 1310 nanometers.
In an embodiment, the system further comprises an angioplasty balloon disposed about a distal portion of the conduit.
In an embodiment, the transmission output of the at least one delivery waveguide and the transmission input of the at least one collection waveguide is located within the angioplasty balloon.
In an embodiment, the transmission output of the at the at least one delivery waveguide and the transmission input of the at least one collection waveguide are translatable along the longitudinal axis of the conduit.
In an embodiment, the transmission output of the at the at least one delivery waveguide and the transmission input of the at least one collection waveguide are radially translatable with respect to the conduit.
In another aspect, a method for treating or analyzing a body lumen comprises: inserting into a body lumen a catheter, the catheter comprising a flexible conduit that is elongated along a longitudinal axis, the flexible conduit having a proximal end and a distal end, at least one delivery waveguide and at least one collection waveguide extending along the flexible conduit, a transmission output of the at least one delivery waveguide and a transmission input of the at least one collection waveguide located along a distal portion of the conduit; maneuvering the conduit into a designated region of the body lumen designated for treatment or analysis; performing spectroscopy, wherein performing spectroscopy comprises: transmitting at least one primary radiation signal through the at least one transmission output, wherein the wavelength of the at least one primary radiation signal has an absorption coefficient of between about 8 cm−1 and 10 cm−1 when transmitted through a highly aqueous media; and collecting the at least one primary radiation signal at the at least one collection waveguide; and measuring at least one of an extent, area, and volume of highly aqueous media about the at least one transmission output and the at least one transmission input with data obtained from the spectroscopy.
In an embodiment, the at least one primary radiation signal comprises a wavelength between about 1350 nanometers and about 1850 nanometers.
In an embodiment, the at least one primary radiation signal further comprises a wavelength of about 1550 nanometers.
In an embodiment, wherein performing spectroscopy further comprises: transmitting at least one reference radiation signal through the at least one transmission output, wherein the wavelength of the at least one reference radiation signal has an absorption coefficient of less then about 8 cm−1 when transmitted through a highly aqueous media; and calculating a ratio of absorption between the amount of absorption of the at least one primary radiation signal and an amount of absorption of the at least one reference radiation signal measured through the highly aqueous media in order to calculate the volume of highly aqueous media.
In an embodiment, the at least one reference radiation signal comprises a wavelength having an absorption coefficient of about 1 cm−1 when transmitted through a highly aqueous media.
In an embodiment, the at least one primary radiation signal comprises a wavelength of about 1550 nanometers and the at least one reference radiation signal comprises a wavelength of about 1310 nanometers.
In an embodiment, the highly aqueous media comprises a saline solution.
In an embodiment, the highly aqueous media comprises blood.
In an embodiment, measuring the volume of highly aqueous media further comprises measuring the volume of expansion of an angioplasty catheter.
In an embodiment, measuring the volume of highly aqueous media further comprises measuring the width of the body lumen.
In an embodiment, during the performance of spectroscopy, at least one of the at least one transmission output and transmission input is positioned contiguously against the conduit.
In an embodiment, during the performance of spectroscopy, at least one of the at least one transmission output and transmission input is positioned adjacent to the body lumen.
Other advantages and novel features, including optical methods and designs of illuminating and collecting an optical signal of a lumen wall through a lumen-expanding balloon, are described within the detailed description of the various embodiments of the present specification.
The foregoing and other objects, features, and advantages of the present inventive concepts will be apparent from the more particular description of preferred embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same elements throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the present embodiments.
The accompanying drawings are described below, in which example embodiments in accordance with the present inventive concepts are shown. Specific structural and functional details disclosed herein are merely representative. The inventive concepts described herein may be embodied in many alternate forms and should not be construed as limited to example embodiments set forth herein. Accordingly, specific embodiments are shown by way of example in the drawings. It should be understood, however, that there is no intent to limit the present inventive concepts to the particular forms disclosed herein, but on the contrary, the present inventive concepts are to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the claims. Like numbers refer to like elements throughout the description of the figures.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “on,” “connected to” or “coupled to” another element, it can be directly on, connected to or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.).
