Loudspeakers that employ bending mode vibrations of a diaphragm or plate to reproduce sound were first proposed at least 90 years ago. The design concept reappeared in the 1960's when it was commercialized as the “Natural Sound Loudspeaker,” a trapezoidal shaped, resin-Styrofoam composite diaphragm structure driven at a central point by a dynamic force transducer. In the description of that device, the inventors identified the “multi-resonance” properties of the diaphragm and emphasized that the presence of higher-order modes increased the efficiency of sound production. The Natural Sound Loudspeaker was employed in musical instrument and hi-fi speakers marketed by Yamaha, Fender, and others but it is rare to find surviving examples today. Similar planar loudspeaker designs were patented around the same time by Bertagni and marketed by Bertagni Electroacoustical Systems (BES).
The basic concept of generating sound from bending waves in plates was revisited by New Transducers Limited in the late 1990's and named the “Distributed-Mode Loudspeaker” (DML). Further research on the mechanics, acoustics, and psychoacoustics of vibrating plate loudspeakers illuminated many of the issues of such designs and provided design tools for the further development of the technology, which remains commercially available from Redux Sound and Touch, a descendant of the original New Transducers Limited by Sonance, which can be traced back to the original BES Corporation in the 1970's, and by others including Tectonic Audio Labs and Clearview Audio.
One physical feature of vibrating panel loudspeakers is the presence of a multiplicity of under-damped mechanical modes of vibration. In contrast, a pistonic loudspeaker can have a single degree of freedom and can be heavily damped, which makes its dynamic response simple in comparison to that of vibrating panel loudspeakers. To address this, panel loudspeaker designs employing wood-polymer composite structures to reduce the ring-down time of excited panel bending modes have been described. Without careful mechanical design measures, the presence of under-damped bending modes in panel loudspeakers can degrade audio quality.
Therefore, what are needed are devices, systems and methods that overcome challenges in the present art, some of which are described above.
Disclosed herein are systems and methods that describe ways to achieve high quality audio reproduction in a wide range of panel materials and designs. The systems and methods employ a frequency crossover network in combination with an array of force drivers to enable selective excitation of different panel mechanical modes. This system allows different frequency bands of an audio signal to be reproduced by selected mechanical modes of a panel. For example, it may be preferable to avoid driving low-frequency panel modes, which can have long ring-down times by high-frequency audio components. Rather it can be desirable to employ the higher panel modes for reproduction of high frequency audio components. This “modal crossover” technique can avoid transient distortions that are present in vibrating panel loudspeakers and dramatically improve audio quality.
The systems and methods for driving selected bending modes of a panel with an array of force driving elements also enables a higher degree of control over the spatial distribution of transverse panel vibrations. This, in turn, can allow a greater degree of spatial control of the sound generated by the panel, both the apparent locations of acoustic sources in the plane of the panel and the spatial distribution of the radiated sound.
In one aspect, a method of effecting spatial and temporal control of the vibrations of a panel is disclosed. The method comprises receiving a shape function and an audio signal; determining a band-limited Fourier series representation of the shape function; computing one or more modal accelerations from the audio signal and the band-limited Fourier series representation of the shape function; computing one or more modal forces needed to produce the one or more modal accelerations, wherein the computing of the one or more modal forces comprises using a frequency domain plate-bending mode response; determining a response associated with a discrete-time filter corresponding to the frequency domain plate bending mode response; summing the one or more modal forces to determine a force required at each driver element in a plurality of driver elements; performing a multichannel digital to analog conversion and amplification of one or more forces required at each driver element in the plurality of driver elements; and driving a plurality of amplifiers with the converted and amplified forces required at each driver element in the plurality of driver elements.
In another aspect, a system for spatial and temporal control of the vibrations of a panel is disclosed. The system comprises a functional portion of an display; (with backlight, polarizing material layer, and color filter layer); an audio layer comprising a plate and a plurality of driver elements; (with a shield layer, a piezoelectric film layer, electrodes, and a cover glass for protection), wherein the function portion of the display is proximate to the audio layer; a processor and a memory; wherein the processor is configured to run computer-generated code to: receive a shape function and an audio signal; determine a band-limited Fourier series representation of the shape function; compute one or more modal accelerations from the audio signal and the band-limited Fourier series representation of the shape function; compute one or more modal forces needed to produce the one or more modal accelerations, wherein the computing of the one or more modal forces comprises using a frequency domain plate bending mode response; determine a response associated with a discrete-time filter corresponding to the frequency domain plate bending mode response; sum the one or more modal forces to find one or more forces required at each driver element in a plurality of driver elements; perform a multichannel digital-to-analog conversion and amplification of the a force required at each driver element in a plurality of driver elements; and drive a plurality of amplifiers with the converted and amplified forces required at each driver element in the plurality of driver elements.
