Systems and methods for analyzing performance of an entity

Information

  • Patent Grant
  • 9996229
  • Patent Number
    9,996,229
  • Date Filed
    Monday, December 15, 2014
    10 years ago
  • Date Issued
    Tuesday, June 12, 2018
    6 years ago
Abstract
Systems and methods are provided for analyzing entity performance. In accordance with one implementation, a method is provided that includes receiving data associated with a geographic region and transforming the received data into an object model. The method also includes analyzing the object model to associate the received data with a plurality of entities and to associate the received data with a plurality of sub-geographic regions of the geographic region. The method also includes applying a prediction model to the plurality of sub-geographic regions using the object model to determine a predicted performance for at least one entity of the plurality of entities. Further, the method includes determining actual performance for the at least one entity and providing a user interface that includes information associated with the predicted performance, the actual performance, or a combination of the predicted performance and the actual performance.
Description
BACKGROUND

The amount of information being processed and stored is rapidly increasing as technology advances present an ever-increasing ability to generate and store data. This data is commonly stored in computer-based systems in structured data stores. For example, one common type of data store is a so-called “flat” file such as a spreadsheet, plain-text document, or XML document. Another common type of data store is a relational database comprising one or more tables. Other examples of data stores that comprise structured data include, without limitation, files systems, object collections, record collections, arrays, hierarchical trees, linked lists, stacks, and combinations thereof.


Numerous organizations, including industry, retail, and government entities, recognize that important information and decisions can be drawn if massive data sets can be analyzed to identify patterns of behavior. Collecting and classifying large sets of data in an appropriate manner allows these entities to more quickly and efficiently identify these patterns, thereby allowing them to make more informed decisions.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to the accompanying drawings which illustrate exemplary embodiments of the present disclosure and in which:



FIG. 1 illustrates, in block diagram form, an exemplary data fusion system for providing interactive data analysis, consistent with embodiments of the present disclosure.



FIG. 2 is a block diagram of an exemplary system for analyzing performance of an entity, consistent with embodiments of the present disclosure.



FIG. 3 is a block diagram of an exemplary computer system with which embodiments of the present disclosure can be implemented.



FIG. 4 is a flowchart representing an exemplary process for analyzing entity performance, consistent with the embodiments of the present disclosure.



FIG. 5 is a flowchart representing an exemplary process for analyzing received data, consistent with the embodiments of the present disclosure.



FIG. 6A is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 6B is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 7A is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 7B is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 7C is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 7D is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 8A is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 8B is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 9 is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.



FIG. 10 is a screenshot of an exemplary depiction of a graphical user interface, consistent with embodiments of the present disclosure.





DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to the embodiments, the examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.



FIG. 1 illustrates, in block diagram form, an exemplary data fusion system 100 for providing interactive data analysis, consistent with embodiments of the present disclosure. Among other things, data fusion system 100 facilitates transformation of one or more data sources, such as data sources 130 (e.g., financial services systems 220, geographic data systems 230, merchant management systems 240 and/or consumer data systems 250, as shown in FIG. 2) into an object model 160 whose semantics are defined by an ontology 150. The transformation can be performed for a variety of reasons. For example, a database administrator can import data from data sources 130 into a database 170 for persistently storing object model 160. As another example, a data presentation component (not depicted) can transform input data from data sources 130 “on the fly” into object model 160. The object model 160 can then be utilized, in conjunction with ontology 150, for analysis through graphs and/or other data visualization techniques.


Data fusion system 100 comprises a definition component 110 and a translation component 120, both implemented by one or more processors of one or more computing devices or systems executing hardware and/or software-based logic for providing various functionality and features of the present disclosure, as described herein. As will be appreciated from the present disclosure, data fusion system 100 can comprise fewer or additional components that provide the various functionalities and features described herein. Moreover, the number and arrangement of the components of data fusion system 100 responsible for providing the various functionalities and features described herein can further vary from embodiment to embodiment.


Definition component 110 generates and/or modifies ontology 150 and a schema map 140. Exemplary embodiments for defining an ontology (such as ontology 150) are described in U.S. Pat. No. 7,962,495 (the '495 patent), issued on Jun. 14, 2011, the entire contents of which are expressly incorporated herein by reference for all purposes. Consistent with certain embodiments disclosed in the '495 patent, a dynamic ontology may be used to create a database. To create a database ontology, one or more object types may be defined, where each object type includes one or more properties. The attributes of object types or property types of the ontology can be edited or modified at any time. And, for each property type, at least one parser definition may be created. The attributes of a parser definition can be edited or modified at any time.


In some embodiments, each property type is declared to be representative of one or more object types. A property type is representative of an object type when the property type is intuitively associated with the object type. In some embodiments, each property type has one or more components and a base type. In some embodiments, a property type can comprise a string, a date, a number, or a composite type consisting of two or more string, date, or number elements. Thus, property types are extensible and can represent complex data structures. Further, a parser definition can reference a component of a complex property type as a unit or token.


An example of a property having multiple components is an Address property having a City component and a State component. An example of raw input data is “Los Angeles, Calif.” An example parser definition specifies an association of imported input data to object property components as follows: {CITY}, {STATE}→Address:State, Address:City. In some embodiments, the association {CITY}, {STATE} is defined in a parser definition using regular expression symbology. The association {CITY}, {STATE} indicates that a city string followed by a state string, and separated by a comma, comprises valid input data for a property of type Address. In contrast, input data of “Los Angeles Calif.” would not be valid for the specified parser definition, but a user could create a second parser definition that does match input data of “Los Angeles Calif.” The definition Address:City, Address:State specifies that matching input data values map to components named “City” and “State” of the Address property. As a result, parsing the input data using the parser definition results in assigning the value “Los Angeles” to the Address:City component of the Address property, and the value “CA” to the Address:State component of the Address property.


According to some embodiments, schema map 140 can define how various elements of schemas 135 for data sources 130 map to various elements of ontology 150. Definition component 110 receives, calculates, extracts, or otherwise identifies schemas 135 for data sources 130. Schemas 135 define the structure of data sources 130; for example, the names and other characteristics of tables, files, columns, fields, properties, and so forth. Definition component 110 furthermore optionally identifies sample data 136 from data sources 130. Definition component 110 can further identify object type, relationship, and property definitions from ontology 150, if any already exist. Definition component 110 can further identify pre-existing mappings from schema map 140, if such mappings exist.


Based on the identified information, definition component 110 can generate a graphical user interface 115. Graphical user interface 115 can be presented to users of a computing device via any suitable output mechanism (e.g., a display screen, an image projection, etc.), and can further accept input from users of the computing device via any suitable input mechanism (e.g., a keyboard, a mouse, a touch screen interface, etc.). Graphical user interface 115 features a visual workspace that visually depicts representations of the elements of ontology 150 for which mappings are defined in schema map 140.


In some embodiments, transformation component 120 can be invoked after schema map 140 and ontology 150 have been defined or redefined. Transformation component 120 identifies schema map 140 and ontology 150. Transformation component 120 further reads data sources 130 and identifies schemas 135 for data sources 130. For each element of ontology 150 described in schema map 140, transformation component 120 iterates through some or all of the data items of data sources 130, generating elements of object model 160 in the manner specified by schema map 140. In some embodiments, transformation component 120 can store a representation of each generated element of object model 160 in a database 170. In some embodiments, transformation component 120 is further configured to synchronize changes in object model 160 back to data sources 130.


Data sources 130 can be one or more sources of data, including, without limitation, spreadsheet files, databases, email folders, document collections, media collections, contact directories, and so forth. Data sources 130 can include data structures stored persistently in non-volatile memory. Data sources 130 can also or alternatively include temporary data structures generated from underlying data sources via data extraction components, such as a result set returned from a database server executing an database query.


Schema map 140, ontology 150, and schemas 135 can be stored in any suitable structures, such as XML files, database tables, and so forth. In some embodiments, ontology 150 is maintained persistently. Schema map 140 can or cannot be maintained persistently, depending on whether the transformation process is perpetual or a one-time event. Schemas 135 need not be maintained in persistent memory, but can be cached for optimization.


Object model 160 comprises collections of elements such as typed objects, properties, and relationships. The collections can be structured in any suitable manner. In some embodiments, a database 170 stores the elements of object model 160, or representations thereof. In some embodiments, the elements of object model 160 are stored within database 170 in a different underlying format, such as in a series of object, property, and relationship tables in a relational database.


According to some embodiments, the functionalities, techniques, and components described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices can be hard-wired to perform the techniques, or can include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or can include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices can also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices can be desktop computer systems, portable computer systems, handheld devices, networking devices, or any other device that incorporates hard-wired and/or program logic to implement the techniques.


In embodiments described herein, data fusion system 100 can provide an entity, such as a retail merchant, to analyze information to identify behaviors to allow that entity to make more informed decisions. Such information can allow retail entities, such as a retail merchant, to determine where to place their retail locations. Entities having more than one location (e.g., a merchant with a chain store or a franchise model) typically evaluate the performance of their locations and may adjust their business models or work flows when the locations under-perform. Typically, entities evaluate the performance of their locations based on period-to-period metrics. For example, an entity can evaluate a location's performance by comparing the current month's sales to the previous month's sales. In addition, entitles can evaluate each of its locations' performance using comparative analysis. For example, an entity might compare the sales at a first location with the sales at a second location. As entities generally measure the performance of its locations based on its own transaction data (e.g., the entity's sales across some or all of its locations), current methods of measuring performance do not consider sales made by competitors or demographic features of the areas of the entity's locations.


Since current performance evaluation methods do not consider the sales of competitors or the demographic features of the region of the entity location, measured performance may not represent the true performance of an entity. For instance, although an entity location in a low consumer spend capacity area might have less sales than an entity location in a high consumer spend capacity area, it may be performing better than what could be expected for that area in light of, for example, the low number of consumers residing in the area or the low income of the area. Entity location performance can be adversely impacted by the close proximity of another location of the entity, but the entity location can be performing better than expected given the competition from the other entity location. Conversely, while an entity location in a dense, high-income area might have the highest sales of all entity locations, it can be under-performing because, for instance, consumer spend capacity is high and the entity location could generate more sales.


Consistent with embodiments of the present disclosure, the performance of entities can be analyzed based on how the entity is expected to perform given the location of the entity. For a given entity location, the disclosed embodiments may be implemented to consider, for example, consumer demographic features of the entity location's area and the proximity of competitors to the entity location (including the proximity of other close-by entity locations). Based on these and/or similar factors, a prediction of the amount of sales or number transactions for an entity location can be determined and compared to the actual amount of sales or transactions for the entity location to determine the performance of the entity location. In some embodiments, the entity can be a merchant. For purposes of illustration, exemplary embodiments for analyzing entity performance are described herein with reference to “merchants.” However, the exemplary embodiments and techniques described herein may be applied to other types of entities (e.g., service providers, governmental agencies, etc.) within the spirit and scope of this disclosure.



FIG. 2 is a block diagram of an exemplary system 200 for performing one or more operations for analyzing performance of an entity, consistent with disclosed embodiments. In some embodiments, the entity is a merchant and system 200 can include merchant analysis system 210, one or more financial services systems 220, one or more geographic data systems 230, one or more merchant management systems 240, and one or more consumer data systems 250. The components and arrangement of the components included in system 200 can vary depending on the embodiment. For example, the functionality described below with respect to financial services systems 220 can be embodied in consumer data systems 250, or vice-versa. Thus, system 200 can include fewer or additional components that perform or assist in the performance of one or more processes to analyze merchants, consistent with the disclosed embodiments.


One or more components of system 200 can be computing systems configured to analyze merchant performance. As further described herein, components of system 200 can include one or more computing devices (e.g., computer(s), server(s), etc.), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.), and other known computing components. In some embodiments, the one or more computing devices are configured to execute software or a set of programmable instructions stored on one or more memory devices to perform one or more operations, consistent with the disclosed embodiments. Components of system 200 can be configured to communicate with one or more other components of system 200, including merchant analysis system 210, one or more financial services systems 220, one or more geographic data systems 230, one or more merchant management systems 240, and one or more consumer data systems 250. In certain aspects, users can operate one or more components of system 200. The one or more users can be employees of, or associated with, the entity corresponding to the respective component(s) (e.g., someone authorized to use the underlying computing systems or otherwise act on behalf of the entity).


Merchant analysis system 210 can be a computing system configured to analyze merchant performance. For example, merchant analysis system 210 can be a computer system configured to execute software or a set of programmable instructions that collect or receive financial transaction data, consumer data, and merchant data and process it to determine the predicted spend amounts for a merchant and determine the actual spend amounts for the merchant. Merchant analysis system 210 can be configured, in some embodiments, to utilize, include, or be a data fusion system 100 (see, e.g., FIG. 1) to transform data from various data sources (such as, financial services systems 220, geographic data systems 230, merchant management systems 240, and consumer data systems 250) for processing. In some embodiments, merchant analysis system 210 can be implemented using a computer system 300, as shown in FIG. 3 and described below.


Merchant analysis system 210 can include one or more computing devices (e.g., server(s)), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.) and other known computing components. According to some embodiments, merchant analysis system 210 can include one or more networked computers that execute processing in parallel or use a distributed computing architecture. Merchant analysis system 210 can be configured to communicate with one or more components of system 200, and it can be configured to provide analysis of merchants via an interface(s) accessible by users over a network (e.g., the Internet). For example, merchant analysis system 210 can include a web server that hosts a web page accessible through network 260 by merchant management systems 240. In another embodiment, merchant analysis system 210 can include an application server configured to provide data to one or more client applications executing on computing systems connected to merchant analysis system 210 via network 260.


In some embodiments, merchant analysis system 210 can be configured to determine an expected spend amount for a merchant or merchant location by processing and analyzing data collected from one or more components of system 200. For example, merchant analysis system 210 can determine that Big Box Merchant store located at 123 Main St, in Burbank, Calif. should be generating $50,000 of sales per month. The merchant analysis system 210 can also be configured to determine the actual sales for a merchant or specific merchant location by processing and analyzing data collected from one or more components of system 200. For example, merchant analysis system 210 can determine that the Big Box Merchant store located at 123 Main St, in Burbank, Calif. is actually generating $60,000 of sales per month. Merchant analysis system 210 can provide an analysis of a merchant or merchant location's performance based on the predicted sales and the actual sales for the merchant or merchant location. For example, for the Big Box Merchant store located at 123 Main St., Burbank, Calif., the merchant analysis system 210 can provide an analysis that the store is performing above expectations. Exemplary processes that can be used by merchant analysis system 210 are described below with respect to FIGS. 4 and 5.


Merchant analysis system 210 can, in some embodiments, generate a user interface communicating data related to one or more merchants or merchant locations. For example, in some embodiments, merchant analysis system 210 includes a web server that generates HTML code, or scripts capable of generating HTML code, that can be displayed in a web browser executing on computing device. Merchant analysis system 210 can also execute an application server that provides user interface objects to a client application executing on a computing device, or it can provide data that is capable of being displayed in a user interface in a client application executing on a computing device. In some embodiments, merchant analysis system 210 can generate user interfaces that can be displayed within another user interface. For example, merchant analysis system 210 can generate a user interface for display within a parent user interface that is part of a word processing application, a presentation development application, a web browser, or an illustration application, among others. As used herein, the term “generating” in reference to a user interface can include generating the code that when executed displays information (e.g., HTML) or providing commands and/or data to a set of instructions that when executed render a user interface capable of being shown on a display connected to a computing device. In some embodiments, the user interface can include a map, indications of the merchant locations on a map, and indications of the sales or transactions associated with the merchant locations. Examples of some (although not all) user interfaces that can be generated by merchant analysis system 210 are described below with respect to FIGS. 6-10.


Referring again to FIG. 2, financial services system 220 can be a computing system associated with a financial service provider, such as a bank, credit card issuer, credit bureau, credit agency, or other entity that generates, provides, manages, and/or maintains financial service accounts for one or more users. Financial services system 220 can generate, maintain, store, provide, and/or process financial data associated with one or more financial service accounts. Financial data can include, for example, financial service account data, such as financial service account identification data, account balance, available credit, existing fees, reward points, user profile information, and financial service account transaction data, such as transaction dates, transaction amounts, transaction types, and location of transaction. Financial services system 220 can include infrastructure and components that are configured to generate and/or provide financial service accounts such as credit card accounts, checking accounts, savings account, debit card accounts, loyalty or reward programs, lines of credit, and the like.


Geographic data systems 230 can include one or more computing devices configured to provide geographic data to other computing systems in system 200 such as merchant analysis system 210. For example, geographic data systems 230 can provide geodetic coordinates when provided with a street address of vice-versa. In some embodiments, geographic data systems 230 exposes an application programming interface (API) including one or more methods or functions that can be called remotely over a network, such as network 260. According to some embodiments, geographic data systems 230 can provide information concerning routes between two geographic points. For example, merchant analysis system 210 can provide two addresses and geographic data systems 230 can provide, in response, the aerial distance between the two addresses, the distance between the two addresses using roads, and/or a suggested route between the two addresses and the route's distance.


According to some embodiments, geographic data systems 230 can also provide map data to merchant analysis system 210 and/or other components of system 200. The map data can include, for example, satellite or overhead images of a geographic region or a graphic representing a geographic region. The map data can also include points of interest, such as landmarks, malls, shopping centers, schools, or popular restaurants or retailers, for example.


Merchant management systems 240 can be one or more computing devices configured to perform one or more operations consistent with disclosed embodiments. For example, merchant management systems 240 can be a desktop computer, a laptop, a server, a mobile device (e.g., tablet, smart phone, etc.), or any other type of computing device configured to request merchant analysis from merchant analysis system 210. According to some embodiments, merchant management systems 240 can comprise a network-enabled computing device operably connected to one or more other presentation devices, which can themselves constitute a computing system. For example, merchant management systems 240 can be connected to a mobile device, telephone, laptop, tablet, or other computing device.


Merchant management systems 240 can include one or more processors configured to execute software instructions stored in memory. Merchant management systems 240 can include software or a set of programmable instructions that when executed by a processor performs known Internet-related communication and content presentation processes. For example, merchant management systems 240 can execute software or a set of instructions that generates and displays interfaces and/or content on a presentation device included in, or connected to, merchant management systems 240. In some embodiments, merchant management systems 240 can be a mobile device that executes mobile device applications and/or mobile device communication software that allows merchant management systems 240 to communicate with components of system 200 over network 260. The disclosed embodiments are not limited to any particular configuration of merchant management systems 240.


