This document relates to devices, systems, and methods for securing the position of a catheter or another medical instrument, for example, at a skin opening.
Venous, arterial, and body fluid catheters are commonly used by physicians. For example, such catheters may be used to gain access to the vascular system for dialysis, for introducing pharmaceutical agents, for nutrition or fluids, for hemodynamic monitoring, and for blood draws. Alternatively, catheters can be used for drainage of fluid collections and to treat infection. Alternatively, catheters can contain electrical leads for neuro-stimulation, cardiac pacing, and the like. Following introduction into the patient, the catheter is secured to the patient. In many instances, the catheter is commonly secured to the patient using an adhesive tape on the skin or by suturing a catheter hub to the patient's skin. In other circumstances, the catheter may be secured to the patient using a subcutaneous anchor mechanism (such as a sleeve or retainer equipped with anchors that are deployed into a subcutaneous region under the skin). In many cases, the medical practitioner will make efforts to clean the skin area around the catheter insertion site for purposes of a patient's comfort, safety, and improved visualization of the catheter insertion site after the catheter is installed.
Some embodiments of a medical device anchor system are configured to receive a medical instrument (such as a catheter or the like that is optionally equipped with suture wings), and to secure the instrument relative to a skin penetration point. For example, the medical device anchor system can include an anchor device with one or more subcutaneous anchors extending from the base of the anchor device. In some embodiments, the one or more subcutaneous anchors are deployed through the skin penetration point that is already occupied by the catheter, thereby reducing or eliminating the need for installing sutures through the suture wings and the patient's skin. The anchor device can include an attachment feature for coupling a portion of the catheter to the anchor device. The anchor device can also include an attached flexible tether that extends proximally from the base of the anchor device. The flexible tether can be configured to releasably mate with an adapter device of the medical device anchor system. The adapter device can be configured to releasably mate with the catheter, such as the suture wings on a hub of the catheter. When the catheter is secured to the medical device anchor system (at both the anchor device and the tethered adapter), the one or more subcutaneous anchors extending from the anchor device through the skin penetration point reduce or eliminate the need for installing sutures through the suture wings and the patient's skin. Optionally, in some embodiments the anchor device can be adjusted to a folded configuration that aligns the tines of the subcutaneous anchors in a generally side-by-side configuration to facilitate insertion of the one or more subcutaneous anchors through the skin penetration point. Such a configuration may allow the anchor device to be installed after a medical instrument is already in place without the need for a second penetration point for the anchor device. In particular embodiments, the anchor device may be configured to simplify the use of the anchor device, make the anchor device more adaptable to use with medical instruments of different sizes, and to facilitate the maintenance and cleaning of the skin tissue at and around the skin penetration point.
Particular embodiments described herein may include an anchor device for securing the position of a medical instrument. The anchor device may include a first external body comprising a proximal end and a distal end. The anchor device may also include one or more anchors that extend distally from the distal end of the first external body. Each anchor may include a flexible tine that is deployable in a subcutaneous region to secure the first external body relative to a penetration point. The anchor device may further include a tether member that extends proximally from the first external body. The anchor device may also include a second external body that is attachable to the tether member at a position proximally spaced away from the proximal end of the first external body, wherein the second external body is configured to releasably couple to a medical instrument.
In some embodiments, an anchor device for securing the position of a medical instrument may include a retainer body having a proximal end and a distal end. The retainer body can be configured to releasably couple to a first external portion of a medical instrument. The anchor device may also include first and second anchors that extend distally from the distal end of the retainer body. Each anchor may include a flexible tine that is deployable in a subcutaneous region to secure the retainer body relative to a penetration point. The anchor device may further include a tether member configured to extend proximally from the proximal end of the retainer body. The anchor device may also include an adapter that is attachable to the tether at a position proximally spaced a distance away from the retainer body. The adapter can be configured to releasably couple to a second external portion of the medical instrument.
Various embodiments described herein include a method of using a medical anchor system. For example, the method may include deploying subcutaneous anchors of a medical anchor system through a skin penetration point that is occupied by a medical instrument. The subcutaneous anchors may be deployed in a subcutaneous region along an underside of a skin layer proximate to the skin penetration point. Also, the subcutaneous anchors can extend distally from a distal end of a retainer body of the medical anchor system. The method may further include securing a first external portion of the medical instrument to a second body of the medical anchor system. The second body may be tethered to the retainer body via a flexible member that extends proximally away from a proximal end of the retainer body.
