The disclosure generally relates to digital microfluidics and, in particular, to electrowetting-on-dielectric applications.
Digital microfluidics utilizing electrowetting-on-dielectric (EWOD) has emerged as a modern paradigm for lab-on-a-chip (LOC) applications owing to numerous perceived advantages. By way of example, EWOD often provides for portability, automation, higher sensitivity and/or higher throughput in diagnosis applications, such as DNA sequencing. However, EWOD applications based on printed circuit board (PCB) and complementary metal-oxide-semiconductor (CMOS) technologies tend to suffer from various shortcomings, such as limited size and lack of transparency, which often requires the use of additional sensors.
Therefore, there is a perceived need for improvements in EWOD applications that address these and/or other perceived deficiencies.
Systems and methods for analyzing droplets are provided. In an example embodiment, a method comprises: providing a substrate with scan lines and data lines disposed thereon to define an array of pixels, wherein the pixels of the array of pixels have reagent associated therewith; controlling the droplet to move along the array of pixels according to a control signal on a first of the scan lines; detecting a response of the droplet to the reagent according to a sensing signal; and determining a characteristic of the droplet based on a position of the droplet and the response of the droplet.
In some embodiments, detecting the response of the droplet comprises using light to form the sensing signal.
In some embodiments, each of the pixels is associated with a photo diode configured to convert the light into a voltage signal.
In some embodiments, the sensing signal is provided on a first of the data lines.
In some embodiments, detecting the response of the droplet comprises detecting fluorescence associated with the droplet.
In some embodiments, the method further comprises determining a position of the droplet on the array of pixels.
In some embodiments, each of the pixels is associated with a sensing electrode configured to determine a capacitive component corresponding to a portion of the droplet positioned thereon; and determining the position comprises using the capacitance component.
In another example embodiment, a system comprises: a substrate; a plurality of scan lines and a plurality of data lines disposed on the substrate to define an array of pixels; a hydrophobic layer disposed on the array of pixels; reagent disposed on the hydrophobic layer; movement control circuitry configured to provide a control signal to a first of the scan lines to move the droplet along the array of pixels to selectively position the droplet in contact with the reagent; position sensing circuitry configured to provide a sensing signal corresponding to a position of the droplet on the array of pixels; and detecting circuitry configured to determine a characteristic of the droplet based on the position of the droplet and a response of the droplet to the reagent.
In some embodiments, each of the pixels of the array of pixels comprises: a vcom electrode configured to receive a reference voltage; and a sensing electrode configured to receive the response of the droplet to the reagent and to provide a sensing signal corresponding thereto.
In some embodiments, a backlight unit is disposed under the substrate and configured to provide light to illuminate the droplet.
In some embodiments, an optical sensor is configured to provide a read-out voltage in accordance with a response of the droplet to the light.
In some embodiments, a color filter is disposed on the optical sensor.
In some embodiments, each of the pixels is associated with a photo diode configured to convert light, associated with the droplet, into a voltage signal; and the detecting circuitry is further configured to use the voltage signal to determine the response of the droplet to the reagent.
In some embodiments, each of the pixels is associated with a sensing electrode configured to determine a capacitive component corresponding to a portion of the droplet positioned thereon; and the position sensing circuitry is further configured to use the capacitive component to form the sensing signal.
In some embodiments, each of the pixels of the array of pixels comprises: a first thin film transistor (TFT) electrically connected between a corresponding one of the plurality of scan lines and a corresponding control electrode; and a second TFT electrically connected between a corresponding one of the plurality of data lines and a corresponding sensing electrode.
In another example embodiment, a panel comprising a plurality of pixel structures for analyzing a droplet, each of the pixel structures comprises: a first scan line, disposed in a first direction for receiving a first driving voltage to move the droplet; a data line, disposed in a second direction for receiving a high frequency pulse, wherein the first direction is perpendicular to the second direction; a second scan line, disposed in the first direction for receiving a second driving voltage; a readout line, disposed in the second direction for sensing a position of the droplet; a first transistor, having a first end being connected to the data line, a second end being connected to a control electrode, and a control end being connected to the first scan line; and a second transistor, having a first end being connected to the readout line, a second end being connected to a sense unit, and a control end being connected to the second scan line.
