1. Field of the Invention
The present invention relates to systems and methods for providing electronic communication services to customers. More particularly, the invention relates to systems and methods for providing content and temporal integrity and identification verification to electronic messages shared by users over a network.
2. Description of the Related Art
The use of electronic networks to convey information among networked users has undergone an enormous amount of growth in recent years. The ability to transfer data using computer applications, such as, for example, e-mail and file transfer protocol programs, has become increasingly important in personal, and especially, business communications.
Using computer networks for business communications, including buying and selling goods online, electronic funds transfer, online advertising, and accessing business information resources is known as electronic commerce (E-commerce). E-commerce can improve the efficiencies of current business processes and provide opportunities to widen existing customer bases. Over the next few years, as the number of Internet users continues to expand, E-commerce has the potential to be the source of an extraordinary amount of revenue growth.
In order to realize this potential, a variety of communication services and features will be required for E-commerce which traditionally have been available in physical communication channels. The United States Postal Service (USPS), an independent establishment of the executive branch of the U.S. government, provides such features through a variety of document and package delivery services. The USPS is widely recognized as a secure and reliable means for sending and receiving packages and mail used for both personal and business transactions. Packages and mail sent via the USPS are time-stamped with an official postmark which provides the recipient proof of the time the item was sent. Additionally, once material is placed with the USPS, the document is no longer in the sender's control, and thus cannot be recalled. Furthermore, packages and mail sent through the USPS are protected from third-party tampering by Federal laws. Electronic communication services currently do not provide these features. Additional security enhancements, such as authenticating the identities of the parties involved in a transaction and/or providing assurance to the recipient that a received message has not been altered may also be required for E-commerce to reach its full potential.
To ensure the vitality and growth of electronic communication and commerce, consumers and businesses need a secure way to communicate and conduct business electronically. Without trustworthy channels of communication, many potential participants in electronic commerce may be unwilling to send sensitive information electronically. In light of the foregoing, it is desirable to provide a system for electronic communication that provides a level of security which meets or exceeds the current level offered by the existing physical mail and package delivery services.
In accordance with the purpose of the present invention, as embodied and broadly described herein, the invention provides methods and apparatuses for authenticating an electronic message. The electronic message containing data and an electronic address is received from a sender. A digest is then created based on the message data and a temporal stamp is appended to this digest. The digest and temporal stamp are signed using a digital signature. The digest, the temporal stamp, and the digital signature are then sent to an electronic address and thereafter authenticated.
Exemplary systems and methods consistent with the present invention are recited in the attached claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the following description, serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
For this invention, the digital signature ensures the authenticity of the EPM data structure and the identity of the EPM system 120. Any unauthorized modifications to the temporal-stamp or the digest can be detected through examining the digital signature. Furthermore, any alterations in the electronic message itself may be detected though examining the digest. Therefore, the EPM data structure can afford at least three assurances for an electronic transaction. The first is the electronic message existed at a known point in time. The second assurance is the identification of EPM system 120 is known to a recipient 130 of the electronic message. The third assurance is alteration of the contents of the electronic message as received by recipient 130 is detectable after the generation of the EPM data structure.
Further referring to
Sender 110 may elect to have EPM system 120 forward only the EPM data structure to recipient 130 and may then send the electronic message itself to recipient 130 directly over the network. This procedure provides sender 110 with more control in how the electronic message is routed through EPM system 120, as will be described below.
Each time an EPM data structure is generated, it is stored in a log located within EPM system 120. This log provides an actual record which can be used to prove that an EPM data structure was generated for a given message. One advantage of the invention is that electronic messages which have been postmarked by EPM system 120 may be afforded legal protections under laws which protect official entities, such as the USPS. Therefore, EPM data structures stored in the log file can serve as legal proof of the existence and digest of an electronic message. An EPM data structure of the log file itself may be generated to insure the integrity of the log file.
EPM server 210 generates an EPM data structure 240 that includes a digest, a temporal-stamp, and a digital signature as described above. After EPM data structure 240 has been generated, EPM server 210 will typically forward the EPM data structure with the electronic message to recipient 130 over network 205. Alternatively, sender 110 may choose to only have EPM data structure 240 forward by EPM server 210 to recipient 130.