In yet another aspect, a method of virtual source generation for the generation of an audio scene by effecting spatial and temporal control of the vibrations of a panel is disclosed. The method comprises receiving an audio signal; receiving one or more distance cues associated with a virtual acoustic source, wherein the virtual acoustic source is representative of an acoustic source behind a panel; computing one or more acoustic wave fronts at one or more predetermined locations on the panel; computing one or more modal accelerations from the audio signal and one or more distance ques and acoustic wave fronts; computing one or more modal forces needed to produce the one or more modal accelerations, wherein the computing of the one or more modal forces comprises using a frequency domain plate bending mode response; determining a response associated with a discrete-time filter corresponding to the frequency domain plate bending mode response; summing the one or more modal forces to determine one or more forces required at each driver element in an array of driver element; performing a multichannel digital-to-analog conversion and amplification of the a force required at each driver element in an array of driver elements; and driving a plurality of amplifiers with the converted and amplified forces required at each driver element in an array of driver elements.
In another aspect, a system for spatial and temporal control of the vibrations of a panel is disclosed. The system comprises a projector; a plurality of drive elements mounted to the backside of a panel; reflective screen facing the projector; a processor and memory, wherein the processor is configured to run computer-generated code to: receive a shape function and an audio signal; determine a band-limited Fourier series representation of the shape function; compute one or more modal accelerations from the audio signal and the Fourier series representation of the shape function; compute one or more modal forces needed to produce the one or more modal accelerations, wherein the computing of the one or more modal forces comprises using a frequency domain plate bending mode response; determine a response associated with a discrete-time filter corresponding to the frequency domain plate bending mode response; sum the one or more modal forces to determine a force required at each driver element in a plurality of driver elements; perform a multichannel digital to analog conversion and amplification of one or more forces required at each driver element in a plurality of driver elements; and drive a plurality of amplifiers with the converted and amplified forces required at each driver element in a plurality of driver elements.
Additional advantages will be set forth in part in the description which follows or may be learned by practice. The advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments and together with the description, serve to explain the principles of the methods and systems:
Before the present methods and systems are disclosed and described, it is to be understood that the methods and systems are not limited to specific synthetic methods, specific components, or to particular compositions. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes¬ from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
Throughout the description and claims of this specification, the word “comprise” and variations of the word, such as “comprising” and “comprises,” means “including but not limited to,” and is not intended to exclude, for example, other additives, components, integers or steps. “Exemplary” means “an example of” and is not intended to convey an indication of a preferred or ideal embodiment. “Such as” is not used in a restrictive sense, but for explanatory purposes.
Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods.
The present methods and systems may be understood more readily by reference to the following detailed description of preferred embodiments and the Examples included therein and to the Figures and their previous and following description.
As will be appreciated by one skilled in the art, the methods and systems may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the methods and systems may take the form of a computer program product on a computer-readable storage medium having computer-readable program instructions (e.g., computer software) embodied in the storage medium. More particularly, the present methods and systems may take the form of web-implemented computer software. Any suitable computer-readable storage medium may be utilized including hard disks, CD-ROMs, optical storage devices, or magnetic storage devices.
Embodiments of the methods and systems are described below with reference to block diagrams and flowchart illustrations of methods, systems, apparatuses and computer program products. It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create a means for implementing the functions specified in the flowchart block or blocks.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including computer-readable instructions for implementing the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.
Accordingly, blocks of the block diagrams and flowchart illustrations support combinations of means for performing the specified functions, combinations of steps for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, can be implemented by special purpose hardware-based computer systems that perform the specified functions or steps, or combinations of special purpose hardware and computer instructions.