The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural fauns as well, unless the context clearly indicates otherwise. It will be further understood that the teems “comprise,” “comprises,” “comprising,” “include,” “includes” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The catheter assembly 10 further comprises a guidewire sheath 35 and guidewire 145. The guidewire sheath 35 provides a lumen that allows the catheter assembly 10 to be deployed over a guidewire 145 already deployed within a patient.
The catheter assembly 10 further comprises at least two fibers 40, which can include one or more delivery fiber(s) connected to at least one source 180 and one or more collection fiber(s) connected to at least one detector 170. In an embodiment, the catheter assembly 10 includes two fibers 40, including one delivery fiber and one collection fiber. In another embodiment, the catheter assembly 10 includes four fibers 40, including two delivery fibers and two collection fibers. In another embodiment, the catheter assembly 10 includes four fibers 40, including a first pair of delivery and collection fibers and a second pair of delivery and collection fibers.
The catheter assembly can further comprise a whisker body 80 having a plurality of flexible whiskers 85 that is positioned within the balloon 30. In this embodiment, proximal ends of the whiskers 85 are connected to the whisker body 80 and distal ends of whiskers 85 are attached to tips of fibers 40 so that when the balloon 30 is expanded, the tips of fibers 40 are held against the inner surface of the balloon 30. In an embodiment, the number of whiskers 85 corresponds to the number of fibers 40 provided with the catheter assembly 10.
In an embodiment, the whiskers 85 are manufactured out of a flexible, elastic material and in a manner so as to be pre-disposed to extending radially outward to at least the maximum diameter of an expanded balloon 30. The whiskers 85 are constructed so as to be extremely thin and flexible (material) so as to easily conform to attributes of a surrounding lumen.
In an embodiment, the whiskers 85 have a width (orthogonal to catheter's longitudinal and radial axis to the whisker) of about 0.012 inches. In other embodiments, the width of the whiskers 85 can be less than about 0.012 inches or greater than about 0.012 inches. In other embodiments, the width of the whiskers 85 can range between about 0.0008 inches to about 0.016 inches. Further, in an embodiment, the whiskers 85 have a length (parallel to the catheter's longitudinal and radial axis to the whisker) of about 2 mm or less. Further embodiments are described below in reference to
The whisker body 80 and the whiskers 85 can be constructed of a thermoplastic, such as, polyether ether ketone (“PEEK”) or other thermoplastics. The whisker body 80 and the whiskers 85 can also be constructed of a metal alloy, such as, nitinol or other similar alloys. In an embodiment, the whiskers 85 are constructed of PEEK and have a thickness (along the catheter's radial axis to the whisker) of about 0.005 inches. In other embodiments, the thickness of the PEEK whiskers can range between about 0.003 inches to about 0.01 inches. In another embodiment, the whiskers 85 are constructed of nitinol and have a thickness of about 0.002 inches. In other embodiments, the thickness of the nitinol whiskers 85 can range between about 0.001 inches to about 0.003 inches.
In an embodiment, the whiskers 85 have an outward biasing spring force, which causes the whiskers 85 to expand outward upon inflation of the balloon 30. In an embodiment, after deployment (e.g., expansion) and use of the whiskers 85 within a lumen, the whiskers 85 can be retracted by applying a vacuum pressure to the balloon 30 so that the balloon 30 deflates and subsequently retracts the whiskers 85.
The balloon 30 can comprise a material that is translucent to radiation delivered and collected by the fibers 40, such as, for example, translucent nylon or other translucent polymers. Referring to
Referring back to
The proximate ends of fibers 40 are connected to a light source 180 and/or a detector 170 (which are shown integrated with an analyzer/processor system 150). The analyzer/processor system 150 can comprise, for example, a spectrometer which includes a processor 175 for processing/analyzing data received through the fibers 40. A computer 152 can be connected to the analyzer/processor system 150, which can provide an interface for operating the instrument 200. The computer 152 can further process spectroscopic data (including, for example, through chemometric analysis) in order to diagnose and/or treat the condition of a subject 165. Input/output components (I/O) and viewing components 151 are provided in order to communicate information between, for example, storage and/or network devices and the like and to allow operators to view information related to the operation of the instrument 10.