These and other embodiments may provide one or more of the following advantages. First, some embodiments of a medical device anchor system can retain a medical instrument in a desired position relative to a skin penetration point without necessarily requiring sutures or skin adhesives. Second, particular embodiments of the medical device anchor system may be readily adaptable to use with catheters or other medical instruments of different sizes, while also securing the catheter or medical instrument to a skin penetration point in a manner that facilitates improved capabilities for inspection and cleaning of the skin tissue at and around the skin penetration point. For example, some embodiments of the medical device anchor system can be equipped with a flexible tether device that secures to the base of an anchor device at one end and to an adapter device at the other end, thereby simplifying temporary movement of the medical instrument relative to the patient's skin (and the skin penetration point), and allowing a practitioner to readily inspect and clean the anchor device and the skin surface near the skin penetration point. Third, in some embodiments, the anchor device may be adjusted between a folded configuration and a non-folded configuration so that the subcutaneous anchors are arranged side-by-side and extend in generally the same direction during both installation through and removal from the skin penetration point. Fourth, in some embodiments, the configuration of the medical device anchor system can simplify the process of installing a medical instrument onto the medical device anchor system. Fifth, in some embodiments, the medical device anchor system can be configured to be usable with a variety of styles and sizes of medical instruments. Sixth, in some embodiments, the medical device anchor system can enable a hub of a catheter or other medical instrument to be disposed in a position that is measurably spaced apart from the skin penetration point (and the anchor device) while still being anchored to the skin penetration point.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
In the example embodiment shown in
In this example, the catheter 20 generally includes a proximal portion 28, a hub 22, and a shaft 26 that extends distally of the hub 22. In use, the shaft 26 of the catheter 20 is inserted through a percutaneous opening formed in the skin (e.g., penetration point 32), and extends distally under the skin 30 (e.g., into a selected body vessel). The distal end of the shaft 26 may be positioned within a vessel to provide vascular access for delivering medications, withdrawing fluids, or providing minimally invasive access into a patient. The hub 22 can interconnect the proximal portion 28 with the shaft 26. In some embodiments, the proximal portion 28 of the catheter 20 may have multiple lumens that extend as isolated internal lumens along an interior of the catheter shaft 26.
Still referring to
In this example, the adapter 180 is located proximally of the anchor device 100. The adapter 180 can be releasably coupled to the anchor device 100 by the elongate flexible tether 170 that extends from the anchor device 100 in a proximal direction. In this example, one end of the tether 170 is fixedly attached to the anchor device 100 and another end is releasably attached to the adapter 180. In some embodiments, the tether 170 is releasably attached to the anchor device 100 and fixedly attached to the adapter 180. In some embodiments, the tether 170 is releasably attached to both the anchor device 100 and the adapter 180. In some embodiments, the tether 170 is fixedly attached to both the anchor device 100 and the adapter 180. Embodiments having one or more releasable attachments can allow the length of the tether 170 between the anchor device 100 and the adapter 180 to be adjustable. That is, in some embodiments the adapter 180 can be positioned at various distances away from the anchor device 100 in accordance with a user's preference.
In some embodiments, the adapter 180 is mechanically coupled to a feature of the catheter 20 such as the hub 22. In particular embodiments, the adapter 180 is configured to mechanically couple with suture wings 24a-b of the hub 22. The coupling of the suture wings 24a-b of the hub 22 to the adapter 180 will be described in more detail below in reference to
In addition to the adapter 180 and tether 170, the medical device anchor system 10 includes the anchor device 100. In this example, the anchor device 100 includes a retainer body 110 and one or more anchors 140a-b that extend distally from a distal end of the retainer body 110. The one or more anchors 140a-b can be configured for deployment through a skin penetration point 32 and into in a subcutaneous layer, so as to releasably retain the anchor device 100 with respect to the skin 30. For example, the retainer body 110 can include a pair of anchors 140a and 140b that extend distally from the retainer body 110 so as to penetrate through the same skin penetration point 32 as the medical instrument 20 while the retainer body 110 remains external to the skin penetration point 32. In some embodiments, the skin penetration point 32 may be defined by a small incision, a puncture, or the like through the dermal layers.