Merchant management systems 240 can be one or more computing systems associated with a merchant that provides products (e.g., goods and/or services), such as a restaurant (e.g., Outback Steakhouse®, Burger King®, etc.), retailer (e.g., Amazon.com®, Target®, etc.), grocery store, mall, shopping center, service provider (e.g., utility company, insurance company, financial service provider, automobile repair services, movie theater, etc.), non-profit organization (ACLU™, AARP®, etc.) or any other type of entity that provides goods, services, and/or information that consumers (i.e., end-users or other business entities) can purchase, consume, use, etc. For ease of discussion, the exemplary embodiments presented herein relate to purchase transactions involving goods from retail merchant systems. Merchant management systems 240, however, is not limited to systems associated with retail merchants that conduct business in any particular industry or field.


Merchant management systems 240 can be associated with computer systems installed and used at a merchant brick and mortar locations where a consumer can physically visit and purchase goods and services. Such locations can include computing devices that perform financial service transactions with consumers (e.g., Point of Sale (POS) terminal(s), kiosks, etc.). Merchant management systems 240 can also include back- and/or front-end computing components that store data and execute software or a set of instructions to perform operations consistent with disclosed embodiments, such as computers that are operated by employees of the merchant (e.g., back office systems, etc.). Merchant management systems 240 can also be associated with a merchant that provides goods and/or service via known online or e-commerce types of solutions. For example, such a merchant can sell products via a website using known online or e-commerce systems and solutions to market, sell, and process online transactions. Merchant management systems 240 can include one or more servers that are configured to execute stored software or a set of instructions to perform operations associated with a merchant, including one or more processes associated with processing purchase transactions, generating transaction data, generating product data (e.g., SKU data) relating to purchase transactions, for example.


Consumer data systems 250 can include one or more computing devices configured to provide demographic data regarding consumers. For example, consumer data systems 250 can provide information regarding the name, address, gender, income level, age, email address, or other information about consumers. Consumer data systems 250 can include public computing systems such as computing systems affiliated with the U.S. Bureau of the Census, the U.S. Bureau of Labor Statistics, or FedStats, or it can include private computing systems such as computing systems affiliated with financial institutions, credit bureaus, social media sites, marketing services, or some other organization that collects and provides demographic data.


Network 260 can be any type of network or combination of networks configured to provide electronic communications between components of system 200. For example, network 260 can be any type of network (including infrastructure) that provides communications, exchanges information, and/or facilitates the exchange of information, such as the Internet, a Local Area Network, or other suitable connection(s) that enables the sending and receiving of information between the components of system 200. Network 260 may also comprise any combination of wired and wireless networks. In other embodiments, one or more components of system 200 can communicate directly through a dedicated communication link(s), such as links between merchant analysis system 210, financial services system 220, geographic data systems 230, merchant management systems 240, and consumer data systems 250.


As noted above, merchant analysis system 210 can include a data fusion system (e.g., data fusion system 100) for organizing data received from one or more of the components of system 200.


By way of example, FIG. 3 is a block diagram of an exemplary computer system 300, consistent with embodiments of the present disclosure. The components of system 200 such as merchant analysis system 210, financial service systems 220, geographic data systems 230, merchant management systems 240, and consumer data systems 250 may include the architecture based on or similar to that of computer system 300.


As illustrated in FIG. 3, computer system 300 includes a bus 302 or other communication mechanism for communicating information, and a hardware processor 304 coupled with bus 302 for processing information. Hardware processor 304 can be, for example, a general purpose microprocessor.


Computer system 300 also includes a main memory 306, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 302 for storing information and instructions to be executed by processor 304. Main memory 306 also can be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 304. Such instructions, when stored in non-transitory storage media accessible to processor 304, render computer system 300 into a special-purpose machine that is customized to perform the operations specified in the instructions.


Computer system 300 further includes a read only memory (ROM) 308 or other static storage device coupled to bus 302 for storing static information and instructions for processor 304. A storage device 310, such as a magnetic disk or optical disk, is provided and coupled to bus 302 for storing information and instructions.


Computer system 300 can be coupled via bus 302 to a display 312, such as a cathode ray tube (CRT), liquid crystal display, or touch screen, for displaying information to a computer user. An input device 314, including alphanumeric and other keys, is coupled to bus 302 for communicating information and command selections to processor 304. Another type of user input device is cursor control 316, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 304 and for controlling cursor movement on display 312. The input device typically has two degrees of freedom in two axes, a first axis (for example, x) and a second axis (for example, y), that allows the device to specify positions in a plane.


Computer system 300 can implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 300 to be a special-purpose machine. According to some embodiments, the operations, functionalities, and techniques disclosed herein are performed by computer system 300 in response to processor 304 executing one or more sequences of one or more instructions contained in main memory 306. Such instructions can be read into main memory 306 from another storage medium, such as storage device 310. Execution of the sequences of instructions contained in main memory 306 causes processor 304 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry can be used in place of or in combination with software instructions.


The term “storage media” as used herein refers to any non-transitory media that stores data and/or instructions that cause a machine to operate in a specific fashion. Such storage media can comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 310. Volatile media includes dynamic memory, such as main memory 306. Common forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge.


Storage media is distinct from, but can be used in conjunction with, transmission media. Transmission media participates in transferring information between storage media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 302. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media can be involved in carrying one or more sequences of one or more instructions to processor 304 for execution. For example, the instructions can initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 300 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 302. Bus 302 carries the data to main memory 306, from which processor 304 retrieves and executes the instructions. The instructions received by main memory 306 can optionally be stored on storage device 310 either before or after execution by processor 304.


Computer system 300 also includes a communication interface 318 coupled to bus 302. Communication interface 318 provides a two-way data communication coupling to a network link 320 that is connected to a local network 322. For example, communication interface 318 can be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 318 can be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links can also be implemented. In any such implementation, communication interface 318 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


Network link 320 typically provides data communication through one or more networks to other data devices. For example, network link 320 can provide a connection through local network 322 to a host computer 324 or to data equipment operated by an Internet Service Provider (ISP) 326. ISP 326 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 328. Local network 322 and Internet 328 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 320 and through communication interface 318, which carry the digital data to and from computer system 300, are example forms of transmission media.


Computer system 300 can send messages and receive data, including program code, through the network(s), network link 320 and communication interface 318. In the Internet example, a server 330 can transmit a requested code for an application program through Internet 328, ISP 326, local network 322 and communication interface 318. The received code can be executed by processor 304 as it is received, and/or stored in storage device 310, or other non-volatile storage for later execution.


As described above with respect to FIG. 2, merchant analysis system 210 can perform one or more processes for analyzing the performance of merchants based on predicted sales and actual sales. FIGS. 4 and 5 are flowcharts illustrating exemplary processes for analyzing data and merchant performance, consistent with embodiments of the present disclosure. While FIGS. 4 and 5 illustrate embodiments processes using particular methodologies or techniques, other methodologies or techniques known in the art can be substituted without detracting from the spirit and scope of these embodiments. Also, while the description that follows describes the processes of FIGS. 4 and 5 as performed by merchant analysis system 210, in some embodiments, another component of system 200, or some sub-system of the components of system 200 (not shown) can perform part or all of these processes.



FIG. 4 is a flowchart representing an exemplary process for analyzing merchant performance. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.


In some embodiments, a merchant analysis system (e.g., merchant analysis system 210) receives financial transaction data, consumer data, and merchant data from one or more financial services systems (e.g., financial services systems 220), merchant management systems (e.g., merchant management systems 240), and/or consumer data systems (e.g., consumer data systems 250) (step 410). The merchant analysis system can receive the data after it requests it via an API or it can receive the data automatically via a network (e.g., network 260). It will be appreciated that additional methods for data transfer between a merchant analysis system and data systems may be implemented, without changing the scope and sprit of the disclosed embodiments.


In some embodiments, the financial services systems, the merchant management systems, and the consumer data systems can provide the data to the merchant analysis system in a batch format on a periodic basis, such as daily, weekly, or monthly. The financial transaction data, consumer data, and merchant data can be sent as a data stream, text file, serialized object, or any other conventional method for transmitting data between computing systems.


In some embodiments, the financial transaction data can reflect purchase transactions at one or more merchants offering goods and/or services, and it can include information regarding one or more consumer transactions. A consumer transaction can include, among other things, the date and time for the transaction, the purchase amount for the transaction, a unique consumer identifier associated with the transaction, a description of the merchant for the transaction, a category code associated with the merchant (e.g., retail goods, medical services, dining), and geographic indicator (e.g., postal code, street address, GPS coordinates, etc.). As financial transaction data can originate from several financial services systems, each providing different information for each consumer transaction, the information contained in the spending transaction data originating from a first financial data system can be different from the information contained in spending transaction data originating from a second financial data system. Accordingly, in some embodiments, the merchant analysis system can translate the data received from the financial services system. For example, the merchant analysis system can import the received data into an object model according to an ontology using a transformation component (e.g., transformation component 120).


Consumer transactions reflected in the received financial transaction data can include several types of consumer transactions. For example, the consumer transactions can correspond to credit card purchases or refunds, debit card purchases or refunds, eChecks, electronic wallet transactions, wire transfers, etc. The consumer transactions can also include transactions associated with reward or loyalty programs. For example, the consumer transactions can include the number of loyalty points, and their cash equivalent, used to earn discounts or receive free dining. Financial transaction data received from one financial data system can include more than one type of consumer transaction type. For example, spending transaction data received from a bank can include debit card, credit card, and eCheck consumer transactions.


In some embodiments, the consumer data can include demographic information regarding one or more consumers. For example, the consumer data can include information about consumers' income, gender, age, employment status, home ownership status, or ethnicity, among others. In some embodiments, the consumer data can be associated with a geographic region. For example, the consumer data can be associated with a zip code, neighborhood, or street address. In some embodiments, the merchant analysis system can receive the consumer data with respect to particular individuals. For example, the consumer data can be a data set where each record of the dataset corresponds to an individual consumer.


The merchant analysis system can also receive merchant data. In some embodiments, the merchant analysis system receives merchant data from the merchant management system. The merchant data can include information about a merchant. For example, the merchant data can include the address of a merchant's retail locations and attributes of the merchant's retail locations such as square footage, product lines, typical price points, number of parking spaces, whether the retail location is in a mall or shopping center, or other features that can make the merchant location attractive or unattractive to consumers. According to some embodiments, the merchant data can include information about the merchant's competitors. For example, the merchant data can include the names of the competitors, the locations of the competitors retail locations and attributes of the merchant's competitor's retail locations such as square footage, product lines, typical price points, number of parking spaces, whether the retail location is in a mall or shopping center, or other features that can make the competitor location attractive or unattractive to consumers.


After the merchant analysis system receives the financial transaction data, the consumer data, and the merchant data, the merchant analysis system 210 can analyze it (step 420). In some embodiments, the merchant analysis system 210 can organize the received data using an object model (e.g., object model 160 described above with respect to FIGS. 2A and 2B) for allowing users to better analyze the data.


The analyzing of the received data in step 420 can be implemented according to FIG. 5, which is a flowchart representing an exemplary process 500 for analyzing received data, consistent with embodiments of the present disclosure. While the flowchart of FIG. 5 discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure. For example, in some embodiments, while performing analyze received data process 500, the merchant analysis system can determine consumers for financial data (step 520) before determining merchants for the financial data (step 510), or it can map the financial transaction data to geohash regions (step 530) before determining merchants or consumers associated with the financial data (steps 510, 520).


In some embodiments, while performing analyze received data process 500, the merchant analysis system can reorganize the received data using an object model (e.g., object model 160) to better utilize that data. For example, the merchant analysis system can use a schema map, a transformation component and an ontology (e.g., schema map 140, transformation component 120, and ontology 150) to translate date received from the financial services systems or the merchant management systems into an object model (e.g., object model 160) for later analysis. In some embodiments, a different data translation method may be implemented to analyze the received data (e.g., a data translation method that does not use an object model, schema map, transformation component or ontology).


One non-limiting example of an object that could be included in the object model is a merchant object. The merchant object can include one or more properties describing a merchant and an instance of that object can have values assigned to the properties corresponding with the data received from one or more data sources. For example, the merchant object can have properties such as name, location, street address, zip code, merchant ID, merchandise category, transaction price range, among others, and the values of the properties can be set to “John's Gas,” “Irvine, Calif.,” “123 Main St.” “92614,” “123456,” “fuel; food,” and “$0-$100,” respectively. Another non-limiting example of an object that could be included in the object model is a location object. A location object, in some embodiments, can include properties related to the demographic features of the location. For example, the location object can have properties such as city, state, zip code, average age of resident, average income of resident, among others, and the values of the properties can be set to “Irvine,” “CA,” “92614,” “36,” and “75,000” respectively. Another non-limiting example of an object that can be included in the object model is a purchase object. A purchase object, in some embodiments, can include properties related to purchases such as the amount of the purchase, the time of purchase, the nature of the good purchases, or the information regarding the purchaser. The purchase object can be used, for example, to determine features such as the seasonality of purchases (e.g., the time period when purchases are typically made, on average) or customer clusters that are making the purchases (e.g., “businessperson,” “home owner”). One example of a customer cluster can include a “business person” cluster.


In some embodiments, the merchant analysis system can analyze received data process 500 by determining merchants for the received financial data (step 510). The financial transaction data typically will not come with an identifier for the merchant where the financial transaction data occurred. For example, a typical consumer transaction can include the amount of the transaction, a merchant category code (e.g., retail, restaurant, automotive), a description of the merchant (e.g., “John's Gas, Irvine, Calif.”), time and date of the transaction, and other information associated with the transaction but not specifically identifying the merchant where the transaction occurred (e.g., using a unique merchant identification number). As a result, the merchant analysis system can perform a matching process to match the consumer transactions of the financial transaction data with one or more merchant of which the merchant analysis system has knowledge.


In some embodiments, the merchant analysis system can have access to data associated with, and describing, a plurality of known merchants. The data can be received by the merchant analysis system (e.g., at step 410) from merchant management systems, the financial services systems, or it can be part of the schemas used to create the object model before merchant analysis system performs analyze received data process 500. The data describing the known merchants can include the name and address of the payee, the payee category code of the payee (e.g., retail, restaurant, etc.), typical spending ranges, or other data. As most of the consumer transactions of the financial transaction data include at least a category code and a postal code, after the merchant analysis system performs the merchant identification process, it can filter the possible known merchants to match to the financial transaction data based on category code and postal code. For example, after the merchant analysis system receives financial transaction data indicating that a consumer transaction took place at a retail merchant in postal code 92603, it can access the data of known merchants and attempt to match only those merchants that are retail merchants in postal code 92603 with the consumer transaction. If only one merchant is known with the category code and the postal code, then the merchant analysis system can match the consumer transaction with that merchant. If more than one merchant is known for that category code and postal code, the merchant analysis system can compare the remainder of the parameters of the consumer transaction (e.g., description, transaction amount) to the parameters of known merchants. For example, if two retail merchants in postal code 92603 are known, the merchant analysis system can compare the description of the consumer transaction to the descriptions of each merchant. In some embodiments, transaction amount can also be used to determine the merchant associated with a consumer transaction of the financial transaction data. For example, if one merchant in 92603 typically has transactions that average in orders of magnitude of $10, and a second merchant in 92603 has transactions that average in orders of magnitude of $100, the merchant analysis system can match a transaction of $23 to the first merchant, and not the second.


In some embodiments, the merchant analysis system can also match consumer transactions of the financial transaction data with one or more consumers (step 520). In some embodiments, the merchant analysis system can associate a consumer transaction with an individual consumer. For example, the merchant analysis system can match a consumer transaction to a consumer based on the name, address, phone number, or account number associated with the consumer transaction. In some embodiments, the financial transaction data can include a consumer identifier that has been generated by the system providing the financial transaction data for the purposes of consumer identification by merchant analysis system. For example, the financial services systems can include, with each consumer transaction, a unique, anonymous consumer identifier that allows the merchant analysis system to match consumer transactions coming from the same consumer without providing the merchant analysis system with actual data to specifically identify the consumer. For example, a consumer transaction made by John Smith, 123 Main St, Newport Beach, Calif. 92660, Account Number 4123 4444 5555 6666, phone number 949-555-1122 can be provided to merchant analysis system with a consumer identification number of 98765. When John Smith makes additional purchases, each of his consumer transactions will be received by the merchant analysis system with consumer identification number 98765. In some embodiments, the merchant analysis system can assign a unique consumer identification number when it imports the financial transaction data into the object model.


In some embodiments, the merchant analysis system can map the financial data transaction to geohash regions (step 530). A geohash region, or geohash bucket, is a region associated with a latitude/longitude, hierarchal geocode system that subdivides regions of the Earth into grid shaped buckets. The level of granularity of geohash regions can vary depending on the length of the geohash code corresponding to that region. For example, a geohash code that is one bit in length corresponds to a geohash region of roughly 20 million square kilometers, and a geohash code that is six bits in length corresponds to a geohash region of roughly 1.2 square kilometers. In some embodiments, a geohash region of five bits (roughly 18 square kilometers) is preferred, although the size of the geohash region can depend on the character of the overall region which is being geohashed. For example, a six bit geohash can be more suitable for a densely populated urban area, while a four bit geohash can be more suitable for a sparsely populated rural area.


In some embodiments, the merchant analysis system can map the financial transaction data to a geohash region by utilizing a standard geohash translation library. For example, the merchant analysis system can pass as input the address of the consumer associated with a consumer transaction of the financial transaction data and specify the number of geohash bits to return for the address, and the library can return the geohash for the passed in address. As the returned geohash code represents a level of precision for a given address, two addresses that are in the same geohash region will return the same geohash code. In some embodiments, the geohash translation library, or API, can be offered or exposed by the geographic data systems (e.g., geographic data systems 230).


After the merchant analysis system maps the financial transaction data to one or more geohash regions, the merchant analysis system can associate features to the geohash region (step 540). According to some embodiments, a feature is some characteristic of the financial transaction data or consumer data that describes some aspect of the geohash region. For example, a feature could be a demographic feature such as the income, gender, age, employment status, home ownership status, or ethnicity of the consumers residing within the geohash region. In some embodiments, a feature can also be a transactional feature of financial data. For example, a transactional feature can include total number of transactions originating from consumers residing in the geohash region, transactions (or “tickets”) above a particular value originating from the geohash region, or other features relating to the financial transaction data. According to some embodiments, the merchant analysis system associates features through the use of the object model and the relationship between the financial transaction data and the consumer data as defined in the schema map or the ontology.


Returning to FIG. 4, after the merchant analysis system has analyzed the received data, it can apply a prediction model to the data (step 430). A prediction model, in some embodiments, is a model that attempts to predict the performance for a particular merchant location. The performance can be measured in total sales, total transactions, or sales or transactions for a particular demographic feature (e.g., $1200 for males making over $100,000 a year). In addition, the prediction model can be used to predict performance based on the category of shopper. For example, the merchant analysis system can determine the spending habits of a particular consumer based on the financial transaction data and the consumer data analyzed by the merchant analysis system. For example, the merchant analysis system can determine that a particular consumer is a frequent purchaser of clothing, shoes, or electronics, or it can determine that the a consumer frequents restaurants or certain types of restaurants. Further, the merchant analysis system can determine the number of consumers of a particular category that reside within a particular geohash region. In some embodiments, the merchant analysis system can use the category of shopper information to predict the performance of a merchant location. For example, the merchant analysis system can predict that a merchant location should receive $10,000 a month from clothing shoppers.


According to some embodiments, the merchant analysis system predicts the performance of a merchant location by aggregating the predicted performance for the merchant location for each geohash region that is within the merchant location's territory. For example, the merchant analysis system can use the following equation to determine the predicted performance for a merchant location:

P=ΣrϵGnrprxr  (1)

where P is the performance of the merchant location, G is the set of all geohash regions in the merchant location's territory (the territory from which the merchant location expects sales), r is an index representing each of the geohash regions, nr is the number of consumers residing in geohash region r, pr is the probability that a shopper from geohash region r will shop at the merchant location, and xr is the expected spend amount associated with geohash region r across all competitors of the merchant location.


In some embodiments, the size of G can be variable and set by the merchant management system (or other computer system) requesting analysis of a merchant location it is managing. For example, a merchant location in an urban area might have a small G while a merchant location in a rural location can have a large G. In some embodiments, the merchant analysis system can limit the size of G to ensure efficient processing of predicted performance because as G increases, the number of calculations the merchant analysis system must complete to find P increases. For example, merchant analysis system can limit G to a five hundred square kilometer region so that calculations can be performed efficiently. In some embodiments, the size of G can be set through the use of a user interface, such as the exemplary user interface of FIGS. 6-10.


The number of consumers for a geohash region can be determined based on the consumer data the merchant analysis system receives. For example, the merchant analysis system can determine that all residents of a geohash region above a certain age are included in nr. In some embodiments, the number of consumers for a geohash region that the merchant analysis system uses to determine predicted performance may be set through the use of a user interface, such as the exemplary user interface of FIGS. 6-10. For example, a filter can be applied so that only consumers of a certain gender or income level are included in nr.


In some embodiments, pr, the probability that a shopper from geohash region r will shop at the merchant location, is determined using a Huff model. The Huff model attempts to determine the probability that a consumer located at particular distance from a retail location will shop at the retail location. In some embodiments, the Huff model uses the following equation:










P
ij

=



A
j
α



D
ij

-
β








j
=
1

n




A
j
α



D
ij

-
β




+
C






(
2
)








where i is a consumer, j is a retail location, Aj is a measure of the attractiveness of store j, Dij is the distance from consumer i to store j, α is an attractiveness parameter estimated from empirical observations, β is a distance decay parameter estimated from empirical observations, n is the total number of stores, including store j, in store j's retail area, and C is a constant representing sales leakage to non-retail location sales channels such as catalog sales and/or Internet sales, which has been estimated from empirical observations.


The numerator of equation (2) calculates the attractiveness to distance ratio for store j, while the denominator calculates the sum of the ratios of attractiveness to distance for store j and all of its competitors. In some embodiments, competitors include the same merchant as j, but in another location. The merchant analysis system can use a list of competitors provided to it by the merchant management systems as part of the merchant data it received (at step 410).


According to some embodiments, the attractiveness of a particular merchant location (Aj) is based on features of a particular merchant location. For example, the square footage, number of parking spaces, whether it is in a mall or shopping center, or pricing can be features that contribute to attractiveness of a particular merchant location. The value of the measure of attractiveness can be some index that combines one or more of these features into a single value. In some embodiments, an attractiveness parameter can be applied to the measure of attractiveness to weigh it according to how important the features contributing to the measure of attractiveness are in determining the probability that a particular consumer can make a purchase at the retail location. The attractiveness parameter can be adjusted overtime based on empirical observation.


In some embodiments, to calculate the distance from a geohash region to a retail location, the merchant analysis system calculates the distance from the centroid of the geohash region to the retail location. The merchant analysis system can calculate the distance using aerial distance, or it can calculate the distance using the driving or walking distance (e.g., using established roadways, walkways, or bicycle paths, where appropriate). In some embodiments, the merchant analysis system requests the geographic data systems to calculate the distance from the centroid of the geohash region to the retail location. The merchant analysis system can also use a distance decay parameter to weigh the impact of distance on the probability that a consumer from a geohash region would purchase an item from the retail location. For example, in rural locations, the large distances between consumers and retail locations is not as important as would be for urban locations. Thus, in some embodiments, the merchant analysis system can use a larger decay parameter in urban areas and a smaller one in rural areas.


Returning to equation (1) above, the merchant analysis system also determines the expected spend amount associated with geohash region or xr. The expected spend amount is a learned value, or weight, that is determined using online machine learning applied to the financial transaction data that has been received over time for a particular store. In some embodiments, financial transaction data, including the demographic or transactional features used to determine the performance of the store, are selected from geohash regions around a merchant location to form a test data set. The merchant analysis system then feeds the test data set into an online machine learning algorithm, which uses the data in a series of trials. The first trial occurs at a first point in time using a seed value, and the spend amount is predicted for a second point in time. The actual spend for the second point in time is them compared to the predicted spend for the second point in time. The difference is then used by the online machine learning algorithm to construct a second trial. This feedback loop continues until the difference between the predicted and actual spend over the test data set is minimized, and the learned weight can then be used to determine performance according to equation (1) above. While the merchant analysis system can use any known online machine learning method for determining the learned weight, in some embodiments, the merchant analysis system uses the Vowpal Wabbit library for determining the learned weights.


After applying the prediction model to the received data, the merchant analysis system can determine the actual amount spent at the merchant location for which it is calculating performance (step 440). In some embodiments, merchant analysis system uses the financial transaction data it received to determine the actual spend amount. For example, merchant analysis system 210 can add up all of the consumer transactions associated with the merchant location that match the features for which the merchant location's performance is being measured.


After it determines the actual spend amount for a merchant location, the merchant analysis system can determine performance of the merchant location (step 450) by comparing the predicted performance (at step 430) to the actual spend amount (at step 440), and express that performance through the use of a generated user interface (step 460). The performance can be expressed as a percentage (e.g., −5%), in dollars (e.g., −$400,000), in transactions (e.g., −5000 transactions), and/or some other metric. In some embodiments, the merchant analysis system can express the performance of the retail location with a text string, such as “under-performing,” “over-performing,” or “performing as expected.” In some embodiments, the user interface can include an icon or color to represent the performance of the merchant location. For example, an under-performing merchant location can be colored red.


In some embodiments, the merchant analysis system can generate one or more user interfaces communicating the financial transaction data, consumer data, and/or merchant data it received, as well as predicted and actual performance of merchant locations. According to some embodiments, the generated user interface contains a map showing one or more merchant locations, and/or one or more locations of the merchant's competitors. The merchant analysis system can generate a user interface by creating code that renders a user interface on another computing device, such as merchant management systems 240. For example, the merchant analysis system can generate HTML code that when interpreted by a web browser, renders the user interface. The merchant analysis system can also generate a user interface as a serialized object that is transmitted to a client application executing on other computing systems (e.g., merchant management systems 240), which then uses the serialized object to display the user interface on its screen.



FIGS. 6-10 illustrate several exemplary user interfaces that can be generated by merchant analysis system, consistent with embodiments of the present disclosure. The exemplary user interfaces of FIGS. 6-10 are meant to help illustrate and describe certain features of disclosed embodiments, and are not meant to limit the scope of the user interfaces that can be generated or provided by the merchant analysis system.



FIGS. 6A and 6B show user interface 600 that merchant analysis system (e.g., merchant analysis system 210) generates, according to some embodiments. User interface 600 includes map 610, which shows the location of merchant locations 620 and geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles, such as the unshaded rectangles in FIG. 7B). The user interface 600 also includes show user interface filter 630 and limit user interface filter 635. Show user interface filter 630 can be used to command the merchant analysis system to show a particular location (e.g., Burbank) and show data for a particular date range (e.g., Jan. 1, 2012 to May 16, 2013). In some embodiments, when a user enters information into the show user interface filter 630, the merchant analysis system receives a message to regenerate or modify the user interface. For example, if a user entered “Oceanside, Calif.” into the location box, the merchant analysis system would receive a message indicating that a user interface should display a map for Oceanside, Calif., and it can generate a user interface with map 610 showing Oceanside, Calif. In some embodiments, when a user enters information into limit user interface 635, the merchant analysis system receives a message to modify information displayed on user interface 600.


User interface 600 includes performance display selector 640 and merchant selector 645. The performance display selector 640 can be used to command merchant analysis system to change the performance data being displayed for merchant locations mapped on map 610. For example, when “Total Spend” is selected, merchant analysis system 210 generates user interface 600 such that performance data is shown in the amount, in dollars, spent, and when “Transaction Count” is selected, the merchant analysis system generates user interface 600 such that performance data is shown in the number of transactions. Merchant selector 645 can be used to command the merchant analysis system to show merchant locations for particular merchants. For example, as shown in FIG. 6A, Store A is selected in merchant selector 645 and the merchant analysis system generates user interface 600 to show data associated with Store A: merchant locations 620 are the locations of Store A's retail locations and the performance data shown in user interface 600 is for Store A. When Store B is selected, as shown in FIG. 6B, merchant analysis system generates user interface 600 to show data associated with Store B: merchant locations 621 are the locations of Store B's retail locations and the performance data shown in user interface 600 is for Store B. In some embodiments, when merchant selector 645 is selected, the displayed merchant locations include both the locations for the selected store and the selected store's competitors. For example, after Store A is selected, merchant locations 610 may include locations for Store A, and locations for Store C, a competitor of Store A.


In some embodiments, the merchant analysis system generates user interface 600 with color coded geohash regions (e.g. geohash region 615). The geohash regions can be color coded or highlighted in various ways to reflect the total spend amount or transaction count (depending on the performance data metric selected in performance data selector 640). User interface 600 can include key 650 that informs a user of the amount of sales for a particular color. As shown in FIG. 6A, when no specific retail location is selected, geohash regions 615 can be color coded or highlighted with the performance data for all locations of the merchant. For example, as shown in FIG. 6A, the darkest of geohash regions 615 contributed $1,500,000 in transactions for all merchant locations of Store A.


In some embodiments, the merchant analysis system can receive an indication that one of the merchant locations was selected by a user and it can update or regenerate the user interface to reflect the selection. FIGS. 7A-7D show several user interfaces that the merchant analysis system can generate when one merchant location has been selected by a user, consistent with the disclosed embodiments.



FIG. 7A illustrates user interface 700 including a map 710 where merchant location 720 has been selected. In response to receiving a message that merchant location 720 has been selected, the merchant analysis system generates user interface 700 to include performance data for merchant location 720. As shown in FIG. 7A, the geohash regions of map 710 are updated to reflect each geohash region's contribution to the performance of merchant location 720, i.e., the amount of spend or transactions of merchant location 720 that originated from that geohash region. In some embodiments, user interface 700 can also include performance element 760, which displays performance data for selected merchant location 720.


In some embodiments, the merchant analysis system generates user interface 700 and provides the ability for a user to select a group of geohash regions and display performance data for those geohash regions. FIG. 7B shows a selected group of geohash regions 725. When the merchant analysis system receives a command that one or more geohash regions were selected, it can regenerate user interface 700 to reflect performance data for the selected geohash regions. In some embodiments, user interface 700 can also include feature display 770, which shows feature characteristics for the selected geohash regions.


As noted above with respect to FIGS. 6A-6B, user interface 700 can include limit user interface element 735. As shown in FIG. 7C, limit user interface element 735 can include a gender filter 737 and user interface 700 can reflect data corresponding to selected genders. For example, as shown in FIG. 7B, user interface 700 is not displaying performance data for males as males have been deselected in gender filter 737. Limit user interface element 735 can also include transaction ticket size filter 738 (shown in FIG. 7D), which can be used to limit the size of transactions shown by user interface 700. When a transaction ticket size is selected, the merchant analysis system can regenerate or update user interface 700 to show performance using financial transaction data satisfying the selected transaction ticket size.


In some embodiments, the merchant analysis system can generate a user interface that includes predicted performance for merchant locations. FIGS. 8A-8B illustrate user interface 800 including predicted performance, consistent with embodiments of the present disclosure. User interface 800 includes map 810 which shows several merchant locations. According to some embodiments, user interface 800 includes indications of the predicted performance for each of the merchant locations. For example, as shown in FIG. 8A, the predicted performance in total spend amount is shown for each merchant location. When a merchant location is selected, the merchant analysis system can update user interface 800 to reflect performance data for the selected merchant location. In some embodiments, user interface 800 can include performance element 860, which displays the total spend and transaction count for the selected merchant, as well as an indication of performance (e.g., the text “UNDER-PERFORMING”).


According to some embodiments, in addition to displaying performance data, user interface 800 can include one or more of the features described above with respect FIGS. 6-7. For example, as shown in FIG. 8B, user interface 800 can include limit user interface element 835 and gender filter 837. When males are deselected from the gender filter, the user interface 800 can display performance data with respect to all consumers that are not male (i.e., female and unspecified consumers). Other filters can be used to limit the display of predicted performance data to certain features. For example, limit user interface element 835 can provide filters for merchant categories, age, income, transaction ticket size, or whether the transaction was associated with an e-commerce channel. In addition, predicted performance displayed can also be limited to category of shopper or other features consistent with disclosed embodiments.


In some embodiments, the merchant analysis system can predict revenue for a hypothetical entity location, with certain attractiveness attributes, at a particular placement. FIG. 9 shows user interface 900 including hypothetical entity location at placement 925. According to some embodiment, user interface 110 can provide the ability to select the placement of hypothetical entity location 925 by providing the ability to select a region on map 910 using an input device, such as a mouse or touchscreen. When a region on map 910 is selected, the merchant analysis system can receive a message containing the coordinates associated with the selection region, and it can then apply prediction models to the hypothetical entity location, and other entity locations within the same area as the hypothetical entity location, as described above with respect to FIG. 4 and equations (1) and (2). After the predicted spend amount for each entity location is determined (including for the hypothetical entity location), the merchant analysis system can generate or update user interface 900 to display the predicted spend. For example, as shown in FIG. 9, hypothetical entity location 925 has a predicted spend amount of $1,200,000.


According to some embodiments, the merchant analysis system can provide the ability to automatically place a store at an optimal placement based on the financial transaction data and the location of existing stores. FIG. 10 shows user interface 1000 with auto place button 1060. When selected, auto place button 1060 sends a message to the merchant analysis system to determine the optimal placement for a new retail location. In some embodiments, the merchant analysis system uses equations (1) and (2) described above with several hypothetical placements to the determine the optimal placement. Once determined, the merchant analysis system can generate user interface 1000 showing optimal placement 1020 on map 1010.


In the foregoing specification, embodiments have been described with reference to numerous specific details that can vary from implementation to implementation. Certain adaptations and modifications of the embodiments described herein can be made. Therefore, the above embodiments are considered to be illustrative and not restrictive.

Claims
  • 1. A system for analyzing organizational entity performance, the system comprising: a memory device that stores a set of instructions;one or more processors configured to execute the set of instructions that cause the one or more processors to: receive data associated with a geographic region, the geographic region including a plurality of distinct merchant stores, wherein the received data is transformed into an object model using a schema map and an ontology, the object model comprising objects, properties and relationships;analyze the object model to associate the received data with an organizational entity and to associate the received data with a plurality of sub-geographic regions of the geographic region;apply a prediction model to the plurality of sub-geographic regions using the object model to determine a predicted performance associated with the organizational entity; andprovide a user interface that includes information associated with the predicted performance.
  • 2. The system of claim 1 wherein the received data includes at least one of financial transaction data, consumer data associated with the geographic region, or entity data associated with the organizational entity.
  • 3. The system of claim 1 wherein the user interface includes: a representation of the geographic region;a representation of locations of the organizational entity overlayed on the geographic region; anda representation of the sub-geographic regions overlayed on the geographic region.
  • 4. The system of claim 1 wherein the predicted performance includes determining the predicted spend amount associated with the organizational entity based on the object model.
  • 5. The system of claim 4 wherein the user interface further includes: a representation of the predicted spend amount for the sub-geographic regions associated with the organizational entity.
  • 6. The system of claim 1 wherein the user interface further includes: a representation of the predicted performance associated with the organizational entity.
  • 7. The system of claim 1 wherein the one or more processors are further configured to receive a placement of a hypothetical entity location of the organizational entity wherein applying the prediction model further uses the placement of the hypothetical entity location to determine a predicted performance associated with the organizational entity.
  • 8. The system of claim 7 wherein the one or more processors are further configured to determine the predicted performance for the hypothetical entity location.
  • 9. The system of claim 1 wherein the one or more processors are further configured to determine a placement for a hypothetical entity location of the organizational entity based on the object model.
  • 10. A method for analyzing organizational entity performance, the method being performed by one or more processors of one or more computers and comprising: receiving data associated with a geographic region, the geographic region including a plurality of distinct merchant stores, wherein the received data is transformed into an object model using a schema map and an ontology, the object model comprising objects, properties and relationships;analyzing the object model to associate the received data with an organizational entity and to associate the received data with a plurality of sub-geographic regions of the geographic region;applying a prediction model to the plurality of sub-geographic regions using the object model to determine a predicted performance associated with the organizational entity; andproviding a user interface that includes information associated with the predicted performance.
  • 11. The method of claim 10 wherein the received data includes at least one of financial transaction data, consumer data associated with the geographic region, or entity data associated with the at least one organizational entity.
  • 12. The method of claim 10 wherein the user interface includes: a representation of the geographic region;a representation of locations of the organizational entity overlayed on the geographic region; anda representation of the sub-geographic regions overlayed on the geographic region.
  • 13. The method of claim 10 wherein predicted performance includes determining the predicted spend amount associated with the organizational entity based on the object model.
  • 14. The method of claim 13 wherein the user interface further includes: a representation of the predicted spend amount for the sub-geographic regions associated with the organizational entity location.
  • 15. The method of claim 10 further including receiving a placement of a hypothetical entity location of the organizational entity and wherein applying the prediction model further uses the placement of the hypothetical entity location to determine a predicted performance associated with the organization entity.
  • 16. The method of claim 15 further including determining the predicted performance for the hypothetical entity location.
  • 17. The method of claim 10 further including determining a placement for a hypothetical entity location of an organizational entity based on the object model.
  • 18. A non-transitory computer readable medium that stores a set of instructions that are executable by at least one processor of one or more computers to cause the one or more computers to analyze organizational entity performance, the set of instructions causing the one or more computers to: receive data associated with a geographic region, the geographic region including a plurality of distinct merchant stores, wherein the received data is transformed into an object model using a schema map and an ontology, the object model comprising objects, properties and relationships;analyze the object model to associate the received data with at least one organizational entity and to associate the received data with a plurality of sub-geographic regions of the geographic region;apply a prediction model to the plurality of sub-geographic regions using the object model to determine a predicted performance associated with the organizational entity; andprovide a user interface that includes information associated with the predicted performance.
  • 19. The non-transitory computer readable medium of claim 18 further comprising instructions executable for the at least one processor of the one or more computers to cause the one or more computers to perform: receiving a placement of a hypothetical entity location of the organizational entity and wherein applying the prediction model further uses the placement of the hypothetical entity location to determine a predicted performance associated with the organization entity.
  • 20. The non-transitory computer readable medium of claim 18 further comprising instructions executable for the at least one processor of the one or more computers to cause the one or more computers to perform: determining the predicted performance for the hypothetical entity location.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Non-Provisional application Ser. No. 14/045,720, filed on Oct. 3, 2013, the disclosure of which is expressly incorporated herein by reference in its entirety.