Various embodiments comprise an analyzer/processor system 150, for example, including a spectrometer, that is configured to perform spectroscopic analysis within a wavelength range between about 250 nanometers and about 2500 nanometers. The various embodiments can include embodiments configured to perform spectroscopic analysis in the near-infrared spectrum between about 750 nanometers and about 2500 nanometers. Further, embodiments can be configured for performing spectroscopy within one or more subranges that include, for example, about 250 nanometers to about 930 nanometers, about 1100 nanometers to about 1385 nanometers, about 1550 nanometers to about 1850 nanometers, and about 2100 nanometers to about 2500 nanometers. Various embodiments are further described in, for example, related applications U.S. application Ser. No. 11/537,258, filed on Sep. 29, 2006, titled “SYSTEMS AND METHODS FOR ANALYSIS AND TREATMENT OF A BODY LUMEN”, and U.S. application Ser. No. 11/834,096, filed Aug. 6, 2007, titled “MULTI-FACETED OPTICAL REFLECTOR”, the entire contents of each application being herein incorporated by reference.
The junction 15 can comprise a flushing port 60 for supplying or removing fluid media (e.g., liquid/gas) 158, which can be used to expand or contract the balloon 30. Fluid media 158 is held in a tank 156 from which it is pumped in or removed from the balloon(s) 30 in response to the actuation of a knob 65. Fluid media 158 can alternatively be pumped into or out of the balloon(s) 30 with the use of automated components (e.g. switches/compressors/vacuums). Solutions for expansion of the balloon are preferably non-toxic to humans (e.g. saline solution) and are substantially translucent to the selected light radiation.
As shown in
As shown in
In addition, signals corresponding to the optical radiation 1020 can be used to more properly control the rate of inflation of the balloon catheter 1010 and the maximum inflation of the balloon catheter 1010. As such, the physician or operator can gradually inflate the balloon catheter 1010 while the system monitors the signals corresponding to the optical radiation 1020 reflected from the lumen wall 1060, which can detect the presence of blood and the proximity of the vessel wall 1060 to the balloon wall 30. In addition, signals can be measured for the presence of inflation media. If a relatively significant level of blood is detected about the entire periphery of catheter 1010 and outer covering of the balloon 30, it can be determined that the balloon catheter 1010 is not likely sufficiently expanded for its applicable purpose (e.g., angioplasty, pre-stenting dilation, stent deployment, and/or post-stenting expansion). When the signal for blood has substantially diminished, the operator can further controllably inflate the catheter 1010 to an appropriate level.
In an embodiment, diffuse reflectance spectroscopy is employed between wavelengths of about 250 nanometers to about 2500 nanometers. In an embodiment, ratios between the absorbance signals of two or more wavelengths are used to indicate a relative proximity of the balloon surface to a lumen wall 1060. In an embodiment, one of the two or more wavelengths is between about 250 nanometers and about 750 nanometers and another of the two or more wavelengths is between about 800 nanometers and about 1000 nanometers. In an embodiment, one of the two or more primary wavelengths for detecting the presence of blood apart from balloon inflation media is green visible light (or about 520 nanometers) and one of the two or more secondary or reference wavelengths is about between about 800 to 1000 nm, 1300 nm and 1350 nm, between about 1380 and 1450 nm, and between about 1550 nm and 1850 nm which are generally less sensitive to changes in the presence of blood than, for example, green light. Other wavelengths, including more specific wavelengths of 1450 and/or 1550 nm, will generally be more sensitive to changes in the presence of water and/or blood for purposes of various described embodiments such as for detecting the amount of balloon media and blood present. In an embodiment, a ratio between a primary wavelength (sensitive to change in the targeted characteristic) and a reference wavelength (substantially less sensitive to change in the targeted characteristic) can be calculated in order to remove anomalies in the readings relating to, for example, noise and differences between catheters. In an embodiment, a ratio of absorption between the amount of absorption of at least one primary radiation signal and an amount of absorption of at least one reference radiation signal can be measured and calculated in order to remove anomalies in the readings relating to, for example, noise and differences between catheters.