Referring again to
Further referring to
In order to properly authenticate the received EPM data structure, a data processing machine typically requires four elements: a verifier application, the EPM data structure, the electronic message, and an authorized public digital key. EPM server 210 uses a digital signature algorithm to digitally sign EPM data structures. The digital signature is based on public and private digital key pairs. Digital certificates authorize the use of these key pairs used to generate and verify the digital signature. The key authorization process is performed by a Key Signing Authority (KSA) or a Certificate Authority (CA) which issues the digital certificates. These are trusted, separate third party systems which are not directly coupled to EPM server 210. The KSA is discussed in U.S. Ser. application No. 60/157,168, filed Sep. 30, 1999, and the CA is discussed in U.S. Ser. application No. 60/189,983, filed Mar. 17, 2000, the entire disclosures of which are incorporated by reference. The authorized public digital key may exist on a physical media in the personal possession of the recipient user 130, or it may be embedded in the verifier software or the EPM data structure itself.
The verifier application performs three verification steps. The first step verifies that the EPM data structure is “official;” that is, it was generated by an authorized entity such as the USPS. It does this by checking the digital certificate associated with the public digital key used to generate the digital signature. When this verification is complete, recipient 130 has proof that the EPM data structure was issued by an official EPM entity.
The second verification step is to verify the identification of the EPM server 210. The digital signature that was used to sign the EPM data structure is verified using the authorized public digital key. When this verification is successful, recipient 130 has proof that the EPM data structure was generated by a particular authorized server (i.e., the identification of EPM server 210 is known) and that alterations to the contents of the EPM data structure, from the time it was generated until the time it reached recipient 130, are detectable. This effectively authenticates the digest and temporal stamp within the EPM data structure.
The third verification step is to authenticate the contents of the electronic message. The verifier application does this by comparing the digest of the message contained in the EPM data structure with a digest generated by the verifier application using the electronic message itself. If the two digests are identical, recipient 130 has proof the contents of the electronic message were unaltered from the time the EPM data structure was generated until the time the EPM data structure and electronic message were received by recipient 130.
Digital signature and electronic message verification functionality can be integrated into platform-independent verifier software which may be downloaded from the Internet. For example, such software may be developed into a Java applet for use in a web browser such as Netscape®, or it could be integrated into an e-mail software application such as Outlook® Express. Alternatively, the verifier application could take the form of an independent software application, such as, for example, a stand alone Windows-based verification utility. The verifier application can make use of standard Application Programming Interfaces (APIs) to provided authentication functionality to software developers in a convenient manner.
Message data 215 is bundled with a recipient electronic address 220. If sender client 310 resides in a separate data processing machine, the bundle is sent over network 205 to sender client 310. Otherwise, if sender client 310 exists as a collection of software modules residing on the networked device of sender 110, message data 215 and recipient electronic address 220 are sent over secure network 305. Message data 215 and recipient electronic address 220 will typically be sent using an e-mail program, such as, for example, Outlook Express, running on a personal computer at sender 110. However, other types of file transfer programs using different transport protocols, such as WinFTP, may also be used.
Sender client 310 then produces a hash value 420 from message data 215 using a one-way hash function. As known to those skilled in the art, a one-way hash function typically generates a hash value from input data which is substantially smaller than the input data itself. The hash value is generated by an algorithm such that the probability of two different data streams producing the same hash value is extremely small; in fact so small that the hash value is considered unique to the input data. The one-way hash function cannot be reversed; the input data itself cannot be recovered from its corresponding hash value. Hash value 420 is thus a unique number associated on a one-to-one basis with message data 215.
Sender client 310 packages hash value 420 with recipient electronic address 220 and transfers them to EPM server 210 over secure network 305. Optionally, message data 215 may also be passed along in this transfer. A time-stamp and/or a date-stamp are generated by EPM server 210 and bundled with hash value 420. EPM server 210 then generates a digital signature using a Digital Signature Standard algorithm which is known to those skilled in the art. It then applies the digital signature to the bundled data to form an EPM data structure 240. Additional branding data, discussed in more detail below, may also be included in EPM data structure 240.
Recipient client 320 receives EPM data structure 240 and recipient electronic address 220 over secure network 305 from EPM server 210. Recipient client 320 uses recipient electronic address 220 to send EPM data structure 240 to recipient 130. If recipient client 320 is a separate data processing machine, it may use network 205 for the transfer. If recipient client 320 is a collection of software modules, for example contained in recipient 130, it typically uses secure network 305 for the transfer. Optionally, recipient 130 may also receive message data 215 itself, along with EPM data structure 240 through the recipient client 320, if sender 110 decides to route message data 215 through EPM server 210. Note that this alternative data flow is shown in the dashed boxes in
Similarly to the data flow shown in
EPM server 210 generates an EPM data structure 240 in response to a request and places it in an outgoing queue with any associated data for transmission over secure network 305 to recipient client 320. Recipient client 320 also includes a network client module 540 which receives EPM data structure 240 and recipient electronic address 220 and routes it to a front-end module 560 via a client proxy module 550. Front end module 560 sends the EPM data structure 240 and associated data to recipient 130 via network 205.
EPM Server 210 preferably comprises a fully multi-threaded server that accepts transactions from an external source, generates an EPM data structure 240, and forwards EPM data structure 240 to the entity that made the request. EPM server 210, upon receiving a sender client 310 connection, spawns a new thread performs all communication functions with sender client 310. When sender client 310 transmits a request, the new thread collects the entire request from sender client 310 then place this request on an input queue. When a thread associated with generating the actual EPM locates the request in the input queue, it flags the request as “In Progress” and then proceeds to produce an EPM data structure 240. Once the EPM generation is complete, EPM data structure 240 is placed on the outbound queue for pickup by recipient client 320, as shown in the embodiment of
Network server module 550 includes a TCP/IP module 610 and a transaction processor module 615. Note the invention is not limited to using TCP/IP, however this standard is the preferred network protocol. Transaction processor module 615 uses the services of TCP/IP module 610 to process EPM request messages from sender client 310. Transaction processor module 615 receives each incoming EPM request and forwards it to an EPM module 620 for postmark processing. When the EPM module 620 returns the generated EPM data structure 240, transaction processor module 615 sends EPM data structure 240 it to either sender 110 or recipient 130, based upon the incoming request.
EPM module 620 uses the services of a time module 625 to obtain highly accurate time-stamps for EPMs. In addition to time and date information, EPM module 620 may gather other data items, including branding data, from a system registry 660. Branding data, which contains information regarding the corporate or organizational entity which operates EPM server 210, can take the form of text or image data. This data may represent names, slogans, logos, or any other type of identifying information, and may be included with hash value 420 and the temporal stamp.
Services from a cryptographic interface module 640 are used to generate a digital signature based on the hash value and temporal stamp to create EPM data structure 240. When the EPM operation is deemed complete, EPM module 620 uses a log module 665 to create an entry into a log file 667 which contains copies of each EPM data structure 240 generated. Log file 667 can be used for audit and billing purposes, and provides legal proof that a given EPM data structure 240 was generated. Given the importance of the log file in the audit process, the entire log file itself is used as the input data for generation of a log file EPM data structure 240 to ensure its integrity. The log file EPM data structure may be generated automatically, based on a number of criteria including the size of log file 667 or a fixed interval of time between log file EPMs. This operation may also be done manually at the command of the operator of EPM server 210.
One or more hardware clocks 635 are used to obtain and maintain accurate and trusted time information. The time values are typically generated and stored using Universal Time Coordinated (UTC), which is the same as Greenwich Mean Time. By way of example only, a TrueTime model PCI-SG Synchronized Clock Generator with GPS (Global Positioning System), commercially available from TrueTime, Inc. of Santa Rosa, Calif., may be used which has UTC accuracy of approximately one microsecond. A time manager Graphical User Interface (GUI) module 630 allows an operator to set and reset time-stamp information, synchronize time module 625 with hardware clock(s) 635, and visually check the correctness of time from hardware clock(s) 635.
Cryptographic interface module 640 uses one or more hardware cryptographic devices 645 to perform digital signature generation and verification, key generation, and hashing functions. Cryptographic hardware device 645 is able to support multiple encryption algorithms. By was of example only, an Attalla Websafe/PCI card commercially available from Compaq Corporation of Houston, Tex., may be used for cryptographic device 645. Furthermore, the Digital Signature Algorithm (DSA) with the option of Elliptic Curve DSA may be used for the digital signature algorithms. Moreover, EPM server 210 may generate Digital Signature Standard (DSS) keys and use the Secure Hash Standard FIPS 180-1, and the DSS FIPS 186. All of these examples are for exemplary purposes only, and are not meant to limit the present invention.
Cryptographic interface module 640 is controlled by a key manager GUI 650 in order to allow the generation of new digital key pairs for use by EPM server 210 and for the export of unauthorized public digital keys. Key manager GUI allows an EPM security officer to choose a location to store the unauthorized public digital key for a new key pair. Once a new pair is generated, the unauthorized public digital key of the pair is transmitted to a KSA or CA in order to transform it into an authorized public digital key. The private key of the key pair is stored within EPM server 210 and typically is not exported. The unauthorized public digital key is taken to a KSA or CA through secure mechanisms such as actual physical transport by authorized personnel or over a network secured by using encryption techniques. The resulting authorized digital key may be stored within the EPM server for inclusion into digital signatures, may be embedded into the verifier application residing on the data processing machine responsible digital signature authentication, or may be placed on a physical medium and kept by the user at recipient 130.
EPM server 210 supports a configuration manager GUI 665 that allows EPM server 210 system parameters to be set at the time of initialization and setup. This GUI may also be used to thereafter to update the configuration parameters of an operational EPM server. These system parameters are changed by accessing values stored in system registry 660.
Recipient client 320 may have the same hardware configuration as sender client 310. Memory 791 will contain operating system 792, front-end module 560, client proxy module 550, and network client module 540. Each of the modules includes the same function as its counterpart found in memory 710 of sender client 310.
EPM server 210 contains a solid-state memory 747 which holds instructions which are transferred over a bus 754 for execution by a CPU 755. Memory 747 contains an operating system 748, such as, for example, Windows NT® 4.0 Server or Unix. Also included in memory are network server module 550, log module 655, EPM module 620, cryptographic interface module 640, configuration manager GUI 665, time manager GUI 630, and key manager GUI 650. These instructions are also contained in mass storage device 750, and are loaded into memory 710 in whole or in part during initialization of EPM server 210. Also contained in mass storage 750 is system registry 660 and log file 667. Connected to bus 715 are user input device interface 760 and user output device interface 765. Cryptographic device 645 and hardware clocks 635 are also connected to bus 754 to allow communication with appropriate software modules residing in memory 747. EPM server 210 communicates over secure network 305 through network device interface 780.
As known to those skilled in the art, digital signature 820 may be produced by first performing a secure hash algorithm by using, for example, the Secure Hash Standard FIPS 180-1 on the data to be signed to produce a secure hash value. The secure hash value is then processed using a digital signature algorithm (DSA) and a unique private key to produce two data values. These data values comprise digital signature 820, which is appended to the hash value, time and data stamp, and branding data to form EPM data structure 240.
In order to validate the digital signature, a public digital key, which has a unique pairing with the private key, must be used. Methods known to those skilled in the art, such as, for example, the Digital Signature Standard, may be used to produce digital signature 820.
