The present invention relates generally to seismic exploration and, more particularly, to attenuating noise using interferometric estimation.
In the oil and gas industry, geophysical survey techniques are commonly used to aid in the search for and evaluation of subterranean hydrocarbon or other mineral deposits. Generally, a seismic energy source, or “source,” generates a seismic signal that propagates into the earth and is partially reflected, refracted, diffracted or otherwise affected by one or more geologic structures within the earth, for example, by interfaces between underground formations having varying acoustic impedances. The reflections are recorded by seismic detectors, or “receivers,” located at or near the surface of the earth, in a body of water, or at known depths in boreholes, and the resulting seismic data can be processed to yield information relating to the location and physical properties of the subsurface formations. Seismic data acquisition and processing generates a profile, or image, of the geophysical structure under the earth's surface. While this profile does not provide a specific location for oil and gas reservoirs, it suggests, to those trained in the field, the presence or absence of them.
Various sources of seismic energy have been used to impart the seismic waves into the earth. Such sources have included two general types: 1) impulsive energy sources and 2) seismic vibrator sources. The first type of geophysical prospecting utilizes an impulsive energy source, such as dynamite or a marine air gun, to generate the seismic signal. With an impulsive energy source, a large amount of energy is injected into the earth in a very short period of time. In the second type of geophysical prospecting, a vibrator is used to propagate energy signals over an extended period of time, as opposed to the near instantaneous energy provided by impulsive sources. Except where expressly stated herein, “source” is intended to encompass any seismic source implementation, both impulse and vibratory, including any dry land or marine implementations thereof.
The seismic signal is emitted in the form of a wave that is reflected off interfaces between geological layers. The reflected waves are received by an array of seismic receivers, or “receivers,” located at the earth's surface, which convert the displacement of the ground resulting from the propagation of the waves into an electrical signal recorded by means of a computing system. Receivers may be arranged in cable-based receiver network or array where receivers are connected to each other via a cable, or “strings.” The receivers typically receive data during the source's energy emission and during a subsequent “listening” interval. Data received by the receivers is transmitted to a computing system. The computing system records the time at which each reflected wave is received. The travel time from source to receiver, along with the velocity of the source wave, can be used to reconstruct the path of the waves to create an image of the subsurface. A large amount of data may be recorded by the computing system and the recorded signals may be subjected to signal processing before the data is ready for interpretation. The recorded seismic data may be processed to yield information relating to the location of the subsurface reflectors and the physical properties of the subsurface formations. That information is then used to generate an image of the subsurface.
Once hydrocarbon reservoirs have been put into production, it is often useful to be able to obtain ongoing seismic measurements to monitor characteristics of the underground hydrocarbon reservoir over time. Two types of seismic exploration, continuous seismic monitoring and 4D seismic monitoring, involve multiple sources and receivers that are in use for an extended period of time. In continuous seismic monitoring, sources and receivers may continually operate for months or years to monitor changes in a reservoir or other subsurface formation. In 4D seismic monitoring, also called “time-lapse monitoring,” sources and receivers repeat a seismic survey over a defined time interval. Each survey can be performed hours, days, weeks, or months apart. 4D seismic monitoring also monitors changes in a reservoir or other subsurface formation. Equipment, such as receivers, may be permanently deployed over an area to provide repeatable 4D and continuous seismic monitoring. Such equipment may be part of a permanent reservoir monitoring (PRM) system.
Several types of machinery, e.g., pumps and injectors, are often located on pads of fields that are recovering the hydrocarbons from the underground hydrocarbon reservoir. However, the machinery can generate large amounts of noise that can be problematic with ongoing seismic monitoring applications. Additionally, in ocean bottom monitoring, ships passing over the receiver network can generate noise that contributes to and interferes with the seismic signals detected at the receivers. Both fixed and moving noise sources can increase the difficulty of obtaining the actual reflected seismic signals of interest. Thus, it would be useful to provide systems and methods that improve the identification and attenuation or removal of noise energy from the received seismic data.
In one embodiment, a method is disclosed for attenuating noise during seismic acquisition. The method includes compiling a seismic data set from data received by a plurality of receivers. The seismic data set includes noise energy from a noise source. The method further includes calculating a plurality of cross-correlation panels based on a reference trace from a reference receiver. The reference receiver is one of the plurality of receivers. The method includes estimating the location of the noise source and applying a correction to the plurality of cross-correlation panels based on the estimated location of the noise source generating a plurality of corrected panels. The method also includes analyzing the plurality of corrected panels for a noise operator to attenuate noise in the seismic data set.