Disclosed herein are systems and methods that describe effecting spatial and temporal control of the vibrations of a panel, which in turn can enable control of the radiated sound. The Rayleigh integral can be employed to compute the sound pressure p(,t) measured at a point in space , distant from the panel,
where {umlaut over (z)}s(xs,ys,t−R/c) is the acceleration of the panel normal to its surface at a point (xs,ys) in the plane of the panel, R is the distance from (xs,ys) to a point in space, =(x,y,z), at which the sound pressure is measured, ρ is the density of air, and c is the speed of sound in air.
It is possible to have multiple sound sources distributed in the plane of the panel and due to the linearity of the Rayleigh integral, these may be treated independently. However, if different sources overlap spatially there exists the potential for intermodulation distortion, which also may be present in conventional loudspeakers. This may not have a large effect but it can be avoided altogether by maintaining spatial separation of different sound sources, or by spatially separating low frequency and high frequency audio sources.
The collection of sources may be represented by a panel acceleration function {umlaut over (z)}s(xs,ys, t) that can be factored into functions of space, a0,k(xs,ys) and functions of time, sk(t). The sum of the individual sources, assuming that there are K sources, gives the overall panel acceleration normal to its surface:
In the following a single audio source is considered so the subscript k is left off. Thus,
{umlaut over (z)}
s(xs,ys,t)=a0(xs,ys)s(t), (3)
where a0(xs,ys) is the “shape function” corresponding to the desired spatial pattern of the panel vibrations.
The shape function may be a slowly changing function of time, e.g., an audio source may move in the plane of the audio display. If the audio source is assumed to be moving slowly, both in comparison to the speed of sound and to the speed of the propagation of bending waves in the surface of the plate, then in the moving source case a0(xs,ys,t) can be a slowly varying function of time. The rapid, audio-frequency, time dependence can then be represented by the function s(t). This is analogous to the well-known rotating-wave approximation. However, to keep matters simple in following discussion a0 (xs,ys) is treated as time-independent.
Any shape function can be represented by its two-dimensional Fourier series employing the panel's bending normal modes as the basis functions. In practice, the Fourier series representation of a panel's spatial vibration pattern will be band-limited. This means that there can be a minimum (shortest) spatial wavelength in the Fourier series. To force the panel to vibrate (in time) in accordance with a given audio signal, s(t), while maintaining a specified shape function can require that the acceleration of each normal mode in the Fourier series follow the time dependence of the audio signal. Each of the panel normal modes may be treated as an independent, simple harmonic oscillator with a single degree-of-freedom, which may be driven by an array of driver elements (also interchangeably referred to as force actuators herein). The driver elements can be distributed on the panel to drive the acceleration of each mode, making it follow the audio signal s(t). A digital filter for computing the modal forces from the audio signal is derived below as well.
To independently excite each panel normal mode can require the collective action of the array of driver elements distributed on the panel. The concept of modal drivers where each panel normal mode may be driven independently by a linear combination of individual driver elements in the array will be discussed in more detail below. A review of the bending modes of a rectangular panel is first provided.
It is assumed that the panel comprises a rectangular plate with dimensions Lx and Ly in the x and y directions. The equation governing the bending motion of a plate of thickness h may be found from the fourth-order equation of motion:
in which D is the plate bending stiffness given by,
In the above equation, b is the damping constant (in units of Nt/(m/sec)/m2), E is the elastic modulus of the plate material (Nt/m2), h is the plate thickness (m), p is the density of the plate material (kg/m3), and v is Poisson's ratio for the plate material. When the edges of the plate are simply supported, the normal modes are sine waves that go to zero at the plate boundaries. The normalized normal modes are given by,
φmn(xs,ys)=2 sin(mπxs/Lx)sin(nπys/Ly). (6)
The normalization of the modes can be such that, for a plate of uniform mass density throughout,
where M is the total mass of the plate, M=ρhLxLy=ρhA, where A=LxLy is the plate area.
The speed of propagation of bending waves in a plate may be found from (4). Ignoring damping for the moment, the solution of (4) shows that the speed of propagation of a bending wave in the plate is a function of the bending wave frequency, f:
This expression may be rewritten as,
where c0 is the bending wave speed at a reference frequency f0.
As an example, Aluminosilicate glass has the following physical parameters: E=7.15×1010 Nt/m2, v=0.21, and ρ=2.45×103 kg/m3 (all values approximate). Assuming a panel thickness of approximately 0.55 mm, c0=74.24 msec at f0=1000 Hz (all values approximate), the bending wave speed can then be found at any frequency using (9).