The foregoing description is presented for purposes of illustration and explanation. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications of variations are possible in light of the above teachings or may be acquired from practice of the invention. The principles of the invention and its practical application enable one skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
This is a division of application Ser. No. 09/675,677, filed Sep. 29, 2000 now U.S. Pat. No. 7,797,543, which claims priority under 35 U.S.C. §119 of U.S. Provisional Application No. 60/157,168, filed on Sep. 30, 1999, and U.S. Provisional Application No. 60/189,983, filed on Mar. 17, 2000, all of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
472105 | Bussard | Apr 1892 | A |
481772 | Spear | Aug 1892 | A |
1750339 | Wood | Mar 1930 | A |
3229903 | Smith | Jan 1966 | A |
4135662 | Dlugos | Jan 1979 | A |
4309569 | Merkle | Jan 1982 | A |
4574352 | Coppola et al. | Mar 1986 | A |
4725718 | Sansone et al. | Feb 1988 | A |
4727368 | Larson et al. | Feb 1988 | A |
4816824 | Katz et al. | Mar 1989 | A |
5043908 | Manduley et al. | Aug 1991 | A |
5136646 | Haber et al. | Aug 1992 | A |
5136647 | Haber et al. | Aug 1992 | A |
5223829 | Watabe | Jun 1993 | A |
5227778 | Vacon et al. | Jul 1993 | A |
5341505 | Whitehouse | Aug 1994 | A |
5373561 | Haber et al. | Dec 1994 | A |
5377354 | Scannell et al. | Dec 1994 | A |
5387783 | Mihm et al. | Feb 1995 | A |
5404231 | Bloomfield | Apr 1995 | A |
RE34954 | Haber et al. | May 1995 | E |
5481464 | Ramsden | Jan 1996 | A |
5490077 | Freytag | Feb 1996 | A |
5573178 | Worden | Nov 1996 | A |
5619648 | Canale et al. | Apr 1997 | A |
5631827 | Nicholls et al. | May 1997 | A |
5638446 | Rubin | Jun 1997 | A |
5648916 | Manduley et al. | Jul 1997 | A |
5701770 | Cook et al. | Dec 1997 | A |
5703951 | Dolphin | Dec 1997 | A |
5710887 | Chelliah et al. | Jan 1998 | A |
5729594 | Klingman | Mar 1998 | A |
5742829 | Davis et al. | Apr 1998 | A |
5752059 | Holleran et al. | May 1998 | A |
5774053 | Porter | Jun 1998 | A |
5774086 | Guyot | Jun 1998 | A |
5781629 | Haber et al. | Jul 1998 | A |
5796841 | Cordery et al. | Aug 1998 | A |
5805810 | Maxwell | Sep 1998 | A |
5819240 | Kara | Oct 1998 | A |
5835087 | Herz et al. | Nov 1998 | A |
5841550 | Johnson | Nov 1998 | A |
5852813 | Guenther et al. | Dec 1998 | A |
5857188 | Douglas | Jan 1999 | A |
5870549 | Bobo, II | Feb 1999 | A |
5878233 | Schloss | Mar 1999 | A |
5883810 | Franklin et al. | Mar 1999 | A |
5903878 | Telati et al. | May 1999 | A |
5910987 | Ginter et al. | Jun 1999 | A |
5917411 | Baggarly | Jun 1999 | A |
5917925 | Moore | Jun 1999 | A |
5923406 | Brasington et al. | Jul 1999 | A |
5930479 | Hall | Jul 1999 | A |
5943656 | Crooks et al. | Aug 1999 | A |
5944787 | Zoken | Aug 1999 | A |
5971587 | Kato et al. | Oct 1999 | A |
5979750 | Kindell | Nov 1999 | A |
5999967 | Sundsted | Dec 1999 | A |
6006200 | Boies et al. | Dec 1999 | A |
6023723 | McCormick et al. | Feb 2000 | A |
6028517 | Sansone et al. | Feb 2000 | A |
6032133 | Hilt et al. | Feb 2000 | A |
6035402 | Vaeth et al. | Mar 2000 | A |
6047264 | Fisher et al. | Apr 2000 | A |
6052709 | Paul | Apr 2000 | A |
6064995 | Sansone et al. | May 2000 | A |
6070798 | Nethery | Jun 2000 | A |
6081899 | Byrd | Jun 2000 | A |
6138910 | Madruga | Oct 2000 | A |
6148289 | Virdy | Nov 2000 | A |
6152369 | Wilz, Sr. et al. | Nov 2000 | A |
6161130 | Horvitz et al. | Dec 2000 | A |
6199102 | Cobb | Mar 2001 | B1 |
6219669 | Haff et al. | Apr 2001 | B1 |
6233565 | Lewis et al. | May 2001 | B1 |
6233568 | Kara | May 2001 | B1 |
6243620 | Robinson et al. | Jun 2001 | B1 |