In another embodiment, spectroscopy is employed with one or more wavelengths with predetermined spectra profiles known to have at least nominally predictable relationships with the content of adjacent blood alone or tissue and/or balloon inflation media. In an embodiment, one or more primary wavelengths selected from 407 nanometers, 532 nanometers, and a reference wavelength is selected between about 800 nanometers and about 1000 nanometers are spectroscopically analyzed. In an embodiment, diffuse reflectance spectroscopy is used. In an embodiment, previously measured ratios between two or more of these wavelengths at various blood and/or balloon media depths are programmed into a system, and later compared to in-process data collected during an actual procedure. In an embodiment, the one or more wavelengths consist of wavelengths of about 532 nanometers and about 407 nanometers and in another embodiment consist of about 532 nanometers and about 800 nanometers.
In another embodiment, the relative level of inflation of the balloon 30 is determined by measuring the amount of absorption of a radiation signal across the balloon media between at least one delivery and at least one collection fiber. In an embodiment, two or more radiation signals having different wavelengths are measured between the at least one delivery fiber and the at least one collection fiber. In an embodiment, at least one of the radiation signals, a primary radiation signal (having a primary wavelength or range of wavelengths), is generally more sensitive to a change in the presence of water and/or blood such as one of the wavelengths described above including, for example, 1550 nanometers and at least one of the radiation signals is employed as a reference radiation signal (having a reference wavelength or range of wavelengths) where its change in absorption in water compared to the primary wavelength is relatively insignificant over short distances (e.g., over 4 mm or less) such as, for example, a reference wavelength of about 1310 nanometers when used with a primary wavelength of 1550 nanometers. In an embodiment, the ratio between the primary wavelength(s) and reference wavelength(s) is calculated and used to compare different levels of expansion of balloon 30.
Generally, typical angioplasty-type procedures rely on inaccurate fluoroscopy measurements and balloon expansion profiles made prior to catheter deployment to determine the level of fluid pressure/inflation needed. In order to avoid risky complications, these traditional procedures often overinflate the balloon catheter. An under-expanded stent, for example, may not only fail to properly support a targeted vessel area but also cause additional undesired blockages itself. Overexpansion, however, presents its own risks (e.g. rupture and other vessel damage) and an angioplasty-type procedure may therefore be avoided altogether as a treatment. Various embodiments of the present inventive concepts as described herein can help avoid these occurrences by more accurately determining apposition of the catheter balloon against a vessel wall in real-time. Accordingly, apposition of the catheter balloon against a vessel wall can be determined during an angioplasty-type procedure, while the balloon catheter is positioned within a patient.
A signal corresponding to the optical radiation 1020 indicative of the presence of blood about only portions of catheter 1010 could also be used to help determine, for example, the presence and peripheral location of a hard (e.g., calcified) lesion. If the localized presence of blood is detected when the balloon should be substantially apposed to lumen wall 1060, the signals may be indicative of a deformed mal-apposed balloon that may result when such hard lesions significantly resist expansion while other portions of the vessel do not so resist. Under these circumstances, the mal-apposed balloon may either trap blood in pockets between the balloon wall and the vessel wall or allow blood to freely flow by along certain portions of the balloon. Signals corresponding to the optical radiation 1020 could further verify the presence of, for example, such elements as calcium or other elements indicative of hard lesions. Since an embodiment of the present inventive concepts can also identify weaknesses along the lumen wall 1060 prior to fully deploying an angioplasty balloon 30 at a target region of the lumen wall 1060, the embodiments can reduce the risk of a rupture occurring at or near the blockage 1062 during or after an angioplasty procedure.