US Referenced Citations (1074)
Number Name Date Kind
4899161 Morin et al. Feb 1990 A
4958305 Piazza Sep 1990 A
5109399 Thompson Apr 1992 A
5241625 Epard et al. Aug 1993 A
5329108 Lamoure Jul 1994 A
5412769 Maruoka et al. May 1995 A
5414838 Kolton et al. May 1995 A
5444819 Negishi Aug 1995 A
5454104 Steidlmayer et al. Sep 1995 A
5632009 Rao et al. May 1997 A
5632987 Rao et al. May 1997 A
5670987 Doi et al. Sep 1997 A
5754182 Kobayashi May 1998 A
5781704 Rossmo Jul 1998 A
5798769 Chiu et al. Aug 1998 A
5819226 Gopinathan et al. Oct 1998 A
5819238 Fernholz Oct 1998 A
5826021 Mastors et al. Oct 1998 A
5832218 Gibbs et al. Nov 1998 A
5845300 Comer Dec 1998 A
5872973 Mitchell et al. Feb 1999 A
5878434 Draper et al. Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5897636 Kaeser Apr 1999 A
5966706 Biliris et al. Oct 1999 A
6006242 Poole et al. Dec 1999 A
6012042 Black et al. Jan 2000 A
6057757 Arrowsmith et al. May 2000 A
6065026 Cornelia et al. May 2000 A
6072942 Stockwell et al. Jun 2000 A
6091956 Hollenberg Jul 2000 A
6094643 Anderson et al. Jul 2000 A
6101479 Shaw Aug 2000 A
6104401 Parsons Aug 2000 A
6134582 Kennedy Oct 2000 A
6157747 Szeliski et al. Dec 2000 A
6161098 Wallman Dec 2000 A
6173067 Payton et al. Jan 2001 B1
6178432 Cook et al. Jan 2001 B1
6219053 Tachibana et al. Apr 2001 B1
6232971 Haynes May 2001 B1
6237138 Hameluck et al. May 2001 B1
6243706 Moreau et al. Jun 2001 B1
6243717 Gordon et al. Jun 2001 B1
6247019 Davies Jun 2001 B1
6279018 Kudrolli et al. Aug 2001 B1
6289338 Stoffel et al. Sep 2001 B1
6313833 Knight Nov 2001 B1
6341310 Leshem et al. Jan 2002 B1
6349315 Sonoyama et al. Feb 2002 B1
6366933 Ball et al. Apr 2002 B1
6369835 Lin Apr 2002 B1
6389289 Voce et al. May 2002 B1
6414683 Gueziec Jul 2002 B1
6430305 Decker Aug 2002 B1
6456997 Shukla Sep 2002 B1
6463404 Appleby Oct 2002 B1
6483509 Rabenhorst Nov 2002 B1
6496817 Whang et al. Dec 2002 B1
6513019 Lewis Jan 2003 B2
6519627 Dan et al. Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6529900 Patterson et al. Mar 2003 B1
6532449 Goertzel et al. Mar 2003 B1
6549944 Weinberg et al. Apr 2003 B1
6560620 Ching May 2003 B1
6581068 Bensoussan et al. Jun 2003 B1
6594672 Lampson et al. Jul 2003 B1
6631496 Li et al. Oct 2003 B1
6640231 Andersen et al. Oct 2003 B1
6642945 Sharpe Nov 2003 B1
6662103 Skolnick et al. Dec 2003 B1
6662202 Krusche et al. Dec 2003 B1
6674434 Chojnacki et al. Jan 2004 B1
6714936 Nevin, III Mar 2004 B1
6748481 Parry et al. Jun 2004 B1
6757445 Knopp Jun 2004 B1
6775675 Nwabueze et al. Aug 2004 B1
6801201 Escher Oct 2004 B2
6820135 Dingman Nov 2004 B1
6828920 Owen et al. Dec 2004 B2
6839745 Dingari et al. Jan 2005 B1
6876981 Berckmans Apr 2005 B1
6877137 Rivette et al. Apr 2005 B1
6907426 Hellerstein et al. Jun 2005 B2
6920453 Mannila et al. Jul 2005 B2
6944821 Bates et al. Sep 2005 B1
6976210 Silva et al. Dec 2005 B1
6978419 Kantrowitz Dec 2005 B1
6980984 Huffman et al. Dec 2005 B1
6985950 Hanson et al. Jan 2006 B1
7036085 Barros Apr 2006 B2
7043449 Li et al. May 2006 B1
7043702 Chi et al. May 2006 B2
7055110 Kupka et al. May 2006 B2
7058648 Lightfoot et al. Jun 2006 B1
7086028 Davis et al. Aug 2006 B1
7089541 Ungar Aug 2006 B2
7111231 Huck et al. Sep 2006 B1
7133409 Willardson Nov 2006 B1
7139800 Bellotti et al. Nov 2006 B2
7158878 Rasmussen et al. Jan 2007 B2
7162475 Ackerman Jan 2007 B2
7168039 Bertram Jan 2007 B2
7171427 Witkowski Jan 2007 B2
7174377 Bernard et al. Feb 2007 B2
7181423 Blanchard et al. Feb 2007 B2
7185065 Holtzman et al. Feb 2007 B1
7213030 Jenkins May 2007 B1
7216299 Knight May 2007 B2
7237192 Stephenson et al. Jun 2007 B1
7246090 Thomas Jul 2007 B1
7269786 Malloy et al. Sep 2007 B1
7278105 Kitts Oct 2007 B1
7290698 Poslinski et al. Nov 2007 B2
7333998 Heckerman et al. Feb 2008 B2
7356504 Müller Apr 2008 B2
7370047 Gorman May 2008 B2
7375732 Arcas May 2008 B2
7379811 Rasmussen et al. May 2008 B2
7379903 Joseph May 2008 B2
7392254 Jenkins Jun 2008 B1
7401038 Masuda Jul 2008 B2
7403921 Tanpoco et al. Jul 2008 B2
7403922 Lewis et al. Jul 2008 B1
7403942 Bayliss Jul 2008 B1
7426654 Adams et al. Sep 2008 B2
7437728 Stackhouse et al. Oct 2008 B2
7441182 Beilinson et al. Oct 2008 B2
7451397 Weber et al. Nov 2008 B2
7454466 Bellotti et al. Nov 2008 B2
7457706 Malero et al. Nov 2008 B2
7461158 Rider et al. Dec 2008 B2
7467375 Tondreau et al. Dec 2008 B2
7469238 Satchwell Dec 2008 B2
7487139 Fraleigh et al. Feb 2009 B2
7502786 Liu et al. Mar 2009 B2
7519470 Brasche et al. Apr 2009 B2
7525422 Bishop et al. Apr 2009 B2
7529195 Gorman May 2009 B2
7529727 Arning et al. May 2009 B2
7529734 Dirisala May 2009 B2
7533069 Fairweather May 2009 B2
7539666 Ashworth et al. May 2009 B2
7542934 Markel Jun 2009 B2
7558677 Jones Jun 2009 B2
7574409 Patinkin Aug 2009 B2
7574428 Leiserowitz et al. Aug 2009 B2
7579965 Bucholz Aug 2009 B2
7587352 Arnott Sep 2009 B2
7590582 Dunne Sep 2009 B2
7596285 Brown et al. Sep 2009 B2
7614006 Molander Nov 2009 B2
7617232 Gabbert et al. Nov 2009 B2
7620582 Masuda Nov 2009 B2
7620628 Kapur et al. Nov 2009 B2
7627489 Schaeffer et al. Dec 2009 B2
7627812 Chamberlain et al. Dec 2009 B2
7630931 Rachev et al. Dec 2009 B1
7634717 Chamberlain et al. Dec 2009 B2
7657478 De Diego Feb 2010 B2
7663621 Allen et al. Feb 2010 B1
7685042 Monroe et al. Mar 2010 B1
7685083 Fairweather Mar 2010 B2
7703021 Flam Apr 2010 B1
7706817 Bamrah et al. Apr 2010 B2
7712049 Williams et al. May 2010 B2
7716077 Mikurak May 2010 B1
7716227 Hao et al. May 2010 B1
7725530 Sah et al. May 2010 B2
7725547 Albertson et al. May 2010 B2
7725728 Ama et al. May 2010 B2
7730082 Sah et al. Jun 2010 B2
7730109 Rohrs et al. Jun 2010 B2
7739246 Mooney et al. Jun 2010 B2
7756843 Palmer Jul 2010 B1
7757220 Griffith et al. Jul 2010 B2
7765489 Shah Jul 2010 B1
7770100 Chamberlain et al. Aug 2010 B2
7791616 Ioup et al. Sep 2010 B2
7805457 Viola et al. Sep 2010 B1
7809703 Balabhadrapatruni et al. Oct 2010 B2
7818658 Chen Oct 2010 B2
7835966 Satchwell Nov 2010 B2
7848995 Dalal Dec 2010 B2
7870493 Pall et al. Jan 2011 B2
7872647 Mayer et al. Jan 2011 B2
7877421 Berger et al. Jan 2011 B2
7880921 Dattilo et al. Feb 2011 B2
7894984 Rasmussen et al. Feb 2011 B2
7899611 Downs et al. Mar 2011 B2
7899796 Borthwick et al. Mar 2011 B1
7912842 Bayliss Mar 2011 B1
7917376 Bellin et al. Mar 2011 B2
7920963 Jouline et al. Apr 2011 B2
7933862 Chamberlain et al. Apr 2011 B2
8085268 Carrino et al. Apr 2011 B2
7941321 Greenstein et al. May 2011 B2
7941336 Robin-Jan May 2011 B1
7945852 Pilskains May 2011 B1
7958147 Turner et al. Jun 2011 B1
7962281 Rasmussen et al. Jun 2011 B2
7962495 Jain et al. Jun 2011 B2
7962848 Bertram Jun 2011 B2
7966199 Frasher Jun 2011 B1
7970240 Chao et al. Jun 2011 B1
7971150 Raskutti et al. Jun 2011 B2
7984374 Caro et al. Jun 2011 B2
8001465 Kudrolli et al. Aug 2011 B2
8001482 Bhattiprolu et al. Aug 2011 B2
8010507 Poston et al. Aug 2011 B2
8010545 Stefik et al. Aug 2011 B2
8015487 Roy et al. Sep 2011 B2
8024778 Cash et al. Sep 2011 B2
8036632 Cona et al. Oct 2011 B1
8036971 Aymeloglu et al. Oct 2011 B2
8041714 Aymeloglu et al. Oct 2011 B2
8046283 Burns Oct 2011 B2
8054756 Chand et al. Nov 2011 B2
8065080 Koch Nov 2011 B2
8073857 Sreekanth Dec 2011 B2
8103543 Zwicky Jan 2012 B1
8112425 Baum et al. Feb 2012 B2
8117022 Linker Feb 2012 B2
8126848 Wagner Feb 2012 B2
8134457 Velipasalar et al. Mar 2012 B2
8145703 Frishert et al. Mar 2012 B2
8185819 Sah et al. May 2012 B2
8196184 Amirov et al. Jun 2012 B2
8214361 Sandler et al. Jul 2012 B1
8214490 Vos et al. Jul 2012 B1
8214764 Gemmell et al. Jul 2012 B2
8219550 Merz et al. Jul 2012 B2
8225201 Michael Jul 2012 B2
8229902 Vishniac et al. Jul 2012 B2
8229947 Fujinaga Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8271461 Pike et al. Sep 2012 B2
8280880 Aymeloglu et al. Oct 2012 B1
8290838 Thakur et al. Oct 2012 B1
8290926 Ozzie et al. Oct 2012 B2
8290942 Jones et al. Oct 2012 B2
8301464 Cave et al. Oct 2012 B1
8301904 Gryaznov Oct 2012 B1
8302855 Ma et al. Nov 2012 B2
8312367 Foster Nov 2012 B2
8312546 Alme Nov 2012 B2
8325178 Doyle, Jr. Dec 2012 B1
8326727 Aymeloglu et al. Dec 2012 B2
8352881 Champion et al. Jan 2013 B2
8364642 Garrod Jan 2013 B1
8368695 Howell et al. Feb 2013 B2
8386377 Xiong et al. Feb 2013 B1
8392556 Goulet et al. Mar 2013 B2
8397171 Klassen et al. Mar 2013 B2
8400448 Doyle, Jr. Mar 2013 B1
8412707 Mianji Apr 2013 B1
8417715 Bruckhaus et al. Apr 2013 B1
8422825 Neophytou et al. Apr 2013 B1
8429527 Arbogast Apr 2013 B1
8447722 Ahuja et al. May 2013 B1
8452790 Mianji May 2013 B1
8463036 Ramesh et al. Jun 2013 B1
8473454 Evanitsky et al. Jun 2013 B2
8484115 Aymeloglu et al. Jul 2013 B2
8484549 Burr et al. Jul 2013 B2
8489331 Kopf et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8494941 Aymeloglu et al. Jul 2013 B2
8494984 Hwang et al. Jul 2013 B2
8508533 Cervelli et al. Aug 2013 B2
8510743 Hackborn et al. Aug 2013 B2
8514082 Cova et al. Aug 2013 B2
8514229 Cervelli et al. Aug 2013 B2
8515207 Chau Aug 2013 B2
8554579 Tribble et al. Oct 2013 B2
8554653 Falkenborg et al. Oct 2013 B2
8554709 Goodson et al. Oct 2013 B2
8554719 McGrew Oct 2013 B2
8560413 Quarterman Oct 2013 B1
8564596 Carrino et al. Oct 2013 B2
8577911 Stepinski et al. Nov 2013 B1
8589273 Creeden et al. Nov 2013 B2
8595234 Siripuapu et al. Nov 2013 B2
8600872 Yan Dec 2013 B1
8601326 Kirn Dec 2013 B1
8620641 Farnsworth et al. Dec 2013 B2
8639552 Chen et al. Jan 2014 B1
8639757 Zang et al. Jan 2014 B1
8646080 Williamson et al. Feb 2014 B2
8666861 Li et al. Mar 2014 B2
8676857 Adams et al. Mar 2014 B1
8688573 Ruknoic et al. Apr 2014 B1
8689108 Duffield et al. Apr 2014 B1
8713467 Goldenberg et al. Apr 2014 B1
8726379 Stiansen et al. May 2014 B1
8732574 Burr et al. May 2014 B2
8738486 McGeehan May 2014 B2
8739278 Varghese May 2014 B2
8799799 Cervelli et al. May 2014 B1
8742934 Sarpy et al. Jun 2014 B1
8744890 Bernier Jun 2014 B1
8745516 Mason et al. Jun 2014 B2
8781169 Jackson et al. Jul 2014 B2
8787939 Papakipos et al. Jul 2014 B2
8788407 Singh et al. Jul 2014 B1
8798354 Bunzel et al. Aug 2014 B1
8812444 Garrod et al. Aug 2014 B2
8812960 Sun et al. Aug 2014 B1
8830322 Nerayoff et al. Sep 2014 B2
8832594 Thompson et al. Sep 2014 B1
8838538 Landau et al. Sep 2014 B1
8855999 Elliot Oct 2014 B1
8868537 Colgrove et al. Oct 2014 B1
8903717 Elliot Dec 2014 B2
8917274 Ma et al. Dec 2014 B2
8924388 Elliot et al. Dec 2014 B2
8924389 Elliot et al. Dec 2014 B2
8924872 Bogomolov et al. Dec 2014 B1
8937619 Sharma et al. Jan 2015 B2
8938434 Jain et al. Jan 2015 B2
8938686 Erenrich et al. Jan 2015 B1
8949164 Mohler Feb 2015 B1
9009171 Grossman et al. Apr 2015 B1
9009827 Albertson et al. Apr 2015 B1
9021260 Falk et al. Apr 2015 B1
9021384 Beard et al. Apr 2015 B1
9032531 Scorvo et al. May 2015 B1
9043696 Meiklejohn et al. May 2015 B1
9043894 Dennison et al. May 2015 B1
9058315 Burr et al. Jun 2015 B2
9069842 Melby Jun 2015 B2
9100428 Visbal Aug 2015 B1
9105000 White et al. Aug 2015 B1
9116975 Shankar et al. Aug 2015 B2
9129219 Robertson et al. Sep 2015 B1
9146954 Boe et al. Sep 2015 B1
9230060 Friedlander et al. Jan 2016 B2
9286373 Elliot et al. Mar 2016 B2
9348499 Aymeloglu et al. May 2016 B2
9348851 Kirn May 2016 B2
20010011243 Dembo et al. Aug 2001 A1
20010027424 Torigoe Oct 2001 A1
20020003539 Abe Jan 2002 A1
20020007239 Alcaly et al. Jan 2002 A1
20020007331 Lo et al. Jan 2002 A1
20020026404 Thompson Feb 2002 A1
20020030701 Knight Mar 2002 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020033848 Sciammarella et al. Mar 2002 A1
20020035590 Eibach et al. Mar 2002 A1
20020059126 Ricciardi May 2002 A1
20020065708 Senay et al. May 2002 A1
20020087570 Jacquez et al. Jul 2002 A1
20020091707 Keller Jul 2002 A1
20020095360 Joao Jul 2002 A1
20020095658 Shulman Jul 2002 A1
20020099870 Miller et al. Jul 2002 A1
20020103705 Brady Aug 2002 A1
20020116120 Ruiz et al. Aug 2002 A1
20020130867 Yang et al. Sep 2002 A1
20020138383 Rhee Sep 2002 A1
20020147671 Sloan et al. Oct 2002 A1
20020147805 Leshem et al. Oct 2002 A1
20020156812 Krasnoiarov et al. Oct 2002 A1
20020174201 Ramer et al. Nov 2002 A1
20020194058 Eldering Dec 2002 A1
20020194119 Wright et al. Dec 2002 A1
20030009392 Perkowski Jan 2003 A1
20030009399 Boerner Jan 2003 A1
20030028560 Kudrolli et al. Feb 2003 A1
20030036848 Sheha et al. Feb 2003 A1
20030036927 Bowen Feb 2003 A1
20030039948 Donahue Feb 2003 A1
20030052896 Higgins et al. Mar 2003 A1
20030061132 Mason et al. Mar 2003 A1
20030065605 Gatto Apr 2003 A1
20030065606 Satchwell Apr 2003 A1
20030065607 Satchwell Apr 2003 A1
20030074187 Ait-Mokhtar et al. Apr 2003 A1
20030078827 Hoffman Apr 2003 A1
20030088438 Maughan et al. May 2003 A1
20030093401 Czahkowski et al. May 2003 A1
20030103049 Kindratenko et al. Jun 2003 A1
20030105759 Bess et al. Jun 2003 A1
20030115481 Baird et al. Jun 2003 A1
20030126102 Borthwick Jul 2003 A1
20030130996 Bayerl et al. Jul 2003 A1
20030140106 Raguseo Jul 2003 A1
20030144868 MacIntyre Jul 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030171942 Gaito Sep 2003 A1
20030172014 Quackenbush et al. Sep 2003 A1
20030172021 Huang Sep 2003 A1
20030172053 Fairweather Sep 2003 A1
20030177112 Gardner Sep 2003 A1
20030182177 Gallagher Sep 2003 A1
20030182313 Federwisch et al. Sep 2003 A1
20030184588 Lee Oct 2003 A1
20030187761 Olsen et al. Oct 2003 A1
20030212718 Tester Nov 2003 A1
20030225755 Iwayama et al. Dec 2003 A1
20030229848 Arend et al. Dec 2003 A1
20040003009 Wilmot Jan 2004 A1
20040006523 Coker Jan 2004 A1
20040030492 Fox et al. Feb 2004 A1
20040032432 Baynger Feb 2004 A1
20040034570 Davis Feb 2004 A1
20040039498 Ollis et al. Feb 2004 A1
20040044648 Anfindsen et al. Mar 2004 A1
20040064256 Barinek et al. Apr 2004 A1
20040083466 Dapp et al. Apr 2004 A1
20040085318 Hassler et al. May 2004 A1
20040088177 Travis et al. May 2004 A1
20040095349 Bito et al. May 2004 A1
20040098236 Mayer et al. May 2004 A1
20040111410 Burgoon et al. Jun 2004 A1
20040111480 Yue Jun 2004 A1
20040117387 Civetta et al. Jun 2004 A1
20040126840 Cheng et al. Jul 2004 A1
20040133500 Thompson et al. Jul 2004 A1
20040143602 Ruiz et al. Jul 2004 A1
20040143796 Lerner et al. Jul 2004 A1
20040153418 Hanweck Aug 2004 A1
20040153451 Phillips et al. Aug 2004 A1
20040163039 McPherson et al. Aug 2004 A1
20040193599 Liu et al. Sep 2004 A1
20040193600 Kaasten et al. Sep 2004 A1
20040204821 Tu Oct 2004 A1
20040205492 Newsome Oct 2004 A1
20040205524 Richter et al. Oct 2004 A1
20040210763 Jonas Oct 2004 A1
20040221223 Yu et al. Nov 2004 A1
20040236688 Bozeman Nov 2004 A1
20040260702 Cragun et al. Dec 2004 A1
20040267746 Marcjan et al. Dec 2004 A1
20050010472 Quatse et al. Jan 2005 A1
20050027705 Sadri et al. Feb 2005 A1
20050028094 Allyn Feb 2005 A1
20050031197 Knopp Feb 2005 A1
20050034062 Bufkin et al. Feb 2005 A1
20050039116 Slack-Smith Feb 2005 A1
20050039119 Parks et al. Feb 2005 A1
20050060712 Miller et al. Mar 2005 A1
20050060713 Miller et al. Mar 2005 A1
20050065811 Chu et al. Mar 2005 A1
20050075962 Dunne Apr 2005 A1
20050075966 Duka Apr 2005 A1
20050078858 Yao et al. Apr 2005 A1
20050080769 Gemmell Apr 2005 A1
20050086207 Heuer et al. Apr 2005 A1
20050090911 Ingargiola et al. Apr 2005 A1
20050091186 Elish Apr 2005 A1
20050097441 Herbach et al. May 2005 A1
20050102328 Ring et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050125715 Franco et al. Jun 2005 A1
20050131935 O'Leary et al. Jun 2005 A1
20050133588 Williams Jun 2005 A1
20050149455 Bruesewitz et al. Jul 2005 A1
20050154628 Eckart et al. Jul 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050166144 Gross Jul 2005 A1
20050171881 Ghassemieh et al. Aug 2005 A1
20050180330 Shapiro Aug 2005 A1
20050182502 Iyengar Aug 2005 A1
20050182709 Belcsak et al. Aug 2005 A1
20050182793 Keenan et al. Aug 2005 A1
20050183005 Denoue et al. Aug 2005 A1
20050210409 Jou Sep 2005 A1
20050246327 Yeung et al. Nov 2005 A1
20050251786 Citron et al. Nov 2005 A1
20050256703 Markel Nov 2005 A1
20050262004 Sakata et al. Nov 2005 A1
20050262057 Lesh et al. Nov 2005 A1
20050262493 Schmidt et al. Nov 2005 A1
20050262512 Schmidt et al. Nov 2005 A1
20050267652 Allstadt et al. Dec 2005 A1
20060010130 Leff et al. Jan 2006 A1
20060020398 Vernon et al. Jan 2006 A1
20060026120 Carolan et al. Feb 2006 A1
20060026170 Kreitler et al. Feb 2006 A1
20060026561 Bauman et al. Feb 2006 A1
20060031779 Theurer et al. Feb 2006 A1
20060052984 Nakadate et al. Mar 2006 A1
20060053097 King et al. Mar 2006 A1
20060053170 Hill et al. Mar 2006 A1
20060059072 Boglaev Mar 2006 A1
20060059139 Robinson Mar 2006 A1
20060059423 Lehmann et al. Mar 2006 A1
20060064181 Kato Mar 2006 A1
20060069503 Suomela et al. Mar 2006 A1
20060074881 Vembu et al. Apr 2006 A1
20060080139 Mainzer Apr 2006 A1
20060080283 Shipman Apr 2006 A1
20060080316 Gilmore et al. Apr 2006 A1
20060080619 Carlson et al. Apr 2006 A1
20060116943 Willain Jun 2006 A1
20060129746 Porter Jun 2006 A1
20060136513 Ngo et al. Jun 2006 A1
20060139375 Rasmussen et al. Jun 2006 A1
20060142949 Helt Jun 2006 A1
20060143034 Rothermel Jun 2006 A1
20060143075 Carr et al. Jun 2006 A1
20060143079 Basak et al. Jun 2006 A1
20060146050 Yamauchi Jul 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060178915 Chao Aug 2006 A1
20060178954 Thukral et al. Aug 2006 A1
20060184889 Molander Aug 2006 A1
20060203337 White Sep 2006 A1
20060209085 Wong et al. Sep 2006 A1
20060218206 Bourbonnais et al. Sep 2006 A1
20060218491 Grossman et al. Sep 2006 A1
20060218637 Thomas et al. Sep 2006 A1
20060224356 Castelli et al. Oct 2006 A1
20060235786 DiSalvo Oct 2006 A1
20060241974 Chao et al. Oct 2006 A1
20060242040 Rader Oct 2006 A1
20060242630 Koike et al. Oct 2006 A1
20060251307 Florin et al. Nov 2006 A1
20060253502 Raman et al. Nov 2006 A1
20060265311 Dean et al. Nov 2006 A1
20060265397 Bryan et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060271277 Hu et al. Nov 2006 A1
20060277460 Forstall et al. Dec 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070000999 Kubo et al. Jan 2007 A1
20070011150 Frank Jan 2007 A1
20070011304 Error Jan 2007 A1
20070016363 Huang et al. Jan 2007 A1
20070024620 Muller-Fischer et al. Feb 2007 A1
20070038646 Thota Feb 2007 A1
20070038962 Fuchs et al. Feb 2007 A1
20070043686 Teng et al. Feb 2007 A1
20070055598 Arnott et al. Mar 2007 A1
20070057966 Ohno et al. Mar 2007 A1
20070061259 Zoldi et al. Mar 2007 A1
20070061752 Cory Mar 2007 A1
20070067233 Dalal Mar 2007 A1
20070067285 Blume Mar 2007 A1
20070078832 Ott et al. Apr 2007 A1
20070083541 Fraleigh et al. Apr 2007 A1
20070091868 Hollman et al. Apr 2007 A1
20070094389 Nussey et al. Apr 2007 A1
20070106582 Baker et al. May 2007 A1
20070112714 Fairweather May 2007 A1
20070113164 Hansen et al. May 2007 A1
20070118527 Winje et al. May 2007 A1
20070136095 Weinstein Jun 2007 A1
20070136115 Doganaksoy et al. Jun 2007 A1
20070150369 Zivin Jun 2007 A1
20070150801 Chidlovskii et al. Jun 2007 A1
20070156673 Maga Jul 2007 A1
20070162454 D'Albora et al. Jul 2007 A1
20070168269 Chuo Jul 2007 A1
20070168270 De Diego Arozamena et al. Jul 2007 A1
20070168871 Jenkins Jul 2007 A1
20070174760 Chamberlain et al. Jul 2007 A1
20070178501 Rabinowitz et al. Aug 2007 A1
20070185867 Maga Aug 2007 A1
20070188516 Loup et al. Aug 2007 A1
20070192122 Routson et al. Aug 2007 A1
20070192265 Chopin et al. Aug 2007 A1
20070198571 Ferguson et al. Aug 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070208736 Tanigawa et al. Sep 2007 A1
20070219882 May Sep 2007 A1
20070226617 Traub et al. Sep 2007 A1
20070233756 D'Souza et al. Oct 2007 A1
20070239606 Eisen Oct 2007 A1
20070240062 Christena et al. Oct 2007 A1
20070245339 Bauman et al. Oct 2007 A1
20070258642 Thota Nov 2007 A1
20070266336 Nojima et al. Nov 2007 A1
20070271317 Carmel Nov 2007 A1
20070282951 Selimis et al. Dec 2007 A1
20070284433 Domenica et al. Dec 2007 A1
20070294643 Kyle Dec 2007 A1
20070295797 Herman et al. Dec 2007 A1
20070299697 Friedlander et al. Dec 2007 A1
20080005063 Seeds Jan 2008 A1
20080010605 Frank Jan 2008 A1
20080015920 Fawls et al. Jan 2008 A1
20080016155 Khalatian Jan 2008 A1
20080040250 Salter Feb 2008 A1
20080040275 Paulsen et al. Feb 2008 A1
20080040684 Crump Feb 2008 A1
20080046481 Gould et al. Feb 2008 A1
20080046803 Beauchamp et al. Feb 2008 A1
20080051989 Welsh Feb 2008 A1
20080052142 Bailey et al. Feb 2008 A1
20080069081 Chand et al. Mar 2008 A1
20080077597 Butler Mar 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080082486 Lermant et al. Apr 2008 A1
20080082578 Hogue et al. Apr 2008 A1
20080091693 Murthy Apr 2008 A1
20080098085 Krane et al. Apr 2008 A1
20080103798 Domenikos et al. May 2008 A1
20080103996 Forman et al. May 2008 A1
20080104019 Nath May 2008 A1
20080109714 Kumar et al. May 2008 A1
20080126344 Hoffman et al. May 2008 A1
20080126951 Sood et al. May 2008 A1
20080140387 Linker Jun 2008 A1
20080140576 Lewis et al. Jun 2008 A1
20080148398 Mezack et al. Jun 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080162616 Gross et al. Jul 2008 A1
20080163073 Becker et al. Jul 2008 A1
20080172607 Baer Jul 2008 A1
20080183639 DiSalvo Jul 2008 A1
20080192053 Howell et al. Aug 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080195608 Clover Aug 2008 A1
20080195672 Hamel et al. Aug 2008 A1
20080208735 Balet et al. Aug 2008 A1
20080208820 Usey et al. Aug 2008 A1
20080222038 Eden et al. Sep 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080223834 Griffiths et al. Sep 2008 A1
20080228467 Womack et al. Sep 2008 A1
20080243711 Aymeloglu et al. Oct 2008 A1
20080249820 Pathria Oct 2008 A1
20080249957 Masuyama et al. Oct 2008 A1
20080249983 Meisels et al. Oct 2008 A1
20080255973 El Wade et al. Oct 2008 A1
20080263468 Cappione Oct 2008 A1
20080267107 Rosenberg Oct 2008 A1
20080267386 Cooper Oct 2008 A1
20080270316 Guidotti et al. Oct 2008 A1
20080270468 Mao Oct 2008 A1
20080276167 Michael Nov 2008 A1
20080278311 Grange et al. Nov 2008 A1
20080281580 Zabokritski Nov 2008 A1
20080288306 MacIntyre Nov 2008 A1
20080288471 Wu et al. Nov 2008 A1
20080294678 Gorman et al. Nov 2008 A1
20080301042 Patzer Dec 2008 A1
20080301643 Appleton et al. Dec 2008 A1
20080313132 Hao et al. Dec 2008 A1
20080313243 Poston et al. Dec 2008 A1
20090002492 Velipasalar et al. Jan 2009 A1
20090005987 Vengroff et al. Jan 2009 A1
20090006271 Crowder Jan 2009 A1
20090018996 Hunt Jan 2009 A1
20090027418 Maru et al. Jan 2009 A1
20090030915 Winter et al. Jan 2009 A1
20090031401 Cudich et al. Jan 2009 A1
20090043801 LeClair Feb 2009 A1
20090055251 Shah et al. Feb 2009 A1
20090055487 Moraes et al. Feb 2009 A1
20090076845 Bellin et al. Mar 2009 A1
20090088964 Schaaf et al. Apr 2009 A1
20090089651 Herberger et al. Apr 2009 A1
20090094166 Aymeloglu et al. Apr 2009 A1
20090094270 Alirez et al. Apr 2009 A1
20090100018 Roberts Apr 2009 A1
20090106178 Chu Apr 2009 A1
20090106242 McGrew Apr 2009 A1
20090106308 Killian et al. Apr 2009 A1
20090112678 Luzardo Apr 2009 A1
20090112745 Stefanescu Apr 2009 A1
20090112922 Barinaga Apr 2009 A1
20090115786 Shmiaski et al. May 2009 A1
20090119309 Gibson et al. May 2009 A1
20090125359 Knapic May 2009 A1
20090125369 Kloostra et al. May 2009 A1
20090125459 Norton et al. May 2009 A1
20090132347 Anderson et al. May 2009 A1
20090132921 Hwangbo et al. May 2009 A1
20090132953 Reed et al. May 2009 A1
20090138307 Belcsak et al. May 2009 A1
20090143052 Bates et al. Jun 2009 A1
20090144262 White et al. Jun 2009 A1
20090144274 Fraleigh et al. Jun 2009 A1
20090150868 Chakra et al. Jun 2009 A1
20090157732 Hao et al. Jun 2009 A1
20090158185 Lacevic et al. Jun 2009 A1
20090164387 Armstrong et al. Jun 2009 A1
20090164934 Bhattiprolu et al. Jun 2009 A1
20090171759 McGeehan Jul 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090171955 Merz et al. Jul 2009 A1
20090172511 Decherd Jul 2009 A1
20090172821 Daira et al. Jul 2009 A1
20090177962 Gusmorino et al. Jul 2009 A1
20090179892 Tsuda et al. Jul 2009 A1
20090187464 Bai et al. Jul 2009 A1
20090187546 Whyte et al. Jul 2009 A1
20090187548 Ji et al. Jul 2009 A1
20090193050 Olson et al. Jul 2009 A1
20090199106 Jonsson et al. Aug 2009 A1
20090216562 Faulkner et al. Aug 2009 A1
20090222400 Kupershmidt et al. Sep 2009 A1
20090222759 Drieschner Sep 2009 A1
20090222760 Halverson et al. Sep 2009 A1
20090228365 Tomchek et al. Sep 2009 A1
20090228507 Jain et al. Sep 2009 A1
20090234720 George et al. Sep 2009 A1
20090248757 Havewala et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090254970 Agarwal et al. Oct 2009 A1
20090271343 Vaiciulis et al. Oct 2009 A1
20090281839 Lynn et al. Nov 2009 A1
20090282068 Shockro et al. Nov 2009 A1
20090287470 Farnsworth et al. Nov 2009 A1
20090292626 Oxford Nov 2009 A1
20090299830 West et al. Dec 2009 A1
20090307049 Elliott et al. Dec 2009 A1
20090313250 Folting et al. Dec 2009 A1
20090313311 Hoffmann et al. Dec 2009 A1
20090313463 Pang et al. Dec 2009 A1
20090319418 Herz Dec 2009 A1
20090319515 Minton et al. Dec 2009 A1
20090319891 MacKinlay Dec 2009 A1
20090327157 Dunne Dec 2009 A1
20100011282 Dollard et al. Jan 2010 A1
20100030722 Goodson et al. Feb 2010 A1
20100031141 Summers et al. Feb 2010 A1
20100042922 Bradateanu et al. Feb 2010 A1
20100057600 Johansen et al. Mar 2010 A1
20100057622 Faith et al. Mar 2010 A1
20100057716 Stefik et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100070426 Aymeloglu et al. Mar 2010 A1
20100070427 Aymeloglu et al. Mar 2010 A1
20100070523 Delgo et al. Mar 2010 A1
20100070531 Aymeloglu et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100070844 Aymeloglu et al. Mar 2010 A1
20100070845 Facemire et al. Mar 2010 A1
20100070897 Aymeloglu et al. Mar 2010 A1
20100076813 Ghosh et al. Mar 2010 A1
20100076968 Boyns et al. Mar 2010 A1
20100082541 Kottomtharayil Apr 2010 A1
20100082671 Li et al. Apr 2010 A1
20100094765 Nandy Apr 2010 A1
20100098318 Anderson Apr 2010 A1
20100100963 Mahaffey Apr 2010 A1
20100103124 Kruzeniski et al. Apr 2010 A1
20100106420 Mattikalli et al. Apr 2010 A1
20100114817 Broeder et al. May 2010 A1
20100114831 Gilbert et al. May 2010 A1
20100114887 Conway et al. May 2010 A1
20100122152 Chamberlain et al. May 2010 A1
20100131457 Heimendinger May 2010 A1
20100131502 Fordham May 2010 A1
20100145909 Ngo Jun 2010 A1
20100161735 Sharma Jun 2010 A1
20100162176 Dunton Jun 2010 A1
20100169192 Zoldi et al. Jul 2010 A1
20100174754 B'Far Jul 2010 A1
20100191563 Schlaifer et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100199225 Coleman et al. Aug 2010 A1
20100204983 Chung et al. Aug 2010 A1
20100205108 Mun Aug 2010 A1
20100223260 Wu Sep 2010 A1
20100228812 Uomini Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100250412 Wagner Sep 2010 A1
20100262688 Hussain et al. Oct 2010 A1
20100280851 Merkin Nov 2010 A1
20100280857 Liu et al. Nov 2010 A1
20100283787 Hamedi et al. Nov 2010 A1
20100293174 Bennett et al. Nov 2010 A1
20100306032 Jolley Dec 2010 A1
20100306285 Shah et al. Dec 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100312530 Capriotti Dec 2010 A1
20100312837 Bodapati et al. Dec 2010 A1
20100313119 Baldwin et al. Dec 2010 A1
20100313239 Chakra et al. Dec 2010 A1
20100318924 Frankel et al. Dec 2010 A1
20100321399 Ellren et al. Dec 2010 A1
20100325526 Ellis et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20100330801 Rouh Dec 2010 A1
20110004498 Readshaw Jan 2011 A1
20110004626 Naeymi-Rad et al. Jan 2011 A1
20110029526 Knight et al. Feb 2011 A1
20110047159 Baid et al. Feb 2011 A1
20110055074 Chen et al. Mar 2011 A1
20110060753 Shaked et al. Mar 2011 A1
20110061013 Bilicki et al. Mar 2011 A1
20110066497 Gopinath et al. Mar 2011 A1
20110074811 Hanson et al. Mar 2011 A1
20110078055 Faribault et al. Mar 2011 A1
20110078173 Seligmann et al. Mar 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110099133 Chang et al. Apr 2011 A1
20110099628 Lanxner et al. Apr 2011 A1
20110117878 Barash et al. May 2011 A1
20110119100 Ruhl et al. May 2011 A1
20110131122 Griffin et al. Jun 2011 A1
20110131547 Elaasar Jun 2011 A1
20110137766 Rasmussen et al. Jun 2011 A1
20110153384 Horne et al. Jun 2011 A1
20110161096 Buehler et al. Jun 2011 A1
20110161137 Ubalde et al. Jun 2011 A1
20110161409 Nair Jun 2011 A1
20110167060 Merz et al. Jul 2011 A1
20110167710 Ramakrishnan et al. Jul 2011 A1
20110170799 Carrino et al. Jul 2011 A1
20110173032 Payne et al. Jul 2011 A1
20110173049 McHale Jul 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110179042 Aymeloglu et al. Jul 2011 A1
20110179048 Satlow Jul 2011 A1
20110181598 O'Neall et al. Jul 2011 A1
20110185316 Reid et al. Jul 2011 A1
20110208565 Ross et al. Aug 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110208822 Rathod Aug 2011 A1
20110213655 Henkin Sep 2011 A1
20110218934 Elser Sep 2011 A1
20110218955 Tang Sep 2011 A1
20110219321 Gonzalez et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225198 Edwards et al. Sep 2011 A1
20110225482 Chan et al. Sep 2011 A1
20110225586 Bentley et al. Sep 2011 A1
20110231305 Winters Sep 2011 A1
20110238495 Kang Sep 2011 A1
20110238553 Raj et al. Sep 2011 A1
20110252282 Meek et al. Oct 2011 A1
20110258158 Resende et al. Oct 2011 A1
20110258216 Supakkul et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110270705 Parker Nov 2011 A1
20110270834 Sokolan et al. Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110289407 Naik et al. Nov 2011 A1
20110289420 Morioka et al. Nov 2011 A1
20110291851 Whisenant Dec 2011 A1
20110295649 Fine Dec 2011 A1
20110307382 Siegel et al. Dec 2011 A1
20110310005 Chen et al. Dec 2011 A1
20110314007 Dassa et al. Dec 2011 A1
20110314024 Chang et al. Dec 2011 A1
20120004894 Butler Jan 2012 A1
20120004904 Shin et al. Jan 2012 A1
20120011238 Rathod Jan 2012 A1
20120011245 Gillette et al. Jan 2012 A1
20120019559 Siler et al. Jan 2012 A1
20120022945 Falkenborg et al. Jan 2012 A1
20120036013 Neuhaus et al. Feb 2012 A1
20120036434 Oberstein Feb 2012 A1
20120050293 Carlhian et al. Mar 2012 A1
20120054284 Rakshit Mar 2012 A1
20120059853 Jagota Mar 2012 A1
20120065987 Farooq et al. Mar 2012 A1
20120066166 Curbera et al. Mar 2012 A1
20120066296 Appleton et al. Mar 2012 A1
20120072825 Sherkin et al. Mar 2012 A1
20120075324 Cardno et al. Mar 2012 A1
20120078595 Balandin et al. Mar 2012 A1
20120079363 Folting et al. Mar 2012 A1
20120084117 Tavares et al. Apr 2012 A1
20120084118 Bai et al. Apr 2012 A1
20120084184 Raleigh Apr 2012 A1
20120084287 Lakshminarayan et al. Apr 2012 A1
20120089606 Eshwar et al. Apr 2012 A1
20120106801 Jackson May 2012 A1
20120116828 Shannon May 2012 A1
20120117082 Koperda et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120136804 Lucia May 2012 A1
20120144335 Abeln Jun 2012 A1
20120158585 Ganti Jun 2012 A1
20120159307 Chung et al. Jun 2012 A1
20120159362 Brown et al. Jun 2012 A1
20120159399 Bastide et al. Jun 2012 A1
20120170847 Tsukidate Jul 2012 A1
20120173381 Smith Jul 2012 A1
20120173985 Peppel Jul 2012 A1
20120188252 Law Jul 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120196557 Reich et al. Aug 2012 A1
20120196558 Reich et al. Aug 2012 A1
20120197651 Robinson et al. Aug 2012 A1
20120197657 Prodanovic Aug 2012 A1
20120197660 Prodanovic Aug 2012 A1
20120203708 Psota et al. Aug 2012 A1
20120206469 Hulubei et al. Aug 2012 A1
20120208636 Feige Aug 2012 A1
20120215784 King et al. Aug 2012 A1
20120221511 Gibson et al. Aug 2012 A1
20120221553 Wittmer et al. Aug 2012 A1
20120221580 Barney Aug 2012 A1
20120226523 Weiss Sep 2012 A1
20120226590 Love et al. Sep 2012 A1
20120245976 Kumar et al. Sep 2012 A1
20120246148 Dror Sep 2012 A1
20120254129 Wheeler et al. Oct 2012 A1
20120271827 Merz Oct 2012 A1
20120278249 Duggal et al. Nov 2012 A1
20120284345 Costenaro et al. Nov 2012 A1
20120290879 Shibuya et al. Nov 2012 A1
20120296907 Long et al. Nov 2012 A1
20120311684 Paulsen et al. Dec 2012 A1
20120323888 Osann, Jr. Dec 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120330973 Ghuneim et al. Dec 2012 A1
20130006426 Healey et al. Jan 2013 A1
20130006725 Simanek et al. Jan 2013 A1
20130006916 McBride et al. Jan 2013 A1
20130006947 Akinyemi et al. Jan 2013 A1
20130016106 Yip et al. Jan 2013 A1
20130018796 Kolhatkar et al. Jan 2013 A1
20130021445 Cossette-Pacheco et al. Jan 2013 A1
20130024268 Manickavelu Jan 2013 A1
20130046635 Grigg et al. Feb 2013 A1
20130046842 Muntz et al. Feb 2013 A1
20130050217 Armitage Feb 2013 A1
20130054306 Bhalla Feb 2013 A1
20130055264 Burr et al. Feb 2013 A1
20130057551 Ebert et al. Mar 2013 A1
20130060786 Serrano et al. Mar 2013 A1
20130061169 Pearcy et al. Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130073454 Busch Mar 2013 A1
20130078943 Biage et al. Mar 2013 A1
20130096968 Van Pelt et al. Apr 2013 A1
20130096988 Grossman et al. Apr 2013 A1
20130097130 Bingol et al. Apr 2013 A1
20130097482 Marantz et al. Apr 2013 A1
20130110746 Ahn May 2013 A1
20130110822 Ikeda et al. May 2013 A1
20130110877 Bonham et al. May 2013 A1
20130111320 Campbell et al. May 2013 A1
20130117011 Ahmed et al. May 2013 A1
20130117651 Waldman et al. May 2013 A1
20130124193 Holmberg May 2013 A1
20130132348 Garrod May 2013 A1
20130101159 Rosen Jun 2013 A1
20130150004 Rosen Jun 2013 A1
20130151148 Parundekar et al. Jun 2013 A1
20130151388 Falkenborg et al. Jun 2013 A1
20130151453 Bhanot et al. Jun 2013 A1
20130157234 Gulli et al. Jun 2013 A1
20130166348 Scotto Jun 2013 A1
20130166480 Popescu et al. Jun 2013 A1
20130166550 Buchmann et al. Jun 2013 A1
20130176321 Mitchell et al. Jul 2013 A1
20130179420 Park et al. Jul 2013 A1
20130185245 Anderson Jul 2013 A1
20130185307 El-Yaniv et al. Jul 2013 A1
20130224696 Wolfe et al. Aug 2013 A1
20130225212 Khan Aug 2013 A1
20130226318 Procyk Aug 2013 A1
20130226879 Talukder et al. Aug 2013 A1
20130226944 Baid et al. Aug 2013 A1
20130226953 Markovich et al. Aug 2013 A1
20130238616 Rose et al. Sep 2013 A1
20130238664 Hsu et al. Sep 2013 A1
20130246170 Gross et al. Sep 2013 A1
20130246316 Zhao et al. Sep 2013 A1
20130246537 Gaddala Sep 2013 A1
20130246597 Iizawa et al. Sep 2013 A1
20130251233 Yang et al. Sep 2013 A1
20130261957 Mahapatro et al. Oct 2013 A1
20130262203 Frederick et al. Oct 2013 A1
20130262328 Federgreen Oct 2013 A1
20130262527 Hunter et al. Oct 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130267207 Hao et al. Oct 2013 A1
20130268520 Fisher et al. Oct 2013 A1
20130275186 Olives et al. Oct 2013 A1
20130279757 Kephart Oct 2013 A1
20130282696 John et al. Oct 2013 A1
20130290011 Lynn et al. Oct 2013 A1
20130290825 Arndt et al. Oct 2013 A1
20130293553 Burr et al. Nov 2013 A1
20130297619 Chandarsekaran et al. Nov 2013 A1
20130304770 Boero et al. Nov 2013 A1
20130311375 Priebatsch Nov 2013 A1
20130325826 Agarwal et al. Dec 2013 A1
20140006404 McGrew et al. Jan 2014 A1
20140012724 O'Leary et al. Jan 2014 A1
20140012796 Petersen et al. Jan 2014 A1
20140019936 Cohanoff Jan 2014 A1
20140032506 Hoey et al. Jan 2014 A1
20140033010 Richardt et al. Jan 2014 A1
20140040371 Gurevich et al. Feb 2014 A1
20140047357 Alfaro et al. Feb 2014 A1
20140058914 Song et al. Feb 2014 A1
20140059038 McPherson et al. Feb 2014 A1
20140067611 Adachi et al. Mar 2014 A1
20140068487 Steiger et al. Mar 2014 A1
20140074855 Zhao et al. Mar 2014 A1
20140089339 Siddiqui et al. Mar 2014 A1
20140095273 Tang et al. Apr 2014 A1
20140095363 Caldwell Apr 2014 A1
20140095509 Patton Apr 2014 A1
20140108068 Williams Apr 2014 A1
20140108074 Miller et al. Apr 2014 A1
20140108380 Gotz et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140123279 Bishop et al. May 2014 A1
20140129261 Bothwell et al. May 2014 A1
20140129936 Richards et al. May 2014 A1
20140136285 Carvalho May 2014 A1
20140143009 Brice et al. May 2014 A1
20140149436 Bahrami et al. May 2014 A1
20140156527 Grigg et al. Jun 2014 A1
20140157172 Peery et al. Jun 2014 A1
20140164502 Khodorenko et al. Jun 2014 A1
20140189536 Lange et al. Jul 2014 A1
20140195515 Baker et al. Jul 2014 A1
20140195887 Ellis et al. Jul 2014 A1
20140222521 Chait Aug 2014 A1
20140222752 Isman et al. Aug 2014 A1
20140222793 Sadkin et al. Aug 2014 A1
20140229554 Grunin et al. Aug 2014 A1
20140244284 Smith Aug 2014 A1
20140244388 Manouchehri et al. Aug 2014 A1
20140258246 Lo Faro et al. Sep 2014 A1
20140267294 Ma Sep 2014 A1
20140267295 Sharma Sep 2014 A1
20140279824 Tamayo Sep 2014 A1
20140279865 Kumar Sep 2014 A1
20140310266 Greenfield Oct 2014 A1
20140316911 Gross Oct 2014 A1
20140333651 Cervelli et al. Nov 2014 A1
20140337772 Cervelli et al. Nov 2014 A1
20140344230 Krause et al. Nov 2014 A1
20140351070 Christner et al. Nov 2014 A1
20140358603 Viger et al. Dec 2014 A1
20140358789 Boding et al. Dec 2014 A1
20140358829 Hurwitz Dec 2014 A1
20140366132 Stiansen et al. Dec 2014 A1
20150003734 Barrett et al. Jan 2015 A1
20150012509 Kirn Jan 2015 A1
20150019394 Unser et al. Jan 2015 A1
20150046481 Elliot Feb 2015 A1
20150046870 Goldenberg et al. Feb 2015 A1
20150073929 Psota et al. Mar 2015 A1
20150073954 Braff Mar 2015 A1
20150089424 Duffield et al. Mar 2015 A1
20150095773 Gonsalves et al. Apr 2015 A1
20150100897 Sun et al. Apr 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150106379 Elliot et al. Apr 2015 A1
20150134512 Mueller May 2015 A1
20150134666 Gattiker et al. May 2015 A1
20150135256 Hoy et al. May 2015 A1
20150161611 Duke et al. Jun 2015 A1
20150169709 Kara et al. Jun 2015 A1
20150169726 Kara et al. Jun 2015 A1
20150170077 Kara et al. Jun 2015 A1
20150178877 Bogomolov et al. Jun 2015 A1
20150186821 Wang et al. Jul 2015 A1
20150187036 Wang et al. Jul 2015 A1
20150188872 White Jul 2015 A1
20150254220 Burr et al. Sep 2015 A1
20150309719 Ma et al. Oct 2015 A1
20150317342 Grossman et al. Nov 2015 A1
20150324868 Kaftan et al. Nov 2015 A1
20150338233 Cervelli et al. Nov 2015 A1
20150347903 Saxena et al. Dec 2015 A1
20150378996 Kesin et al. Dec 2015 A1
20150379413 Robertson et al. Dec 2015 A1
20160004667 Chakerian et al. Jan 2016 A1
20160004764 Chakerian et al. Jan 2016 A1
20160026923 Erenrich et al. Jan 2016 A1
20160034545 Shankar et al. Feb 2016 A1
20160055501 Mukherjee et al. Feb 2016 A1
20160098173 Slawinski et al. Apr 2016 A1
Foreign Referenced Citations (80)
Number Date Country
2014250678 Feb 2016 AU
2014203669 May 2016 AU
102546446 Jul 2012 CN
103167093 Jun 2013 CN
102054015 May 2014 CN
102014103482 Sep 2014 DE
102014204827 Sep 2014 DE
102014204830 Sep 2014 DE
102014204834 Sep 2014 DE
102014213036 Jan 2015 DE
102014215621 Feb 2015 DE
0763201 Mar 1997 EP
1109116 Jun 2001 EP
1146649 Oct 2001 EP
1672527 Jun 2006 EP
2487610 Aug 2012 EP
2551799 Jan 2013 EP
2560134 Feb 2013 EP
2575107 Apr 2013 EP
2778913 Sep 2014 EP
2778914 Sep 2014 EP
2778977 Sep 2014 EP
2835745 Feb 2015 EP
2835770 Feb 2015 EP
2838039 Feb 2015 EP
2846241 Mar 2015 EP
2851852 Mar 2015 EP
2858014 Apr 2015 EP
2858018 Apr 2015 EP
2863326 Apr 2015 EP
2863346 Apr 2015 EP
2869211 May 2015 EP
2884439 Jun 2015 EP
2884440 Jun 2015 EP
2889814 Jul 2015 EP
2891992 Jul 2015 EP
2892197 Jul 2015 EP
2940603 Nov 2015 EP
2940609 Nov 2015 EP
2963595 Jan 2016 EP
2988258 Feb 2016 EP
3035214 Jun 2016 EP
2366498 Mar 2002 GB
2513472 Oct 2014 GB
2513721 Nov 2014 GB
2516155 Jan 2015 GB
2517582 Feb 2015 GB
2518745 Apr 2015 GB
2012778 Nov 2014 NL
2013134 Jan 2015 NL
2013306 Feb 2015 NL
624557 Dec 2014 NZ
WO 1995032424 Nov 1995 WO
WO 2000009529 Feb 2000 WO
WO 2001025906 Apr 2001 WO
WO 2001088750 Nov 2001 WO
WO 2002065353 Aug 2002 WO
WO 2004057268 Jul 2004 WO
WO 2005013200 Feb 2005 WO
WO 2005104736 Nov 2005 WO
WO 2005116851 Dec 2005 WO
WO 2008064207 May 2008 WO
WO 2008121499 Oct 2008 WO
WO 2009042548 Apr 2009 WO
WO 2009051987 Apr 2009 WO
WO 2009061501 May 2009 WO
WO 2009123975 Oct 2009 WO
WO 2010000014 Jan 2010 WO
WO 2010030913 Mar 2010 WO
WO 2010030914 Mar 2010 WO
WO 2010030915 Mar 2010 WO
WO 2010030919 Mar 2010 WO
WO 2010030946 Mar 2010 WO
WO 2010030949 Mar 2010 WO
WO 2010098958 Sep 2010 WO
WO 2011058507 May 2011 WO
WO 2012061162 May 2012 WO
WO 2012119008 Sep 2012 WO
WO 2013010157 Jan 2013 WO
WO 2013102892 Jul 2013 WO
Non-Patent Literature Citations (435)
Entry
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30.
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2.
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316.
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8.
“Andy Turner's GISRUK 2012 Notes” <https://docs.google.com/document/d/1cTmxg7mVx5gd89lqblCYvCEnHA4QAivH4l4WpyPsqE4/edit?pli=1> printed Sep. 16, 2013 in 15 pages.
Azad, Khalid, “A Visual Guide to Version Control,” <http://betterexplained.com/articles/a-visual-guide-to-version-control/>, Sep. 27, 2007 in 11 pages.
Barnes et al., “Viewshed Analysis”, GIS-ARC/INFO 2001, <www.evsc.virginia.edu/˜jhp7e/evsc466/student_pres/Rounds.pdf>.
Beverley, Bill, “Windows Tips & Tricks,” <http://alamopc.org/pcalamode/columns/beverley/bb0301.shtml>, Mar. 2001 in 5 pages.
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286.
Bradbard, Matthew, “Technical Analysis Applied,” <http://partners.futuresource.com/fastbreak/2007/0905.htm>, Sep. 5, 2007, pp. 6.
Breierova et al., “An Introduction to Sensitivity Analysis,” Published by Massachusetts Institute of Technology, Cambridge, MA, Oct. 2001, pp. 67.
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show_bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages.
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10.
Carver et al., “Real-Time Visibility Analysis and Rapid Viewshed Calculation Using a Voxel-Based Modelling Approach,” GISRUK 2012 Conference, Apr. 11-13, Lancaster UK, Apr. 13, 2012, pp. 6.
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152.
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15.
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679.
Devanbu et al., “Authentic Third-party Data Publication,” 2000, pp. 19, http://www.cs.ucdavis.edu/˜devanbu/authdbpub.pdf.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411.
Dreyer et al., “An Object-Oriented Data Model for a Time Series Management System,” Proceedings of the 7th International Working Conference on Scientific and StatisticalDatabase Management, Charlottesville, Virginia USA, Sep. 28-30, 1994, pp. 12.
Ghosh, P., “A Solution of Polygon Containment, Spatial Planning, and Other Related Problems Using Minkowski Operations,” Computer Vision, Graphics, and Image Processing, 1990, vol. 49, pp. 1-35.
GIS-NET 3 Public—Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html.
Goswami, Gautam, “Quite Writly Said!,” One Brick at a Time, Aug. 21, 2005, pp. 7.
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144.
Hansen et al. “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010.
Haralick et al., “Image Analysis Using Mathematical Morphology,” Pattern Analysis and Machine Intelligence, IEEE Transactions, Jul. 1987, vol. PAMI-9, No. 4, pp. 532-550.
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16.
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33.
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36.
Ipbucker, C., “Inverse Transformation for Several Pseudo-cylindrical Map Projections Using Jacobian Matrix,” ICCSA 2009, Part 1 LNCS 5592, pp. 553-564.
Kahan et al., “Annotea: an open RDF infrastructure for shared WEB annotations”, Computer Networks 39, pp. 589-608, 2002.
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf> downloaded May 12, 2014 in 8 pages.
Keylines.com, “KeyLines Datasheet,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages.
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, <http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf> downloaded May 12, 2014 in 10 pages.
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21.
Levine, N., “Crime Mapping and the Crimestat Program,” Geographical Analysis, 2006, vol. 38, pp. 41-56.
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8.
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15.
Mandagere, Nagapramod, “Buffer Operations in GIS,” http://www-users.cs.umn.edu/˜npramod/enc_pdf.pdf> retrieved Jan. 28, 2010, pp. 7.
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10.
Manske, “File Saving Dialogs,” <http://www.mozilla.org/editor/ui_specs/FileSaveDialogs.html>, Jan. 20, 1999, pp. 7.
Map Builder, “Rapid Mashup Development Tool for Google and Yahoo Maps!” <http://web.archive.org/web/20090626224734/http://www.mapbuilder.net/> printed Jul. 20, 2012 in 2 pages.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com.
Mentzas et al. “An Architecture for Intelligent Assistance in the Forecasting Process,” Proceedings of the Twenty-Eighth Hawaii International Conference on System Sciences, Jan. 3-6, 1995, vol. 3, pp. 167-176.
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, <http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx> as printed Apr. 4, 2014 in 17 pages.
Microsoft Office—Visio, “About connecting shapes,” <http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx> printed Aug. 4, 2011 in 6 pages.
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1> printed Aug. 4, 2011 in 1 page.
Microsoft, “How Word Creates and Recovers the AutoRecover files,” <http://support.microsoft.com/kb/107686>, Article ID: 107686, printed Feb. 11, 2010 in 3 pages.
Microsoft, “Introduction to Versioning,” <http://office.microsoft.com/en-us/sharepointtechnolgy/HA010021576.aspx?mode=print>, 2007 in 3 pages.
Microsoft, “Managing Versions and Checking Documents In and Out (Windows SharePoint Services 2.0),” <http://technet.microsoft.com/en-us/library/cc287876.aspx>, Aug. 22, 2005 in 2 pages.
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14.
Murray, C., Oracle Spatial Developer's Guide—6 Coordinate Systems (Spatial Reference Systems), <http://docs.oracle.com/cd/B28359_01/appdev.111/b28400.pdf>, Jun. 2009.
Open Street Map, “Amm's Diary:Unconnected ways and other data quality issues,” http://www.openstreetmap.org/user/amm/diary printed Jul. 23, 2012 in 3 pages.
Palmas et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates” 2014 IEEE Pacific Visualization Symposium, pp. 57-64.
POI Editor, “How to: Create Your Own Points of Interest,” a<http://www.poieditor.com/articles/how_to_create_your_own_points_of_interest/> printed Jul. 22, 2012 in 4 pages.
Pozzi et al., “Vegetation and Population Density in Urban and Suburban Areas in the U.S.A.” Third International Symposium of Remote Sensing of Urban Areas Istanbul, Turkey, Jun. 2002, pp. 8.
Qiu, Fang, “3d Analysis and Surface Modeling”, <http://web.archive.org/web/20091202221925/http://www.utsa.edu/Irsg/Teaching/EES6513/08-3D.pdf> printed Sep. 16, 2013 in 26 pages.
Reddy et al., “Under the hood of GeoVRML 1.0,” SRI International, Proceedings of the fifth symposium on Virtual Reality Modeling Language (Web3D-VRML), New York, NY, Feb. 2000, pp. 23-28. <http://pdf.aminer.org/000/648/038/under_the_hood_of_geovrml.pdf>.
Reibel et al., “Areal Interpolation of Population Counts Using Pre-classified Land Cover Data,” Population Research and Policy Review, 2007, vol. 26, pp. 619-633.
Reibel, M., “Geographic Information Systems and Spatial Data Processing in Demography: a Review,” Population Research and Policy Review, 2007, vol. 26, pp. 601-618.