6246925 | Robinson et al. | Jun 2001 | B1 |
6247149 | Falls et al. | Jun 2001 | B1 |
6259964 | Robinson | Jul 2001 | B1 |
6275154 | Bennett et al. | Aug 2001 | B1 |
6282658 | French et al. | Aug 2001 | B2 |
6285777 | Kanevsky et al. | Sep 2001 | B2 |
6285991 | Powar | Sep 2001 | B1 |
6289323 | Gordon et al. | Sep 2001 | B1 |
6308277 | Vaeth et al. | Oct 2001 | B1 |
6321333 | Murray | Nov 2001 | B1 |
6321339 | French et al. | Nov 2001 | B1 |
6323782 | Stephens et al. | Nov 2001 | B1 |
6339795 | Narurkar et al. | Jan 2002 | B1 |
6347737 | Madruga | Feb 2002 | B1 |
6394565 | Greenhalgh | May 2002 | B1 |
6425521 | Cooper | Jul 2002 | B1 |
6430457 | Van De Loo | Aug 2002 | B1 |
6438690 | Patel et al. | Aug 2002 | B1 |
6442571 | Haff et al. | Aug 2002 | B1 |
6446045 | Stone et al. | Sep 2002 | B1 |
6460050 | Pace et al. | Oct 2002 | B1 |
6463354 | Pintsov | Oct 2002 | B1 |
6480885 | Olivier | Nov 2002 | B1 |
6493685 | Ensel et al. | Dec 2002 | B1 |
6496936 | French et al. | Dec 2002 | B1 |
6587945 | Paiseka | Jul 2003 | B1 |
6604132 | Hitt | Aug 2003 | B1 |
6651063 | Vorobiev | Nov 2003 | B1 |
6654448 | Agraharam et al. | Nov 2003 | B1 |
6675153 | Cook et al. | Jan 2004 | B1 |
6691231 | Lloyd et al. | Feb 2004 | B1 |
6711624 | Narurkar et al. | Mar 2004 | B1 |
6741724 | Bruce et al. | May 2004 | B1 |
6745327 | Messing | Jun 2004 | B1 |
6775782 | Buros et al. | Aug 2004 | B1 |
6807530 | Shub et al. | Oct 2004 | B1 |
6882269 | Moreno | Apr 2005 | B2 |
6933832 | Simms et al. | Aug 2005 | B1 |
6967575 | Dohrmann et al. | Nov 2005 | B1 |
6983194 | Stadermann | Jan 2006 | B1 |
7080041 | Nagel | Jul 2006 | B2 |
7194957 | Leon et al. | Mar 2007 | B1 |
7236970 | Winslow | Jun 2007 | B1 |
7346591 | Sansone | Mar 2008 | B2 |
7437414 | Dean | Oct 2008 | B2 |
20010011274 | Klug et al. | Aug 2001 | A1 |
20010020235 | Game | Sep 2001 | A1 |
20010032115 | Goldstein | Oct 2001 | A1 |
20010032181 | Jakstadt et al. | Oct 2001 | A1 |
20010044785 | Stolfo et al. | Nov 2001 | A1 |
20020002590 | King et al. | Jan 2002 | A1 |
20020023059 | Bari et al. | Feb 2002 | A1 |
20020024438 | Roberson | Feb 2002 | A1 |
20020032597 | Chanos | Mar 2002 | A1 |
20020033598 | Beasley | Mar 2002 | A1 |
20020049672 | Kitchen et al. | Apr 2002 | A1 |
20020063148 | Cox et al. | May 2002 | A1 |
20020069174 | Fox et al. | Jun 2002 | A1 |
20020103868 | Khan | Aug 2002 | A1 |
20020143462 | Warren | Oct 2002 | A1 |
20030023561 | Stefik et al. | Jan 2003 | A1 |
20030077409 | Schnell | Apr 2003 | A1 |
20030140017 | Patton et al. | Jul 2003 | A1 |
20030187951 | Shen | Oct 2003 | A1 |
20040002903 | Stolfo et al. | Jan 2004 | A1 |
20040243690 | Hancock et al. | Dec 2004 | A1 |
20050033659 | Zucker et al. | Feb 2005 | A1 |
20070239569 | Lucas et al. | Oct 2007 | A1 |
20080133411 | Jones et al. | Jun 2008 | A1 |
20080306758 | Chalmers et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
0 516 898 | Dec 1992 | EP |
10-124488 | May 1988 | JP |
WO 9712460 | Apr 1997 | WO |
WO 9916226 | Apr 1999 | WO |
WO 9966428 | Dec 1999 | WO |
WO 0013368 | Mar 2000 | WO |
WO 0100069 | Jan 2001 | WO |
WO 0118718 | Mar 2001 | WO |
WO 0165444 | Sep 2001 | WO |
WO 0199005 | Dec 2001 | WO |
WO 0199009 | Dec 2001 | WO |
WO 0199037 | Dec 2001 | WO |
WO 0208961 | Jan 2002 | WO |
WO 0221315 | Mar 2002 | WO |
WO 0233604 | Apr 2002 | WO |
WO 02066344 | Aug 2002 | WO |
WO 02079947 | Oct 2002 | WO |
WO 03023677 | Mar 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20090259840 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
60157168 | Sep 1999 | US | |
60189983 | Mar 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09675677 | Sep 2000 | US |
Child | 12457683 | US |