For example, considering an approximately 20,000 Hz bending wave traversing a panel at a speed of about 332 msec; the wavelength of an approximately 20 kHz bending wave (the upper limit of the audio range) is then v=c/f=0.0166 m (1.66 cm). To excite an approximately 20 kHz bending wave in the plate, the Nyquist sampling criterion requires that there be two force actuators per spatial wavelength. In this example the force actuator array spacing required to drive modes at approximately 20 kHz would be about 0.8 cm. It can be possible to drive lower frequency modes above their resonant frequencies to generate high frequency sound radiation; however, if the force actuator spacing is larger than the spatial Nyquist frequency for the highest audio frequency there can be uncontrolled high frequency modes.
The frequency of the (m,n) mode is given by,
however, since the speed of a bending wave is frequency dependent substituting (9) into (10) this can be rewritten as,
Equations (6) and (11) give the mode shapes and mode frequencies for the normal modes of a rectangular plate with simply supported edges.
The truncated two-dimensional Fourier series using the panel normal modes as the basis functions provides a spatially band-limited representation of a panel shape function,
where am,n is the amplitude of the (m,n) panel normal mode. As discussed above, the Fourier series is truncated at an upper limit (M,N) which can determine the spatial resolution in the plane of the panel of the shape function. A specific shape function can be created on the plate and then be amplitude modulated with the audio signal. According to the Rayleigh integral, (1), the acoustic sound pressure is proportional to the normal acceleration of the plate, so the acceleration of each mode follows the time-dependence of the audio signal,
ü
mn(t)=amns(t). (13)
To find the equation of motion for the mode amplitudes, the plate normal displacement can be first written in terms of time dependent mode amplitudes,
This can then be substituted into the equation for the bending motion of a plate with an applied force:
where P(xs,ys,t) is the normal force per unit area acting on the plate. The force can also be expanded in a Fourier series:
Substituting into the equation of motion, equation (15), the frequency domain plate response function is:
where Umn(ω) and Pmn(ω) are the frequency domain normal mode amplitude and the force per unit area acting on the mode, ωmn=2πfmn is the angular frequency of the (m,n) mode, and Qmn=ωmnM/b is the quality factor of the (m,n) plate mode. This can be re-written in terms of the force acting on the (m,n) mode, Fmn(ω)=APmn(ω), as
To find the discrete time filter equivalent for this system, the system response can be represented in the Laplace domain (where jω→s) and a bilinear transformation can be employed to transform to the z-domain. Because the force required to give a target modal acceleration is desired, (18) can be re-written in the Laplace domain and rearranged to find the force required to achieve a target modal acceleration,
where Amn(s)=s2Umn(s), and M=ρhA is the panel mass as before. Then, making the substitution
using T for the discrete time sampling period, the z-domain system response can be defined by
F
mn(z)=Hmn(z)Amn(z). (20)
The system response is second order and may be written as,
where the coefficients are given by the following expressions. Note that the mode number notation in the coefficients can be suppressed, but there is a unique set of coefficients for each mode:
The system then may be represented by a second order, infinite impulse response filter as follows,
a
0
f(k)=b0a(k)+b1a(k−1)+b2a(k−2)−a1f(k−1)−a2f(k−2) (23)
where f(k) represents the discrete time sampled modal force and a(k) is the discrete time sampled target modal acceleration; once again the (m,n) mode indices are suppressed to unclutter the notation.
One aspect of the above filter is that the system transfer function as defined in (21) and (22) has a pair of poles at z=1, and thus diverges at zero frequency. That is, the force required to produce a static acceleration goes to infinity. Since the audio frequency range is of interest, and it does not extend below 20 Hz, the problem can be addressed by introducing a high-pass filter into the system response. In practice this can be achieved simply by replacing the two poles at z−1 with a complex conjugate pair of poles slightly off the real axis and inside of the unit circle.
The last step is to find the individual forces that must be applied by the force actuator array to obtain the required modal drive forces. Assuming that there is a set of force actuators distributed on the plate at locations, {xr,ys} where r=1 . . . R, and s=1 . . . S. There are R actuators in the x-dimension and S actuators in they-dimension, and because rectangular plates are being considered, R and S will be, in general, different. The total discrete time force that should be applied at each actuator location (xr,ys) is given by,
In the notation introduced f(xr,ys,k) refers to the force applied at location (xr,ys) at the discrete time k. This can be computed by summing over the modal contributions, fmn(k), each one weighted by the (m,n) normal mode amplitude at the location (xr,ys) on the plate.