In another embodiment, a seismic processing system includes a plurality of receivers configured to receive seismic data and a computing system communicatively coupled to the plurality of receivers. The computing system is configured to compile a seismic data set from data received by the plurality of receivers. The seismic data set includes noise energy from a noise source. The computing system is further configured to cause a processor to calculate a plurality of cross-correlation panels based on a reference trace from a reference receiver, estimate the location of the noise source, and apply a correction to the plurality of cross-correlation panels based on the estimated location of the noise source generating a plurality of corrected panels. The reference receiver is one of the plurality of receivers. The computing system is also configured to analyze the plurality of corrected panels for a noise operator to attenuate noise in the seismic data set.
In another embodiment, a non-transitory computer-readable medium is disclosed that includes computer-executable instructions carried on the computer-readable medium. The instructions, when executed, cause a processor to compile a seismic data set from data received by the plurality of receivers. The seismic data set includes noise energy from a noise source. The instructions further cause a processor to calculate a plurality of cross-correlation panels based on a reference trace from a reference receiver, estimate the location of the noise source, and apply a correction to the plurality of cross-correlation panels based on the estimated location of the noise source generating a plurality of corrected panels. The reference receiver is one of the plurality of receivers. The instructions also cause a processor analyze the plurality of corrected panels for a noise operator to attenuate noise in the seismic data set.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features and wherein:
In seismic data processing, sound or seismic waves can be used in support of identification and exploitation of hydrocarbon reservoirs. However, when noise sources are moving or fixed in proximity to a receiver network—such as fixed machinery or passing ships—noise energy can interfere with reception of the seismic waves by receivers. In some embodiments, the impact of the noise can be minimized or removed from the received signals. One method for attenuating noise from fixed locations is described in U.S. Patent Application Publication 2013/0077438 titled “Methods and Systems for Attenuating Noise Generated at Fixed Locations,” the disclosure of which is hereby incorporated herein by reference.
Interferometry is a family of techniques in which waves are superimposed in order to extract information about the waves. Seismic interferometry uses cross-correlation of signal pairs to reconstruct the response to a seismic wave. In some embodiments, interferometric estimation of a response between noise energy from a synthesized, virtual noise source and a network of receivers may be useful to attenuate the impact of the noise source. Noise energy may be any unwanted signal or seismic energy received from other than primary reflections, for example, from a noise source. A noise source could be machinery such as a pump, engine, generator, or any other item that generates noise energy. A virtual noise source may be a created version of one or more actual noise sources that approximately replicate the noise energy received from the one or more actual noise sources. The construction of a noise operator can allow the noise energy generated by the noise source to be attenuated or removed from the seismic data.
In some embodiments, interferometric estimation can generally include estimation of the noise source's location or position. The noise source's signature, or distinctive waveshape, can be synthesized by processing seismic data, as described in detail in
In some embodiments, source 104 is controlled to generate seismic waves in a seismic survey, and receivers 102 receive waves reflected by subsurface layers, oil or gas reservoirs, or other subsurface formations. Received waves are converted to electrical signals and are communicated to a computer system for processing, as described further below with respect to
In some embodiments, noise signals (and corresponding noise sources) may be identified by cross-correlating traces at two receivers 102. Cross-correlation is a measure of the similarity of two waveforms with a correction for any time lag between the two signals. Thus, cross-correlation of two traces increases the amplitude readings for common points of the two waveforms and neutralizes the amplitude readings for non-common points.
The cross-correlations for each receiver pair (for example, reference receiver 102a and receiver 102b) may then be summed (or “stacked”) to provide improved resolution. Stacking multiple traces improves the signal to noise ratio (SNR) over non-stacked results because the non-coherent (or non-consistent) data will be stacked out or nullified. The “order” of the stack indicates the number of cross-correlations that are stacked. For example, data 212 in graph 200 is based on an approximately one-hundredth-order stack.
In some embodiments, noise energy 210 may be estimated by correlating m records (Ei, i being the index on records: i ε [[1, m]]),) of n traces (Dij, with j the index on traces: j ε [[1, n]]), among which p traces will be used as reference traces (and are noted Dik, with k the index on reference traces: k ε [[1, p]]),). The resulting correlations may be denoted as Cijk. The correlations are averaged together to form correlation gather Sjk as follows:
These average correlations may represent the waves from spatially fixed noise sources. Therefore, it may be useful to separate these different waves (denoted Wo, o being the index on the wave (i.e., on the noise source; o ε [[1, w]]) composing this correlation gather (Sjk) and estimate, for each wave, an operator ooj between a model and each moved-out correlation.