In some embodiments, for each of the pixel structures: the first scan line, the data line and the first transistor are formed in an array layer on a bottom substrate; and the second scan line, the readout line and the second transistor are formed in an array layer on a top substrate, wherein the droplet is located between the top layer and the bottom layer.
In some embodiments, each of the pixel structures further comprises a color filter layer, wherein a projection area of the color filter layer is covered by the sense unit.
In some embodiments, each of the pixel structures further comprises a common electrode, disposed under the control electrode in the first direction for providing a reference voltage.
In some embodiments, the common electrode is disposed under the control electrode and the sense unit.
In some embodiments, in a moving period, the first driving voltage is provided to the first scan line to move the droplet; and in a position determining period, the second driving voltage is provided to the second scan line, and the readout line senses the voltage difference of the sense unit.
Other objects, features, and/or advantages will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
For ease in explanation, the following discussion describes several embodiments of systems and methods for analyzing droplets. It is to be understood that the invention is not limited in its application to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
In this regard, various systems and methods for analyzing droplets may address the aforementioned challenges by providing EWOD-based systems and methods that are able to handle many droplets simultaneously on a substrate. As will be described in greater detail below, in some embodiments, this may be accomplished by incorporating provisions for continuously monitoring droplet parameters, such as position, size, and/or velocity.
Preferred embodiments will now be described with reference to the drawings. In particular,
Each pixel (or pixel circuit) is coupled to at least one scan line and at least one data line. By way of example, pixel 124 is electrically coupled to scan lines 104 and 106 and to data lines 108 and 110. Movement control circuitry 130 and position sensing circuitry 140 are configured to control signals (e.g., voltage signals) on the respective scan and data lines to address each pixel. Additionally, a hydrophobic layer 150 is disposed on array of pixels 120, and reagent (e.g., Reagent A (160) and Reagent B (170)) is disposed on hydrophobic layer 150.
Movement control circuitry 130 is configured to provide control signals to the scan lines to move droplets (e.g., droplet 175) along array of pixels 120 to selectively position the droplets in contact with one or more of reagents disposed on hydrophobic layer 150. Position sensing circuitry 140 is configured to provide a sensing signal corresponding to a position of the droplets on array of pixels 120. Notably, in some embodiments, capacitive characteristics of a droplet on the array of pixels 120 may be used for providing the sensing signal, whereas, in other embodiments, optical characteristics of a droplet may be used. Detecting circuitry 180 also is provided. Detecting circuitry 180 is configured to determine a characteristic of the droplet based on the position of the droplet (such as determined by position sensing circuitry 140) and a response of the droplet to a reagent to which the droplet may have responded (e.g., reacted). For instance, in some embodiments, detecting circuitry may be associated with a camera (e.g., a CCD) that is configured to determine a characteristic (e.g., color) of the droplet, which may be a mix of a sample and one or more reagents.
Because of electro-wetting characteristics of the droplet, movement control circuitry 130 may provide a high voltage level control signal to scan line 310 in order to control the y-direction movement of the droplet; and provide the high voltage level control signal to data line 330 in order to control the x-direction movement of the droplet. While the droplet is moved to a region to mix with the reagents, detecting circuitry 180 can determine one or more characteristics of the droplet. Position sensing circuitry 140 may provide driving signals to scan lines 312 sequentially. When the droplet is located on the projection region of the pixel, the corresponding data lines 312 may readout the voltage difference of the pixel electrode and the Vcom electrode in order to determine the position of the droplet.
In this regard, an embodiment of a method, such as may be performed by system 100 of
In operation, scan line 106 receives a pulse signal as depicted in
In one embodiment, a plurality of pixels (e.g., those configured as pixel 250) is formed into a matrix. The scan lines 310 and the data lines 330 could be enabled sequentially. Hence, a droplet is controlled by providing driving voltages to the scan lines 310 and the data lines 330 in order to move the droplet. Specifically, a voltage difference created between adjacent lines (and pixels) generates an electric filed that urges the droplet to move. For example, the droplet could be moved into a specific region to mix with a desired reagent.