As shown in
For example, if a lumen is being inspected in an angioplasty application (e.g., pre-dilation, stenting, post-dilation), the physician can rapidly make a decision for subsequent therapy, e.g., a stent insertion and/or a drug local injection therapy after a sample balloon angioplasty for second treatment. The spectral data can also indicate the preferred stent to be selected for treatment, of any required future treatment, etc. by analyzing pathology results on the lumen wall. The spectral data can also be stored for future analysis or comparison to current treatment(s). In an embodiment, at the point when the catheter 1020 substantially apposes the lumen wall 1060 (e.g., as shown in
In an embodiment, selected drugs (not shown) are coated over the outside of the balloon 30 of the balloon catheter 1010. In an embodiment, one or more of the drugs coating the balloon 30 can be activated, e.g., so as to provide therapeutic effect, by the emission of selected radiation wavelengths from fiber ends 45 to the balloon 30 at various stages of the deployment of the catheter 1010. A physician, for example, can use information gathered from prior analysis performed by a balloon catheter 1010 to decide whether and if selected drugs should be activated or left inactivated.
As shown in
In an embodiment, the process for forming a fiber tip 245 occurs (as shown in
Referring to
Referring to
Referring in particular to
In various embodiments, sealants for use in protecting the recess 255 include, for example, pyroxylin, thermoplastics such as ethylene-vinyl acetate, and thermosetting plastics such as ultraviolet cured glass glue. In an embodiment, a Loctite® brand series 3345 sealant, by Henkel Corporation, Henkelstraβe 67, 40191 Dusseldorf, Germany, or other similar type sealant is used to protect the recess 255.
Referring to
Various other delivery and collection end arrangements of fibers 40 can be adapted for use in embodiments of the present inventive concepts, such as, for example, those arrangements described in co-pending and related U.S. patent application Ser. No. 11/537,258, filed on Sep. 29, 2006, published as Patent Application Publication No. 2007/0078500 A1, the entire contents of which is incorporated herein by reference.
In embodiments, the recess 255 can have other shapes, such that a vertex is located within the core of the tip. In other embodiments, recess 255 can have other shapes that comprise higher order polynomial curves. In other embodiments, the recess has a curved surface, the curved surface having a vertex within the core.
In an embodiment, as shown in
In an embodiment, the diffusing covering 350 is coated with a reflective material with the exception of a circumferential window 355 that allows light to be passed through the covering for distribution or collection. In an embodiment, the diffusing covering 350 comprises PEEK, which provides light-diffusing properties. In an embodiment, the reflective material comprises a thin metallic layer, such as, gold, silver, platinum or other like material. In an embodiment, the metallic layer is applied through the process of ion-assisted deposition.
In an embodiment, a PEEK covering around fiber tip 245 has a radial distance from the external surface of the tip of between about 0.001 inches and about 0.01 inches and preferably of about 0.003 inches. In an embodiment, the longitudinal length of the PEEK covering is between about 1.2 millimeters and about 1.5 millimeters with the fiber tip extending through approximately about 0.5 millimeters to about 0.75 millimeters of the length of the PEEK.
The optical switch configuration as shown in
The catheter system 800 can comprise an optional switch SW1, which selects (swaps output) among one of two delivery fibers 45D1 and 45D2. For example, the switch SW1 can select the first radiation source SRC1 to deliver radiation through the first and second delivery fibers 45D1 and 45D2, the first delivery fiber 45D1 or the second delivery fiber. The switch SW1 can further select the second radiation source SRC2 to deliver radiation through the first and second delivery fibers 45D1 and 45D2, the first delivery fiber 45D1 or the second delivery fiber. The switch SW1 can further select the first radiation source SRC1 to deliver radiation through the first delivery fiber 45D1, and further select the second radiation source SRC2 to deliver radiation through the second delivery fiber 45D2.