The anchors 140a-b can include subcutaneous tines 145a-b that, after insertion, reside in a subcutaneous region (e.g., a region immediately under the skin 30 that may comprise a fatty tissue layer) so as to secure the position of the anchor device 100—and the catheter 20 retained thereto—relative to the penetration point 32. When the tines 145a-b are deployed in the subcutaneous region 34, the anchor device 100 can be secured to the patient without the retainer body 110 penetrating through the dermal layers of the patient, and without necessarily requiring sutures or adhesive tapes bonded to the skin 30.
As described in more detail below in connection with
Still referring to
Referring now to
Preferably, at least a portion of each anchor 140a-b comprises a flexible material. In some embodiments, the anchors 140a-b may comprise a material that exhibits superelasticity. In some embodiments, at least a portion of the anchors 140a-b (including the tines 145a-b) may be formed from a length of nitinol wire or from a sheet of nitinol material. Alternatively, the anchors 140a-b may comprise a metal material such as stainless steel (e.g., 304 stainless, 316 stainless, custom 465 stainless, and the like), spring steel, titanium, MP35N, and other cobalt alloys, or the like. In another alternative, the anchors 140a-b may be formed from a resilient polymer material. In some embodiments, the anchors 140a-b can be formed from a material or materials that allow the tines 145a-b to be flexed and can resiliently return to a selected arrangement.
In the embodiment depicted, each of the anchors 140a-b may be designed such that the tines 145a-b have an unstressed position wherein the tines 145a-b have a convex curvature. The convex curvature shape of the tines 145a-b may permit the tines 145a-b to abut against the underside of the dermal layers in a manner that reduces the likelihood of the tine tips 146a-b puncturing the underside of the dermal layers. Preferably, the tine tips 146a-b are rounded bulbs or otherwise non-sharp so as to further protect the underside of the dermal layers. In alternative embodiments, the tines 145a-b may have a generally straight shape that extends substantially perpendicular to the longitudinal shaft portions of the anchors 140a-b to the rounded tips 146a-b.
Still referring to
The retainer body 110 can comprise one or more biocompatible polymer materials (e.g., PVC, polypropylene, polystyrene, or the like). In some embodiments, the retainer body 110 can comprise a combination of such materials. For example, the flexible web portion 150 can comprise an elastically flexible silicone material while the first and second retainer body portions 120a-b comprise a less flexible polymer material such as polypropylene, PVC, polystyrene, or the like. In some embodiments, the retainer body 110 can be formed using a molding process in which the retainer body 110 is over-molded around a portion of the anchors 140a-b, especially in those embodiments in which the anchors 140a-b comprise a metallic material. For example, the left retainer body portion 120a can be over-molded around a portion of anchor 140a and, during the same or a different molding process, the right body portion 120b can be over-molded around a portion of anchor 140b. Consequently, as described further below in reference to
The flexible web portion 150 of the retainer body 110 can be positioned, for example, generally centrally between the first and second retainer body portions 120a-b. The flexible web portion 150 can extend longitudinally from a distal face of the retainer body 110 to a proximal face of the retainer body 110, and can be used to define the fold axis 160 about which the first and second retainer body portions 120a-b are pivotable from the non-folded condition to the folded condition (
The retainer body 110 in this embodiment further includes the first and second tabs 122a-b, are configured to enable a user to readily manipulate and fold the retainer body 110 about the fold axis 160 defined by the flexible web portion 150. For example, as described further in reference to
Still referring to
As previously described, the retainer body 110 in this embodiment includes the latch assembly 190, which can include a hinged portion 191 and a mating engagement feature 192. In some embodiments, the hinged portion 191 is attached to a particular retainer body portion, and the engagement feature 192 is attached to the other retainer body portion. For example, the illustrated embodiment has the hinged portion 191 attached to the left body portion 120a, and the engagement feature 192 attached to the right body portion 120b. As such, when the hinged portion 191 is mated with the engagement feature 192, the latch assembly 190 can resist the aforementioned folding motion about the fold axis 160. In some embodiments, the positions of the hinged portion 191 and the engagement feature 192, in relation to the first and second retainer body portions 120a-b, can be reversed in comparison to the illustrated arrangement.
