The present disclosure is generally related to a computational framework used for blocking tracking tools used through webpages.
Tracking tools are often used on websites to track users and/or the users' behaviors as they use respective browsers to visit the websites. For example, cookies may be used to track a user's interests, location, age, and/or search trends. A technical challenge often encountered by many entities (e.g., e-commerce business) operating websites is controlling such use based on the visitors to the websites. Accordingly, there is currently a need for improved tools for automatically blocking of tracking technologies associated with a website, such as tracking technologies that process personal data in one or more categories for which a relevant user has not provided consent, as well as improved tools for automatically blocking tracking technologies that transfer personal data to jurisdictions where such transfers are prohibited by applicable laws and/or regulations.
In accordance with various aspects, a method is provided that comprises: scanning, by computing hardware, a webpage to identify a tracking tool that is associated with the webpage; determining, by the computing hardware, a data destination location that is associated with the tracking tool, wherein the determining step is based on at least one of (a) a location for a computing device that invokes the tracking tool, (b) a location of a computing device that receives data via the tracking tool, or (c) a location of a computing device or a storage device that stores the data; and generating, by the computing hardware, program code, wherein the program code is configured to: determine a location associated with a user who is associated with a rendering of the webpage; determine a prohibited data destination location based on a data structure mapping the location associated with the user to the prohibited data destination location; determine that the data destination location associated with the tracking tool is the prohibited data destination location; and responsive to determining that the data destination location associated with the tracking tool is the prohibited data destination location, perform at least one of disabling the tracking tool from executing or disabling functionality of the tracking tool configured for processing the data from executing.
In some aspects, the program code is further configured to: determine a second location associated with a second user who is associated with a second rendering of the webpage; determine a second prohibited data destination location based on the data structure mapping the second location associated with the user to the second prohibited data destination location; determine that the data destination location associated with the tracking tool is not the second prohibited data destination location; and responsive to determining that the data destination location associated with the tracking tool is not the second prohibited data destination location, permit the tracking tool to execute.
In some aspects, the method further comprises generating, by the computing hardware, a computer-readable file comprising an identifier for the tracking tool and an identifier for the data destination location associated with the tracking tool, wherein the program code comprises the computer-readable file and is configured to identify the data destination location associated with the tracking tool from the computer-readable file. In some aspects, the computer-readable file further comprises the data structure. In some aspects, the program code is configured, prior to determining the location associated with the user, to determine that the tracking tool is authorized to run from the computer-readable file.
In some aspects, the program code is configured, prior to determining the location associated with the user, to determine that the user has provided consent for the tracking tool. In some aspects, the program code is configured, prior to determining the location associated with the user to: determine that the user has not provided consent for the tracking tool; and responsive to determining the user has not provided the consent for the tracking tool, obtain the consent from the user.
In accordance with various aspects, a method is provided that comprises: receiving, by computing hardware, a Hypertext Transfer Protocol (HTTP) request to render a webpage; and responsive to receiving the HTTP request, sending, by the computing hardware, a HTTP response comprising a script to a computing device associated with a user, wherein the computing device is configured to execute, within a browser and during a rendering of the webpage, the script to perform operations comprising: identifying a source script attempting to execute; identifying the source script is configured to invoke a tracking tool based on information on the tracking tool found embedded in the script; and responsive to identifying the source script is configured to invoke the tracking tool: determining a location associated with the user; determining a prohibited data destination location based on a data structure mapping the location associated with the user to the prohibited data destination location; determining a data destination location associated with the tracking tool based on the information embedded in the script; determining that the data destination location associated with the tracking tool is the prohibited data destination location; and responsive to determining that the data destination location associated with the tracking tool is the prohibited data destination location, perform at least one of disabling the tracking tool from executing or disabling functionality of the tracking tool involving processing certain data from executing. In some aspects, the script further performs operations comprising, after disabling the functionality, permitting the source script to execute to invoke the tracking tool for the webpage.
In some aspects, the method further comprises: receiving, by the computing hardware, a second Hypertext Transfer Protocol (HTTP) request to render the webpage; and responsive to receiving the second HTTP request, sending, by the computing hardware, a second HTTP response comprising the script to a second computing device associated with a second user, wherein the second computing device is configured to execute, within a second browser and during a second rendering of the webpage, the script to perform operations comprising: identifying the source script attempting to execute; identifying the source script is configured to invoke the tracking tool based on the information on the tracking tool found embedded in the script; and responsive to identifying the source script is configured to invoke the tracking tool: determining a second location associated with the second user; determining a second prohibited data destination location based on the data structure mapping the second location associated with the second user to the second prohibited data destination location; determining the data destination location associated with the tracking tool based on the information embedded in the script; determining that the data destination location associated with the tracking tool is not the second prohibited data destination location; and responsive to determining that the data destination location associated with the tracking tool is not the second prohibited data destination location, permitting the tracking tool to execute for the webpage. In some aspects, permitting the tracking tool to execute for the webpage comprises permitting the source script to execute to invoke the tracking tool.
In some aspects, the script is configured to determine the location associated with the user based on at least one of (a) a geographical location of the user, (b) a network address associated with the user, (c) browser information on the user, (d) a language associated with the user, or (e) consent data associated with the user. In some aspects, the data destination location associated with the tracking tool is based on at least one of (a) a location for a computing device that invokes the tracking tool, (b) a location of a computing device that receives the data, or (c) a location of a computing device or a storage device that stores the data.
In accordance with various aspects, a non-transitory computer-readable medium storing computer-executable instructions is provided. Accordingly, the computer-executable instructions, when executed by one or more processing devices, configure the one or more processing devices to perform operations that comprise: scanning a webpage to identify a tracking tool that is associated with the webpage; determining a data destination location that is associated with the tracking tool, wherein the determining step is based on at least one of (a) a location for a computing device that invokes the tracking tool, (b) a location of a computing device that receives data via the tracking tool, or (c) a location of a computing device or a storage device that stores the data; and generating program code, wherein the program code is configured to: determine a location associated with a user who is associated with a rendering of the webpage; determine a prohibited data destination location based on a data structure mapping the location associated with the user to the prohibited data destination location; determine that the data destination location associated with the tracking tool is the prohibited data destination location; and responsive to determining that the data destination location associated with the tracking tool is the prohibited data destination location, perform at least one of disabling the tracking tool from executing or disabling functionality of the tracking tool configured for processing the data from executing.
In some aspects, the program code is further configured to: determine a second location associated with a second user who is associated with a second rendering of the webpage; determine a second prohibited data destination location based on the data structure mapping the second location associated with the user to the second prohibited data destination location; determine that the data destination location associated with the tracking tool is not the second prohibited data destination location; and responsive to determining that the data destination location associated with the tracking tool is not the second prohibited data destination location, permit the tracking tool to execute.
In some aspects, the operations further comprise generating a computer-readable file comprising an identifier for the tracking tool and an identifier for the data destination location associated with the tracking tool, wherein the program code comprises the computer-readable file and is configured to identify the data destination location associated with the tracking tool from the computer-readable file. In some aspects, the computer-readable file further comprises the data structure. In some aspects, the program code is configured, prior to determining the location associated with the user, to determine that the tracking tool is authorized to run from the computer-readable file.
In some aspects, the program code is configured, prior to determining the location associated with the user, to determine that the user has provided consent for the tracking tool. In some aspects, the program code is configured, prior to determining the location associated with the user to: determine that the user has not provided consent for the tracking tool; and responsive to determining the user has not provided the consent for the tracking tool, obtain the consent from the user.
In the course of this description, reference will be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Various embodiments for practicing the technologies disclosed herein are described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the technologies disclosed are shown. Indeed, the embodiments disclosed herein are provided so that this disclosure will satisfy applicable legal requirements and should not be construed as limiting or precluding other embodiments applying the teachings and concepts disclosed herein. Like numbers in the drawings refer to like elements throughout.
Tracking tools are often used on websites to track users and/or the users' behaviors as they are using respective browsers to visit the websites. For example, cookies may be used to track a user's interests, location, age, and/or search trends. A technical challenge often encountered by many entities (e.g., e-commerce business) operating websites is controlling such use based on the visitors to the websites. Normally a tracking tool is loaded via a script during the rendering of a webpage of the website upon a visitor requesting to view the webpage. Under a conventional setting, the script executes in the same manner regardless of the visitor to the site. That is to say, the script loads the tracking tool regardless of the visitor.
This may be true even in instances in which a visitor to a website may first need to provide consent before a tracking tool is used to track the visitor and/or visitor's behavior. For example, the visitor may be requested to consent to having his or her behavior tracked and, upon consent, the tracking tool may be loaded to begin tracking the visitor's behavior. However, in situations where the visitor has provided consent, the tracking tool may be loaded without regard to or consideration of the particular visitor who has provided the consent. However, there may be instances in which use of the tracking tool should still be avoided. This is because even though the visitor has provided consent, restrictions may still apply to the use of the tracking tool.
For example, if an entity plans on transferring European Union (EU) personal data outside the EU, then the entity can only transfer such data to countries with robust data protection regulations. As a result, an entity (e.g., e-commerce business) that is operating a website with users from the EU and that is collecting any of the users' personal data such as email address, cookies analytics data, and/or the like falls under such restrictions. Such restrictions are generally in place regardless of whether or not the users have provided consent to having their personal data collected. Therefore, an entity that is operating a website and that collects personal data through the use of a tracking tool may want to avoid collecting personal data from EU customers who visit the website, even in instances in which the customer has provided consent to having his or her personal data collected. However, regulating the use of tracking tools for such situations can be a challenge under a conventional setting.
Various embodiments of the disclosure address several of the technical challenges associated with using tracking tools that process (e.g., collect, store, transfer, and/or the like) personal data by providing a tracking tool blocking framework configured to dynamically detect one or more tracking tools (e.g., scripts, cookies, web beacons, and/or the like) associated with one or more webpages of websites so that particular tools (and/or various capabilities and/or functionality thereof) can be automatically blocked in response to determining that the particular tools result in a transfer of personal data to and/or from a prohibited location (e.g., jurisdiction such as a country, state, region, and/or the like). For instance, in particular embodiments, the framework can be used to automatically block one or more tracking tools associated with a webpage for a website that transfers any personal data associated with a particular user who is visiting the website from a location other than a location in which the particular user resides. In addition, in particular embodiments, the framework can be configured to limit the capabilities of one or more tracking tools so that, rather than entirely blocking such tools, the framework allows such tools to execute but prevents the tools from processing personal data in association with prohibited locations (e.g., jurisdictions).
Accordingly, various embodiments of the disclosure provided herein address many of the technical disadvantages encountered in using tracking tools that process personal data involving parties who are subject to jurisdictions that place restrictions on the use and transfer of personal data. Specifically, embodiments of the disclosure provide a novel framework that can be implemented for various websites and configured to evaluate tracking tools used in conjunction with webpages as the webpages are being loaded so that the tracking tools can be disabled and/or so that capabilities/functionality of the tracking tools can be disabled if determined to involve the use of personal data in a restricted/prohibited location (e.g., jurisdiction). As a result, embodiments of the disclosure can increase security, reliability, capacity, and efficiency in using tracking tools in conjunction with webpages and personal data. In doing so, various embodiments of the present disclosure make major technical contributions to improving the use of tracking tools that involve the processing of personal data along with websites. This in turn translates to more computationally reliable, secure, and/or efficient systems that process personal data.
For purposes of this disclosure, “tracking tools” may refer to, for example, cookies, beacons (e.g., visible elements such as graphics, banners, or buttons; non-pictorial HTML, elements such as the frame, style, script, input link, embed, object, etc. of the web page), scripts, image files, tags, tracking code, and/or any other tracking tools or technology. A geographic area may be referred to as a jurisdiction. Accordingly, a “jurisdiction” as used herein may refer to, for example, a country, region, group of countries, legal jurisdiction, federation of countries, and/or any other area to which a set of laws and/or regulations may apply. Furthermore, although the remainder of the disclosure makes reference to the use of various embodiments of the disclosure in conjunction with tracking tools used for processing (e.g., collecting, storing, transferring, and/or the like) personal data, those of ordinary skill in the art will recognize that embodiments of the disclosure can be used in conjunction with tracking tools used for processing other types of data such as, for example, confidential data associated with an entity such as an organization, charity, government, and/or the like.
Tracking Tool Identification
Turning now to
Depending on the circumstances, the tracking tool identification process 100 may be performed to identify and categorize the tracking tools related to one or more webpages for a web site prior to a user visiting the web site or at a time when a user is actively visiting the web site. For instance, in particular embodiments, the tracking tool identification process 100 may be performed at a time when new content has been added to one or more webpages and as a result, a new tracking tool may have been added to one or more of the webpages. For example, a new code release may have been issued for the website and/or a tag manager used for the website may have been updated. In other instances, the tracking tool identification process 100 may be performed to identify and categorize the tracking tools for one or more webpages of a website “on the fly” at a time when a user is visiting the website and the one or more webpages are being rendered. Such a configuration can ensure that any tracking tool that has been newly added is identified and categorized.
Accordingly, the tracking tool identification process 100 begins with performing a scan of a webpage to identify any tracking tools associated with the webpage and/or any respective scripts that may be used to execute, load, introduce, and/or the like the tracking tools at Step 110. For example, in various embodiments, the tracking tool identification process 100 may involve using a scanner such as Chrome scanner to scan the webpage as it is being loaded to identify the tracking tools and/or associated scripts.
For instance, in particular embodiments, the tracking tool identification process 100 may involve identifying a source for a particular tracking tool by analyzing one or more flows of data, for example, between a browser rending the webpage and a server serving the webpage to the browser, or between the browser and one or more remote systems (e.g., remote computing entities that one or more scripts loading on the webpage attempt to communicate with). For instance, one or more response headers may be scanned to identify a source or initiator of the particular tracking tool such as, for example, one or more response headers that have been sent to the browser by a host server associated with the particular tracking tool in response to the host server receiving an HTTP request. Here, the response header may include, for example, a date, size, and/or type of file that the host server is attempting to send to the browser, as well as, or instead of, other data such as data about the host server itself. Accordingly, the tracking tool identification process 100 may involve using this header information to match a source script with the particular tracking tool or otherwise determine a source script for the particular tracking tool.
Alternatively, or in addition, in other embodiments, the tracking tool identification process 100 may involve employing a back-end synch with tags to identify a source for a particular tracking tool. In such an embodiment, a host identifier may be initially determined from the host field associated with a source script that may be associated with the particular tracking tool. The host identifier for the source script may then be matched to a host of a known tracking tool (e.g., as determined from a data source of known tracking tools) to determine that the particular source script is associated with the same host and, therefore, the associated particular tracking tool may be assumed to have a similar tracking purpose.
Accordingly, in particular embodiments, the tracking tool identification process 100 continues with generating an output file for the identified tracking tools at Step 115. Here, the output file may include an identifier for each tracking tool along with other information for the tools such as, for example, an identifier for an associated source script and/or other information acquired from the response header. Thus, the output file may associate an identified tracking tool with a respective source script that is used to execute, load, introduce, etc. the tracking tool along with other associated data.
The tracking tool identification process 100 continues with selecting an identified tracking tool at Step 120 and evaluating the tracking tool at Step 125. Accordingly, in various embodiments, the evaluation of the selected tracking tool is performed via an evaluate tracking tool process described in
The tracking tool identification process 100 continues with determining whether another tracking tool has been identified at Step 130. If so, then the tracking tool identification process 100 returns to Step 120, selecting the next identified tracking tool, and evaluating the newly selected tracking tool as just described. Otherwise, the tracking tool identification process 100 advances to Step 135, generating and/or populating a data set indicating the identified tracking tools (and/or their respective source scripts) and the respective one or more categories and one or more identified locations for each tracking tool. Accordingly, in various embodiments, this data set may be stored in an output file of any suitable format, such as a JavaScript® Object Notation (JSON) formatted file that can then be embedded into a webpage or code (e.g., JavaScript®) associated with the webpage or website. As detailed further herein, the information on the identified tracking tools can then be used as in various embodiments in controlling which and/or how the different identified tracking tools are loaded and/or executed when the associated webpage is rendered for a particular user who is visiting the website.
Although not shown in
Evaluate Tracking Tool
Turning now to
The evaluate tracking tool process 200 begins with receiving the identified tracking tool for the webpage at Step 210. Depending on the embodiment, the identified tracking tool may be received as input and/or accessed from a data source such as the output file described above. Accordingly, various information may be received for the identified tracking tool such as, for example, an identifier for the tracking tool, identifier for a source script associated with the tracking, and/or other related information that may have been included in the output file produced by the tracking tool identification module as described above.
The evaluate tracking tool process 200 continues with comparing the identified tracking tool to known tracking tools at Step 215. In various embodiments, this particular step is performed by accessing a data source (e.g., database, one or more files, and/or the like) that includes information on known tracking tools. For example, the data source may store information for each known tracking tool that may include, but is not limited to: (1) one or more vendors that are associated with the known tracking tool; (2) one or more purposes of the known tracking tool; (3) one or more types of personal data that the known tracking tool may collect and/or process; (4) one or more host identifiers associated with the known tracking tool; and/or (5) any other attributes and/or characteristics of the known tracking tool. Accordingly, the evaluate tracking tool process 200 may involve determining which one or more of the known tracking tools most closely matches with the identified tracking tool based at least in part on the comparison. For example, a purpose of a tracking tool may be to gather information on the products viewed by a user while he or she is visiting an e-commerce website. Thus, depending on the embodiment, information known for the identified tracking tool may be used in conducting the comparison to known tracking tools. For instance, an identifier for the tracking tool (e.g., name of the tracking tool), vendor of the tracking tool, source providing the tracking tool, and/or the like may be used in identifying one or more known tracking tools associated with the identified tracking tool.
The evaluate tracking tool process 200 continues with identifying one or more categories for the identified tracking tool at Step 220. Here, in particular embodiments, the one or more categories may be identified based at least in part on one or more purposes associated with the identified tracking tool as gathered from the known tracking tool(s) associated with the identified tracking tool. For instance, in some embodiments, information gathered for the identified tracking tool from the response header and provided in the output file may be used, in combination with information found in the data source for the known tracking tool(s) associated with the identified tracking tool, to determine one or more categories for the tracking tool.
For example, if information gathered on the particular tracking tool indicates a purpose for the particular tracking tool matches a purpose of a known tracking tool that facilitates the collection of web browsing information, then the evaluate tracking tool process 200 may involve associating the category “web browsing information collection” with the particular tracking tool. In another example, if information gathered on the particular tracking tool indicates that the types of personal data collected by the particular tracking tool matches the types of personal data collected by a known tracking tool, then the evaluate tracking tool process 200 may involve associating a category associated with the types of personal data collected with the particular tracking tool. In yet another illustrative example, if the information gathered on the particular tracking tool indicates that a particular host server is associated with the particular tracking tool and the particular host server matches a host server associated with a known tracking tool, then the evaluate tracking tool process 200 may involve associating the category of the known tracking tool with the particular tracking tool. In yet another illustrative example, if information gathered for the particular tracking tool indicates that a particular vendor is associated with the particular tracking tool and that the vendor matches a vendor associated with a known tracking tool, then the evaluate tracking tool process 200 may involve associating the category of the known tracking tool with the particular tracking tool. Accordingly, depending on the embodiment, the evaluate tracking tool process 200 may be performed to use various other particular attributes of tracking tools and/or related information, and/or any combinations thereof, to determine one or more categories for the particular tracking tool.
Continuing, in various embodiments, the evaluate tracking tool process 200 involves using information (e.g., found in the data source) for the associated known tracking tool(s) to identify one or more data destination locations for the identified tracking tool at Step 225. For instance, the one or more data destination locations may be associated with locations to which the identified tracking tool transfers data or at which a computing entity such as a server is located that calls, loads, executes, etc. the identified tracking tool. In some embodiments, the evaluate tracking tool process 200 may also, or instead, involve analyzing the identified tracking tool and/or any source script that is used to execute, load, introduce, etc. the tracking tool to determine one or more data destination locations of one or more computing entities that call, load, execute, etc. the identified tracking tool. Alternatively, or in addition, the evaluate tracking tool process 200 may involve analyzing the identified tracking tool and/or any respective script used to execute and/or introduce the identified tracking tool to determine one or more data destination locations for data collected by the tracking tool and transmitted to a computing entity at such data destination locations.
For example, in particular embodiments, the identified tracking tool and/or associated source script may be analyzed to determine a network address (e.g., IP address) of a server associated with calling or loading the tracking tool and/or source script. A reverse network address look-up (e.g., reverse IP address look-up) may then be performed to determine a geographical or jurisdictional location to associate with the particular tracking tool and/or source script. Alternatively, or in addition, a tracking tool and/or source script may be analyzed to determine a network address (e.g., IP address) associated with a remote device to which the tracking tool and/or source script is configured to transmit data. A reverse network address look-up (e.g., reverse IP address look-up) may then be used to determine a geographical or jurisdictional destination location to associate with the particular tracking tool and/or source script.
In some embodiments, the evaluate tracking tool process 200 may involve tagging the identified tracking tool by storing one or more parameters (e.g., as metadata) associated with the particular tracking tool that indicate that a particular data destination location has been identified as being associated with the tool. Alternatively, or in addition, the evaluate tracking tool process 200 may involve determining that a data destination location, which has been identified as being associated with the particular tracking tool, is a particular type or category of location (e.g., outside the EU, within the EU, subject to a particular regulatory framework, not subject to a particular regulatory framework, etc.) and tagging the particular tracking tool by storing one or more parameters (e.g., as metadata) associated with the tool that indicate that the particular data destination location is of the determined location type or in the determined location category.
As previously noted, in various embodiments, the one or more categories and/or one or more data destination locations identified for the particular tracking tool may then be recorded in a data set. As furthered noted, the one or more categories and/or data destination locations may then be used in controlling which different identified tracking tools are loaded and/or executed when the associated webpage is rendered for a particular user who is visiting the website (and/or how the tracking tools are loaded and/or executed).
Tracking Tool Implementation
Turning now to
Accordingly, a user visits the website and sends a request to render a webpage for the website. That is to say, in particular embodiments, a browser executing on a computing entity being used by the user sends an http request to render the webpage that is received by a computing entity such as a web server. In turn, the web server prepares and sends an http response to the request back to the browser and, as a result, the tracking tool implementation process 300 is executed via the webpage being loaded in the user's browser residing on the user's computing entity. Thus, the tracking tool implementation process 300 may be implemented in various embodiments as suitable program code (e.g., a script) executed on computing hardware such as, for example, a client computing device as described herein.
Therefore, in various embodiments, the tracking tool implementation process 300 begins with determining one or more locations (e.g., jurisdictions) for the user visiting the website at Step 310. Depending on the embodiment, the tracking tool implementation process 300 may involve determining the location(s) for the user by analyzing user information and using one, or a combination of, various techniques, such as a user geographical location, a user network address (e.g., IP Address), a reverse network address look-up of a user network address (e.g., a reverse IP address look-up), browser information, user language (e.g., the language selected by the user in using the website), user data collected and/or determined as part of obtaining consent from the user, and/or the like. In addition, in some embodiments, the tracking tool implementation process 300 may involve tagging the user (e.g., using metadata) as being located in the location(s), and/or otherwise store the location(s), in response to determining the user is associated with one or more particular locations such as the EU.
For example, the user may be a resident of the EU who is currently visiting the United States. Therefore, in this example, the tracking tool implementation process 300 may involve determining that a first location associated with the user is the United States based at least in part on a current IP address for the user. However, in addition to the first location, the tracking tool implementation process 300 may involve determining that a second location associated with the user is the EU based at least in part on a language (e.g., French) selected by the user in which to have the webpages of the website rendered. Therefore, in this particular example, the tracking tool implementation process may involve taking both locations into consideration in evaluating whether to block certain tracking tools.
It is noted that the tags on the location(s) that has been identified for the user (e.g., metadata) are used in particular embodiments in restricting particular uses of personal data collected for the user. For instance, metadata on the location(s) identified for the user may be stored along with personal data collected for the user that can then be used to restrict the user's personal data from being processed by and/or transferred to any system outside of the user's jurisdiction. For example, such metadata associated with a user's email address may be used to restrict the user's e-mail address from being transferred outside of the European Union, such as being propagated to US-based (e.g., or other country) marketing systems.
The tracking tool implementation process 300 continues with analyzing the source scripts that are attempting to execute as the webpage is being loaded and determines that a particular script is associated with a tracking tool at Step 315. Here, in particular embodiments, the tracking tool implementation process 300 may involve referencing the data set (e.g., the JSON formatted file) to identify a script that is attempting to execute and that is associated with a tracking tool of interest. Accordingly, in various embodiments, the tracking tool implementation process involves tagging the script with a category based at least in part on the tracking tool information found in the data set for the tracking tool at Step 320.
In particular embodiments, a category associated with the tracking tool may not be determined based on the information provided in the output file. In such cases, the tracking tool implementation process 300 may involve automatically disabling the source script for the tracking tool so that the tracking tool is not executed. Alternatively, the tracking tool implementation process 300 may involve allowing the source script to run. Accordingly, in some embodiments, this setting of whether to run scripts for which there is insufficient information may be a user-configurable setting or preconfigured by a system operator.
In addition, in particular embodiments, the information provided in the output file may indicate whether the tracking tool is authorized or not authorized to run. Here, for example, the tracking tool implementation process 300 may involve matching the script that is attempting to execute with a source script for a tracking tool in the data set that indicates that the tracking tool is not authorized to execute (or does not match a source script for a tracking tool that is explicitly indicated in the data set as authorized to execute). In response, the tracking tool implementation process 300 may involve preventing that script from executing. Similarly, the tracking tool implementation process 300 may involve determining that the particular script that is attempting to execute matches a source script that is indicated in the data set as a tracking tool that is authorized to execute (or does not match a source script for a tracking tool that is explicitly indicated in the data set as being prohibited from executing) and in response, allowing that script to execute.
The tracking tool implementation process 300 continues with determining whether consent has been provided by the user for the particular tracking tool, itself, and/or for the category associated with the tracking tool at Step 325. In various embodiments, the tracking tool implementation process 300 may involve accessing a user consent data source (e.g., database file, matrix, vector, and/or the like) and based at least in part on the category tagged to the tracking tool, determining whether the user visiting the website had previously granted consent to process his or her personal data within the specific category. For example, the user may have previously provided consent (e.g., opted in) to having information on his or her browsing history on the web site recorded. As a result, the entity running the web site may have recorded the user's consent at that time so that such consent is reflected in the user consent data source.
If consent has not been provided by the user, then the tracking tool implementation process 300 in various embodiments involves determining whether consent had been previously requested from the user at Step 330. For example, in particular instances, the user consent data source may indicate that the user had expressly declined (e.g., opted out of) consent for the category of the tracking tool during a past visit. However, in other instances, the user may have passively declined consent by not expressly providing or declining consent. For example, the user may have visited the website in the past and been provided with an option to “opt in” or “opt out” for the category and not selected either option.
Therefore, if the user has expressly declined consent or consent was previously requested but the user did not decline or provide consent, then the tracking tool implementation process 300 in various embodiment involves preventing the script from executing to facilitate loading of the tracking tool at Step 335. However, if consent has not been previously requested, then the tracking tool implementation process 300 involves requesting the user's consent for the category of the tracking tool (and/or the particular tracking tool itself) at Step 340. Accordingly, in various embodiments, the tracking tool implementation process may involve prompting the user for consent to load the tracking tool associated with the specific category. For instance, in particular embodiments, the user may be presented with a consent notice requesting permission to process data for the specific category.
The tracking tool implementation process 300 continues with receiving an indication of consent and determines whether the user has provided consent for the tracking tool (category of tracking tool) at Step 345. Accordingly, in some embodiments, the tracking tool implementation process 300 may involve recording/storing the indication of consent (e.g., permitted or declined) for the user in the user consent data source. If the user has not provided consent, then the tracking tool implementation process 300 involves preventing the script from executing to facilitate loading of the tracking tool at Step 335. However, if the user has provided consent for the tracking tool (category of tracking tool), then the tracking tool is loaded at Step 350.
In various embodiments, the tracking tool is loaded via a load tracking tool process as described in
At this point, the tracking tool implementation process 300 continues determining whether the webpage has loaded at Step 355. If not, then the tracking tool implementation process 300 involves returning to Step 315 and analyzing any additional scripts as they attempt to execute on the webpage.
At this point, a particular tracking tool identified for a particular webpage may: (1) function normally while the user is viewing and/or interacting with the webpage; (2) not function at all, thus eliminating the collection and use of any personal data for the user associated with the tracking tool; or (3) function with limited capabilities and/or functionality, thus minimizing and/or eliminating the collection and use of any personal data for the user associated with the tracking tool. Therefore, the tracking tool implementation process 300 may allow for the entity to operate the website and corresponding webpage(s) for the website and facilitate the processing (e.g., collecting, storing, transferring, and/or the like) of personal data of users who visit the website while remaining in conformance with any regulatory restrictions that may be in place on the processing of the personal data based at least in part on consent provided by the users, as well as the data destination location(s) associated with the processing of the personal data and/or the locations associated with the users.
In addition, in particular embodiments, the tracking tool implementation process 300 may involve evaluating tracking tools (and/or the process may be invoked) at different times during the user's visit of the website. For example, the tracking tool implementation process 300 may be performed at a time after the webpage has been loaded (rendered) to evaluate tracking tools (or may be invoked) in response to particular information being received from the user as the user interacts with the webpage, even though such information may have not been received at a time when the webpage was being loaded. Accordingly, in these embodiments, the tracking tool implementation process 300 may be performed to disable a tracking tool that has been loaded based at least in part on the information that has been received by the user. For instance, the tracking tool may involve a cookie that has been installed on the user's computing entity and the tracking tool implementation process 300 may be performed to remove the cookie.
For example, as the user interacts with the website, the user may provide information that may identify a location for the user. For instance, the user may provide a shipping address for a purchase the user is making through the website that indicates the user resides in the EU. As a result of this new information, the tracking tool implementation process 300 may be performed in some embodiments to determine that an additional location for the user is the EU and in response, conduct an analysis on any tracking tools being used for the current webpage being viewed by the user based at least in part on the additional location. Accordingly, the tracking tool implementation process 300 may be performed to remove a particular tracking tool that was initially loaded in response to the tracking tool involving the processing of personal data outside the EU. Thus, in particular embodiments, the tracking tool implementation process 300 may allow for the entity to adjust operation of the website and corresponding webpage(s) for the website during a user's visit of the web site to ensure conformance with any regulatory restrictions.
Load Tracking Tool
Turning now to
The load tracking tool process 400 begins with receiving the tracking tool at Step 410. Here, in particular embodiments, the tracking tool is received via one or more pieces of information on the tracking tool such as, for example, an identifier for the source script that is attempting to execute the tracking tool and/or an identifier for the tracking tool itself.
The load tracking tool process 400 continues with mapping whether each data destination location associated with the tracking tool is a permitted or prohibited data destination location (e.g., jurisdiction) with respect to the location(s) associated with the user at Step 415. Here, in particular embodiments, the load tracking tool process 400 may involve using information associated with the identified tracking tool in the output file (e.g., the JSON formatted file) to identify the data destination locations associated with the tracking tool. Accordingly, the information may be accessed using the identifier for the source script and/or tracking tool. In addition, the load tracking tool process 400 may involve identifying the location(s) associated with the particular user (e.g., provided as input or accessed via metadata for the user). In various embodiments, the load tracking tool process 400 involves performing the mapping, and determining whether any of the data destination location(s) associated with the tracking tool is considered (e.g., matches) a prohibited data destination location for any of the location(s) associated with the particular user. For instance, in particular embodiments, the load tracking tool process 400 may involve determining one or more prohibited (and/or permitted) data destination locations based at least in part on the location(s) associated with the particular user using a data structure that maps the location(s) associated with the user with or one or more listings of prohibited data destination locations and/or one or more listings of permitted data destination locations. Accordingly, the load tracking tool process 400 may involve determining whether a data destination location associated with the tracking tool is identified in any of the one or more listings.
In some embodiments, the load tracking tool process 400 may involve performing a comparison of indicators based at least in part on the one or more locations associated with the user and one or more data destination locations associated with the tracking tool to determine whether the particular tracking tool should be blocked (e.g., prohibited from executing) or limited for the user. For example, a “non-EU” indicator may have been stored in the output file for the particular tracking tool that indicates that the tool transfers data to a location outside the EU. In addition, an “EU” indicator may have been stored in metadata for the particular user indicating the user is an EU citizen. Here, the load tracking tool process 400 may involve making use of the listings mentioned above in determining whether the “non-EU” indicator associated with the tracking tool (e.g., in light of the “EU” indicator for the user) is a prohibited location.
Thus, in various embodiments, the load tracking tool process 400 involves determining whether the tracking tool is associated with a prohibited data destination location at Step 420. If none of the data destination locations associated with the particular tracking tool maps to a prohibited data destination location for the particular user, then the load tracking tool process 400 continues with allowing the source script for the tracking tool to execute and load the tracking tool normally at Step 425. As a result, the tracking tool is permitted to execute normally.
However, if the load tracking tool module determines that a data destination location associated with the particular tracking tool maps to a prohibited data destination location (or that at least one data destination location does not map to a permitted data destination location) for the particular user, then the load tracking tool process 400 involves prohibiting the tracking tool from executing normally. Accordingly, in particular embodiments, this particular step involves prohibiting (blocking) the source script associated with the tracking tool from executing, thus preventing the tracking tool from loading. However, alternatively, or in addition, in some embodiments, this particular step involves preventing the implementation of one or more capabilities and/or functionality of the particular tracking tool to limit and/or prohibit (not permit) processing of personal data involving prohibited data destination locations instead of entirely blocking the operation of the particular tracking tool. For example, the tracking tool may be allowed to operate but prevent the tool from tracking particular types of personal data and/or transferring personal data to particular data destination locations (e.g., jurisdictions).
Therefore, in various embodiments, the load tracking tool process 400 involves determining whether capabilities and/or functionality for the tracking tool should be limited and/or prohibited or whether the tracking tool module should be prohibited from executing entirely at Step 430. For example, the tracking tool may be configured to collect one or more pieces of data while the user is interacting with the webpage. A first piece of data may be information on various navigation functionality (e.g., buttons, dropdowns, slide bars, and/or the like) that the user makes use of while navigating around the webpage. A second piece of data may be a specific identifier of the user (e.g., a username and/or an account number) that indicates the user's identity. Thus, the second piece of data may be considered a piece of personal data for the user. Accordingly, in this example, a determination may be made as to whether the tracking tool should be entirely prohibited from operating or that certain capabilities and/or functionality should be prohibited based at least in part on information found in the output file for the tracking tool that identifies that the purpose of the tracking tool is to collect information on the navigation functionality used by the user, as well as an identifier for the user. Therefore, the load tracking tool process 400 may result in determining that the functionality of the tracking tool should be limited so that only the information on the navigation functionality is collected and not the identifier for the user.
Accordingly, the load tracking tool process 400 may involve loading the tracking tool accordingly at Step 435. Therefore, in the example, the script may be allowed to load the tracking tool but with particular capability and/or functionality disabled in the tracking tool that is used for collecting (e.g., recording) an identifier for the user. If instead the load tracking tool process 400 involves determining that the tracking tool should be prohibited from executing entirely, then the tracking tool is prohibited from loading at Step 440. Therefore, in various embodiments, the source script used for loading the tracking tool would be prohibited from executing.
It is noted that various embodiments of the disclosure are configured so that if a location associated with a tracking tool is prohibited or not permitted, the tracking tool may still be prohibited (e.g., blocked) from running or may be restricted with respect to one or more capabilities and/or functionality, even if the user has provided consent. That is to say, particular embodiments of the disclosure are configured to provide a mechanism to ensure compliance with any regulations and/or restrictions that may be in place for the processing of personal data, even in instances when the user may consent to such processing of his or her personal data. However, other embodiments of the disclosure may be configured to allow a user's consent to override a prohibited location associated with a tracking tool and allow the tracking tool to run normally. Further, it is noted that various embodiments of the disclosure may be used for any suitable type of element including scripts, images (e.g., beacons), iframe tags, etc.
Embodiments of the present disclosure may be implemented in various ways, including as computer program products that comprise articles of manufacture. Such computer program products may include one or more software components including, for example, software objects, methods, data structures, and/or the like. A software component may be coded in any of a variety of programming languages. An illustrative programming language may be a lower-level programming language such as an assembly language associated with a particular hardware architecture and/or operating system platform. A software component comprising assembly language instructions may require conversion into executable machine code by an assembler prior to execution by the hardware architecture and/or platform. Another example programming language may be a higher-level programming language that may be portable across multiple architectures. A software component comprising higher-level programming language instructions may require conversion to an intermediate representation by an interpreter or a compiler prior to execution.
Other examples of programming languages include, but are not limited to, a macro language, a shell or command language, a job control language, a script language, a database query or search language, and/or a report writing language. In one or more example embodiments, a software component comprising instructions in one of the foregoing examples of programming languages may be executed directly by an operating system or other software component without having to be first transformed into another form. A software component may be stored as a file or other data storage construct. Software components of a similar type or functionally related may be stored together such as, for example, in a particular directory, folder, or library. Software components may be static (e.g., pre-established or fixed) or dynamic (e.g., created or modified at the time of execution).
A computer program product may include a non-transitory computer-readable storage medium storing applications, programs, program modules, scripts, source code, program code, object code, byte code, compiled code, interpreted code, machine code, executable instructions, and/or the like (also referred to herein as executable instructions, instructions for execution, computer program products, program code, and/or similar terms used herein interchangeably). Such non-transitory computer-readable storage media include all computer-readable media (including volatile and non-volatile media).
Depending on the embodiment, a non-volatile computer-readable storage medium may include a floppy disk, flexible disk, hard disk, solid-state storage (SSS) (e.g., a solid state drive (SSD), solid state card (SSC), solid state module (SSM), enterprise flash drive, magnetic tape, or any other non-transitory magnetic medium, and/or the like. A non-volatile computer-readable storage medium may also include a punch card, paper tape, optical mark sheet (or any other physical medium with patterns of holes or other optically recognizable indicia), compact disc read only memory (CD-ROM), compact disc-rewritable (CD-RW), digital versatile disc (DVD), Blu-ray disc (BD), any other non-transitory optical medium, and/or the like. Such a non-volatile computer-readable storage medium may also include read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory (e.g., Serial, NAND, NOR, and/or the like), multimedia memory cards (MMC), secure digital (SD) memory cards, SmartMedia cards, CompactFlash (CF) cards, Memory Sticks, and/or the like. Further, a non-volatile computer-readable storage medium may also include conductive-bridging random access memory (CBRAM), phase-change random access memory (PRAM), ferroelectric random-access memory (FeRAM), non-volatile random-access memory (NVRAM), magnetoresistive random-access memory (MRAM), resistive random-access memory (RRAM), Silicon-Oxide-Nitride-Oxide-Silicon memory (SONOS), floating junction gate random access memory (FJG RAM), Millipede memory, racetrack memory, and/or the like.
Depending on the embodiment, a volatile computer-readable storage medium may include random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), fast page mode dynamic random access memory (FPM DRAM), extended data-out dynamic random access memory (EDO DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), double data rate type two synchronous dynamic random access memory (DDR2 SDRAM), double data rate type three synchronous dynamic random access memory (DDR3 SDRAM), Rambus dynamic random access memory (RDRAM), Twin Transistor RAM (TTRAM), Thyristor RAM (T-RAM), Zero-capacitor (Z-RAM), Rambus in-line memory module (RIMM), dual in-line memory module (DIMM), single in-line memory module (SIMM), video random access memory (VRAM), cache memory (including various levels), flash memory, register memory, and/or the like. It will be appreciated that where embodiments are described to use a computer-readable storage medium, other types of computer-readable storage media may be substituted for or used in addition to the computer-readable storage media described above.
As should be appreciated, various embodiments of the present disclosure may also be implemented as methods, apparatus, systems, computing devices, computing entities, and/or the like. As such, embodiments of the present disclosure may take the form of a data structure, apparatus, system, computing device, computing entity, and/or the like executing instructions stored on a computer-readable storage medium to perform certain steps or operations. Thus, embodiments of the present disclosure may also take the form of an entirely hardware embodiment, an entirely computer program product embodiment, and/or an embodiment that comprises combination of computer program products and hardware performing certain steps or operations.
Embodiments of the present disclosure are described below with reference to block diagrams and flowchart illustrations. Thus, it should be understood that each block of the block diagrams and flowchart illustrations may be implemented in the form of a computer program product, an entirely hardware embodiment, a combination of hardware and computer program products, and/or apparatus, systems, computing devices, computing entities, and/or the like carrying out instructions, operations, steps, and similar words used interchangeably (e.g., the executable instructions, instructions for execution, program code, and/or the like) on a computer-readable storage medium for execution. For example, retrieval, loading, and execution of code may be performed sequentially such that one instruction is retrieved, loaded, and executed at a time. In some exemplary embodiments, retrieval, loading, and/or execution may be performed in parallel such that multiple instructions are retrieved, loaded, and/or executed together. Thus, such embodiments can produce specifically-configured machines performing the steps or operations specified in the block diagrams and flowchart illustrations. Accordingly, the block diagrams and flowchart illustrations support various combinations of embodiments for performing the specified instructions, operations, or steps.
Accordingly, the one or more servers 520 may be configured for performing different functionality within the system. For example, one or more of the servers 520 may be configured as web server(s) that provide functionality with respect to receiving http requests and providing content in the form of web pages for one or more websites visited by the various client computing devices. In addition, one or more of the servers 520 may be configured for performing different functionality such as backend services with respect to the one or more websites. In particular embodiments, such one or more servers 520 may be configured to perform the evaluate tracking tool process 200 as previously described. Further, in particular embodiments, the tracking tool implementation process 300 and load tracking tool process 400 previously described may be performed by one or more client computing devices.
In various embodiments, the one or more computer networks 510 facilitate communication between the one or more servers 520, client computing devices, and/or storage devices 530. Here, the one or more computer networks 510 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switched telephone network (PSTN), or any other type of network. Accordingly, the communication link between the one or more servers 520, client computing devices, and/or storage devices 530 may be, for example, implemented via a Local Area Network (LAN), a Wide Area Network (WAN), the Internet, and/or the like.
An exemplary computing entity 600 includes a processor 602, a main memory 604 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), Rambus DRAM (RDRAM), and/or the like), a static memory 606 (e.g., flash memory, static random access memory (SRAM), and/or the like), and a data storage device 618, that communicate with each other via a bus 632.
The processor 602 may represent one or more general-purpose processing devices such as a microprocessor, a central processing unit, and/or the like. In some embodiments, the processor 602 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, processor implementing other instruction sets, processors implementing a combination of instruction sets, and/or the like. In some embodiments, the processor 602 may be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, and/or the like. The processor 602 may be configured to execute processing logic 626 for performing various operations and/or steps described herein.
The computing entity 600 may further include a network interface device 608, as well as a video display unit 610 (e.g., a liquid crystal display (LCD), a cathode ray tube (CRT), and/or the like), an alphanumeric input device 612 (e.g., a keyboard), a cursor control device 614 (e.g., a mouse), and/or a signal generation device 616 (e.g., a speaker). The computing entity 600 may further include a data storage device 618. The data storage device 618 may include a non-transitory computer-readable storage medium 630 (also known as a non-transitory computer-readable storage medium or a non-transitory computer-readable medium) on which is stored one or more sets of instructions 622 (e.g., software, software modules) embodying any one or more of the methodologies or functions described herein. The instructions 622 may also reside, completely or at least partially, within main memory 604 and/or within the processor 602 during execution thereof by the computing entity 600—main memory 604 and processor 602 also constituting computer-accessible storage media. The instructions 622 may further be transmitted or received over a network 510 via the network interface device 608.
While the computer-readable storage medium 630 is shown to be a single medium, the terms “computer-readable storage medium” and “machine-accessible storage medium” should be understood to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable storage medium” should also be understood to include any medium that is capable of storing, encoding, and/or carrying a set of instructions for execution by the computing entity 600 and that causes the computing entity 600 to perform any one or more of the methodologies of the present disclosure. The term “computer-readable storage medium” should accordingly be understood to include, but not be limited to, solid-state memories, optical and magnetic media, and/or the like.
Exemplary System Operation
The logical steps and/or operations described herein may be implemented (1) as a sequence of computer implemented acts or one or more program modules running on a computing system and/or (2) as interconnected machine logic circuits or circuit modules within the computing system. The implementation is a matter of choice dependent on the performance and other requirements of the computing system. Accordingly, the logical steps and/or operations described herein are referred to variously as states, operations, steps, structural devices, acts, or modules. These operations, steps, structural devices, acts, and modules may be implemented in software code, in firmware, in special purpose digital logic, and any combination thereof. Greater or fewer steps and/or operations may be performed than shown in the figures and described herein. These steps and/or operations may also be performed in a different order than those described herein.
While this specification contains many specific embodiment details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are described in a particular order, this should not be understood as requiring that such operations be performed in the particular order described or in sequential order, or that all described operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components (e.g., modules) and systems may generally be integrated together in a single software product or packaged into multiple software products.
Many modifications and other embodiments of the disclosure will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.
This application is a continuation of U.S. patent application Ser. No. 17/387,421, filed Jul. 28, 2021, which claims the benefit of U.S. Provisional patent Application No. 63/057,382, filed Jul. 28, 2020, the disclosures of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4536866 | Jerome et al. | Aug 1985 | A |
4574350 | Starr | Mar 1986 | A |
5193162 | Bordsen et al. | Mar 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5329447 | Leedom, Jr. | Jul 1994 | A |
5404299 | Tsurubayashi et al. | Apr 1995 | A |
5535393 | Reeve et al. | Jul 1996 | A |
5560005 | Hoover et al. | Sep 1996 | A |
5668986 | Nilsen et al. | Sep 1997 | A |
5710917 | Musa et al. | Jan 1998 | A |
5761529 | Raji | Jun 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5872973 | Mitchell et al. | Feb 1999 | A |
5913041 | Ramanathan et al. | Jun 1999 | A |
5913214 | Madnick et al. | Jun 1999 | A |
6016394 | Walker | Jan 2000 | A |
6122627 | Carey et al. | Sep 2000 | A |
6148297 | Swor et al. | Nov 2000 | A |
6148342 | Ho | Nov 2000 | A |
6240416 | Immon et al. | May 2001 | B1 |
6240422 | Atkins et al. | May 2001 | B1 |
6243816 | Fang et al. | Jun 2001 | B1 |
6253203 | Oflaherty et al. | Jun 2001 | B1 |
6263335 | Paik et al. | Jul 2001 | B1 |
6272631 | Thomlinson et al. | Aug 2001 | B1 |
6275824 | Oflaherty et al. | Aug 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6363488 | Ginter et al. | Mar 2002 | B1 |
6374237 | Reese | Apr 2002 | B1 |
6374252 | Althoff et al. | Apr 2002 | B1 |
6408336 | Schneider et al. | Jun 2002 | B1 |
6427230 | Goiffon et al. | Jul 2002 | B1 |
6430556 | Goldberg et al. | Aug 2002 | B1 |
6442688 | Moses et al. | Aug 2002 | B1 |
6446120 | Dantressangle | Sep 2002 | B1 |
6463488 | San Juan | Oct 2002 | B1 |
6484149 | Jammes et al. | Nov 2002 | B1 |
6484180 | Lyons et al. | Nov 2002 | B1 |
6516314 | Birkler et al. | Feb 2003 | B1 |
6516337 | Tripp et al. | Feb 2003 | B1 |
6519571 | Guheen et al. | Feb 2003 | B1 |
6574631 | Subramanian et al. | Jun 2003 | B1 |
6591272 | Williams | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6611812 | Hurtado et al. | Aug 2003 | B2 |
6625602 | Meredith et al. | Sep 2003 | B1 |
6629081 | Cornelius et al. | Sep 2003 | B1 |
6633878 | Underwood | Oct 2003 | B1 |
6662192 | Rebane | Dec 2003 | B1 |
6662357 | Bowman-Amuah | Dec 2003 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6699042 | Smith et al. | Mar 2004 | B2 |
6701314 | Conover et al. | Mar 2004 | B1 |
6721713 | Guheen et al. | Apr 2004 | B1 |
6725200 | Rost | Apr 2004 | B1 |
6732109 | Lindberg et al. | May 2004 | B2 |
6754665 | Futagami et al. | Jun 2004 | B1 |
6755344 | Mollett et al. | Jun 2004 | B1 |
6757685 | Raffaele et al. | Jun 2004 | B2 |
6757888 | Knutson et al. | Jun 2004 | B1 |
6816944 | Peng | Nov 2004 | B2 |
6826693 | Yoshida et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6886101 | Glazer et al. | Apr 2005 | B2 |
6901346 | Tracy et al. | May 2005 | B2 |
6904417 | Clayton et al. | Jun 2005 | B2 |
6909897 | Kikuchi | Jun 2005 | B2 |
6925443 | Baggett, Jr. et al. | Aug 2005 | B1 |
6938041 | Brandow et al. | Aug 2005 | B1 |
6956845 | Baker et al. | Oct 2005 | B2 |
6957261 | Lortz | Oct 2005 | B2 |
6978270 | Carty et al. | Dec 2005 | B1 |
6980927 | Tracy et al. | Dec 2005 | B2 |
6980987 | Kaminer | Dec 2005 | B2 |
6983221 | Tracy et al. | Jan 2006 | B2 |
6985887 | Sunstein et al. | Jan 2006 | B1 |
6990454 | McIntosh | Jan 2006 | B2 |
6993448 | Tracy et al. | Jan 2006 | B2 |
6993495 | Smith, Jr. et al. | Jan 2006 | B2 |
6996807 | Vardi et al. | Feb 2006 | B1 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7003662 | Genty et al. | Feb 2006 | B2 |
7013290 | Ananian | Mar 2006 | B2 |
7017105 | Flanagin et al. | Mar 2006 | B2 |
7023979 | Wu et al. | Apr 2006 | B1 |
7039594 | Gersting | May 2006 | B1 |
7039654 | Eder | May 2006 | B1 |
7047517 | Brown et al. | May 2006 | B1 |
7051036 | Rosnow et al. | May 2006 | B2 |
7051038 | Yeh et al. | May 2006 | B1 |
7058970 | Shaw | Jun 2006 | B2 |
7069427 | Adler et al. | Jun 2006 | B2 |
7076558 | Dunn | Jul 2006 | B1 |
7093200 | Schreiber et al. | Aug 2006 | B2 |
7093283 | Chen et al. | Aug 2006 | B1 |
7095854 | Ginter et al. | Aug 2006 | B1 |
7100195 | Underwood | Aug 2006 | B1 |
7120800 | Ginter et al. | Oct 2006 | B2 |
7124101 | Mikurak | Oct 2006 | B1 |
7124107 | Pishevar et al. | Oct 2006 | B1 |
7127705 | Christfort et al. | Oct 2006 | B2 |
7127741 | Bandini et al. | Oct 2006 | B2 |
7133845 | Ginter et al. | Nov 2006 | B1 |
7139999 | Bowman-Amuah | Nov 2006 | B2 |
7143091 | Charnock et al. | Nov 2006 | B2 |
7149698 | Guheen et al. | Dec 2006 | B2 |
7165041 | Guheen et al. | Jan 2007 | B1 |
7167842 | Josephson, II et al. | Jan 2007 | B1 |
7167844 | Leong et al. | Jan 2007 | B1 |
7171379 | Menninger et al. | Jan 2007 | B2 |
7181438 | Szabo | Feb 2007 | B1 |
7188252 | Dunn | Mar 2007 | B1 |
7203929 | Vinodkrishnan et al. | Apr 2007 | B1 |
7213233 | Vinodkrishnan et al. | May 2007 | B1 |
7216232 | Cox et al. | May 2007 | B1 |
7216340 | Vinodkrishnan et al. | May 2007 | B1 |
7219066 | Parks et al. | May 2007 | B2 |
7223234 | Stupp et al. | May 2007 | B2 |
7225460 | Barzilai et al. | May 2007 | B2 |
7234065 | Breslin et al. | Jun 2007 | B2 |
7247625 | Zhang et al. | Jul 2007 | B2 |
7251624 | Lee et al. | Jul 2007 | B1 |
7260830 | Sugimoto | Aug 2007 | B2 |
7266566 | Kennaley et al. | Sep 2007 | B1 |
7272818 | Ishimitsu et al. | Sep 2007 | B2 |
7275063 | Horn | Sep 2007 | B2 |
7281020 | Fine | Oct 2007 | B2 |
7284232 | Bates et al. | Oct 2007 | B1 |
7284271 | Lucovsky et al. | Oct 2007 | B2 |
7287280 | Young | Oct 2007 | B2 |
7290275 | Baudoin et al. | Oct 2007 | B2 |
7293119 | Beale | Nov 2007 | B2 |
7299299 | Hollenbeck et al. | Nov 2007 | B2 |
7302569 | Betz et al. | Nov 2007 | B2 |
7313575 | Carr et al. | Dec 2007 | B2 |
7313699 | Koga | Dec 2007 | B2 |
7313825 | Redlich et al. | Dec 2007 | B2 |
7315826 | Guheen et al. | Jan 2008 | B1 |
7315849 | Bakalash et al. | Jan 2008 | B2 |
7322047 | Redlich et al. | Jan 2008 | B2 |
7330850 | Seibel et al. | Feb 2008 | B1 |
7340447 | Ghatare | Mar 2008 | B2 |
7340776 | Zobel et al. | Mar 2008 | B2 |
7343434 | Kapoor et al. | Mar 2008 | B2 |
7346518 | Frank et al. | Mar 2008 | B1 |
7353204 | Liu | Apr 2008 | B2 |
7353281 | New, Jr. et al. | Apr 2008 | B2 |
7353283 | Henaff et al. | Apr 2008 | B2 |
7356559 | Jacobs et al. | Apr 2008 | B1 |
7367014 | Griffin | Apr 2008 | B2 |
7370025 | Pandit | May 2008 | B1 |
7376835 | Olkin et al. | May 2008 | B2 |
7380120 | Garcia | May 2008 | B1 |
7382903 | Ray | Jun 2008 | B2 |
7383570 | Pinkas et al. | Jun 2008 | B2 |
7391854 | Salonen et al. | Jun 2008 | B2 |
7392546 | Patrick | Jun 2008 | B2 |
7398393 | Mont et al. | Jul 2008 | B2 |
7401235 | Mowers et al. | Jul 2008 | B2 |
7403942 | Bayliss | Jul 2008 | B1 |
7409354 | Putnam et al. | Aug 2008 | B2 |
7412402 | Cooper | Aug 2008 | B2 |
7424680 | Carpenter | Sep 2008 | B2 |
7428546 | Nori et al. | Sep 2008 | B2 |
7428707 | Quimby | Sep 2008 | B2 |
7430585 | Sibert | Sep 2008 | B2 |
7454457 | Lowery et al. | Nov 2008 | B1 |
7454508 | Mathew et al. | Nov 2008 | B2 |
7478157 | Bohrer et al. | Jan 2009 | B2 |
7480694 | Blennerhassett et al. | Jan 2009 | B2 |
7480755 | Herrell et al. | Jan 2009 | B2 |
7487170 | Stevens | Feb 2009 | B2 |
7493282 | Manly et al. | Feb 2009 | B2 |
7500607 | Williams | Mar 2009 | B2 |
7506248 | Xu et al. | Mar 2009 | B2 |
7512987 | Williams | Mar 2009 | B2 |
7516882 | Cucinotta | Apr 2009 | B2 |
7523053 | Pudhukottai et al. | Apr 2009 | B2 |
7529836 | Bolen | May 2009 | B1 |
7548968 | Bura et al. | Jun 2009 | B1 |
7552480 | Voss | Jun 2009 | B1 |
7562339 | Racca et al. | Jul 2009 | B2 |
7565685 | Ross et al. | Jul 2009 | B2 |
7567541 | Karimi et al. | Jul 2009 | B2 |
7584505 | Mondri et al. | Sep 2009 | B2 |
7584508 | Kashchenko et al. | Sep 2009 | B1 |
7587749 | Leser et al. | Sep 2009 | B2 |
7590705 | Mathew et al. | Sep 2009 | B2 |
7590972 | Axelrod et al. | Sep 2009 | B2 |
7603356 | Schran et al. | Oct 2009 | B2 |
7606783 | Carter | Oct 2009 | B1 |
7606790 | Levy | Oct 2009 | B2 |
7607120 | Sanyal et al. | Oct 2009 | B2 |
7610391 | Dunn | Oct 2009 | B2 |
7613700 | Lobo et al. | Nov 2009 | B1 |
7617136 | Lessing et al. | Nov 2009 | B1 |
7617167 | Griffis et al. | Nov 2009 | B2 |
7620644 | Cote et al. | Nov 2009 | B2 |
7627666 | Degiulio et al. | Dec 2009 | B1 |
7630874 | Fables et al. | Dec 2009 | B2 |
7630998 | Zhou et al. | Dec 2009 | B2 |
7636742 | Olavarrieta et al. | Dec 2009 | B1 |
7640322 | Wendkos et al. | Dec 2009 | B2 |
7650497 | Thornton et al. | Jan 2010 | B2 |
7653592 | Flaxman et al. | Jan 2010 | B1 |
7657476 | Barney | Feb 2010 | B2 |
7657694 | Mansell et al. | Feb 2010 | B2 |
7665073 | Meijer et al. | Feb 2010 | B2 |
7665125 | Heard et al. | Feb 2010 | B2 |
7668947 | Hutchinson et al. | Feb 2010 | B2 |
7673282 | Amaru et al. | Mar 2010 | B2 |
7676034 | Wu et al. | Mar 2010 | B1 |
7681034 | Lee et al. | Mar 2010 | B1 |
7681140 | Ebert | Mar 2010 | B2 |
7685561 | Deem et al. | Mar 2010 | B2 |
7685577 | Pace et al. | Mar 2010 | B2 |
7693593 | Ishibashi et al. | Apr 2010 | B2 |
7698398 | Lai | Apr 2010 | B1 |
7702639 | Stanley et al. | Apr 2010 | B2 |
7707224 | Chastagnol et al. | Apr 2010 | B2 |
7712029 | Ferreira et al. | May 2010 | B2 |
7716242 | Pae et al. | May 2010 | B2 |
7725474 | Tamai et al. | May 2010 | B2 |
7725875 | Waldrep | May 2010 | B2 |
7729940 | Harvey et al. | Jun 2010 | B2 |
7730142 | Levasseur et al. | Jun 2010 | B2 |
7735036 | Dennison et al. | Jun 2010 | B2 |
7752124 | Green et al. | Jul 2010 | B2 |
7756826 | Bots et al. | Jul 2010 | B2 |
7756987 | Wang et al. | Jul 2010 | B2 |
7761586 | Olenick et al. | Jul 2010 | B2 |
7774745 | Fildebrandt et al. | Aug 2010 | B2 |
7788212 | Beckmann et al. | Aug 2010 | B2 |
7788222 | Shah et al. | Aug 2010 | B2 |
7788632 | Kuester et al. | Aug 2010 | B2 |
7788726 | Teixeira | Aug 2010 | B2 |
7793318 | Deng | Sep 2010 | B2 |
7797726 | Ashley et al. | Sep 2010 | B2 |
7801758 | Gracie et al. | Sep 2010 | B2 |
7801765 | Denny | Sep 2010 | B2 |
7801826 | Labrou et al. | Sep 2010 | B2 |
7801912 | Ransil et al. | Sep 2010 | B2 |
7802305 | Leeds | Sep 2010 | B1 |
7805349 | Yu et al. | Sep 2010 | B2 |
7805451 | Hosokawa | Sep 2010 | B2 |
7813947 | Deangelis et al. | Oct 2010 | B2 |
7822620 | Dixon et al. | Oct 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7844640 | Bender et al. | Nov 2010 | B2 |
7849143 | Vuong | Dec 2010 | B2 |
7853468 | Callahan | Dec 2010 | B2 |
7853470 | Sonnleithner et al. | Dec 2010 | B2 |
7853925 | Kemmler | Dec 2010 | B2 |
7860816 | Fokoue-Nkoutche et al. | Dec 2010 | B2 |
7870540 | Zare et al. | Jan 2011 | B2 |
7870608 | Shraim et al. | Jan 2011 | B2 |
7873541 | Klar et al. | Jan 2011 | B1 |
7877327 | Gwiazda et al. | Jan 2011 | B2 |
7877812 | Koved et al. | Jan 2011 | B2 |
7885841 | King | Feb 2011 | B2 |
7890461 | Oeda et al. | Feb 2011 | B2 |
7895260 | Archer et al. | Feb 2011 | B2 |
7904478 | Yu et al. | Mar 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7917888 | Chong et al. | Mar 2011 | B2 |
7917963 | Goyal et al. | Mar 2011 | B2 |
7921152 | Ashley et al. | Apr 2011 | B2 |
7930197 | Ozzie et al. | Apr 2011 | B2 |
7930753 | Mellinger et al. | Apr 2011 | B2 |
7941443 | Sobel et al. | May 2011 | B1 |
7953725 | Burris et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
7958087 | Blumenau | Jun 2011 | B2 |
7958494 | Chaar et al. | Jun 2011 | B2 |
7962900 | Barraclough et al. | Jun 2011 | B2 |
7966310 | Sullivan et al. | Jun 2011 | B2 |
7966599 | Malasky et al. | Jun 2011 | B1 |
7966663 | Strickland et al. | Jun 2011 | B2 |
7974992 | Fastabend et al. | Jul 2011 | B2 |
7975000 | Dixon et al. | Jul 2011 | B2 |
7991559 | Dzekunov et al. | Aug 2011 | B2 |
7991747 | Upadhyay et al. | Aug 2011 | B1 |
7996372 | Rubel, Jr. | Aug 2011 | B2 |
8005891 | Knowles et al. | Aug 2011 | B2 |
8010612 | Costea et al. | Aug 2011 | B2 |
8010720 | Iwaoka et al. | Aug 2011 | B2 |
8019881 | Sandhu et al. | Sep 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8024384 | Prabhakar et al. | Sep 2011 | B2 |
8032721 | Murai | Oct 2011 | B2 |
8036374 | Noble, Jr. | Oct 2011 | B2 |
8037409 | Jacob et al. | Oct 2011 | B2 |
8041749 | Beck | Oct 2011 | B2 |
8041763 | Kordun et al. | Oct 2011 | B2 |
8041913 | Wang | Oct 2011 | B2 |
8069161 | Bugir et al. | Nov 2011 | B2 |
8069471 | Boren | Nov 2011 | B2 |
8082539 | Schelkogonov | Dec 2011 | B1 |
8090754 | Schmidt et al. | Jan 2012 | B2 |
8095923 | Harvey et al. | Jan 2012 | B2 |
8099709 | Baikov et al. | Jan 2012 | B2 |
8103962 | Embley et al. | Jan 2012 | B2 |
8117441 | Kurien et al. | Feb 2012 | B2 |
8135815 | Mayer | Mar 2012 | B2 |
8146054 | Baker et al. | Mar 2012 | B2 |
8146074 | Ito et al. | Mar 2012 | B2 |
8150717 | Whitmore | Apr 2012 | B2 |
8156105 | Altounian et al. | Apr 2012 | B2 |
8156158 | Rolls et al. | Apr 2012 | B2 |
8156159 | Ebrahimi et al. | Apr 2012 | B2 |
8166406 | Goldfeder et al. | Apr 2012 | B1 |
8176061 | Swanbeck et al. | May 2012 | B2 |
8176177 | Sussman et al. | May 2012 | B2 |
8176334 | Vainstein | May 2012 | B2 |
8176470 | Klumpp et al. | May 2012 | B2 |
8180759 | Hamzy | May 2012 | B2 |
8181151 | Sedukhin et al. | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8195489 | Bhamidipaty et al. | Jun 2012 | B2 |
8196176 | Berteau et al. | Jun 2012 | B2 |
8205093 | Argott | Jun 2012 | B2 |
8205140 | Hafeez et al. | Jun 2012 | B2 |
8214362 | Djabarov | Jul 2012 | B1 |
8214803 | Horii et al. | Jul 2012 | B2 |
8234133 | Smith | Jul 2012 | B2 |
8234145 | Kissner et al. | Jul 2012 | B2 |
8234377 | Cohn | Jul 2012 | B2 |
8239244 | Ginsberg et al. | Aug 2012 | B2 |
8250051 | Bugir et al. | Aug 2012 | B2 |
8255468 | Vitaldevara et al. | Aug 2012 | B2 |
8260262 | Ben Ayed | Sep 2012 | B2 |
8261362 | Goodwin et al. | Sep 2012 | B2 |
8266231 | Golovin et al. | Sep 2012 | B1 |
8275632 | Awaraji et al. | Sep 2012 | B2 |
8275793 | Ahmad et al. | Sep 2012 | B2 |
8286239 | Sutton | Oct 2012 | B1 |
8312549 | Goldberg et al. | Nov 2012 | B2 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8327141 | Vysogorets et al. | Dec 2012 | B2 |
8332908 | Hatakeyama et al. | Dec 2012 | B2 |
8340999 | Kumaran et al. | Dec 2012 | B2 |
8341405 | Meijer et al. | Dec 2012 | B2 |
8346852 | Sugasaki | Jan 2013 | B2 |
8346929 | Lai | Jan 2013 | B1 |
8364713 | Pollard | Jan 2013 | B2 |
8370224 | Grewal | Feb 2013 | B2 |
8370794 | Moosmann et al. | Feb 2013 | B2 |
8380630 | Felsher | Feb 2013 | B2 |
8380743 | Convertino et al. | Feb 2013 | B2 |
8381180 | Rostoker | Feb 2013 | B2 |
8381297 | Touboul | Feb 2013 | B2 |
8386314 | Kirkby et al. | Feb 2013 | B2 |
8392982 | Harris et al. | Mar 2013 | B2 |
8418226 | Gardner | Apr 2013 | B2 |
8423954 | Ronen et al. | Apr 2013 | B2 |
8429179 | Mirhaji | Apr 2013 | B1 |
8429597 | Prigge | Apr 2013 | B2 |
8429630 | Nickolov et al. | Apr 2013 | B2 |
8429758 | Chen et al. | Apr 2013 | B2 |
8438644 | Watters et al. | May 2013 | B2 |
8452693 | Shah et al. | May 2013 | B2 |
8463247 | Misiag | Jun 2013 | B2 |
8464311 | Ashley et al. | Jun 2013 | B2 |
8468244 | Redlich et al. | Jun 2013 | B2 |
8473324 | Alvarez et al. | Jun 2013 | B2 |
8474012 | Ahmed et al. | Jun 2013 | B2 |
8494894 | Jaster et al. | Jul 2013 | B2 |
8504481 | Motahari et al. | Aug 2013 | B2 |
8510199 | Erlanger | Aug 2013 | B1 |
8515988 | Jones et al. | Aug 2013 | B2 |
8516076 | Thomas | Aug 2013 | B2 |
8526922 | Koster | Sep 2013 | B1 |
8527337 | Lim et al. | Sep 2013 | B1 |
8533746 | Nolan et al. | Sep 2013 | B2 |
8533844 | Mahaffey et al. | Sep 2013 | B2 |
8538817 | Wilson | Sep 2013 | B2 |
8539359 | Rapaport et al. | Sep 2013 | B2 |
8539437 | Finlayson et al. | Sep 2013 | B2 |
8560645 | Linden et al. | Oct 2013 | B2 |
8560841 | Chin et al. | Oct 2013 | B2 |
8560956 | Curtis et al. | Oct 2013 | B2 |
8561100 | Hu et al. | Oct 2013 | B2 |
8561153 | Grason et al. | Oct 2013 | B2 |
8565729 | Moseler et al. | Oct 2013 | B2 |
8566726 | Dixon et al. | Oct 2013 | B2 |
8566938 | Prakash et al. | Oct 2013 | B1 |
8571909 | Miller et al. | Oct 2013 | B2 |
8572717 | Narayanaswamy | Oct 2013 | B2 |
8578036 | Holfelder et al. | Nov 2013 | B1 |
8578166 | De Monseignat et al. | Nov 2013 | B2 |
8578481 | Rowley | Nov 2013 | B2 |
8578501 | Ogilvie | Nov 2013 | B1 |
8583694 | Siegel et al. | Nov 2013 | B2 |
8583766 | Dixon et al. | Nov 2013 | B2 |
8589183 | Awaraji et al. | Nov 2013 | B2 |
8601467 | Hofhansl et al. | Dec 2013 | B2 |
8601591 | Krishnamurthy et al. | Dec 2013 | B2 |
8606746 | Yeap et al. | Dec 2013 | B2 |
8612420 | Sun et al. | Dec 2013 | B2 |
8612993 | Grant et al. | Dec 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8615731 | Doshi | Dec 2013 | B2 |
8620952 | Bennett et al. | Dec 2013 | B2 |
8621637 | Al-Harbi et al. | Dec 2013 | B2 |
8626671 | Federgreen | Jan 2014 | B2 |
8627114 | Resch et al. | Jan 2014 | B2 |
8630961 | Beilby et al. | Jan 2014 | B2 |
8631048 | Davis et al. | Jan 2014 | B1 |
8640110 | Kopp et al. | Jan 2014 | B2 |
8646072 | Savant | Feb 2014 | B1 |
8650399 | Le Bihan et al. | Feb 2014 | B2 |
8655939 | Redlich et al. | Feb 2014 | B2 |
8656265 | Paulin et al. | Feb 2014 | B1 |
8656456 | Maxson et al. | Feb 2014 | B2 |
8661036 | Turski et al. | Feb 2014 | B2 |
8667074 | Farkas | Mar 2014 | B1 |
8667487 | Boodman et al. | Mar 2014 | B1 |
8677472 | Dotan et al. | Mar 2014 | B1 |
8681984 | Lee et al. | Mar 2014 | B2 |
8682698 | Cashman et al. | Mar 2014 | B2 |
8683502 | Shkedi et al. | Mar 2014 | B2 |
8688601 | Jaiswal | Apr 2014 | B2 |
8689292 | Williams et al. | Apr 2014 | B2 |
8693689 | Belenkiy et al. | Apr 2014 | B2 |
8700524 | Williams et al. | Apr 2014 | B2 |
8700699 | Shen et al. | Apr 2014 | B2 |
8706742 | Ravid et al. | Apr 2014 | B1 |
8707451 | Ture et al. | Apr 2014 | B2 |
8712813 | King | Apr 2014 | B2 |
8713098 | Adya et al. | Apr 2014 | B1 |
8713638 | Hu et al. | Apr 2014 | B2 |
8719366 | Mathew et al. | May 2014 | B2 |
8719421 | Mao et al. | May 2014 | B2 |
8732839 | Hohl | May 2014 | B2 |
8744894 | Christiansen et al. | Jun 2014 | B2 |
8751285 | Deb et al. | Jun 2014 | B2 |
8762406 | Ho et al. | Jun 2014 | B2 |
8762413 | Graham, Jr. et al. | Jun 2014 | B2 |
8763071 | Sinha et al. | Jun 2014 | B2 |
8763082 | Huber et al. | Jun 2014 | B2 |
8763131 | Archer et al. | Jun 2014 | B2 |
8767947 | Ristock et al. | Jul 2014 | B1 |
8769242 | Tkac et al. | Jul 2014 | B2 |
8769412 | Gill et al. | Jul 2014 | B2 |
8769671 | Shraim et al. | Jul 2014 | B2 |
8776241 | Zaitsev | Jul 2014 | B2 |
8788935 | Hirsch et al. | Jul 2014 | B1 |
8793614 | Wilson et al. | Jul 2014 | B2 |
8793650 | Hilerio et al. | Jul 2014 | B2 |
8793781 | Grossi et al. | Jul 2014 | B2 |
8793809 | Falkenburg et al. | Jul 2014 | B2 |
8799984 | Ahn | Aug 2014 | B2 |
8805707 | Schumann, Jr. et al. | Aug 2014 | B2 |
8805806 | Amarendran et al. | Aug 2014 | B2 |
8805925 | Price et al. | Aug 2014 | B2 |
8812342 | Barcelo et al. | Aug 2014 | B2 |
8812752 | Shih et al. | Aug 2014 | B1 |
8812766 | Kranendonk et al. | Aug 2014 | B2 |
8813028 | Farooqi | Aug 2014 | B2 |
8813177 | Srour et al. | Aug 2014 | B2 |
8813214 | McNair et al. | Aug 2014 | B1 |
8819253 | Simeloff et al. | Aug 2014 | B2 |
8819617 | Koenig et al. | Aug 2014 | B1 |
8819800 | Gao et al. | Aug 2014 | B2 |
8826446 | Liu et al. | Sep 2014 | B1 |
8832649 | Bishop et al. | Sep 2014 | B2 |
8832854 | Staddon et al. | Sep 2014 | B1 |
8839232 | Taylor et al. | Sep 2014 | B2 |
8843487 | McGraw et al. | Sep 2014 | B2 |
8843745 | Roberts, Jr. | Sep 2014 | B2 |
8849757 | Kruglick | Sep 2014 | B2 |
8856534 | Khosravi et al. | Oct 2014 | B2 |
8856936 | Datta Ray et al. | Oct 2014 | B2 |
8862507 | Sandhu et al. | Oct 2014 | B2 |
8863261 | Yang | Oct 2014 | B2 |
8875232 | Blom et al. | Oct 2014 | B2 |
8893078 | Schaude et al. | Nov 2014 | B2 |
8893286 | Oliver | Nov 2014 | B1 |
8893297 | Eversoll et al. | Nov 2014 | B2 |
8904494 | Kindler et al. | Dec 2014 | B2 |
8914263 | Shimada et al. | Dec 2014 | B2 |
8914299 | Pesci-Anderson et al. | Dec 2014 | B2 |
8914342 | Kalaboukis et al. | Dec 2014 | B2 |
8914888 | Satish et al. | Dec 2014 | B1 |
8914902 | Moritz et al. | Dec 2014 | B2 |
8918306 | Cashman et al. | Dec 2014 | B2 |
8918392 | Brooker et al. | Dec 2014 | B1 |
8918632 | Sartor | Dec 2014 | B1 |
8924388 | Elliot et al. | Dec 2014 | B2 |
8930896 | Wiggins | Jan 2015 | B1 |
8930897 | Nassar | Jan 2015 | B2 |
8935198 | Phillips et al. | Jan 2015 | B1 |
8935266 | Wu | Jan 2015 | B2 |
8935342 | Patel | Jan 2015 | B2 |
8935804 | Clark et al. | Jan 2015 | B1 |
8938221 | Brazier et al. | Jan 2015 | B2 |
8943076 | Stewart et al. | Jan 2015 | B2 |
8943548 | Drokov et al. | Jan 2015 | B2 |
8943602 | Roy et al. | Jan 2015 | B2 |
8949137 | Crapo et al. | Feb 2015 | B2 |
8955038 | Nicodemus et al. | Feb 2015 | B2 |
8959568 | Hudis et al. | Feb 2015 | B2 |
8959584 | Piliouras | Feb 2015 | B2 |
8966575 | McQuay et al. | Feb 2015 | B2 |
8966597 | Saylor et al. | Feb 2015 | B1 |
8973108 | Roth et al. | Mar 2015 | B1 |
8977234 | Chava | Mar 2015 | B2 |
8977643 | Schindlauer et al. | Mar 2015 | B2 |
8978158 | Rajkumar et al. | Mar 2015 | B2 |
8983972 | Kriebel et al. | Mar 2015 | B2 |
8984031 | Todd | Mar 2015 | B1 |
8990933 | Magdalin | Mar 2015 | B1 |
8996417 | Channakeshava | Mar 2015 | B1 |
8996480 | Agarwala et al. | Mar 2015 | B2 |
8997213 | Papakipos et al. | Mar 2015 | B2 |
9001673 | Birdsall et al. | Apr 2015 | B2 |
9003295 | Baschy | Apr 2015 | B2 |
9003552 | Goodwin et al. | Apr 2015 | B2 |
9009851 | Droste et al. | Apr 2015 | B2 |
9014661 | Decharms | Apr 2015 | B2 |
9015796 | Fujioka | Apr 2015 | B1 |
9021469 | Hilerio et al. | Apr 2015 | B2 |
9026526 | Bau et al. | May 2015 | B1 |
9030987 | Bianchetti et al. | May 2015 | B2 |
9032067 | Prasad et al. | May 2015 | B2 |
9043217 | Cashman et al. | May 2015 | B2 |
9043480 | Barton et al. | May 2015 | B2 |
9047463 | Porras | Jun 2015 | B2 |
9047582 | Hutchinson et al. | Jun 2015 | B2 |
9047583 | Patton et al. | Jun 2015 | B2 |
9047639 | Quintiliani et al. | Jun 2015 | B1 |
9049244 | Prince et al. | Jun 2015 | B2 |
9049314 | Pugh et al. | Jun 2015 | B2 |
9055071 | Gates et al. | Jun 2015 | B1 |
9058590 | Criddle et al. | Jun 2015 | B2 |
9064033 | Jin et al. | Jun 2015 | B2 |
9069940 | Hars | Jun 2015 | B2 |
9076231 | Hill et al. | Jul 2015 | B1 |
9077736 | Werth et al. | Jul 2015 | B2 |
9081952 | Sagi et al. | Jul 2015 | B2 |
9087090 | Cormier et al. | Jul 2015 | B1 |
9092796 | Eversoll et al. | Jul 2015 | B2 |
9094434 | Williams et al. | Jul 2015 | B2 |
9098515 | Richter et al. | Aug 2015 | B2 |
9100337 | Battré et al. | Aug 2015 | B1 |
9100778 | Stogaitis et al. | Aug 2015 | B2 |
9106691 | Burger et al. | Aug 2015 | B1 |
9106710 | Feimster | Aug 2015 | B1 |
9110918 | Rajaa et al. | Aug 2015 | B1 |
9111105 | Barton et al. | Aug 2015 | B2 |
9111295 | Tietzen et al. | Aug 2015 | B2 |
9123330 | Sharifi et al. | Sep 2015 | B1 |
9123339 | Shaw et al. | Sep 2015 | B1 |
9129311 | Schoen et al. | Sep 2015 | B2 |
9135261 | Maunder et al. | Sep 2015 | B2 |
9135444 | Carter et al. | Sep 2015 | B2 |
9141823 | Dawson | Sep 2015 | B2 |
9141911 | Zhao et al. | Sep 2015 | B2 |
9152818 | Hathaway et al. | Oct 2015 | B1 |
9152820 | Pauley, Jr. et al. | Oct 2015 | B1 |
9154514 | Prakash | Oct 2015 | B1 |
9154556 | Dotan et al. | Oct 2015 | B1 |
9158655 | Wadhwani et al. | Oct 2015 | B2 |
9165036 | Mehra | Oct 2015 | B2 |
9170996 | Lovric et al. | Oct 2015 | B2 |
9172706 | Krishnamurthy et al. | Oct 2015 | B2 |
9177293 | Gagnon et al. | Nov 2015 | B1 |
9178901 | Xue et al. | Nov 2015 | B2 |
9183100 | Gventer et al. | Nov 2015 | B2 |
9189642 | Perlman | Nov 2015 | B2 |
9201572 | Lyon et al. | Dec 2015 | B2 |
9201770 | Duerk | Dec 2015 | B1 |
9202026 | Reeves | Dec 2015 | B1 |
9202085 | Mawdsley et al. | Dec 2015 | B2 |
9215076 | Roth et al. | Dec 2015 | B1 |
9215252 | Smith et al. | Dec 2015 | B2 |
9218596 | Ronca et al. | Dec 2015 | B2 |
9224009 | Liu et al. | Dec 2015 | B1 |
9230036 | Davis | Jan 2016 | B2 |
9231935 | Bridge et al. | Jan 2016 | B1 |
9232040 | Barash et al. | Jan 2016 | B2 |
9235476 | McHugh et al. | Jan 2016 | B2 |
9240987 | Barrett-Bowen et al. | Jan 2016 | B2 |
9241259 | Daniela et al. | Jan 2016 | B2 |
9245126 | Christodorescu et al. | Jan 2016 | B2 |
9245266 | Hardt | Jan 2016 | B2 |
9253609 | Hosier, Jr. | Feb 2016 | B2 |
9264443 | Weisman | Feb 2016 | B2 |
9274858 | Milliron et al. | Mar 2016 | B2 |
9280581 | Grimes et al. | Mar 2016 | B1 |
9286149 | Sampson et al. | Mar 2016 | B2 |
9286282 | Ling, III et al. | Mar 2016 | B2 |
9288118 | Pattan | Mar 2016 | B1 |
9288556 | Kim et al. | Mar 2016 | B2 |
9294498 | Yampolskiy et al. | Mar 2016 | B1 |
9299050 | Stiffler et al. | Mar 2016 | B2 |
9306939 | Chan et al. | Apr 2016 | B2 |
9317697 | Maier et al. | Apr 2016 | B2 |
9317715 | Schuette et al. | Apr 2016 | B2 |
9325731 | McGeehan | Apr 2016 | B2 |
9336184 | Mital et al. | May 2016 | B2 |
9336220 | Li et al. | May 2016 | B2 |
9336324 | Lomme et al. | May 2016 | B2 |
9336332 | Davis et al. | May 2016 | B2 |
9336400 | Milman et al. | May 2016 | B2 |
9338188 | Ahn | May 2016 | B1 |
9342706 | Chawla et al. | May 2016 | B2 |
9344297 | Shah et al. | May 2016 | B2 |
9344424 | Tenenboym et al. | May 2016 | B2 |
9344484 | Ferris | May 2016 | B2 |
9348802 | Massand | May 2016 | B2 |
9348862 | Kawecki, III | May 2016 | B2 |
9348929 | Eberlein | May 2016 | B2 |
9349016 | Brisebois et al. | May 2016 | B1 |
9350718 | Sondhi et al. | May 2016 | B2 |
9355157 | Mohammed et al. | May 2016 | B2 |
9356961 | Todd et al. | May 2016 | B1 |
9361446 | Demirjian et al. | Jun 2016 | B1 |
9369488 | Woods et al. | Jun 2016 | B2 |
9372869 | Joseph et al. | Jun 2016 | B2 |
9374693 | Olincy et al. | Jun 2016 | B1 |
9384199 | Thereska et al. | Jul 2016 | B2 |
9384357 | Patil et al. | Jul 2016 | B2 |
9386078 | Reno et al. | Jul 2016 | B2 |
9386104 | Adams et al. | Jul 2016 | B2 |
9395959 | Hatfield et al. | Jul 2016 | B2 |
9396332 | Abrams et al. | Jul 2016 | B2 |
9401900 | Levasseur et al. | Jul 2016 | B2 |
9411967 | Parecki et al. | Aug 2016 | B2 |
9411982 | Dippenaar et al. | Aug 2016 | B1 |
9417859 | Gounares et al. | Aug 2016 | B2 |
9418221 | Turgeman | Aug 2016 | B2 |
9424021 | Zamir | Aug 2016 | B2 |
9424414 | Demirjian et al. | Aug 2016 | B1 |
9426177 | Wang et al. | Aug 2016 | B2 |
9450940 | Belov et al. | Sep 2016 | B2 |
9460136 | Todd et al. | Oct 2016 | B1 |
9460171 | Marrelli et al. | Oct 2016 | B2 |
9460307 | Breslau et al. | Oct 2016 | B2 |
9461876 | Van Dusen et al. | Oct 2016 | B2 |
9462009 | Kolman et al. | Oct 2016 | B1 |
9465702 | Gventer et al. | Oct 2016 | B2 |
9465800 | Lacey | Oct 2016 | B2 |
9473446 | Vijay et al. | Oct 2016 | B2 |
9473505 | Asano et al. | Oct 2016 | B1 |
9473535 | Sartor | Oct 2016 | B2 |
9477523 | Warman et al. | Oct 2016 | B1 |
9477660 | Scott et al. | Oct 2016 | B2 |
9477685 | Leung et al. | Oct 2016 | B1 |
9477942 | Adachi et al. | Oct 2016 | B2 |
9483659 | Bao et al. | Nov 2016 | B2 |
9489366 | Scott et al. | Nov 2016 | B2 |
9495547 | Schepis et al. | Nov 2016 | B1 |
9501523 | Hyatt et al. | Nov 2016 | B2 |
9507960 | Bell et al. | Nov 2016 | B2 |
9509674 | Nasserbakht et al. | Nov 2016 | B1 |
9509702 | Grigg et al. | Nov 2016 | B2 |
9514231 | Eden | Dec 2016 | B2 |
9516012 | Chochois et al. | Dec 2016 | B2 |
9521166 | Wilson | Dec 2016 | B2 |
9524500 | Dave et al. | Dec 2016 | B2 |
9529989 | Kling et al. | Dec 2016 | B2 |
9536108 | Powell et al. | Jan 2017 | B2 |
9537546 | Cordeiro et al. | Jan 2017 | B2 |
9542568 | Francis et al. | Jan 2017 | B2 |
9549047 | Fredinburg et al. | Jan 2017 | B1 |
9552395 | Bayer et al. | Jan 2017 | B2 |
9552470 | Turgeman et al. | Jan 2017 | B2 |
9553918 | Manion et al. | Jan 2017 | B1 |
9558497 | Carvalho | Jan 2017 | B2 |
9569752 | Deering et al. | Feb 2017 | B2 |
9571506 | Boss et al. | Feb 2017 | B2 |
9571509 | Satish et al. | Feb 2017 | B1 |
9571526 | Sartor | Feb 2017 | B2 |
9571559 | Raleigh et al. | Feb 2017 | B2 |
9571991 | Brizendine et al. | Feb 2017 | B1 |
9576289 | Henderson et al. | Feb 2017 | B2 |
9578060 | Brisebois et al. | Feb 2017 | B1 |
9578173 | Sanghavi et al. | Feb 2017 | B2 |
9582681 | Mishra | Feb 2017 | B2 |
9584964 | Pelkey | Feb 2017 | B2 |
9589110 | Carey et al. | Mar 2017 | B2 |
9600181 | Patel et al. | Mar 2017 | B2 |
9602529 | Jones et al. | Mar 2017 | B2 |
9606971 | Seolas et al. | Mar 2017 | B2 |
9607041 | Himmelstein | Mar 2017 | B2 |
9619652 | Slater | Apr 2017 | B2 |
9619661 | Finkelstein | Apr 2017 | B1 |
9621357 | Williams et al. | Apr 2017 | B2 |
9621566 | Gupta et al. | Apr 2017 | B2 |
9626124 | Lipinski et al. | Apr 2017 | B2 |
9626680 | Ryan et al. | Apr 2017 | B1 |
9629064 | Graves et al. | Apr 2017 | B2 |
9642008 | Wyatt et al. | May 2017 | B2 |
9646095 | Gottlieb et al. | May 2017 | B1 |
9647949 | Varki et al. | May 2017 | B2 |
9648036 | Seiver et al. | May 2017 | B2 |
9652314 | Mahiddini | May 2017 | B2 |
9654506 | Barrett | May 2017 | B2 |
9654541 | Kapczynski et al. | May 2017 | B1 |
9665722 | Nagasundaram et al. | May 2017 | B2 |
9665733 | Sills et al. | May 2017 | B1 |
9665883 | Roullier et al. | May 2017 | B2 |
9672053 | Tang et al. | Jun 2017 | B2 |
9672355 | Titonis et al. | Jun 2017 | B2 |
9678794 | Barrett et al. | Jun 2017 | B1 |
9691090 | Barday | Jun 2017 | B1 |
9697368 | Dharawat | Jul 2017 | B2 |
9699209 | Ng et al. | Jul 2017 | B2 |
9703549 | Dufresne | Jul 2017 | B2 |
9704103 | Suskind et al. | Jul 2017 | B2 |
9705840 | Pujare et al. | Jul 2017 | B2 |
9705880 | Siris | Jul 2017 | B2 |
9721078 | Cornick et al. | Aug 2017 | B2 |
9721108 | Krishnamurthy et al. | Aug 2017 | B2 |
9727751 | Oliver et al. | Aug 2017 | B2 |
9729583 | Barday | Aug 2017 | B1 |
9734148 | Bendersky et al. | Aug 2017 | B2 |
9734255 | Jiang | Aug 2017 | B2 |
9736004 | Jung et al. | Aug 2017 | B2 |
9740985 | Byron et al. | Aug 2017 | B2 |
9740987 | Dolan | Aug 2017 | B2 |
9749408 | Subramani et al. | Aug 2017 | B2 |
9754091 | Kode et al. | Sep 2017 | B2 |
9756059 | Demirjian et al. | Sep 2017 | B2 |
9760620 | Nachnani et al. | Sep 2017 | B2 |
9760635 | Bliss et al. | Sep 2017 | B2 |
9760697 | Walker | Sep 2017 | B1 |
9760849 | Vinnakota et al. | Sep 2017 | B2 |
9762553 | Ford et al. | Sep 2017 | B2 |
9767202 | Darby et al. | Sep 2017 | B2 |
9767309 | Patel et al. | Sep 2017 | B1 |
9769124 | Yan | Sep 2017 | B2 |
9773269 | Lazarus | Sep 2017 | B1 |
9785795 | Grondin et al. | Oct 2017 | B2 |
9787671 | Bogrett | Oct 2017 | B1 |
9798749 | Saner | Oct 2017 | B2 |
9798826 | Wilson et al. | Oct 2017 | B2 |
9798896 | Jakobsson | Oct 2017 | B2 |
9800605 | Baikalov et al. | Oct 2017 | B2 |
9800606 | Yumer | Oct 2017 | B1 |
9804649 | Cohen et al. | Oct 2017 | B2 |
9804928 | Davis et al. | Oct 2017 | B2 |
9805381 | Frank et al. | Oct 2017 | B2 |
9811532 | Parkison et al. | Nov 2017 | B2 |
9817850 | Dubbels et al. | Nov 2017 | B2 |
9817978 | Marsh et al. | Nov 2017 | B2 |
9819684 | Cernoch et al. | Nov 2017 | B2 |
9825928 | Lelcuk et al. | Nov 2017 | B2 |
9830563 | Paknad | Nov 2017 | B2 |
9832633 | Gerber, Jr. et al. | Nov 2017 | B2 |
9836598 | Iyer et al. | Dec 2017 | B2 |
9838407 | Oprea et al. | Dec 2017 | B1 |
9838839 | Vudali et al. | Dec 2017 | B2 |
9841969 | Seibert, Jr. et al. | Dec 2017 | B2 |
9842042 | Chhatwal et al. | Dec 2017 | B2 |
9842349 | Sawczuk et al. | Dec 2017 | B2 |
9848005 | Ardeli et al. | Dec 2017 | B2 |
9848061 | Jain et al. | Dec 2017 | B1 |
9852150 | Sharpe et al. | Dec 2017 | B2 |
9853959 | Kapczynski et al. | Dec 2017 | B1 |
9860226 | Thormaehlen | Jan 2018 | B2 |
9864735 | Lamprecht | Jan 2018 | B1 |
9876825 | Amar et al. | Jan 2018 | B2 |
9877138 | Franklin | Jan 2018 | B1 |
9880157 | Levak et al. | Jan 2018 | B2 |
9882935 | Barday | Jan 2018 | B2 |
9887965 | Kay et al. | Feb 2018 | B2 |
9888377 | McCorkendale et al. | Feb 2018 | B1 |
9892441 | Barday | Feb 2018 | B2 |
9892442 | Barday | Feb 2018 | B2 |
9892443 | Barday | Feb 2018 | B2 |
9892444 | Barday | Feb 2018 | B2 |
9894076 | Li et al. | Feb 2018 | B2 |
9898613 | Swerdlow et al. | Feb 2018 | B1 |
9898739 | Monastyrsky et al. | Feb 2018 | B2 |
9898769 | Barday | Feb 2018 | B2 |
9912677 | Chien | Mar 2018 | B2 |
9912810 | Segre et al. | Mar 2018 | B2 |
9916703 | Levinson et al. | Mar 2018 | B2 |
9922124 | Rathod | Mar 2018 | B2 |
9923927 | McClintock et al. | Mar 2018 | B1 |
9928379 | Hoffer | Mar 2018 | B1 |
19912625 | Mutha et al. | Mar 2018 | |
9934493 | Castinado et al. | Apr 2018 | B2 |
9934544 | Whitfield et al. | Apr 2018 | B1 |
9936127 | Todasco | Apr 2018 | B2 |
9942214 | Burciu et al. | Apr 2018 | B1 |
9942244 | Ahoz et al. | Apr 2018 | B2 |
9942276 | Sartor | Apr 2018 | B2 |
9946897 | Lovin | Apr 2018 | B2 |
9948652 | Yu et al. | Apr 2018 | B2 |
9948663 | Wang et al. | Apr 2018 | B1 |
9953189 | Cook et al. | Apr 2018 | B2 |
9954879 | Sadaghiani et al. | Apr 2018 | B1 |
9954883 | Ahuja et al. | Apr 2018 | B2 |
9959551 | Schermerhorn et al. | May 2018 | B1 |
9959582 | Sukman et al. | May 2018 | B2 |
9961070 | Tang | May 2018 | B2 |
9973518 | Lee et al. | May 2018 | B2 |
9973585 | Ruback et al. | May 2018 | B2 |
9977904 | Khan et al. | May 2018 | B2 |
9977920 | Danielson et al. | May 2018 | B2 |
9983936 | Dornemann et al. | May 2018 | B2 |
9984252 | Pollard | May 2018 | B2 |
9990499 | Chan et al. | Jun 2018 | B2 |
9992213 | Sinnema | Jun 2018 | B2 |
10001975 | Bharthulwar | Jun 2018 | B2 |
10002064 | Muske | Jun 2018 | B2 |
10007895 | Vanasco | Jun 2018 | B2 |
10013577 | Beaumont et al. | Jul 2018 | B1 |
10015164 | Hamburg et al. | Jul 2018 | B2 |
10019339 | Von Hanxleden et al. | Jul 2018 | B2 |
10019588 | Garcia et al. | Jul 2018 | B2 |
10019591 | Beguin | Jul 2018 | B1 |
10019741 | Hesselink | Jul 2018 | B2 |
10021143 | Cabrera et al. | Jul 2018 | B2 |
10025804 | Vranyes et al. | Jul 2018 | B2 |
10025836 | Batchu et al. | Jul 2018 | B2 |
10028226 | Ayyagari et al. | Jul 2018 | B2 |
10032172 | Barday | Jul 2018 | B2 |
10044761 | Ducatel et al. | Aug 2018 | B2 |
10055426 | Arasan et al. | Aug 2018 | B2 |
10055869 | Borrelli et al. | Aug 2018 | B2 |
10061847 | Mohammed et al. | Aug 2018 | B2 |
10069858 | Robinson et al. | Sep 2018 | B2 |
10069914 | Smith | Sep 2018 | B1 |
10073924 | Karp et al. | Sep 2018 | B2 |
10075437 | Costigan et al. | Sep 2018 | B1 |
10075451 | Hall et al. | Sep 2018 | B1 |
10084817 | Saher et al. | Sep 2018 | B2 |
10091214 | Godlewski et al. | Oct 2018 | B2 |
10091312 | Khanwalkar et al. | Oct 2018 | B1 |
10097551 | Chan et al. | Oct 2018 | B2 |
10102533 | Barday | Oct 2018 | B2 |
10108409 | Pirzadeh et al. | Oct 2018 | B2 |
10122663 | Hu et al. | Nov 2018 | B2 |
10122760 | Terrill et al. | Nov 2018 | B2 |
10127403 | Kong et al. | Nov 2018 | B2 |
10129211 | Heath | Nov 2018 | B2 |
10140666 | Wang et al. | Nov 2018 | B1 |
10142113 | Zaidi et al. | Nov 2018 | B2 |
10152560 | Potiagalov et al. | Dec 2018 | B2 |
10157269 | Thomas | Dec 2018 | B2 |
10158676 | Barday | Dec 2018 | B2 |
10165011 | Barday | Dec 2018 | B2 |
10169762 | Ogawa | Jan 2019 | B2 |
10176503 | Barday et al. | Jan 2019 | B2 |
10181043 | Pauley, Jr. et al. | Jan 2019 | B1 |
10181051 | Barday et al. | Jan 2019 | B2 |
10187363 | Smirnoff et al. | Jan 2019 | B2 |
10187394 | Bar et al. | Jan 2019 | B2 |
10188950 | Biswas et al. | Jan 2019 | B2 |
10204154 | Barday et al. | Feb 2019 | B2 |
10205994 | Splaine et al. | Feb 2019 | B2 |
10210347 | McCorkendale et al. | Feb 2019 | B2 |
10212134 | Rai | Feb 2019 | B2 |
10212175 | Seul et al. | Feb 2019 | B2 |
10223533 | Dawson | Mar 2019 | B2 |
10230571 | Rangasamy et al. | Mar 2019 | B2 |
10250594 | Chathoth et al. | Apr 2019 | B2 |
10255602 | Wang | Apr 2019 | B2 |
10257127 | Dotan-Cohen et al. | Apr 2019 | B2 |
10257181 | Sherif et al. | Apr 2019 | B1 |
10268838 | Yadgiri et al. | Apr 2019 | B2 |
10275221 | Thattai et al. | Apr 2019 | B2 |
10275614 | Barday et al. | Apr 2019 | B2 |
10282370 | Barday et al. | May 2019 | B1 |
10282559 | Barday et al. | May 2019 | B2 |
10284604 | Barday et al. | May 2019 | B2 |
10289584 | Chiba | May 2019 | B2 |
10289857 | Brinskelle | May 2019 | B1 |
10289866 | Barday et al. | May 2019 | B2 |
10289867 | Barday et al. | May 2019 | B2 |
10289870 | Barday et al. | May 2019 | B2 |
10296504 | Hock et al. | May 2019 | B2 |
10304442 | Rudden et al. | May 2019 | B1 |
10310723 | Rathod | Jun 2019 | B2 |
10311042 | Kumar | Jun 2019 | B1 |
10311249 | Sharifi et al. | Jun 2019 | B2 |
10311475 | Yuasa | Jun 2019 | B2 |
10311492 | Gelfenbeyn et al. | Jun 2019 | B2 |
10318761 | Barday et al. | Jun 2019 | B2 |
10320940 | Brennan et al. | Jun 2019 | B1 |
10324960 | Skvortsov et al. | Jun 2019 | B1 |
10326768 | Verweyst et al. | Jun 2019 | B2 |
10326798 | Lambert | Jun 2019 | B2 |
10326841 | Bradley et al. | Jun 2019 | B2 |
10331689 | Sorrentino et al. | Jun 2019 | B2 |
10331904 | Sher-Jan et al. | Jun 2019 | B2 |
10333975 | Soman et al. | Jun 2019 | B2 |
10346186 | Kalyanpur | Jul 2019 | B2 |
10346635 | Kumar et al. | Jul 2019 | B2 |
10346637 | Barday et al. | Jul 2019 | B2 |
10346638 | Barday et al. | Jul 2019 | B2 |
10346849 | Ionescu et al. | Jul 2019 | B2 |
10348726 | Caluwaert | Jul 2019 | B2 |
10348775 | Barday | Jul 2019 | B2 |
10353673 | Barday et al. | Jul 2019 | B2 |
10361857 | Woo | Jul 2019 | B2 |
10366241 | Sartor | Jul 2019 | B2 |
10373119 | Driscoll et al. | Aug 2019 | B2 |
10373409 | White et al. | Aug 2019 | B2 |
10375115 | Mallya | Aug 2019 | B2 |
10387559 | Wendt et al. | Aug 2019 | B1 |
10387577 | Hill et al. | Aug 2019 | B2 |
10387657 | Belfiore, Jr. et al. | Aug 2019 | B2 |
10387952 | Sandhu et al. | Aug 2019 | B1 |
10395201 | Vescio | Aug 2019 | B2 |
10402545 | Gorfein et al. | Sep 2019 | B2 |
10404729 | Turgeman | Sep 2019 | B2 |
10410243 | Boal | Sep 2019 | B2 |
10417401 | Votaw et al. | Sep 2019 | B2 |
10417621 | Cassel et al. | Sep 2019 | B2 |
10419476 | Parekh | Sep 2019 | B2 |
10423985 | Dutta et al. | Sep 2019 | B1 |
10425492 | Comstock et al. | Sep 2019 | B2 |
10430608 | Peri et al. | Oct 2019 | B2 |
10435350 | Ito et al. | Oct 2019 | B2 |
10437412 | Barday et al. | Oct 2019 | B2 |
10437860 | Barday et al. | Oct 2019 | B2 |
10438016 | Barday et al. | Oct 2019 | B2 |
10438273 | Burns et al. | Oct 2019 | B2 |
10440062 | Barday et al. | Oct 2019 | B2 |
10445508 | Sher-Jan et al. | Oct 2019 | B2 |
10445526 | Barday et al. | Oct 2019 | B2 |
10452864 | Barday et al. | Oct 2019 | B2 |
10452866 | Barday et al. | Oct 2019 | B2 |
10453076 | Parekh et al. | Oct 2019 | B2 |
10453092 | Wang et al. | Oct 2019 | B1 |
10454934 | Parimi et al. | Oct 2019 | B2 |
10481763 | Bartkiewicz et al. | Nov 2019 | B2 |
10489454 | Chen | Nov 2019 | B1 |
10503926 | Barday et al. | Dec 2019 | B2 |
10509644 | Shoavi et al. | Dec 2019 | B2 |
10510031 | Barday et al. | Dec 2019 | B2 |
10521623 | Rodriguez et al. | Dec 2019 | B2 |
10534851 | Chan et al. | Jan 2020 | B1 |
10535081 | Ferreira et al. | Jan 2020 | B2 |
10536475 | McCorkle, Jr. et al. | Jan 2020 | B1 |
10536478 | Kirti et al. | Jan 2020 | B2 |
10540212 | Feng et al. | Jan 2020 | B2 |
10541938 | Timmerman et al. | Jan 2020 | B1 |
10546135 | Kassoumeh et al. | Jan 2020 | B1 |
10552462 | Hart | Feb 2020 | B1 |
10558809 | Joyce et al. | Feb 2020 | B1 |
10558821 | Barday et al. | Feb 2020 | B2 |
10564815 | Soon-Shiong | Feb 2020 | B2 |
10564935 | Barday et al. | Feb 2020 | B2 |
10564936 | Barday et al. | Feb 2020 | B2 |
10565161 | Barday et al. | Feb 2020 | B2 |
10565236 | Barday et al. | Feb 2020 | B1 |
10567439 | Barday | Feb 2020 | B2 |
10567517 | Weinig et al. | Feb 2020 | B2 |
10572684 | Lafever et al. | Feb 2020 | B2 |
10572686 | Barday et al. | Feb 2020 | B2 |
10574705 | Barday et al. | Feb 2020 | B2 |
10581825 | Poschel et al. | Mar 2020 | B2 |
10592648 | Barday et al. | Mar 2020 | B2 |
10592692 | Brannon et al. | Mar 2020 | B2 |
10599456 | Lissack | Mar 2020 | B2 |
10606916 | Brannon et al. | Mar 2020 | B2 |
10613971 | Vasikarla | Apr 2020 | B1 |
10628553 | Murrish et al. | Apr 2020 | B1 |
10645102 | Hamdi | May 2020 | B2 |
10645548 | Reynolds et al. | May 2020 | B2 |
10649630 | Vora et al. | May 2020 | B1 |
10650408 | Andersen et al. | May 2020 | B1 |
10657469 | Bade et al. | May 2020 | B2 |
10657504 | Zimmerman et al. | May 2020 | B1 |
10659566 | Luah et al. | May 2020 | B1 |
10671749 | Felice-Steele et al. | Jun 2020 | B2 |
10671760 | Esmailzadeh et al. | Jun 2020 | B2 |
10678945 | Barday et al. | Jun 2020 | B2 |
10685140 | Barday et al. | Jun 2020 | B2 |
10706176 | Brannon et al. | Jul 2020 | B2 |
10706226 | Byun et al. | Jul 2020 | B2 |
10708305 | Barday et al. | Jul 2020 | B2 |
10713387 | Brannon et al. | Jul 2020 | B2 |
10726145 | Duminy et al. | Jul 2020 | B2 |
10726153 | Nerurkar et al. | Jul 2020 | B2 |
10726158 | Brannon et al. | Jul 2020 | B2 |
10732865 | Jain et al. | Aug 2020 | B2 |
10735388 | Rose et al. | Aug 2020 | B2 |
10740487 | Barday et al. | Aug 2020 | B2 |
10747893 | Kiriyama et al. | Aug 2020 | B2 |
10747897 | Cook | Aug 2020 | B2 |
10749870 | Brouillette et al. | Aug 2020 | B2 |
10762213 | Rudek et al. | Sep 2020 | B2 |
10762230 | Ancin et al. | Sep 2020 | B2 |
10762236 | Brannon | Sep 2020 | B2 |
10769302 | Barday et al. | Sep 2020 | B2 |
10769303 | Brannon et al. | Sep 2020 | B2 |
10776510 | Antonelli et al. | Sep 2020 | B2 |
10776518 | Barday et al. | Sep 2020 | B2 |
10778792 | Handy Bosma et al. | Sep 2020 | B1 |
10783256 | Brannon et al. | Sep 2020 | B2 |
10785173 | Willett et al. | Sep 2020 | B2 |
10785299 | Gupta et al. | Sep 2020 | B2 |
10789594 | Moshir et al. | Sep 2020 | B2 |
10791150 | Barday et al. | Sep 2020 | B2 |
10795527 | Legge et al. | Oct 2020 | B1 |
10796020 | Barday et al. | Oct 2020 | B2 |
10796260 | Brannon et al. | Oct 2020 | B2 |
10798133 | Barday et al. | Oct 2020 | B2 |
10803196 | Bodegas Martinez et al. | Oct 2020 | B2 |
10805331 | Boyer et al. | Oct 2020 | B2 |
10831831 | Greene | Nov 2020 | B2 |
10834590 | Turgeman et al. | Nov 2020 | B2 |
10846433 | Brannon et al. | Nov 2020 | B2 |
10853356 | McPherson et al. | Dec 2020 | B1 |
10853501 | Brannon | Dec 2020 | B2 |
10860721 | Gentile | Dec 2020 | B1 |
10860742 | Joseph et al. | Dec 2020 | B2 |
10860979 | Geffen et al. | Dec 2020 | B2 |
10878127 | Brannon et al. | Dec 2020 | B2 |
10885485 | Brannon et al. | Jan 2021 | B2 |
10891393 | Currier et al. | Jan 2021 | B2 |
10893074 | Sartor | Jan 2021 | B2 |
10896394 | Brannon et al. | Jan 2021 | B2 |
10902490 | He et al. | Jan 2021 | B2 |
10909488 | Hecht et al. | Feb 2021 | B2 |
10924514 | Altman et al. | Feb 2021 | B1 |
10929557 | Chavez | Feb 2021 | B2 |
10949555 | Rattan et al. | Mar 2021 | B2 |
10949565 | Barday et al. | Mar 2021 | B2 |
10956213 | Chambers et al. | Mar 2021 | B1 |
10957326 | Bhaya et al. | Mar 2021 | B2 |
10963571 | Bar Joseph et al. | Mar 2021 | B2 |
10963572 | Belfiore, Jr. et al. | Mar 2021 | B2 |
10965547 | Esposito et al. | Mar 2021 | B1 |
10970418 | Durvasula et al. | Apr 2021 | B2 |
10972509 | Barday et al. | Apr 2021 | B2 |
10976950 | Trezzo et al. | Apr 2021 | B1 |
10983963 | Venkatasubramanian et al. | Apr 2021 | B1 |
10984458 | Gutierrez | Apr 2021 | B1 |
10997318 | Barday et al. | May 2021 | B2 |
11003748 | Oliker et al. | May 2021 | B2 |
11012475 | Patnala et al. | May 2021 | B2 |
11019062 | Chittampally | May 2021 | B2 |
11023528 | Lee et al. | Jun 2021 | B1 |
11023921 | Wang et al. | Jun 2021 | B2 |
11037168 | Lee et al. | Jun 2021 | B1 |
11057356 | Malhotra et al. | Jul 2021 | B2 |
11057427 | Wright et al. | Jul 2021 | B2 |
11062051 | Barday et al. | Jul 2021 | B2 |
11068318 | Kuesel et al. | Jul 2021 | B2 |
11068584 | Burriesci et al. | Jul 2021 | B2 |
11068618 | Brannon et al. | Jul 2021 | B2 |
11068797 | Bhide et al. | Jul 2021 | B2 |
11068847 | Boutros et al. | Jul 2021 | B2 |
11082499 | Rivera | Aug 2021 | B2 |
11093643 | Hennebert | Aug 2021 | B2 |
11093950 | Hersh et al. | Aug 2021 | B2 |
11138299 | Brannon et al. | Oct 2021 | B2 |
11144622 | Brannon et al. | Oct 2021 | B2 |
11144678 | Dondini et al. | Oct 2021 | B2 |
11144862 | Jackson et al. | Oct 2021 | B1 |
11195134 | Brannon et al. | Dec 2021 | B2 |
11201929 | Dudmesh et al. | Dec 2021 | B2 |
11210420 | Brannon et al. | Dec 2021 | B2 |
11222139 | Jones et al. | Jan 2022 | B2 |
11238390 | Brannon et al. | Feb 2022 | B2 |
11240273 | Barday et al. | Feb 2022 | B2 |
11246520 | Clifford et al. | Feb 2022 | B2 |
11252159 | Kannan et al. | Feb 2022 | B2 |
11256777 | Brannon et al. | Feb 2022 | B2 |
11263262 | Chen | Mar 2022 | B2 |
11327996 | Reynolds et al. | May 2022 | B2 |
11695975 | Giraud | Jul 2023 | B1 |
20020004736 | Roundtree et al. | Jan 2002 | A1 |
20020049907 | Woods et al. | Apr 2002 | A1 |
20020055932 | Wheeler et al. | May 2002 | A1 |
20020077941 | Halligan et al. | Jun 2002 | A1 |
20020103854 | Okita | Aug 2002 | A1 |
20020129216 | Collins | Sep 2002 | A1 |
20020161594 | Bryan et al. | Oct 2002 | A1 |
20020161733 | Grainger | Oct 2002 | A1 |
20030041250 | Proudler | Feb 2003 | A1 |
20030065641 | Chaloux | Apr 2003 | A1 |
20030093680 | Astley et al. | May 2003 | A1 |
20030097451 | Bjorksten et al. | May 2003 | A1 |
20030097661 | Li et al. | May 2003 | A1 |
20030115142 | Brickell et al. | Jun 2003 | A1 |
20030130893 | Farmer | Jul 2003 | A1 |
20030131001 | Matsuo | Jul 2003 | A1 |
20030131093 | Aschen et al. | Jul 2003 | A1 |
20030140150 | Kemp et al. | Jul 2003 | A1 |
20030167216 | Brown et al. | Sep 2003 | A1 |
20030212604 | Cullen | Nov 2003 | A1 |
20040002818 | Kulp et al. | Jan 2004 | A1 |
20040025053 | Hayward | Feb 2004 | A1 |
20040088235 | Ziekle et al. | May 2004 | A1 |
20040098366 | Sinclair et al. | May 2004 | A1 |
20040098493 | Rees | May 2004 | A1 |
20040111359 | Hudock | Jun 2004 | A1 |
20040186912 | Harlow et al. | Sep 2004 | A1 |
20040193907 | Patanella | Sep 2004 | A1 |
20050022198 | Olapurath et al. | Jan 2005 | A1 |
20050033616 | Vavul et al. | Feb 2005 | A1 |
20050076294 | Dehamer et al. | Apr 2005 | A1 |
20050114343 | Wesinger, Jr. et al. | May 2005 | A1 |
20050144066 | Cope et al. | Jun 2005 | A1 |
20050197884 | Mullen, Jr. | Sep 2005 | A1 |
20050198177 | Black | Sep 2005 | A1 |
20050198646 | Kortela | Sep 2005 | A1 |
20050246292 | Sarcanin | Nov 2005 | A1 |
20050251865 | Mont et al. | Nov 2005 | A1 |
20050278538 | Fowler | Dec 2005 | A1 |
20060031078 | Pizzinger et al. | Feb 2006 | A1 |
20060035204 | Lamarche et al. | Feb 2006 | A1 |
20060075122 | Lindskog et al. | Apr 2006 | A1 |
20060149730 | Curtis | Jul 2006 | A1 |
20060156052 | Bodnar et al. | Jul 2006 | A1 |
20060190280 | Hoebel et al. | Aug 2006 | A1 |
20060206375 | Scott et al. | Sep 2006 | A1 |
20060224422 | Cohen | Oct 2006 | A1 |
20060253597 | Mujica | Nov 2006 | A1 |
20060259416 | Johnson | Nov 2006 | A1 |
20070011058 | Dev | Jan 2007 | A1 |
20070027715 | Gropper et al. | Feb 2007 | A1 |
20070061125 | Bhatt et al. | Mar 2007 | A1 |
20070061393 | Moore | Mar 2007 | A1 |
20070130101 | Anderson et al. | Jun 2007 | A1 |
20070130323 | Landsman et al. | Jun 2007 | A1 |
20070157311 | Meier et al. | Jul 2007 | A1 |
20070173355 | Klein | Jul 2007 | A1 |
20070179793 | Bagchi et al. | Aug 2007 | A1 |
20070180490 | Renzi et al. | Aug 2007 | A1 |
20070192438 | Goei | Aug 2007 | A1 |
20070266420 | Hawkins et al. | Nov 2007 | A1 |
20070283171 | Breslin et al. | Dec 2007 | A1 |
20080005194 | Smolen et al. | Jan 2008 | A1 |
20080015927 | Ramirez | Jan 2008 | A1 |
20080028065 | Caso et al. | Jan 2008 | A1 |
20080028435 | Strickland et al. | Jan 2008 | A1 |
20080047016 | Spoonamore | Feb 2008 | A1 |
20080120699 | Spear | May 2008 | A1 |
20080140696 | Mathuria | Jun 2008 | A1 |
20080189306 | Hewett et al. | Aug 2008 | A1 |
20080195436 | Whyte | Aug 2008 | A1 |
20080222271 | Spires | Sep 2008 | A1 |
20080235177 | Kim et al. | Sep 2008 | A1 |
20080270203 | Holmes et al. | Oct 2008 | A1 |
20080270351 | Thomsen | Oct 2008 | A1 |
20080270381 | Thomsen | Oct 2008 | A1 |
20080270382 | Thomsen et al. | Oct 2008 | A1 |
20080270451 | Thomsen et al. | Oct 2008 | A1 |
20080270462 | Thomsen | Oct 2008 | A1 |
20080281649 | Morris | Nov 2008 | A1 |
20080282320 | Denovo et al. | Nov 2008 | A1 |
20080288271 | Faust | Nov 2008 | A1 |
20080288299 | Schultz | Nov 2008 | A1 |
20090012896 | Arnold | Jan 2009 | A1 |
20090022301 | Mudaliar | Jan 2009 | A1 |
20090037975 | Ishikawa et al. | Feb 2009 | A1 |
20090119500 | Roth et al. | May 2009 | A1 |
20090132419 | Grammer et al. | May 2009 | A1 |
20090138276 | Hayashida et al. | May 2009 | A1 |
20090140035 | Miller | Jun 2009 | A1 |
20090144702 | Atkin et al. | Jun 2009 | A1 |
20090158249 | Tomkins et al. | Jun 2009 | A1 |
20090172705 | Cheong | Jul 2009 | A1 |
20090182818 | Krywaniuk | Jul 2009 | A1 |
20090187764 | Astakhov et al. | Jul 2009 | A1 |
20090204452 | Iskandar et al. | Aug 2009 | A1 |
20090204820 | Brandenburg et al. | Aug 2009 | A1 |
20090210347 | Sarcanin | Aug 2009 | A1 |
20090216610 | Chorny | Aug 2009 | A1 |
20090249076 | Reed et al. | Oct 2009 | A1 |
20090303237 | Liu et al. | Dec 2009 | A1 |
20100010912 | Jones et al. | Jan 2010 | A1 |
20100010968 | Redlich et al. | Jan 2010 | A1 |
20100077484 | Paretti et al. | Mar 2010 | A1 |
20100082533 | Nakamura et al. | Apr 2010 | A1 |
20100094650 | Tran et al. | Apr 2010 | A1 |
20100100398 | Auker et al. | Apr 2010 | A1 |
20100121773 | Currier et al. | May 2010 | A1 |
20100192201 | Shimoni et al. | Jul 2010 | A1 |
20100205057 | Hook et al. | Aug 2010 | A1 |
20100223349 | Thorson | Sep 2010 | A1 |
20100228786 | Török | Sep 2010 | A1 |
20100234987 | Benschop et al. | Sep 2010 | A1 |
20100235297 | Mamorsky | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100262624 | Pullikottil | Oct 2010 | A1 |
20100268628 | Pitkow et al. | Oct 2010 | A1 |
20100268932 | Bhattacharjee | Oct 2010 | A1 |
20100281313 | White et al. | Nov 2010 | A1 |
20100287114 | Bartko et al. | Nov 2010 | A1 |
20100333012 | Adachi et al. | Dec 2010 | A1 |
20110006996 | Smith et al. | Jan 2011 | A1 |
20110010202 | Neale | Jan 2011 | A1 |
20110082794 | Blechman | Apr 2011 | A1 |
20110137696 | Meyer et al. | Jun 2011 | A1 |
20110145154 | Rivers et al. | Jun 2011 | A1 |
20110153396 | Marcuvitz et al. | Jun 2011 | A1 |
20110191664 | Sheleheda et al. | Aug 2011 | A1 |
20110208850 | Sheleheda et al. | Aug 2011 | A1 |
20110209067 | Bogess et al. | Aug 2011 | A1 |
20110231896 | Tovar | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110252456 | Hatakeyama | Oct 2011 | A1 |
20110287748 | Angel et al. | Nov 2011 | A1 |
20110302643 | Pichna et al. | Dec 2011 | A1 |
20120041939 | Amsterdamski | Feb 2012 | A1 |
20120084151 | Kozak et al. | Apr 2012 | A1 |
20120084349 | Lee et al. | Apr 2012 | A1 |
20120102411 | Sathish | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120109830 | Vogel | May 2012 | A1 |
20120110674 | Belani et al. | May 2012 | A1 |
20120116923 | Irving et al. | May 2012 | A1 |
20120131438 | Li et al. | May 2012 | A1 |
20120143650 | Crowley et al. | Jun 2012 | A1 |
20120144499 | Tan et al. | Jun 2012 | A1 |
20120191596 | Kremen et al. | Jul 2012 | A1 |
20120226621 | Petran et al. | Sep 2012 | A1 |
20120239557 | Weinflash et al. | Sep 2012 | A1 |
20120254320 | Dove et al. | Oct 2012 | A1 |
20120259752 | Agee | Oct 2012 | A1 |
20120323700 | Aleksandrovich et al. | Dec 2012 | A1 |
20120330769 | Arceo | Dec 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20130004933 | Bhaskaran | Jan 2013 | A1 |
20130018954 | Cheng | Jan 2013 | A1 |
20130085801 | Sharpe et al. | Apr 2013 | A1 |
20130091156 | Raiche et al. | Apr 2013 | A1 |
20130103485 | Postrel | Apr 2013 | A1 |
20130111323 | Taghaddos et al. | May 2013 | A1 |
20130124257 | Schubert | May 2013 | A1 |
20130159351 | Hamann et al. | Jun 2013 | A1 |
20130160120 | Malaviya et al. | Jun 2013 | A1 |
20130171968 | Wang | Jul 2013 | A1 |
20130179982 | Bridges et al. | Jul 2013 | A1 |
20130179988 | Bekker et al. | Jul 2013 | A1 |
20130185806 | Hatakeyama | Jul 2013 | A1 |
20130211872 | Cherry et al. | Aug 2013 | A1 |
20130218829 | Martinez | Aug 2013 | A1 |
20130219459 | Bradley | Aug 2013 | A1 |
20130254139 | Lei | Sep 2013 | A1 |
20130254649 | ONeill | Sep 2013 | A1 |
20130254699 | Bashir et al. | Sep 2013 | A1 |
20130262328 | Federgreen | Oct 2013 | A1 |
20130282438 | Hunter et al. | Oct 2013 | A1 |
20130282466 | Hampton | Oct 2013 | A1 |
20130290169 | Bathula et al. | Oct 2013 | A1 |
20130298071 | Wine | Nov 2013 | A1 |
20130311224 | Heroux et al. | Nov 2013 | A1 |
20130318207 | Dotter | Nov 2013 | A1 |
20130326112 | Park et al. | Dec 2013 | A1 |
20130332362 | Ciurea | Dec 2013 | A1 |
20130340086 | Blom | Dec 2013 | A1 |
20140006355 | Kirihata | Jan 2014 | A1 |
20140006616 | Aad et al. | Jan 2014 | A1 |
20140012833 | Humprecht | Jan 2014 | A1 |
20140019561 | Belity et al. | Jan 2014 | A1 |
20140032259 | Lafever et al. | Jan 2014 | A1 |
20140032265 | Paprocki | Jan 2014 | A1 |
20140040134 | Ciurea | Feb 2014 | A1 |
20140040161 | Berlin | Feb 2014 | A1 |
20140040979 | Barton et al. | Feb 2014 | A1 |
20140041048 | Goodwin et al. | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052463 | Cashman et al. | Feb 2014 | A1 |
20140067973 | Eden | Mar 2014 | A1 |
20140074550 | Chourey | Mar 2014 | A1 |
20140074645 | Ingram | Mar 2014 | A1 |
20140075493 | Krishnan et al. | Mar 2014 | A1 |
20140089027 | Brown | Mar 2014 | A1 |
20140089039 | McClellan | Mar 2014 | A1 |
20140108173 | Cooper et al. | Apr 2014 | A1 |
20140108968 | Vishria | Apr 2014 | A1 |
20140137257 | Martinez et al. | May 2014 | A1 |
20140142988 | Grosso et al. | May 2014 | A1 |
20140143011 | Mudugu et al. | May 2014 | A1 |
20140143844 | Goertzen | May 2014 | A1 |
20140164476 | Thomson | Jun 2014 | A1 |
20140188956 | Subba et al. | Jul 2014 | A1 |
20140196143 | Fliderman et al. | Jul 2014 | A1 |
20140208418 | Libin | Jul 2014 | A1 |
20140222468 | Araya et al. | Aug 2014 | A1 |
20140244309 | Francois | Aug 2014 | A1 |
20140244325 | Cartwright | Aug 2014 | A1 |
20140244375 | Kim | Aug 2014 | A1 |
20140244399 | Orduna et al. | Aug 2014 | A1 |
20140257917 | Spencer et al. | Sep 2014 | A1 |
20140258093 | Gardiner et al. | Sep 2014 | A1 |
20140278539 | Edwards | Sep 2014 | A1 |
20140278663 | Samuel et al. | Sep 2014 | A1 |
20140278730 | Muhart et al. | Sep 2014 | A1 |
20140278802 | MacPherson | Sep 2014 | A1 |
20140283027 | Orona et al. | Sep 2014 | A1 |
20140283106 | Stahura et al. | Sep 2014 | A1 |
20140288971 | Whibbs, III | Sep 2014 | A1 |
20140289366 | Choi et al. | Sep 2014 | A1 |
20140289681 | Wielgosz | Sep 2014 | A1 |
20140289862 | Gorfein et al. | Sep 2014 | A1 |
20140317171 | Fox et al. | Oct 2014 | A1 |
20140324480 | Dufel et al. | Oct 2014 | A1 |
20140337041 | Madden et al. | Nov 2014 | A1 |
20140337466 | Li et al. | Nov 2014 | A1 |
20140344015 | Puértolas-Montañés et al. | Nov 2014 | A1 |
20150006514 | Hung | Jan 2015 | A1 |
20150012363 | Grant et al. | Jan 2015 | A1 |
20150019530 | Felch | Jan 2015 | A1 |
20150026056 | Calman et al. | Jan 2015 | A1 |
20150026260 | Worthley | Jan 2015 | A1 |
20150033112 | Norwood et al. | Jan 2015 | A1 |
20150066577 | Christiansen et al. | Mar 2015 | A1 |
20150066865 | Yara et al. | Mar 2015 | A1 |
20150074765 | Haight et al. | Mar 2015 | A1 |
20150088598 | Acharyya et al. | Mar 2015 | A1 |
20150088635 | Maycotte et al. | Mar 2015 | A1 |
20150106264 | Johnson | Apr 2015 | A1 |
20150106867 | Liang | Apr 2015 | A1 |
20150106948 | Holman et al. | Apr 2015 | A1 |
20150106949 | Holman et al. | Apr 2015 | A1 |
20150121462 | Courage et al. | Apr 2015 | A1 |
20150143258 | Carolan et al. | May 2015 | A1 |
20150149362 | Baum et al. | May 2015 | A1 |
20150154520 | Federgreen et al. | Jun 2015 | A1 |
20150169318 | Nash | Jun 2015 | A1 |
20150172296 | Fujioka | Jun 2015 | A1 |
20150178740 | Borawski et al. | Jun 2015 | A1 |
20150199534 | Francis et al. | Jul 2015 | A1 |
20150199541 | Koch et al. | Jul 2015 | A1 |
20150199702 | Singh | Jul 2015 | A1 |
20150229664 | Hawthorn et al. | Aug 2015 | A1 |
20150235049 | Cohen et al. | Aug 2015 | A1 |
20150235050 | Wouhaybi et al. | Aug 2015 | A1 |
20150235283 | Nishikawa | Aug 2015 | A1 |
20150242638 | Bitran et al. | Aug 2015 | A1 |
20150242778 | Wilcox et al. | Aug 2015 | A1 |
20150242858 | Smith et al. | Aug 2015 | A1 |
20150248391 | Watanabe | Sep 2015 | A1 |
20150254597 | Jahagirdar | Sep 2015 | A1 |
20150261887 | Joukov | Sep 2015 | A1 |
20150262189 | Vergeer | Sep 2015 | A1 |
20150264417 | Spitz et al. | Sep 2015 | A1 |
20150269384 | Holman et al. | Sep 2015 | A1 |
20150271167 | Kalai | Sep 2015 | A1 |
20150288715 | Hotchkiss | Oct 2015 | A1 |
20150309813 | Patel | Oct 2015 | A1 |
20150310227 | Ishida et al. | Oct 2015 | A1 |
20150310575 | Shelton | Oct 2015 | A1 |
20150348200 | Fair et al. | Dec 2015 | A1 |
20150356362 | Demos | Dec 2015 | A1 |
20150379430 | Dirac et al. | Dec 2015 | A1 |
20160006760 | Lala et al. | Jan 2016 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160026394 | Goto | Jan 2016 | A1 |
20160034918 | Bjelajac et al. | Feb 2016 | A1 |
20160048700 | Stransky-Heilkron | Feb 2016 | A1 |
20160050213 | Storr | Feb 2016 | A1 |
20160063523 | Nistor et al. | Mar 2016 | A1 |
20160063567 | Srivastava | Mar 2016 | A1 |
20160071112 | Unser | Mar 2016 | A1 |
20160080405 | Schler et al. | Mar 2016 | A1 |
20160099963 | Mahaffey et al. | Apr 2016 | A1 |
20160103963 | Mishra | Apr 2016 | A1 |
20160125550 | Joao et al. | May 2016 | A1 |
20160125749 | Delacroix et al. | May 2016 | A1 |
20160125751 | Barker et al. | May 2016 | A1 |
20160140466 | Sidebottom et al. | May 2016 | A1 |
20160143570 | Valacich et al. | May 2016 | A1 |
20160148143 | Anderson et al. | May 2016 | A1 |
20160148259 | Baek et al. | May 2016 | A1 |
20160162269 | Pogorelik et al. | Jun 2016 | A1 |
20160164915 | Cook | Jun 2016 | A1 |
20160180386 | Konig | Jun 2016 | A1 |
20160188450 | Appusamy et al. | Jun 2016 | A1 |
20160189156 | Kim et al. | Jun 2016 | A1 |
20160196189 | Miyagi et al. | Jul 2016 | A1 |
20160225000 | Glasgow | Aug 2016 | A1 |
20160232465 | Kurtz et al. | Aug 2016 | A1 |
20160232534 | Lacey et al. | Aug 2016 | A1 |
20160234319 | Griffin | Aug 2016 | A1 |
20160253497 | Christodorescu et al. | Sep 2016 | A1 |
20160255139 | Rathod | Sep 2016 | A1 |
20160261631 | Vissamsetty et al. | Sep 2016 | A1 |
20160262163 | Gonzalez Garrido et al. | Sep 2016 | A1 |
20160292453 | Patterson et al. | Oct 2016 | A1 |
20160292621 | Ciccone et al. | Oct 2016 | A1 |
20160321582 | Broudou et al. | Nov 2016 | A1 |
20160321748 | Mahatma et al. | Nov 2016 | A1 |
20160330237 | Edlabadkar | Nov 2016 | A1 |
20160335531 | Mullen et al. | Nov 2016 | A1 |
20160342811 | Whitcomb et al. | Nov 2016 | A1 |
20160359861 | Manov et al. | Dec 2016 | A1 |
20160364736 | Maugans, III | Dec 2016 | A1 |
20160370954 | Burningham et al. | Dec 2016 | A1 |
20160378762 | Rohter | Dec 2016 | A1 |
20160381064 | Chan et al. | Dec 2016 | A1 |
20160381560 | Margaliot | Dec 2016 | A1 |
20170004055 | Horan et al. | Jan 2017 | A1 |
20170032395 | Kaufman et al. | Feb 2017 | A1 |
20170032408 | Kumar et al. | Feb 2017 | A1 |
20170034101 | Kumar et al. | Feb 2017 | A1 |
20170041324 | Ionutescu et al. | Feb 2017 | A1 |
20170046399 | Sankaranarasimhan et al. | Feb 2017 | A1 |
20170046753 | Deupree, IV | Feb 2017 | A1 |
20170061501 | Horwich | Mar 2017 | A1 |
20170068785 | Experton et al. | Mar 2017 | A1 |
20170070495 | Cherry et al. | Mar 2017 | A1 |
20170075513 | Watson et al. | Mar 2017 | A1 |
20170093917 | Chandra et al. | Mar 2017 | A1 |
20170115864 | Thomas et al. | Apr 2017 | A1 |
20170124570 | Nidamanuri et al. | May 2017 | A1 |
20170140174 | Lacey et al. | May 2017 | A1 |
20170140467 | Neag et al. | May 2017 | A1 |
20170142158 | Laoutaris et al. | May 2017 | A1 |
20170142177 | Hu | May 2017 | A1 |
20170154188 | Meier et al. | Jun 2017 | A1 |
20170161520 | Lockhart, III et al. | Jun 2017 | A1 |
20170171235 | Mulchandani et al. | Jun 2017 | A1 |
20170171325 | Perez | Jun 2017 | A1 |
20170177324 | Frank et al. | Jun 2017 | A1 |
20170180378 | Tyler et al. | Jun 2017 | A1 |
20170180505 | Shaw et al. | Jun 2017 | A1 |
20170193017 | Migliori | Jul 2017 | A1 |
20170193624 | Tsai | Jul 2017 | A1 |
20170201518 | Holmqvist et al. | Jul 2017 | A1 |
20170206707 | Guay et al. | Jul 2017 | A1 |
20170208084 | Steelman et al. | Jul 2017 | A1 |
20170213206 | Shearer | Jul 2017 | A1 |
20170220685 | Yan et al. | Aug 2017 | A1 |
20170220964 | Datta Ray | Aug 2017 | A1 |
20170249394 | Loeb et al. | Aug 2017 | A1 |
20170249710 | Guillama et al. | Aug 2017 | A1 |
20170269791 | Meyerzon et al. | Sep 2017 | A1 |
20170270318 | Ritchie | Sep 2017 | A1 |
20170278004 | McElhinney et al. | Sep 2017 | A1 |
20170278117 | Wallace et al. | Sep 2017 | A1 |
20170286719 | Krishnamurthy et al. | Oct 2017 | A1 |
20170287031 | Barday | Oct 2017 | A1 |
20170289199 | Barday | Oct 2017 | A1 |
20170308875 | O'Regan et al. | Oct 2017 | A1 |
20170316400 | Venkatakrishnan et al. | Nov 2017 | A1 |
20170330197 | DiMaggio et al. | Nov 2017 | A1 |
20170353404 | Hodge | Dec 2017 | A1 |
20180032757 | Michael | Feb 2018 | A1 |
20180039975 | Hefetz | Feb 2018 | A1 |
20180041498 | Kikuchi | Feb 2018 | A1 |
20180046753 | Shelton | Feb 2018 | A1 |
20180046939 | Meron et al. | Feb 2018 | A1 |
20180063174 | Grill et al. | Mar 2018 | A1 |
20180063190 | Wright et al. | Mar 2018 | A1 |
20180082024 | Curbera et al. | Mar 2018 | A1 |
20180082368 | Weinflash et al. | Mar 2018 | A1 |
20180083843 | Sambandam | Mar 2018 | A1 |
20180091476 | Jakobsson et al. | Mar 2018 | A1 |
20180131574 | Jacobs et al. | May 2018 | A1 |
20180131658 | Bhagwan et al. | May 2018 | A1 |
20180165637 | Romero et al. | Jun 2018 | A1 |
20180198614 | Neumann | Jul 2018 | A1 |
20180204281 | Painter et al. | Jul 2018 | A1 |
20180219917 | Chiang | Aug 2018 | A1 |
20180239500 | Allen et al. | Aug 2018 | A1 |
20180248914 | Sartor | Aug 2018 | A1 |
20180285887 | Maung | Oct 2018 | A1 |
20180301222 | Dew, Sr. et al. | Oct 2018 | A1 |
20180307859 | Lafever et al. | Oct 2018 | A1 |
20180336509 | Guttmann | Nov 2018 | A1 |
20180343215 | Ganapathi et al. | Nov 2018 | A1 |
20180349583 | Turgeman et al. | Dec 2018 | A1 |
20180351888 | Howard | Dec 2018 | A1 |
20180352003 | Winn et al. | Dec 2018 | A1 |
20180357243 | Yoon | Dec 2018 | A1 |
20180365720 | Goldman et al. | