This application is a continuation-in-part of U.S. patent application Ser. No. 13/716,045 filed on 14 Dec., 2012, now U.S. publication number US20130166540 A1 which claims the priority to Indian patent application number 4597/CHE/2011, filed on Dec. 27, 2011, which is incorporated herein by reference.
This application claims the benefit of Indian Patent Application No. 5876/CHE/2013 filed Dec. 17, 2013, which is hereby incorporated by reference in its entirety.
The invention relates generally to analyze social network content, and in particular, to a system and method for analyzing social network content of a key influencer.
The World Wide Web is a vast repository of information that connects people, providing them access to millions of web resources via the Internet. Social Networks are growing exponentially, which presents challenges for enterprises who want to monitor and mine these social networks. There is market opportunity for players who can mine intelligence out of social media. Social Network Analysis (SNA) relates to mapping, understanding, and analyzing interactions across a set of people. Social networks, both formal as well as informal can foster knowledge sharing among participants. The exchanges that take place in social networking environments go beyond providing direct value to the user. It fosters collaboration among participants and can lead to aggregation of highly influential content and ideas within various types of social media. Content generated in social networking environments would include discussion threads, logs of chat room conversations, contents of blogs, and any other content posted by users. This collection of content comes from original sources (creation of the user), referenced sources (material cited and presented by users) and aggregated content (collection of material assembled in a unique manner). As long as members continue to add useful or relevant content to the group, the positive network externalities would draw new members to the group.
The accumulated content and ideas within successful social networking environments thus becomes an aggregation of the collective intelligence of the user community participating in those sites. The accumulated content can be considered as an asset that has value, which can be tapped through the right types of analyses. This asset has potential value to both owners of the sites as well as the organizations whose products and services being discussed. It presents significant implications for enterprises wanting to leverage social networks to draw insights and inferences on user participation and preferences expressed in networks. Thus, to monitor and analyze the content posted in a social network by a key influencer becomes very important to enhance decision making ability of any organization.
According to the present embodiment, a method for analyzing content associated with one or more influencers of at least one social network is disclosed.
The method includes identifying one or more key influencers with respect to a topic of interest in at least one social network. Thereafter, an influencer topic cloud for each of the one or more key influencers and an overall topic cloud for the topic of interest are created. The identification of the one or more key influencers is cross-verified by comparing one or more attributes of the influencer topic cloud with the overall topic cloud. Further, volume of social interaction of the one or more key influencers with respect to the topic of interest is determined, wherein the volume of the social interaction comprises interaction with peers and the interaction with followers. Finally, the volume of the social interaction of the one or more key influencers is visualized.
In an additional embodiment, a system for analyzing content associated with one or more influencers of at least one social network is disclosed. The system includes a key influencer identifier, a topic cloud creator, a cross-verifier, a social interaction determiner and a visualizer. The key influencer identifier is configured for identifying one or more key influencers with respect to a topic of interest in at least one social network. The topic cloud creator is configured for creating an influencer topic cloud for each of the one or more key influencers and an overall topic cloud for the topic of interest. The cross-verifier is configured for cross-verifying the identification of the one or more key influencers by comparing one or more attributes of the influencer topic cloud with the overall topic cloud. The social interaction determiner is configured for determining volume of social interaction of the one or more key influencers with respect to the topic of interest, wherein the volume of the social interaction comprises interaction with peers and the interaction with followers. Finally, the visualizer is configured for visualizing the volume of the social interaction of the one or more key influencers on a display of a computing device.
In another embodiment, a computer readable storage medium for analyzing content associated with one or more influencers of at least one social network is disclosed. The computer readable storage medium which is not a signal stores computer executable instructions for identifying one or more key influencers with respect to a topic of interest in at least one social network, creating an influencer topic cloud for each of the one or more key influencers and an overall topic cloud for the topic of interest, cross-verifying the identification of the one or more key influencers by comparing one or more attributes of the influencer topic cloud with the overall topic cloud, determining volume of social interaction of the one or more key influencers with respect to the topic of interest, wherein the volume of the social interaction comprises interaction with peers and the interaction with followers and visualizing the volume of the social interaction of the one or more key influencers.
Various embodiments of the invention will, hereinafter, be described in conjunction with the appended drawings. There is no intention to limit the scope of the invention to such blocks or objects, or to any particular technology. Instead these simplified diagrams are presented by way of illustration to aid in the understanding of the logical functionality of one or more aspects of this technology and is not presented by way of limitation.
The foregoing has broadly outlined the features and technical advantages of the present disclosure in order that the detailed description of the disclosure that follows may be better understood. Additional features and advantages of this technology will be described hereinafter which form the subject of the claims of the disclosure. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of this technology. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the disclosure as set forth in the appended claims. The novel features which are believed to be characteristic of this technology, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of this technology.
Exemplary embodiments of the present invention provide a system and method for analyzing content associated with one or more influencers of at least one social network. This involves identifying key influencers of at least one social network with respect to a topic of interest. Thereafter, an overall topic cloud and an influencer topic cloud for each key influencer is created and analyzed. The overall topic cloud and an influencer topic cloud are compared to cross-verify if the identification of the key influencers is correct. After that, volume of social interaction of the key influencers are determined and visualized.
With reference to
Referring back to
The volume of the interaction with followers and peers gives an insight into overall effect of influencers tweet in a social network. The volume of the social interaction of the one or more key influencers is visualized, as in step 210.
This technology also visualizes network data, profile data and content data of the one or more influencers. The network data may include, but is not limited to, connection between friends and followers, lists, verification and membership of the one or more key influencers. Friends influence the user with their views, while user influences its followers with its views. Both are important for a constructive communication in social network. They also help in further propagation of the viewpoint to a larger network. User is tagged by other users in lists according to their preferences. They tag the user with list names in the process. These tags provide insight into various ways the user influence upon other users. A verified member as well as an old time member influence stronger on followers. Personal data may include but is not limited to gender, age, race, geography, language, profession and personal interest of the one or more key influencers. Content data may include but is not limited to attributes of Posts (text, video, and photo) like time, size, search relevance, Shares, Comments/responses and so on.
According to an embodiment of this technology, the influencer topic cloud of the one or more key influencers are compared with each other for clustering the key influencers. Influencers are arranged based on the strength of lightening between two influencers. This strength is determined based on similarity between attributes of two influencer topic clouds. The one or more attributes may include but are not limited to network data, profile data and content data of the one or more influencers, size of a keyword based on its frequency, classification based on one or more related or unrelated topics in question, a peripheral ring around the keyword capturing share of the one or more influencers, classification based on age of the content or combination thereof.
The above mentioned description is presented to enable a person of ordinary skill in the art to make and use the invention and is provided in the context of the requirement for obtaining a patent. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles of the present invention may be applied to other embodiments, and some features of the present invention may be used without the corresponding use of other features. Accordingly, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
Number | Date | Country | Kind |
---|---|---|---|
5876/CHE/2013 | Dec 2013 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
20080104225 | Zhang | May 2008 | A1 |
20130179806 | Bastide | Jul 2013 | A1 |
20150120782 | Kim | Apr 2015 | A1 |
20160191447 | Firat | Jun 2016 | A1 |
Entry |
---|
Heer J. and Boyd D. Vizster: Visualizing Online Social Networks. In Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization, IEEE Computer Society, Oct. 2005. |
Newman M.E.J.: Analysis of weighted networks. Physical Review E 70M 056131, Nov. 2004. |
Number | Date | Country | |
---|---|---|---|
20150169728 A1 | Jun 2015 | US |