The latch assembly 190 can be adjusted between an open configuration (illustrated in
In some embodiments, the hinge 198 of the hinged portion can be formed as a living hinge. That is, the hinged portion 191 can be molded integrally with the retainer body 110. The integrally molded hinged portion 191 can be attached to the retainer body 110 by a thin web of material that is flexible and resilient enough to perform as the hinge 198. In some embodiments, the hinged portion 191, hinge 198, engagement feature 192, and retainer body 110 can be made from the same material (e.g., the materials described above in relation to the retainer body 110). In some embodiments, a variety of dissimilar materials can be used for the various components. In some embodiments, an insert molding process can be used to accommodate the use of a variety of dissimilar materials for the various components. For example, in some embodiments a flexible silicone can be used for the hinge 198 and/or the hinged portion 191, while a more rigid material can be used for other portions of the retainer body 110. In some embodiments, other suitable types of hinge mechanisms (other than a living hinge) can be used. For example, in some embodiments a pin and collar arrangement can be used.
While the hinge 198 and hinge portion 191 are attached to one of the retainer body portions, the engagement feature 192 resides on the other retainer body portion. In some embodiments, the engagement feature 192 is integrally molded as a part of its respective retainer body portion. In some embodiments, the engagement feature 192 is mechanically attached to the retainer body 110 after the formation of the retainer body 110.
In the closed configuration (
In some embodiments, the latch assembly 190 in the closed configuration also prevents the retainer body 110 from inadvertently folding. As best seen in
In some embodiments, the hinged portion 191 also includes a clearance area 195. The clearance area 195 can be configured to accommodate a portion of the medical instrument, such as the shaft 26 of the catheter 20. In some embodiments, the clearance area 195 is sized and shaped to create light interference fit with the shaft 26. That is, when the hinged portion 191 is latched in the closed configuration, the surface of the clearance area 195 can exert a light force on the outside of the shaft 26 to couple the shaft 26 to the anchor device 100. In some embodiments, the wall of the clearance area 195 includes a surface layer or discrete portions of soft durometer material or high friction material, (e.g., silicon and the like) that contacts and grips the medical instrument 20. In some embodiments, the surface of the clearance area 195 includes lateral ridges or a knurled surface to enhance the friction grip of the hinged portion 191 on the shaft 26.
Still referring to
The tether 170 of the example embodiment is attached to the proximal end of the retainer body 110 (refer, for example, to
The tether 170 can have a length suitable to maintain the adapter 180 (and the attached catheter hub 22) slightly spaced apart from the anchor device 100. For example, the tether 170 can be in the range of about 1 cm to about 10 cm in length, about 2 cm to about 6 cm in length, and about 5 cm in in length for the particular embodiment depicted in
As previously described, the tether 170 can be releasably attachable to the adapter 180 at one of a number of positions so that a user can select a particular spacing between the adapter 180 and the retainer body 110. In some embodiments, the adapter 180 can be spaced apart from the anchor device in the proximal direction by a distance of at least about 1 cm, about 2 cm to about 10 cm, and about 3 cm to about 5 cm. In the depicted embodiment, a portion of the tether 170 can include a series of holes 171. The holes 171 can be used to mating with corresponding stanchions extending from the adapter 180, thereby providing a releasable coupling between the tether 170 and the adapter 180.
Referring now to
In some embodiments, the adapter 180 is injection molded as a single unitary part. In some embodiments, the adapter 180 is machined or otherwise formed. In some embodiments, the adapter 180 is assembled from separate components. In particular embodiments, the components of the adapter 180 can be made from similar, or dissimilar materials. In some embodiments, the components of the adapter 180 can comprise one or more biocompatible polymer materials (e.g., PVC, polypropylene, polystyrene, silicone or the like).
As shown in
Referring again to
The retention posts 112a-b of the adapter 180 can be configured to provide a releasable coupling interface with the catheter 20 or other medical instrument while also providing features that simplify the overall use of the medical device anchor system 10. For example, in this embodiment, the retention posts 112a-b may provide the user with a simplified coupling technique for mating the adapter 180 to the catheter 20, and may furthermore do so without the need for an attachable cap device or skin sutures.
In the depicted example, the retention posts 112a-b are sized and spaced apart in a manner that is configured, for example, to be coupled with apertures 26a-b located on the wings 24a-b of the hub 22 of a catheter 20 (refer to
The shape and position of the retention posts 112a-b can permit a practitioner to intuitively mate the wings 24a-b of the catheter 20 (
When the medical instrument 20 is installed on the adapter 180, the apertures 26a-b are engaged with the stem portions 116a-b of the adapter 180. The relative diameters of the apertures 26a-b and the stem portions 116a-b can advantageously provide for a slightly snug fit between the apertures 26a-b and the stem portions 116a-b. Such a snug fit can reduce the collection of contaminant materials between the apertures 26a-b and the stem portions 116a-b.
The retention posts 112a-b can optionally include the aforementioned relief portions 118a-b. The relief portions 118a-b are generally planar or slightly curved surfaces on the sides of the retention posts 112a-b that act as material relief areas to make it easier to remove the wings 24a-b from retention posts 112a-b. In other words, the relief portions 118a-b can facilitate removal of the medical instrument 20 from the adapter 180. Specifically, the relief portions 118a-b can allow the user to slide their finger along the side of the adapter 180, to better grasp the wings 24a-b between their thumb and forefinger, and to thereafter “peel” the wings 24a-b off the retention posts 112a-b. In some circumstances, the relief portions 118a-b can similarly facilitate the act of securing the wings 24a-b over the retention posts 112a-b.
Some alternative embodiments of the adapter 180 include retention posts that can be positionally adjusted relative to the base 181. For example, the adjustable retention posts can be selectively mounted at different positions relative to the base 181, which can provide the capability for the user to select different dimensional distances between the retention posts. This feature can enable the adapter 180 to mate with a wider variety of medical instruments. That is, in some embodiments, the positions of the retention posts can be adjustable to accommodate coupling with a variety of medical instruments that have different sized mounting features (e.g., such as different catheters having differently shaped hubs/wings). For example, certain catheter hubs may have mounting features that have a different dimensional spacing in comparison to other catheter hubs. This feature can also simplify the user's selection of anchor devices. In other words, since one adapter can be adjusted to accommodate a wider range of medical instruments, a single adapter can be selected and configured in accordance with the mounting features of the medical instrument immediately before deployment.
Some further alternative embodiments of an adapter 180 can be equipped with retention members (other than posts) that are flexible and therefore movable with respect to the base 181. Such flexibility of the retention members can enable the adapter 180 to couple with any of a variety of medical instruments having a different of mounting interfaces. For example, while some medical instruments include wings with apertures, other medical instruments may be configured with a different type of mounting interface. Providing an adapter 180 with flexible retention members can enable the medical device anchor system 10 to thereby couple with a wider variety of medical instruments. This feature can permit simplified user selection of anchor device systems by providing a adapter 180 that is adaptable to a wider variety of medical instruments.
For example, in some embodiments, the flexible retention members can comprise flexible binding straps having a structure somewhat similar to cable ties. The flexible retention members can be fixedly attached to the base 181 of the adapter 180, for example by insert molding, welding, gluing, clamping, and so on. The elongate flexible portions of the flexible retention members can be used to capture and secure the medical instrument 20. For example, in some embodiments the flexible retention members can be routed through apertures located in the wings of a catheter hub. In other embodiments, the flexible retention members can be routed so as to capture the medical instrument in other manners—such as by routing the flexible retention members over flanges or other outer surfaces, across outer surfaces in an “x” pattern, over individual tubes of a multi-tube device, and so on. When the flexible retention members are engaged with the medical instrument, the flexible retention members can be firmly locked in place using receiver locking devices that are fixedly attached to the adapter 180. In some embodiments, the receiver locking device can be a ratchet-type receiver mechanism that locks with a tooth surface along the side of the corresponding flexible retention member. Such a configuration can allow the flexible retention members to be pulled through the ratchet-type receiver mechanism in one direction, which thereby locks the flexible retention members tightly in place until the medical instrument 20 is released at the end of the procedure by unlocking or severing the retention members.