Rizzardi et al., “Interfacing U.S. Census Map Files with Statistical Graphics Software: Application and Use in Epidemiology,” Statistics in Medicine, Oct. 1993, vol. 12, No. 19-20, pp. 1953-1964.
Rouse, Margaret, “OLAP Cube,” <http://searchdatamanagement.techtarget.com/definition/OLAP-cube>, Apr. 28, 2012, pp. 16.
Schwieger, V., “Sensitivity Analysis as a General Tool for Model Optimisation—Examples for Trajectory Estimation,” 3rd IAG/12th FIG Symposium, Baden, Germany, May 22-24, 2006, Published by IAG, 2006, pp. 10.
Schwieger, V., “Variance-Based Sensitivity Analysis for Model Evaluation in Engineering Surveys,” INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering Surveying, Nov. 11-13, 2004, Published by INGEO, Bratislava, Slovakia, 2004, pp. 10.
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166.
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11.
Snyder, “Map Projections—A Working Manual,” U.S. Geological Survey Professional paper 1395, United States Government Printing Office, Washington: 1987, pp. 11-21 and 60-70.
Sonris, “Using the Area of Interest Tools,” <http://web.archive.org/web/20061001053327/http://sonris-www.dnr.state.la.us/gis/instruct_files/tutslide12> printed Jan. 3, 2013 in 1 page.
Tangelder et al., “Freeform Shape Matching Using Minkowski Operations,” The Netherlands, Jun. 1996, pp. 12.
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29.
Traichal et al., “Forecastable Default Risk Premia and Innovations,” Journal of Economics and Finance, Fall 1999, vol. 23, No. 3, pp. 214-225.
UMBC CMSC 341 Introduction to Trees dated Aug. 3, 2007.
VB Forums, “Buffer A Polygon,” Internet Citation, <http://www.vbforums.com/showthread.php?198436-Buffer-a-Polygon>, Specifically Thread #1, #5 & #11 retrieved on May 2, 2013, pp. 8.
Vivid Solutions, “JTS Topology Suite: Technical Specifications,” <http://www.vividsolutions.com/jts/bin/JTS%20Technical%20Specs.pdf> Version 1.4, 2003, pp. 36.
Wikipedia, “Douglas-Peucker—Algorithms,” <http://de.wikipedia.org/w/index.php?title=Douglas-Peucker-Algorithmus&oldid=91846042> printed Jul. 2011, pp. 2.
Wikipedia, “Ramer-Douglas-Peucker Algorithm,” <http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm> printed Jul. 2011, pp. 3.
Wongsuphasawat et al., “Visual Analytics for Transportation Incident Data Sets,” Transportation Research Record 2138, 2009, pp. 135-145.
Woodbridge, Stephen, [geos-devel] Polygon simplification, <http://lists.osgeo.org/pipermail/geos-deve1/2011-May/005210.html> dated May 8, 2011, pp. 3.
Yahoo, <http://web.archive.org/web/20020124161606/http://finance.yahoo.com/q?s=%5eIXIC&d=c . . . > printed Mar. 6, 2012 in 2 pages.
Issue Notification for U.S. Appl. No. 13/917,571 dated Aug. 5, 2014.
Notice of Allowance for U.S. Appl. No. 14/102,394 dated Aug. 25, 2014.
Notice of Allowance for U.S. Appl. No. 14/108,187 dated Aug. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/135,289 dated Oct. 14, 2014.
Notice of Allowance for U.S. Appl. No. 14/268,964 dated Dec. 3, 2014.
Notice of Allowance for U.S. Appl. No. 13/948,859 dated Dec. 10, 2014.
Notice of Allowance for U.S. Appl. No. 14/149,608 dated Aug. 5, 2014.
Official Communication for New Zealand Patent Application No. 624557 dated May 14, 2014.
Official Communication for New Zealand Patent Application No. 628585 dated Aug. 26, 2014.
Official Communication for European Patent Application No. 14158861.6 dated Jun. 16, 2014.
Official Communication for New Zealand Patent Application No. 622517 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 628263 dated Aug. 12, 2014.
Official Communication for Great Britain Patent Application No. 1404457.2 dated Aug. 14, 2014.
Official Communication for New Zealand Patent Application No. 627962 dated Aug. 5, 2014.
Official Communication for European Patent Application No. 14159464.8 dated Jul. 31, 2014.
Official Communication for European Patent Application No. 14159464.8 dated Aug. 20, 2014.
Official Communication for European Patent Application No. 14159464.8 dated Sep. 22, 2014.
Official Communication for New Zealand Patent Application No. 628840 dated Aug. 28, 2014.
Official Communication in New Zealand Application No. 628495 dated Aug. 19, 2014.
Official Communication for Great Britain Patent Application No. 1408025.3 dated Nov. 6, 2014.
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jul. 18, 2014.
Official Communication for U.S. Appl. No. 14/289,599 dated Jul. 22, 2014.
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014.
Official Communication for U.S. Appl. No. 14/268,964 dated Sep. 3, 2014.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014.
Official Communication for U.S. Appl. No. 14/294,098 dated Aug. 15, 2014.
Official Communication for U.S. Appl. No. 14/148,568 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014.
Official Communication for U.S. Appl. No. 14/294,098 dated Nov. 6, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 23, 2014.
Official Communication for U.S. Appl. No. 14/306,154 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/306,147 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/319,765 dated Nov. 25, 2014.
Official Communication for U.S. Appl. No. 14/323,935 dated Nov. 28, 2014.
Official Communication for U.S. Appl. No. 14/326,738 dated Dec. 2, 2014.
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 12/840,673 dated Sep. 17, 2014.
Official Communication for U.S. Appl. No. 12/210,947 dated Aug. 19, 2014.
“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15, 2014 in 6 pages.
“A Word About Banks and the Laundering of Drug Money,” Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/.
Abbey, Kristen, “Review of Google Docs,” May 1, 2007, pp. 2.
About 80 Minutes, “Palantir in a Number of Parts—Part 6—Graph,” Mar. 21, 2013, pp. 1-6, retrieved from the internet http://about80minutes.blogspot.nl/2013/03/palantir-in-number-of-parts-part-6-graph.html retrieved on Aug. 18, 2015.
Adams et al., “Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows,” R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS, 4275, pp. 291-308, 2006.
Alur et al., “Chapter 2: IBM InfoSphere DataStage Stages,” IBM InfoSphere DataStage Data Flow and Job Design, Jul. 1, 2008, pp. 35-137.
Amnet, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html.
Anonymous, “A Real-World Problem of Matching Records,” Nov. 2006, <http://grupoweb.upf.es/bd-web/slides/ullman.pdf> pp. 1-16.
Anonymous, “BackTult—JD Edwards One World Version Control System”, in 1 page, Jul. 23, 2007.
Appacts, “Smart Thinking for Super Apps,” <http://www.appacts.com> Printed Jul. 18, 2013 in 4 pages.
Apsalar, “Data Powered Mobile Advertising,” “Free Mobile App Analytics” and various analytics related screen shots <http://apsalar.com> Printed Jul. 18, 2013 in 8 pages.
Boyce, Jim, “Microsoft Outlook 2010 Inside Out,” Aug. 1, 2010, retrieved from the internet https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside_out.pdf.
Brandel, Mary, “Data Loss Prevention Dos and Don'ts,” <http://web.archive.org/web/20080724024847/http://www.csoonline.com/article/221272/Dos_and_Don_ts_for_Data_Loss_Prevention>, Oct. 10, 2007, pp. 5.
Capptain—Pilot Your Apps, <http://www.capptain.com> Printed Jul. 18, 2013 in 6 pages.
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015.
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8.
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases,” Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, Jan. 1, 1990, pp. 70-80.
Cohn, et al., “Semi-supervised clustering with user feedback,” Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1 (2003): 17-32.
Countly Mobile Analytics, <http://count.ly/> Printed Jul. 18, 2013 in 9 pages.
“GrabUp—What a Timesaver!” <http://atlchris.com/191/grabup/>, Aug. 11, 2008, pp. 3.
Definition “Identify”, downloaded Jan. 22, 2015, 1 page.
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page.
Delicious, <http://delicious.com/> as printed May 15, 2014 in 1 page.
Distimo—App Analytics, <http://www.distimo.com/app-analytics> Printed Jul. 18, 2013 in 5 pages.
“E-MailRelay,” <http://web.archive.org/web/20080821175021/http://emailrelay.sourceforge.net/> Aug. 21, 2008, pp. 2.
Ferreira et al., “A Scheme for Analyzing Electronic Payment Systems,” Basil 1997.
Flurry Analytics, <http://www.flurry.com/> Printed Jul. 18, 2013 in 14 pages.
Galliford, Miles, “SnagIt Versus Free Screen Capture Software: Critical Tools for Website Owners,” <http://www.subhub.com/articles/free-screen-capture-software>, Mar. 27, 2008, pp. 11.
Gesher, Ari, “Palantir Screenshots in the Wild: Swing Sightings,” The Palantir Blog, Sep. 11, 2007, pp. 1-12, retrieved from the internet https://www.palantir.com/2007/09/palantir-screenshots/ retrieved on Aug. 18, 2015.
Google Analytics Official Website—Web Analytics & Reporting, <http://www.google.com/analytics.index.html> Printed Jul. 18, 2013 in 22 pages.
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, May 6, 2002, 37 pages.
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32.
Hardesty, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata,” MIT News on Campus and Around the World, MIT News Office, Jan. 29, 2015, 3 pages.
Hogue et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web,” 14th International Conference on World Wide Web, WWW 2005: Chiba, Japan, May 10-14, 2005, pp. 86-95.
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, pp. 277-288, 2006.
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages.
Jelen, Bill, “Excel 2013 in Depth, Video Enhanced Edition,” Jan. 25, 2013.
JetScreenshot.com, “Share Screenshots via Internet in Seconds,” <http://web.archive.org/web/20130807164204/http://www.jetscreenshot.com/>, Aug. 7, 2013, pp. 1.
Johnson, Steve, “Access 2013 on demand,” Access 2013 on Demand, May 9, 2013, Que Publishing.
Kontagent Mobile Analytics, <http://www.kontagent.com/> Printed Jul. 18, 2013 in 9 pages.
Kwout, <http://web.archive.org/web/20080905132448/http://www.kwout.com/> Sep. 5, 2008, pp. 2.
Li et al., “Interactive Multimodal Visual Search on Mobile Device,” IEEE Transactions on Multimedia, vol. 15, No. 3, Apr. 1, 2013, pp. 594-607.
Lim et al., “Resolving Attribute Incompatibility in Database Integration: An Evidential Reasoning Approach,” Department of Computer Science, University of Minnesota, 1994, <http://reference.kfupm.edu.sa/content/r/e/resolving_attribute_incompatibility_in_d_531691.pdf> pp. 1-10.
Litwin et al., “Multidatabase Interoperability,” IEEE Computer, Dec. 1986, vol. 19, No. 12, http://www.lamsade.dauphine.fr/˜litwin/mdb-interoperability.pdf, pp. 10-18.
Localytics—Mobile App Marketing & Analytics, <http://www.localytics.com/> Printed Jul. 18, 2013 in 12 pages.
Microsoft Windows, “Microsoft Windows Version 2002 Print Out 2,” 2002, pp. 1-6.
Microsoft, “Registering an Application to a URI Scheme,” <http://msdn.microsoft.com/en-us/library/aa767914.aspx>, printed Apr. 4, 2009 in 4 pages.
Microsoft, “Using the Clipboard,” <http://msdn.microsoft.com/en-us/library/ms649016.aspx>, printed Jun. 8, 2009 in 20 pages.
Mixpanel—Mobile Analytics, <https://mixpanel.com/> Printed Jul. 18, 2013 in 13 pages.
“Money Laundering Risks and E-Gaming: A European Overview and Assessment,” 2009, http://www.cf.ac.uk/socsi/resources/Levi_Final_Money_Laundering_Risks_egaming.pdf.
Nadeau et al., “A Survey of Named Entity Recognition and Classification,” Jan. 15, 2004, pp. 20.
Nierman, “Evaluating Structural Similarity in XML Documents”, 6 pages, 2002.
Nin et al., “On the Use of Semantic Blocking Techniques for Data Cleansing and Integration,” 11th International Database Engineering and Applications Symposium, 2007, pp. 9.
Nitro, “Trick: How to Capture a Screenshot as PDF, Annotate, Then Share It,” <http://blog.nitropdf.com/2008/03/04/trick-how-to-capture-a-screenshot-as-pdf-annotate-it-then-share/>, Mar. 4, 2008, pp. 2.
Nolan et al., “MCARTA: A Malicious Code Automated Run-Time Analysis Framework,” Homeland Security, 2012 IEEE Conference on Technologies for, Nov. 13, 2012, pp. 13-17.
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility,” May 15, 2013, pp. 1-6, retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/.
Online Tech Tips, “Clip2Net—Share files, folders and screenshots easily,” <http://www.online-tech-tips.com/free-software-downloads/share-files-folders-screenshots/>, Apr. 2, 2008, pp. 5.
Open Web Analytics (OWA), <http://www.openwebanalytics.com/> Printed Jul. 19, 2013 in 5 pages.
O'Reilly.com, http://oreilly.com/digitalmedia/2006/01/01/mac-os-x-screenshot-secrets.html published Jan. 1, 2006 in 10 pages.
Palantir Technolgies, “Palantir Labs—Timeline,” Oct. 1, 2010, retrieved from the internet https://www.youtube.com/watch?v=JCgDW5bru9M retrieved on Aug. 19, 2015.
Perdisci et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces,” USENIX, Mar. 18, 2010, pp. 1-14.
Piwik—Free Web Analytics Software. <http://piwik.org/> Printed Jul. 19, 2013 in18 pages.
“Potential Money Laundering Warning Signs,” snapshot taken 2003, https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%20LAUNDERING%20TRAINING%20GUIDES.pdf.
Pythagoras Communications Ltd., “Microsoft CRM Duplicate Detection,” Sep. 13, 2011, https://www.youtube.com/watch?v=j-7Qis0D0Kc.
Qiang et al., “A Mutual-Information-Based Approach to Entity Reconciliation in Heterogeneous Databases,” Proceedings of 2008 International Conference on Computer Science & Software Engineering, IEEE Computer Society, New York, NY, Dec. 12-14, 2008, pp. 666-669.
Quest, “Toad for ORACLE 11.6—Guide to Using Toad,” Sep. 24, 2012, pp. 1-162.
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015.
Schroder, Stan, “15 Ways to Create Website Screenshots,” <http://mashable.com/2007/08/24/web-screenshots/>, Aug. 24, 2007, pp. 2.
Sekine et al., “Definition, Dictionaries and Tagger for Extended Named Entity Hierarchy,” May 2004, pp. 1977-1980.
Shi et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors,” 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, Oct. 10, 2013, pp. 59-66.
Snaglt, “SnagIt 8.1.0 Print Out 2,” Software release date Jun. 15, 2006, pp. 1-3.
Snaglt, “SnagIt 8.1.0 Print Out,” Software release date Jun. 15, 2006, pp. 6.
Snaglt, “SnagIt Online Help Guide,” <http://download.techsmith.com/snagit/docs/onlinehelp/enu/snagit_help.pdf>, TechSmith Corp., Version 8.1, printed Feb. 7, 2007, pp. 284.
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, <http://statcounter.com/> Printed Jul. 19, 2013 in 17 pages.
Symantec Corporation, “E-Security Begins with Sound Security Policies,” Announcement Symantec, Jun. 14, 2001.
TestFlight—Beta Testing on the Fly, <http://testflightapp.com/> Printed Jul. 18, 2013 in 3 pages.
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011.
trak.io, <http://trak.io/> printed Jul. 18, 2013 in 3 pages.
Umagandhi et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs,” International Journal of Computer Applications, vol. 80, No. 10, Oct. 1, 2013, pp. 7-18.
UserMetrix, <http://usermetrix.com/android-analytics> printed Jul. 18, 2013 in 3 pages.
“Using Whois Based Geolocation and Google Maps API for Support Cybercrime Investigations,” http://wseas.us/e-library/conferences/2013/Dubrovnik/TELECIRC/TELECIRC-32.pdf.
Valentini et al., “Ensembles of Learning Machines”, M. Marinaro and R. Tagliaferri (Eds.): WIRN VIETRI 2002, LNCS 2486, pp. 3-20.
Vose et al., “Help File for ModelRisk Version 5,” 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts].
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages.