The first delivery fiber 45D1, the first and second collector fibers 45R1 and 45R2, radiation signals/wavelengths emitted by the first and second radiation sources SRC1 and SRC2, and the first and second radiation detectors DET1 and DET2 can be selected to deliver and analyze radiation directed primarily through the balloon 30 media so as to measure relative area in at least one of the quadrants Q3 and Q4. The third and fourth radiation signals S3 and S4 are received by the second and first collector fibers 45R2 and 45R1, respectively, and are transmitted through the second and first delivery fibers 45R2 and 45R1 to corresponding radiation detectors DET1 and DET2. For example, third and fourth radiation signals S3 and S4 emitted from the first delivery fiber 45RD1 are partially absorbed by and reflected from portions of the wall of the balloon 30 and balloon media in the third and fourth quadrants Q3 and Q4, respectively. The amount of absorption of the signals can provide an estimate of the relative expansion of those areas (between the wall of balloon 30 and guidewire sheath 35 in Q3 and Q4. For example, a primary wavelength of about 1550 nanometers and a reference wavelength of about 1310 nanometers as described above can be used for such purpose.
The second delivery fiber 45D2, the first and second collector fibers 45R1 and 45R2, radiation wavelengths emitted by the first and second radiation sources SRC1 and SRC2, and the first and second radiation detectors DET1 and DET2 can be selected to deliver and analyze radiation directed through tissue adjacent to the wall of the balloon 30 so as to measure pathiophysiological properties of the tissue (e.g., collagen content, lipid content, calcium content, inflammatory factors, and the relative positioning of these features within the plaque) adjacent the quadrants Q1 and Q2. For example, first and second radiation signals S1 and S2 emitted from the second delivery fiber 45RD2 are partially absorbed by and reflected from portions of the lumen wall 1060 in the first and second quadrants Q1 and Q2, respectively. The first and second radiation signals S1 and S2 are received by the second and first collector fibers 45R2 and 45R1, respectively, and are transmitted through the second and first delivery fibers 45R2 and 45R1 to corresponding radiation detectors DET1 and DET2. For example, a scan of wavelengths between about 1550 nanometers and about 1850 nanometers can be used for such purpose.
In accordance with embodiments of the present inventive concepts for calculating the relative area of a region between a delivery fiber output and collection fiber input (e.g., between a delivery fiber 45D and collection fiber 45R of
Sources SOURCE1 and SOURCE2 are connected to an optical switch OS1 that directs one of the outputs from SOURCE1 and SOURCE2 to a second optical switch OS2. Optical switch OS2 directs output signals to one of two channels (e.g., delivery fibers) 815A and 815B. Optionally, a beam splitter (e.g., BS1 and BS2) can direct a portion of the output from switch OS2 to a controller/processor 820 in order to sample the output from the sources. In an embodiment, about 1% of the signal from switch OS2 is split from one or more beam splitters. In an embodiment, the signals from the beam splitters are directed to photo-diodes 812 for processing such as by controller/processor 820. The remaining signal is directed to output channels 815A or 815B. In another embodiment, a single optical switch (not shown) can replace OS1 and OS2 and have two inputs, one from each of SOURCE1 and SOURCE2, and two outputs, one to each of channels 815.
Detectors DETECTOR1 and DETECTOR2 are connected to amplifiers/buffers 805 (optinal), and amplifiers/buffers 805 are connected to an analog to digital controller (ADC) 821. The ADC 821 can be integrated into the controller/processor 820, or can be a separate device connected to the controller/processor 820.
In an embodiment, signals received (i.e., from collection fibers) through input channels of DETECTOR1 and DETECTOR2 are directed to controller/processor 820 for processing such as for calculating an absorbance using diffuse reflectance spectroscopy. In an embodiment, the controller/processor 820 can be connected to external processing and/or viewing devices such as a computer 810 with a display 817 (e.g., a monitor). The computer 810 and display 817 can, for example, function to take commands from operators, display results, further process data from the controller/processor 820, and/or control the console 1000 operations. The controller/processor 820 can be connected with various components such as sources SOURCE1, SOURCE2, and optical switches OS1 and OS2 so as to route commands to these devices.