Referring now to
More specifically, in this embodiment, the first retainer body portion 120a and the second retainer body portion 120b can be flexibly pivoted with respect to each other along a fold axis 160 extending longitudinally through the retainer body 110. To initiate the folding process of the anchor device 100, the user can apply a bending moment about the fold axis 160 to the first and second tabs 122a-b of the anchor device. Such a bending moment can cause an elastic deformation of the flexible web portion 150 so as to fold the anchor device along the fold axis 160. The first retainer body portion 120a can be fixedly coupled to the anchor 140a, and the second retainer body portion 120b can be fixedly coupled to the anchor 140b. Thus, as shown in
Referring now to
As the anchor device 100 is inserted through the penetration point 32, the tines 145a-b may be maintained in the generally side-by-side arrangement while passing through the penetration point 32 in a manner that reduces the likelihood of trauma to the surrounding skin tissue 30. As the tines 145a-b are collectively advanced through the penetration point 32, the free ends of the tines 145a-b are moved beneath the dermal skin layers of the skin 30.
When the tines 145a-b reach the subcutaneous region, the retainer body 110 can adjusted to the unfolded condition so that the tines 145a-b are shifted relative to one another, resulting in the tines 145a-b extending outwardly away from one another (as depicted in
As previously described, the medical device anchor system 10 can secure the medical instrument 20 relative to the skin penetration point 32. With the anchor device 100 positioned such that subcutaneous anchors tines 145a-b are in their deployed configuration (
Referring now to
As shown in
By virtue of the optional sloped nose region 130 of the anchor device 100, the shaft 26 of the catheter 20 may be inclined at an angle in relation to the skin surface 30. The sloped nose region 130 can be declined relative to the generally planar upper surfaces of the retainer body 110 such that the sloped nose region 130 slopes downward in a distal direction towards the skin penetration point 32. Such an orientation between the hub 22 and the skin 30 may, in some circumstances, reduce the stresses applied to the skin penetration point 32 of the patient by the shaft 26 of the catheter 20.
The medical device anchor system 10 provided herein can also tend to reduce stresses that may otherwise be exerted on the shaft 26 when the catheter 20 is manipulated during installation, cleaning around the penetration point 32, or unintended pulling/withdrawal forces. For example, when the hub 22 or proximal portion 28 of the catheter 20 is manipulated in a manner that applies a pulling force (e.g., that might urge the catheter 20 to withdrawn), the force associated with that manipulation are transferred to the adapter 180 because the hub 22 is coupled to the adapter 180. At least some of the force transferred to the adapter 180 can be, in turn, transferred via the tether 170 to the anchor device 100, which in turn, can transfer the forces to the patient's skin 30 via that anchors 140a-b. In this fashion, the shaft 26 of the catheter 20 can be protected from some pulling or withdrawal forces. This feature can be beneficial, especially when using catheters with small, fragile, or ultra-compliant distal shafts 26 that could be damaged if exposed to tensile forces from manipulation of the hub 22 or proximal portion 28 of the catheter 20.
In some embodiments, some components of the medical device anchor system 10 can be provided in a sterilized kit that pairs a particular type of catheter 20 or other medical instrument with a corresponding medical device anchor system 10. The particular type of catheter 20 or other medical instruments in the kit can be compatible for releasably mating with the anchor device 100 and the adapter 180 in the kit. In some embodiments, each kit can include one or more medical device anchor systems 10 and the particular type of catheter 20 or other medical instrument enclosed within a flexible packaging material, which preferably includes indicators that identify the type of catheter 20 or other medical instruments that is provided along with instructions for deploying and removing the medical device anchor system 10. The kit may include a one-to-one ratio for the quantity of medical device anchor systems 10 to the quantity of catheters 20. In other embodiments, the kit may include multiple anchor devices 100 (e.g., having differently sized or shaped tines 145a-b) and/or adapters 180 for each catheter 20 contained therein.