Accordingly, data 212 includes data received from signals based on seismic sources, such as source 104, and signals from noise sources shown as noise energy 210a-210d (collectively “noise energy 210”). Noise sources may be ships crossing network 100, platforms and machinery located close to network 100, or any other sources of noise. From the results shown in graph 200, the noise sources generate approximately correlated energy, meaning that the signals generated by the noise sources overlap partially or completely. Noise sources may be identified and located based on these correlations. For example, there are approximately four noise sources that generated noise energy 210a-210d.
In some embodiments, separating each noise source and estimating corresponding operators may include locating a selected noise source using cross-correlations. This may be accomplished iteratively, until the corresponding arrival in the correlation gather, Sjk, is relatively flat (as discussed below), For example, an estimated location may be identified for the noise source that generated noise energy 410a, shown in
A MO correction may be applied to panel 412 based on the estimated location of the noise source. For example, panel 412 may be flattened using the estimated location. The MO correction may be calculated by:
where:
The result is shown in MO corrected panel 512. As can be seen from MO corrected panel 512, the resultant noise energy 510a is somewhat flat but not completely or approximately flat. Thus, if noise energy 510a is stacked with other MO corrected panels, noise energy 510a may not stack coherently. As such, the location of the noise source that generated noise energy 510a may be refined by picking, or selecting, noise energy 510a by hand or using an auto-pick tool to enhance the “flattening” of noise energy 510a. Additional information for the location of the noise source (via hand-picking for example) may be accommodated by the following equation:
where:
Each of the averages, Ak, form a single trace. The set of Ak forms a “super cross-correlation gather” shown in stacked panel 712. For example, MO corrections based on an estimated location of a noise source may be applied to multiple cross-correlation panels generated with respect to different reference receivers. The MO corrected panels may then be stacked to create stacked panel 712. Stacked panel 712 may be referred to as a “super cross-correlation gather.”
Noise energy 710a is a function of the station index of the reference receiver used in the cross-correlation. When the individual cross-correlation panels are stacked, additional remaining noise can appear and arrivals can be identified. Stacked panel 712 is used to measure the lag between the flattened correlation panels for different reference traces. Once this is done, the correlation panels may be stacked to further improve the SNR of the noise energy of interest and reduce the other energy (waves) in the cross-correlation gathers. Accordingly, stacked panel 712 may be processed by flattening and further stacking to improve identification of a particular noise source. The additional flattening may be accomplished by estimating the time difference between each cross-correlation panel, for example differences in arrival time, and applying a factor to account for the time difference (also referred to as “phased”). The phased cross-correlation panels may then be stacked, averaged, or otherwise processed to improve isolation of a noise source. The high SNR of the super cross-correlation gather allows the time lag between each of the correlation panels to be measured by using, for instance a cross-correlation between the different Ak. The resulting time lags are denoted Tok, with o corresponding to the wave under scrutiny and k the lag between Ak=1 and the remainder of the Ak.
In some embodiments, cross-correlation panels (corresponding to each reference trace) may be stacked together to further increase the SNR of the noise (wave) to be removed. The result of stacking may be a model Mo of the wave to be removed from the gathers:
M
o=Σkei2πfT
In some embodiments, noise wavelet 820 may be deconvolved from averaged cross-correlation panel 812 to result in a noise operator. The noise operator is the interferometric estimation of the impulse response between the found noise-source's location and the receivers—hence the “interferometric estimation.” Deconvolution is removing the effect of areas of overlap between two functions.
Noise operator 912 may be relatively flat and still contain some noise (shown as arches around maximum noise 910a). Noise operator 912 may be applied to the seismic data to remove noise energy from the seismic data. For example, for each string 110, discussed with reference to
Accordingly, in some embodiments, an operator may be built and applied equivalently (the cross-correlation gathers Sjk can be expressed as a linear combination of models and operators, assuming there is no other source of signal in the correlations—and thus, Sjkflat is a Dirac impulse):
In some embodiments, a matrix notation may be utilized to account for all noise sources simultaneously after each noise source has been characterized independently per the present disclosure. Following the notation in Equation (7), it is possible to denote the coefficients
as linear factors of the different models Mo:
Doing so, the set of Equations (7) for the different waves may be shown by:
Sk=AM (8)
where:
Sk=an n-rows vector of cross-correlations;
A=the matrix of the coefficients ajo; and
M=a p-rows vector of models.