The preceding discussion is a general description of the computational steps required to effect spatial and temporal control of a plate employing an array of force actuators coupled to the plate. The method is summarized in the flowchart of
Broadly speaking, as indicated in
More specifically, first, in 201 and 203, a shape function and an audio signal is received; next, a band-limited Fourier series representation of the shape function 205 is determined. Next, one or more modal accelerations from the audio signal and the band-limited Fourier series representation of the shape function 210 are computed. Then, one or more modal forces needed to produce the one or more modal accelerations 215 is computed. The computation of the one or more modal forces can include using a frequency domain plate-bending mode response. Next, a response associated with a discrete-time filter corresponding to the frequency domain plate bending mode response 220 is determined. The, the one or more modal forces to determine a force required at each driver element in a plurality of driver elements 225 is summed. Finally, a multichannel digital to analog conversion and amplification of one or more forces required at each driver element in the plurality of driver elements 230, and drive a plurality of amplifiers with the converted and amplified electrical signals required at each driver element in the plurality of driver elements 240 is performed.
Moreover, a portion of the plurality of driver elements 1005 can be transparent or substantially transparent to the visible part of the electromagnetic spectrum. Moreover, a portion of the driver elements can be fabricated using a transparent piezoelectric material such as PVDF or other transparent piezoelectric material. In various aspects, the driver elements comprising piezoelectric force actuators can be piezoelectric crystals, or stacks thereof. For example, they can be quartz or ceramics such as Lead Zirconate Titanate (PZT), piezoelectric polymers such as Polyvinylidene Fluoride (PVDF), and/or similar materials. The piezoelectric actuators may operate in both extensional and bending modes. They can furthermore feature transparent electrodes such as Indium Tin Oxide (ITO) or conductive nanoparticle-based inks. The driver elements may be bonded to a transparent panel such as glass, acrylic, or other such materials.
In another aspect,
A bezel (not shown) can moreover cover a portion of the perimeter of the panel 1010. In that regards, the driver elements 1005 can be positioned underneath the bezel associated with the perimeter of the panel 1010. Such driver elements 1005 positioned underneath the bezel can include a dynamic magnet driver element, a coil driver element, and the like. They, moreover, do not have to be transparent to the visible portion of the electromagnetic spectrum, since they are underneath the bezel.
In one aspect the piezoelectric material can be polarized so that an electric potential difference applied across the thickness of the material causes strain in the plane of the material. If the driver elements comprising the piezoelectric actuators are located away from the neutral axis of the composite structure, a bending force component perpendicular to the plate can be generated by the application of a voltage across the thickness of the actuator film. In another configuration piezoelectric force transducers may be mounted on both sides of the plate either in aligned pairs or in different array layouts.
As shown in
In another aspect, the plurality of driver elements can comprise an array in which the actuators are located at selected anti-nodes of the plate panel vibrational modes. In the case in which the panel is simply supported, the mode shapes are sinusoidal. The actuator locations can then be at the following fractional distances (taking the dimension of the plate to be unity): n/m where m=1, 2, 3, . . . , and n=1, . . . m−1; for example {(1/2), (1/3, 2/3), (1/4, 2/4, 3/4), (1/5, 2/5, 3/5, 4/5), . . . }. Ratios formed according this rule can be referred to as Farey fractions. Repeated fractions can be removed and any subset of the full sequence can be selected.
In other embodiments, the array of electrodes (e.g., 1420) is formed on one side of a sheet of non-polarized piezoelectric material (e.g., 1412) prior to it being bonded to the plate 1415. The top electrode (shown as 1420a) is then deposited to the outer surface of the film 1412. The piezoelectric material (e.g., 1412) is then “poled” (see 1410) to make regions of the film where the electrodes are located piezoelectrically active, and the sheet of piezoelectric material (e.g., 1412) is then bonded on the plate 1415.