In an embodiment, a signal is delivered from SOURCE1 to one of channels 815A and 815B and out to a delivery fiber tip such as fiber tip 45D 1 shown in
Once signals from SOURCE2 are delivered to delivery fiber 45D1 and collected by fiber 45R1 for a brief period of time, switch OS2 is switched “off” so that signals from SOURCE2 are delivered to delivery fiber 45D2 and collected by collection fiber 45R2. After a brief period of delivery and collection, switch OS1 is turned on again so that signals from SOURCE1 are delivered to delivery fiber 45D2 and collected by collection fiber 45R2. After another period of delivery and collection, switch OS2 is switched “on” again so that both switches OS1 and OS2 are in their original configuration for another cycle of delivery and collection. In an embodiment, these cycles can be repeated continuously while the balloon is expanded and monitored until the system predicts that full expansion is achieved. In an embodiment, one of the signals (e.g., SIG1) can be of a primary wavelength as referred to above and the other signal (e.g., SIG2) can be of a reference wavelength.
Prior to deployment, the whiskers 615 are positioned in a retracted mode within a distal portion 620B of the catheter instrument 600 such as in correspondence with
In an embodiment, the whisker body 610 and the whiskers 615 can be moved longitudinally by employing a means for pulling the fibers 40M (e.g., such as described below in reference to
In an embodiment, the tips of whiskers 615 are fixed (e.g., with a suitable epoxy) to fibers 40M near the tips of fibers 40M so that when whiskers 615 extend outward toward the inner surface of the balloon 30, the tips of fibers 40M are held against the inner surface of the balloon 30 and also allow the whisker body 610 to be slidably moved along the guidewire sheath 35.
It will be understood by those with knowledge in related fields that uses of alternate or varied materials and modifications to the systems and methods disclosed herein are apparent. This disclosure is intended to cover these and other variations, uses, or other departures from the specific embodiments as come within the art to which the present inventive concepts pertain.
This application is a continuation of U.S. patent application Ser. No. 12/784,482, filed May 20, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 11/537,258, filed Sep. 29, 2006, which claims the benefit of U.S. Provisional Application No. 60/824,915, filed Sep. 8, 2006, U.S. Provisional Application No. 60/823,812, filed Aug. 29, 2006, U.S. Provisional Application No. 60/821,623, filed Aug. 7, 2006, U.S. Provisional Application No. 60/761,649, filed Jan. 24, 2006, and U.S. Provisional Application No. 60/722,753, filed Sep. 30, 2005, the entire contents of each being herein incorporated by reference in their entirety. This application further claims the benefit of U.S. Provisional Application No. 61/180,068, filed May 20, 2009 and U.S. Provisional Application No. 61/310,337, filed Mar. 4, 2010, the entire contents of each being herein incorporated by reference in their entirety. This application is related to U.S. patent application Ser. No. 11/834,096, filed on Aug. 6, 2007, published as U.S. Patent Application Publication No. 2007/0270717 A1, U.S. Provisional Application No. 61/019,626, filed Jan. 8, 2008, U.S. Provisional Application No. 61/025,514, filed Feb. 1, 2008, U.S. Provisional Application No. 61/082,721 filed Jul. 22, 2008, U.S. patent application Ser. No. 12/350,870, filed Jan. 8, 2009, published as U.S. Patent Application Publication No. 2009/0187108 A1, U.S. patent application Ser. No. 12/561,756, filed Sep. 17, 2009, the contents of each being incorporated herein by reference in their entirety. This application is further related to PCT Application No. PCT/US10,35677, filed on even date herewith, titled “SYSTEMS AND METHODS FOR ANALYSIS AND TREATMENT OF A BODY LUMEN”, by S. Eric Ryan, et al., Attorney Docket No. COR-22CPPCTA, and PCT Application No. PCT/US10,35682, filed on even date herewith, titled “SYSTEMS AND METHODS FOR ANALYSIS AND TREATMENT OF A BODY LUMEN”, by S. Eric Ryan, et al., Attorney Docket No. COR-22CPPCTB, the entire contents of each being herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61180068 | May 2009 | US | |
61310337 | Mar 2010 | US | |
60824915 | Sep 2006 | US | |
60823812 | Aug 2006 | US | |
60821623 | Aug 2006 | US | |
60761649 | Jan 2006 | US | |
60722753 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12784482 | May 2010 | US |
Child | 14060042 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11537258 | Sep 2006 | US |
Child | 12784482 | US |