In a sensing period, scan lines 312 are enabled and Vcom electrode 340 is provided at a fixed reference voltage. Voltage differences may be different between each of the sensing electrode of pixels 301-309 and the Vcom electrode 340. For example, when the droplet is located on the pixel 305, a voltage difference is exhibited between the sensing electrode of pixels 305 and the Vcom electrode 340; when the droplet is not located on the pixel 309, no voltage difference may be exhibited between the sensing electrode of pixels 309 and the Vcom electrode 340.
In one embodiment, the moving period may overlap with the sensing period. That is, while scan lines 310 control the droplet to move, scan lines 312 detect the position of the droplet.
In another embodiment, scan lines 312 could be enabled sequentially. When scan line 312 is enabled, a corresponding data line 332 (or “readout line”) of the sensing pixel senses a voltage difference, which is exhibited between the sensing electrode of pixel and the Vcom electrode 340, and provided to the detecting circuitry (sensor IC). For example, when the droplet is located on the pixel 305, a voltage difference is exhibited between the sensing electrode of pixels 305 and the Vcom electrode 340, then the detecting circuitry may sense the voltage difference through the data line 332; when the droplet is not located on the pixel 309, no voltage difference is exhibited between the sensing electrode of pixels 309 and the Vcom electrode 340, then the detecting circuitry may not sense a voltage difference through the data line 332.
In one embodiment, the positioning sensing circuitry might be implemented by digital signal processor (DSP). Data lines 432 of sensing pixels are electrically connected to the positioning sensing circuitry. While scan lines 412 are inactivated, sensing lines 432 may read out the voltage level (A) of each sensing pixel; while scan lines 412 are activated, sensing lines 432 may read out voltage level (B) of each sensing pixel. Positioning sensing circuitry decodes voltage differences (|B−A|) of the sensing pixel when there is a droplet on the sensing pixel.
Similar to that described previously with respect to
In this embodiment, detecting circuitry 540 is associated with top section 504 and includes functions previously attributed to position sensing circuitry; specifically, that of determining a position of the droplet on the array of pixels. In this regard, top section 504 incorporates an optical sensor 542 that is configured similar to that of TFT array 520 with respect to the inclusion of scan and data lines. However, in optical sensor 520, each pixel location incorporates a photodiode that is configured to provide a read-out voltage in accordance with a response of a droplet to light. Notably, in this embodiment, light is provided by a backlight unit 550 associated with bottom section 502. So configured, optical sensor 542 is configured to convert light (which may be filtered by color filter 552) into a voltage signal that is used by detecting circuitry 540 to determine the position and/or response of a droplet to a reagent, which may be disposed in channel 508. In some embodiments, the response of a droplet may include fluorescing, in which case, the optical sensor may detect the fluorescence associated with the droplet, such as after light from backlight unit 550 has been turned off.
In this embodiment, detecting circuitry 640 is associated with section 602 and includes functions previously attributed to position sensing circuitry; specifically, that of determining a position of the droplet on the array of pixels. In this regard, section 602 incorporates an optical sensor within TFT array 620 that incorporates a photodiode at each pixel location. Light is provided by a backlight unit 650. So configured, the optical sensor is configured to convert light (which may be filtered by color filter 652) into a voltage signal that is used by detecting circuitry 640 to determine the position and/or response of a droplet to a reagent.
Disposed below TFT array 820 is a TFT array 840, which incorporates an optical sensor that includes an array of photodiodes. A color filter 850 is disposed between TFT array 840 and TFT array 820. Additionally, a backlight unit 852 disposed below TFT array 840 is configured to illuminate the droplets. In operation, detecting circuitry 860 is configured to receive a voltage signal from the photodiodes that corresponds to response of a droplet to light from backlight unit 852.
It should be noted that the aforementioned circuitry (circuits) and functions of various embodiments may be implemented by hardware, software or a combination of hardware and software such as microcontrollers, application-specific integrated circuits (ASIC) and programmable microcontrollers, as well as by circuits that may be implemented by TFT array processes, such as gate driver circuitry on array (GOA).
The embodiments described above are illustrative of the invention and it will be appreciated that various permutations of these embodiments may be implemented consistent with the scope and spirit of the invention.