Note that this matrix equation is written for one frequency f and based on the number of operators needed, may be written for as many frequencies as necessary.
Method 1100 starts at step 1102 where the computing system compiles, or otherwise obtains, a seismic data set from data generated by a plurality of receivers during a seismic exploration or survey. For example, a seismic data set may be generated by signals received by receivers 102 shown in
At step 1104, the computing system identifies reference receivers and reference traces. For example, as discussed with reference to
At step 1106, the computing system calculates cross-correlation panels for the reference trace from the reference receiver and some or all other traces from some or all of the other receivers. For example, cross-correlation panel 412 shown in
At step 1108, the computing system estimates the location of a noise source. For example, the location of the noise source that generated noise energy 410a may be estimated. The estimation may be based on the intensity or arrival times of noise energy 410a at each of the receivers that detected noise energy 410a.
At step 1110, the computing system applies an MO correction to the cross-correlation panels. For example, as discussed with reference to
At step 1112, the computing system determines if the MO corrected data is sufficiently flat. The MO corrected panel generated in step 1110 may be examined to determine if the noise energy from the identified noise source is sufficiently flat. The flatness of the noise energy of interest relates to the accuracy of the estimated location of the noise source. If the noise energy in the MO corrected data is not sufficiently flat, method 1100 proceeds to step 1114.
At step 1114, the computing system relocates the noise source to improve the estimated location. Relocation is accomplished by updating the estimated location of the noise source. Method 1100 returns to step 1110 to reapply the MO correction to the cross-correlation panels based on the updated location of the noise source. For example, MO corrected panel 612, shown with reference to
At step 1116, the computing system stacks the MO corrected panels. Stacking the MO corrected panels may result in noise energy that is easier to distinguish from the surrounding data. For example, as shown in
At step 1118, the computing system may determine if the stacked panel is sufficiently flat. The stacked panel may be examined to determine if the noise energy of interest is sufficiently flat. If the noise energy of interest is not sufficiently flat in the stacked data, method 1100 proceeds to step 1120.
At step 1120, the computing system phases the MO corrected panels to remove any time differences. Time differences in the noise energy arrivals can be factored into the MO corrected panels to result in phased data that may include noise energy that is flatter than the MO corrected panels without phasing. Once the MO corrected panels are phased, method 1100 may return to step 1116.
If the noise energy of interest in the stacked panel is sufficiently flat at step 1118, method 1100 may proceed to step 1122. At step 1122, the computing system averages the stacked panels. For example,
At step 1126, the computing system deconvolves or generates the noise wavelet from the stacked data to generate a noise operator. For example, noise wavelet 820 may be deconvolved from stacked panel 712 shown in
At step 1128, the computing system determines if additional noise sources remain to be identified in the correlations. If there are remaining noise sources, method 1100 may return to step 1108. If there are no additional noise sources, method 1100 may proceed to step 1130.
At step 1130, the computing system applies the noise operator to the seismic data to decrease or eliminate the contribution of noise to the seismic data. For example, noise operator 912 may be applied to seismic data 1002 shown in
Modifications, additions, or omissions may be made to method 1100 without departing from the scope of the present disclosure. For example, the order of the steps may be performed in a different manner than that described and some steps may be performed at the same time. Additionally, each individual step may include additional steps without departing from the scope of the present disclosure.
The method described with reference to
Computing system 1210 can generate composite seismic images based on signals generated by a wide variety of sources 104. For example, computing system 1210 can operate in conjunction with sources 102 and receivers 102 having any structure, configuration, or function described above with respect to
In some embodiments, receivers 102 are not limited to any particular types of receivers. For example, in some embodiments, receivers 102 include geophones, hydrophones, accelerometers, fiber optic sensors (such as, for example, a distributed acoustic sensor (DAS)), streamers, or any suitable device. Such devices may be configured to detect and record energy waves propagating through the subsurface geology with any suitable, direction, frequency, phase, or amplitude. For example, in some embodiments, receivers 102 are vertical, horizontal, or multicomponent sensors. Receivers 102 can be three component (3C) geophones, 3C accelerometers, or 3C Digital Sensor Units (DSUs). In offshore embodiments, receivers 102 are situated on or below the ocean floor or other underwater surface. Furthermore, in some embodiments, seismic signals can be recorded with different sets of receivers 102. For example, some embodiments may use dedicated receiver spreads for each type of signal, though these receiver spreads may cover the same area, and each receiver spread can be composed of different types of receivers 102. Further, a positioning system, such as a global positioning system (GPS, GLONASS, etc.), may be utilized to locate or time-correlate sources 104 and receivers 102.
Sources 104 and receivers 102 may be communicatively coupled to computing system 1210. One or more receivers 102 transmit raw seismic data from received seismic energy via network 1212 to computing system 1210. A particular computing system 1210 may transmit raw seismic data to other computing systems or other site via a network. Computing system 1210 receives data recorded by receivers 104 and processes the data to generate a composite image or prepares the data for interpretation. Computing system 1210 may be operable to perform the processing techniques described above with respect to
Computing system 1210 may include any instrumentality or aggregation of instrumentalities operable to compute, classify, process, transmit, receive, store, display, record, or utilize any form of information, intelligence, or data. For example, computing system 1210 may be one or more mainframe servers, desktop computers, laptops, cloud computing systems, storage devices, or any other suitable devices and may vary in size, shape, performance, functionality, and price. Computing system 1210 may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, or other types of volatile or non-volatile memory. Additional components of computing system 1210 may include one or more disk drives, one or more network ports for communicating with external devices, various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. Computing system 1210 may be configured to permit communication over any type of network 1212. Network 1212 can be a wireless network, a local area network (LAN), a wide area network (WAN) such as the Internet, or any other suitable type of network.
Network interface 1214 represents any suitable device operable to receive information from network 1212, transmit information through network 1212, perform suitable processing of information, communicate with other devices, or any combination thereof. Network interface 1214 may be any port or connection, real or virtual, including any suitable hardware and/or software (including protocol conversion and data processing capabilities) that communicates through a LAN, WAN, or other communication system. This communication allows computing system 1210 to exchange information with network 1212, other computing systems 1210, sources 104, receivers 102, or other components of system 1200. Computing system 1210 may have any suitable number, type, and/or configuration of network interface 1214.
Processor 1216 communicatively couples to network interface 1214 and memory 1218 and controls the operation and administration of computing system 1210 by processing information received from network interface 1214 and memory 1218. Processor 1216 includes any hardware and/or software that operates to control and process information. In some embodiments, processor 1216 may be a programmable logic device, a microcontroller, a microprocessor, any suitable processing device, or any suitable combination of the preceding. Computing system 1210 may have any suitable number, type, and/or configuration of processor 1216. Processor 1216 may execute one or more sets of instructions to implement the generation of a composite image based on seismic data, including the steps described above with respect to
Memory 1218 stores, either permanently or temporarily, data, operational software, or other information for processor 1216, other components of computing system 1210, or other components of system 1200. Memory 1218 includes any one or a combination of volatile or nonvolatile local or remote devices suitable for storing information. For example, memory 1218 may include random access memory (RAM), read only memory (ROM), flash memory, magnetic storage devices, optical storage devices, network storage devices, cloud storage devices, solid-state devices, external storage devices, any other suitable information storage device, or a combination of these devices. Memory 1218 may store information in one or more databases, file systems, tree structures, any other suitable storage system, or any combination thereof. Furthermore, different types of information stored in memory 1218 may use any of these storage systems. Moreover, any information stored in memory may be encrypted or unencrypted, compressed or uncompressed, and static or editable. Computing system 1210 may have any suitable number, type, and/or configuration of memory 1218. Memory 1218 may include any suitable information for use in the operation of computing system 1210. For example, memory 1218 may store computer-executable instructions operable to perform the steps discussed above with respect to
This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. For example, seismic sources 104 in
Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.
Embodiments of the present disclosure may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a tangible computer readable storage medium or any type of media suitable for storing electronic instructions, and coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability. For example, the computing system described in method 1100 with respect to
Although the present disclosure has been described with several embodiments, a myriad of changes, variations, alterations, transformations, and modifications may be suggested to one skilled in the art, and it is intended that the present disclosure encompass such changes, variations, alterations, transformations, and modifications as fall within the scope of the appended claims. Moreover, while the present disclosure has been described with respect to various embodiments, it is fully expected that the teachings of the present disclosure may be combined in a single embodiment as appropriate. Instead, the scope of the present disclosure is defined by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/001534 | 7/21/2014 | WO | 00 |