Warren, Christina, “TUAW Faceoff: Screenshot apps on the firing line,” <http://www.tuaw.com/2008/05/05/tuaw-faceoff-screenshot-apps-on-the-firing-line/>, May 5, 2008, pp. 11.
Wikipedia, “Federated Database System,” Sep. 7, 2013, retrieved from the internet on Jan. 27, 2015 http://en.wikipedia.org/w/index.php?title=Federated_database_system&oldid=571954221.
Wikipedia, “Multimap,” Jan. 1, 2013, https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748.
Winkler, William E., “Bureau of the Census Statistical Research Division Record Linkage Software and Methods for Merging Administrative Lists,” Statistical Research Report Series No. RR2001/03, Jul. 23, 2001, https://www.census.gov/srd/papers/pdf/rr2001-03.pdf, retrieved on Mar. 9, 2016.
Wright et al., “Palantir Technologies VAST 2010 Challenge Text Records—Investigations into Arms Dealing,” Oct. 29, 2010, pp. 1-10, retrieved from the internet http://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202010/challenges/MC1%20-%20Investigations%20into%20Arms%20Dealing/entries/Palantir%20Technologies/ retrieved on Aug. 20, 2015.
Yang et al., “HTML Page Analysis Based on Visual Cues”, A129, pp. 859-864, 2001.
Zhao et al., “Entity Matching Across Heterogeneous Data Sources: An Approach Based on Constrained Cascade Generalization,” Data & Knowledge Engineering, vol. 66, No. 3, Sep. 2008, pp. 368-381.
European Search Report for European Patent Application No. 09812700.3 dated Apr. 3, 2014.
Notice of Acceptance for Australian Patent Application No. 2014203669 dated Jan. 21, 2016.
Notice of Acceptance for Australian Patent Application No. 2014250678 dated Oct. 7, 2015.
Notice of Allowance for U.S. Appl. No. 14/306,154 dated Mar. 31, 2017.
Notice of Allowance for U.S. Appl. No. 12/556,307 dated Mar. 21, 2016.
Notice of Allowance for U.S. Appl. No. 12/556,307 dated Jan. 4, 2016.
Notice of Allowance for U.S. Appl. No. 12/556,318 dated Nov. 2, 2015.
Notice of Allowance for U.S. Appl. No. 13/247,987 dated Mar. 17, 2016.
Notice of Allowance for U.S. Appl. No. 14/094,418 dated Jan. 25, 2016.
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Dec. 16, 2014.
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/265,637 dated Feb. 13, 2015.
Notice of Allowance for U.S. Appl. No. 14/294,098 dated Dec. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/304,741 dated Apr. 7, 2015.
Notice of Allowance for U.S. Appl. No. 14/306,138 dated Mar. 30, 2017.
Notice of Acceptance for Australian Patent Application No. 2013251186 dated Nov. 6, 2015.
Notice of Allowance for U.S. Appl. No. 14/319,161 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/326,738 dated Nov. 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,552 dated Jul. 24, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Jan. 5, 2015.
Notice of Allowance for U.S. Appl. No. 14/479,863 dated Mar. 31, 2015.
Notice of Allowance for U.S. Appl. No. 14/504,103 dated May 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/552,336 dated Nov. 3, 2015.
Notice of Allowance for U.S. Appl. No. 14/616,080 dated Apr. 2, 2015.
Notice of Allowance for U.S. Appl. No. 14/746,671 dated Jan. 21, 2016.
Notice of Allowance for U.S. Appl. No. 14/923,364 dated May 6, 2016.
Notice of Allowance for U.S. Appl. No. 14/948,009 dated May 6, 2016.
Official Commuincation for Australian Patent Application No. 2014202442 dated Mar. 19, 2015.
Official Communciation for Australian Patent Application No. 2014201506 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2013251186 dated Mar. 12, 2015.
Official Communication for Australian Patent Application No. 2014201507 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014201511 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014203669 dated May 29, 2015.
Official Communication for Australian Patent Application No. 2014210604 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014210614 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014213553 dated May 7, 2015.
Official Communication for Australian Patent Application No. 2014250678 dated Jun. 17, 2015.
Official Communication for Canadian Patent Application No. 2831660 dated Jun. 9, 2015.
Official Communication for European Patent Application No. 10188239.7 dated Mar. 24, 2016.
Official Communication for European Patent Application No. 12181585.6 dated Sep. 4, 2015.
Official Communication for European Patent Application No. 14158958.0 dated Mar. 11, 2016.
Official Communication for European Patent Application No. 14158958.0 dated Apr. 16, 2015.
Official Communication for European Patent Application No. 14158958.0 dated Jun. 3, 2014.
Official Communication for European Patent Application No. 14158977.0 dated Jun. 10, 2014.
Official Communication for European Patent Application No. 14158977.0 dated Mar. 11, 2016.
Official Communication for European Patent Application No. 14158977.0 dated Apr. 16, 2015.
Official Communication for European Patent Application No. 14180142.3 dated Feb. 6, 2015.
Official Communication for European Patent Application No. 14180281.9 dated Jan. 26, 2015.
Official Communication for European Patent Application No. 14180321.3 dated Apr. 17, 2015.
Official Communication for European Patent Application No. 14180432.8 dated Jun. 23, 2015.
Official Communication for European Patent Application No. 14186225.0 dated Feb. 13, 2015.
Official Communication for European Patent Application No. 14187739.9 dated Jul. 6, 2015.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015.
Official Communication for European Patent Application No. 14189344.6 dated Feb. 20, 2015.
Official Communication for European Patent Application No. 14189347.9 dated Mar. 4, 2015.
Official Communication for European Patent Application No. 14189802.3 dated May 11, 2015.
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015.
Official Communication for European Patent Application No. 14197879.1 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197895.7 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197938.5 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14199182.8 dated Mar. 13, 2015.
Official Communication for European Patent Application No. 14200246.8 dated May 29, 2015.
Official Communication for European Patent Application No. 14200298.9 dated May 13, 2015.
Official Communication for European Patent Application No. 15155845.9 dated Oct. 6, 2015.
Official Communication for European Patent Application No. 15165244.3 dated Aug. 27, 2015.
Official Communication for European Patent Application No. 15166137.8 dated Sep. 14, 2015.
Official Communication for European Patent Application No. 15175106.2 dated Nov. 5, 2015.
Official Communication for European Patent Application No. 15175151.8 dated Nov. 25, 2015.
Official Communication for European Patent Application No. 15181419.1 dated Sep. 29, 2015.
Official Communication for European Patent Application No. 15183721.8 dated Nov. 23, 2015.
Official Communication for European Patent Application No. 15184764.7 dated Dec. 14, 2015.
Official Communication for European Patent Application No. 15200073.3 dated Mar. 30, 2016.
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Oct. 6, 2014.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Jun. 11, 2015.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Sep. 29, 2014.
Official Communication for Great Britain Patent Application No. 1404574.4 dated Dec. 18, 2014.
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014.
Official Communication for Great Britain Patent Application No. 1411984.6 dated Jan. 8, 2016.
Official Communication for Great Britain Patent Application No. 1413935.6 dated Jan. 27, 2015.
Official Communication for Netherlands Patent Application No. 2011729 dated Aug. 13, 2015.
Official Communication for Netherlands Patent Application No. 2012417 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012421 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012437 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012438 dated Sep. 21, 2015.
Official Communication for Netherlands Patent Application No. 2013134 dated Apr. 20, 2015.
Official Communication for Netherlands Patent Application No. 2013306 dated Apr. 24, 2015.
Official Communication for New Zealand Patent Application No. 622389 dated Mar. 20, 2014.
Official Communication for New Zealand Patent Application No. 622404 dated Mar. 20, 2014.
Official Communication for New Zealand Patent Application No. 622439 dated Mar. 24, 2014.
Official Communication for New Zealand Patent Application No. 622439 dated Jun. 6, 2014.
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014.
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014.
Official Communication for New Zealand Patent Application No. 622484 dated Apr. 2, 2014.
Official Communication for U.S. Appl. No. 12/556,307 dated Oct. 1, 2013.
Official Communication for U.S. Appl. No. 12/556,307 dated Feb. 13, 2012.
Official Communication for U.S. Appl. No. 12/556,307 dated Mar. 14, 2014.
Official Communication for U.S. Appl. No. 12/556,307 dated Sep. 2, 2011.
Official Communication for U.S. Appl. No. 12/556,307 dated Jun. 9, 2015.
Official Communication for U.S. Appl. No. 12/556,318 dated Jul. 2, 2015.
Official Communication for U.S. Appl. No. 12/556,321 dated Jul. 7, 2015.
Official Communication for U.S. Appl. No. 13/247,987 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 13/247,987 dated Sep. 22, 2015.
Official Communication for U.S. Appl. No. 13/669,274 dated Aug. 26, 2015.
Official Communication for U.S. Appl. No. 13/669,274 dated May 6, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Dec. 1, 2014.
Official Communication for U.S. Appl. No. 13/827,491 dated Apr. 22, 2014.
Official Communication for U.S. Appl. No. 13/827,491 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated May 22, 2017.
Official Communication for U.S. Appl. No. 13/827,491 dated Sep. 28, 2016.
Official Communication for U.S. Appl. No. 13/827,491 dated Mar. 30, 2016.
Official Communication for U.S. Appl. No. 13/827,491 dated Oct. 9, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Mar. 4, 2015.
Official Communication for U.S. Appl. No. 13/835,688 dated Jun. 17, 2015.
Official Communication for U.S. Appl. No. 13/839,026 dated Aug. 4, 2015.
Official Communication for U.S. Appl. No. 14/014,313 dated Jun. 18, 2015.
Official Communication for U.S. Appl. No. 14/014,313 dated Feb. 26, 2016.
Official Communication for U.S. Appl. No. 14/045,720 dated Mar. 24, 2014.
Official Communication for U.S. Appl. No. 14/045,720 dated Dec. 27, 2013.
Official Communication for U.S. Appl. No. 14/045,720 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/134,558 dated Oct. 7, 2015.
Official Communication for U.S. Appl. No. 14/141,252 dated Oct. 8, 2015.
Official Communication for U.S. Appl. No. 14/148,568 dated Mar. 26, 2015.
Official Communication for U.S. Appl. No. 14/196,814 dated May 5, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016.
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Jan. 26, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Apr. 30, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated May 29, 2015.
Official Communication for U.S. Appl. No. 14/304,741 dated Mar. 3, 2015.
Official Communication for U.S. Appl. No. 14/304,741 dated Aug. 6, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Mar. 17, 2016.
Official Communication for U.S. Appl. No. 14/306,138 dated Feb. 18, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Jul. 8, 2016.
Official Communication for U.S. Appl. No. 14/306,147 dated Feb. 19, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Oct. 13, 2016.
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Jun. 3, 2016.
Official Communication for U.S. Appl. No. 14/306,147 dated Mar. 4, 2016.
Official Communication for U.S. Appl. No. 14/306,147 dated Apr. 7, 2017.
Official Communication for U.S. Appl. No. 14/306,147 dated Aug. 7, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Feb. 1, 2016.
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated May 15, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Nov. 16, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 17, 2016.
Official Communication for U.S. Appl. No. 14/306,154 dated Jul. 6, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Jul. 8, 2016.
Official Communication for U.S. Appl. No. 14/319,161 dated Jan. 23, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 1, 2016.
Official Communication for U.S. Appl. No. 14/319,765 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Jun. 16, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 4, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Jul. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/451,221 dated Oct. 21, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Nov. 13, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated Mar. 21, 2016.
Official Communication for U.S. Appl. No. 14/463,615 dated May 21, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Dec. 9, 2015.
Official Communication for U.S. Appl. No. 14/473,552 dated Feb. 24, 2015.
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014.
Official Communication for U.S. Appl. No. 14/483,527 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Oct. 28, 2015.
Official Communication for U.S. Appl. No. 14/486,991 dated Mar. 10, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Feb. 5, 2015.
Official Communication for U.S. Appl. No. 14/516,386 dated Feb. 24, 2016.
Official Communication for U.S. Appl. No. 14/526,066 dated Jan. 21, 2016.
Official Communication for U.S. Appl. No. 14/526,066 dated May 6, 2016.
Official Communication for U.S. Appl. No. 14/552,336 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Feb. 18, 2016.
Official Communication for U.S. Appl. No. 14/571,098 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Feb. 23, 2016.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 24, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 5, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated Aug. 19, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Oct. 16, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated May 18, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Jul. 24, 2015.
Official Communication for U.S. Appl. No. 14/645,304 dated Jan. 25, 2016.
Official Communication for U.S. Appl. No. 14/676,621 dated Oct. 29, 2015.
Official Communication for U.S. Appl. No. 14/676,621 dated Jul. 30, 2015.
Official Communication for U.S. Appl. No. 14/746,671 dated Nov. 12, 2015.
Official Communication for U.S. Appl. No. 14/746,671 dated Sep. 28, 2015.
Official Communication for U.S. Appl. No. 14/800,447 dated Dec. 10, 2015.
Official Communication for U.S. Appl. No. 14/800,447 dated Mar. 3, 2016.
Official Communication for U.S. Appl. No. 14/800,447 dated Jun. 6, 2016.
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015.
Official Communication for U.S. Appl. No. 14/842,734 dated Nov. 19, 2015.
Official Communication for U.S. Appl. No. 14/874,690 dated Dec. 21, 2015.
Official Communication for U.S. Appl. No. 14/923,374 dated May 23, 2016.
Official Communication for U.S. Appl. No. 14/923,374 dated Feb. 9, 2016.
Official Communication for U.S. Appl. No. 14/948,009 dated Feb. 25, 2016.
Official Communication for U.S. Appl. No. 14/975,215 dated May 19, 2016.
Official Communication for U.S. Appl. No. 15/017,324 dated Apr. 22, 2016.
Restriction Requirement for U.S. Appl. No. 13/839,026 dated Apr. 2, 2015.
Related Publications (1)
Number Date Country
20150100907 A1 Apr 2015 US
Continuations (1)
Number Date Country
Parent 14045720 Oct 2013 US
Child 14571060 US