Alternatively, in some embodiments, the medical device anchor system 10 or the components thereof can be provided in individual, sterilized packets so that a practitioner can readily open such a packet and access the selected medical device anchor system 10 or component prior to insertion into the skin penetration point. Such individual packets can include a single medical device anchor system 10 enclosed within a flexible packaging material, which preferably includes indicators that identify the types of catheters or other medical instruments that are compatible for releasably mating with the anchor device 100 and the adapter 180. As such, a practitioner can readily select a packet containing an appropriately sized anchor device 100 and/or adapter 180 for use after the type of catheter or medical instrument is selected for a particular patient.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/207,628, filed on Jul. 12, 2016 which is a divisional, and claims priority to, U.S. patent application Ser. No. 13/766,102, filed on Feb. 13, 2013, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3039468 | Price | Jun 1962 | A |
3765032 | Palma | Oct 1973 | A |
3856009 | Winnie | Dec 1974 | A |
3896527 | Miller et al. | Jul 1975 | A |
3938529 | Gibbons | Feb 1976 | A |
4043346 | Mobley et al. | Aug 1977 | A |
4114618 | Vargas | Sep 1978 | A |
4164943 | Hill et al. | Aug 1979 | A |
4248224 | Jones | Feb 1981 | A |
4309994 | Grunwald | Jan 1982 | A |
4397647 | Gordon | Aug 1983 | A |
4474569 | Newkirk | Oct 1984 | A |
4569344 | Palmer | Feb 1986 | A |
4592356 | Gutierrez | Jun 1986 | A |
4645492 | Weeks | Feb 1987 | A |
4665906 | Jervis | May 1987 | A |
4799495 | Hawkins et al. | Jan 1989 | A |
4804359 | Grunwald et al. | Feb 1989 | A |
4813930 | Elliott | Mar 1989 | A |
4936823 | Colvin et al. | Jun 1990 | A |
4986810 | Semrad | Jan 1991 | A |
5041085 | Osborne et al. | Aug 1991 | A |
5067957 | Jervis | Nov 1991 | A |
5122122 | Allgood | Jun 1992 | A |
5190546 | Jervis | Mar 1993 | A |
5256146 | Ensminger et al. | Oct 1993 | A |
5267960 | Hayman et al. | Dec 1993 | A |
5279564 | Taylor | Jan 1994 | A |
5282794 | Propp | Feb 1994 | A |
5312337 | Flaherty et al. | May 1994 | A |
5344439 | Otten | Sep 1994 | A |
5368017 | Sorenson et al. | Nov 1994 | A |
5378239 | Termin et al. | Jan 1995 | A |
5456671 | Bierman | Oct 1995 | A |
5468230 | Corn | Nov 1995 | A |
5496277 | Termin et al. | Mar 1996 | A |
5578013 | Bierman | Nov 1996 | A |
5597378 | Jervis | Jan 1997 | A |
5599311 | Raulerson | Feb 1997 | A |
5653718 | Yoon | Aug 1997 | A |
5681288 | Schlitt | Oct 1997 | A |
5688247 | Haindl et al. | Nov 1997 | A |
5702371 | Bierman | Dec 1997 | A |
5707362 | Yoon | Jan 1998 | A |
5722959 | Bierman | Mar 1998 | A |
5728133 | Kontos | Mar 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5746720 | Stouder, Jr. | May 1998 | A |
5755697 | Jones et al. | May 1998 | A |
5769821 | Abrahamson et al. | Jun 1998 | A |
5800402 | Bierman | Sep 1998 | A |
5810781 | Bierman | Sep 1998 | A |
5814065 | Diaz | Sep 1998 | A |
5827230 | Bierman | Oct 1998 | A |
5833664 | Seare | Nov 1998 | A |
5833667 | Bierman | Nov 1998 | A |
5857999 | Quick et al. | Jan 1999 | A |
5921965 | Blei | Jul 1999 | A |
5928266 | Kontos | Jul 1999 | A |
5944732 | Raulerson et al. | Aug 1999 | A |
5947931 | Bierman | Sep 1999 | A |
5971960 | Flom et al. | Oct 1999 | A |
5989265 | Bouquet et al. | Nov 1999 | A |
6213979 | Bierman | Apr 2001 | B1 |
6234999 | Wemmert | May 2001 | B1 |
6290676 | Bierman | Sep 2001 | B1 |
6413240 | Bierman et al. | Jul 2002 | B1 |
6447485 | Bierman | Sep 2002 | B2 |
6540693 | Burbank et al. | Apr 2003 | B2 |
6572588 | Bierman et al. | Jun 2003 | B1 |
6582388 | Coleman et al. | Jun 2003 | B1 |
6582403 | Bierman et al. | Jun 2003 | B1 |
6663600 | Bierman et al. | Dec 2003 | B2 |
6679851 | Burbank et al. | Jan 2004 | B2 |
6695861 | Rosenberg et al. | Feb 2004 | B1 |
6770055 | Bierman et al. | Aug 2004 | B2 |
6896665 | Picha et al. | May 2005 | B2 |
6958044 | Burbank et al. | Oct 2005 | B2 |
7056286 | Ravenscroft et al. | Jun 2006 | B2 |
8038653 | Rosenberg | Oct 2011 | B2 |
8235948 | Rosenberg et al. | Aug 2012 | B2 |
8328764 | Rosenberg et al. | Dec 2012 | B2 |
9415190 | Rosenberg et al. | Aug 2016 | B2 |
20020068898 | McGucklin, Jr. et al. | Jun 2002 | A1 |
20020068899 | McGucklin, Jr. et al. | Jun 2002 | A1 |
20020120250 | Altman | Aug 2002 | A1 |
20020165489 | McGucklin, Jr. et al. | Nov 2002 | A1 |
20030083625 | Bierman | May 2003 | A1 |
20050043685 | Schinkel-Fleitmann | Feb 2005 | A1 |
20050154297 | Gill | Jul 2005 | A1 |
20050187578 | Rosenberg et al. | Aug 2005 | A1 |
20050256459 | Howard et al. | Nov 2005 | A1 |
20060079845 | Howard et al. | Apr 2006 | A1 |
20070021685 | Oepen et al. | Jan 2007 | A1 |
20070106330 | Rosenberg et al. | May 2007 | A1 |
20070225651 | Rosenberg et al. | Sep 2007 | A1 |
20070232997 | Glenn | Oct 2007 | A1 |
20080140011 | Hager | Jun 2008 | A1 |
20090137961 | Bracken | May 2009 | A1 |
20090326470 | Rosenberg et al. | Dec 2009 | A1 |
20090326473 | Rosenberg et al. | Dec 2009 | A1 |
20110213310 | Bierman | Sep 2011 | A1 |
20120004617 | Rosenberg et al. | Jan 2012 | A1 |
20120078191 | Rosenberg et al. | Mar 2012 | A1 |
20130072875 | Rosenberg et al. | Mar 2013 | A1 |
20140228810 | Rosenberg et al. | Aug 2014 | A1 |
20160317787 | Rosenberg et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
WO 199115254 | Oct 1991 | WO |
WO 1997039790 | Oct 1997 | WO |
WO 2004026152 | Apr 2004 | WO |
WO 2005039419 | May 2005 | WO |
WO 2005102438 | Nov 2005 | WO |
Entry |
---|
European Search Report in International Application 14/752,197.5, dated Dec. 20, 2016, 5 pages. |
Implant Manual. “Interstim Therapy: Model 3093 Lead and Model 3889 Lead.” Medtronic, Inc., Minneapolis, MN, 2010, 38 pages. |
International Preliminary Report on Patentability for PCT/US2014/016042 dated Aug. 27, 2015, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/016042, dated Jun. 3, 2014, 14 pages. |
Johnson & Johnson web page printout, “The EndoANCHOR Comparative Summary” printed Sep. 13, 2005, 2 pages. |
Johnson & Johnson web page printout, “The EndoANCHOR Features and Benefits” printed Sep. 13, 2005, 2 pages. |
Johnson & Johnson web page printout, “The EndoANCHOR Firing Sequences” printed Sep. 13, 2005, 2 pages. |
Web Page Printout of Statlock Device, believed to be publicly available before Feb. 13, 2012, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20210052857 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13766102 | Feb 2013 | US |
Child | 15207628 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15207628 | Jul 2016 | US |
Child | 17093136 | US |