In yet other embodiments, the electrodes (e.g., 1420a and 1420) are formed on both side of the sheet of non-polarized piezoelectric material (e.g., 1412) prior to it being bonded to the plate 1415. The piezoelectric material (e.g., 1412) is then “poled” (see 1410) to make regions of the film where the electrodes are located piezoelectrically active, and the sheet of partially-polarized piezoelectric material (e.g., 1412) is then bonded on the plate 1415.
In various aspects, the driver elements comprising piezoelectric force actuators can be piezoelectric crystals, or stacks thereof. For example, they can include quartz, ceramics such as Lead Zirconate Titanate (PZT), lanthanum doped PZT (PLZT), piezoelectric polymers such as Polyvinylidene Fluoride (PVDF), or similar materials. The piezoelectric force actuators may operate in both extensional and bending modes.
The LCD display 1510 can include some or all of the following layers: a protective cover 1512 of glass or a polymer material, a polarizer 1514, a color filter array 1516, liquid crystal 1518, thin-film transistor backplane 1520, and back-light plane 1522. Optional spacers, 1524, may be used to support the audio layer on top of the LCD display layer.
In an aspect, the display 1510 can comprise a light-emitting diode (LED), organic light emitting diode (OLED), and/or a plasma display. In another aspect, the audio layer can be laminated onto the LCD display using standard lamination techniques that are compatible with the temperature and operational parameters of the audio layer 1505 and display 1510. The layers of the audio layer can be deposited by standard techniques such as thermal evaporation, physical vapor deposition, epitaxy, and the like. The audio layer 1505 can alternatively be positioned below the display 1510. The audio layer 1505 can moreover be positioned over a portion of the display 1510, for example, around the perimeter of the display 1510.
In various aspects, the audio layer 1505 can moreover be overlain on a display such as a smart phone, tablet computer, computer monitor, or a large screen display, so that the view of the display is substantially unobstructed.
The touch panel can include an over layer 1622 that provides protection against detrimental environmental factors such as moisture. It can further include a front panel 1524 that contributes to the structural integrity for the touch panel. The touch panel can include top and bottom electrodes (in a 2-dimensional array) 1626 and 1630 separated by an adhesive layer 1628. As mentioned, a backing surface (alternatively called a back panel) 1632 can offer further structural rigidity.
In one aspect, the relative positioning of the audio layer 1605, touch panel 1620, and/or the display 1610 can be adjusted (for example, the audio layer 1605 may be positioned below the display 1610) based on preference and/or other manufacturing restrictions.
Example—Audio Display for Video Projection System
Example—Phase Array Sound Synthesis
Example—Audio OLED Display
The continued development of OLED display technology has led to monolithic displays that are very thin (as thin as 1 mm or less) and flexible. This has created the opportunity to employ the display itself as a flat-panel loudspeaker by exciting bending vibrations of the monolithic display via an array of force driving elements mounted to its back. The displays often are not flat, being curved, in some embodiments, to achieve a more immersive cinematic effect. The methods described here will work equally well in such implementations. Actuating the vibrations of a display from its back eliminates the need to develop a transparent over-layer structure to serve as the vibrating, sound emitting element in an audio display. As described above, such structures could be fabricated employing transparent piezoelectric bending actuators using materials such as PLZT (Lanthanum-doped lead zirconate titonate) on glass or PVDF (Polyvinylidene fluoride) on various transparent polymers.
Both voice-coil type actuators (magnet and coil) and piezo-electric actuators, as discussed in relation to
While the methods and systems have been described in connection with preferred embodiments and specific examples, it is not intended that the scope be limited to the particular embodiments set forth, as the embodiments herein are intended in all respects to be illustrative rather than restrictive.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that an order be inferred, in any respect. This holds for any possible non-express basis for interpretation, including: matters of logic with respect to arrangement of steps or operational flow; plain meaning derived from grammatical organization or punctuation; the number or type of embodiments described in the specification.
Throughout this application, various publications may be referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which the methods and systems pertain.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the scope or spirit. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit being indicated by the following claims.
This application claims priority to, and the benefit of, U.S. Provisional Application No. 62/259,702, filed Nov. 25, 2016, titled “SYSTEMS AND METHODS FOR AUDIO SCENE GENERATION BY EFFECTING SPATIAL AND TEMPORAL CONTROL OF THE VIBRATIONS OF A PANEL,” which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62259702 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15778797 | May 2018 | US |
Child | 16292836 | US |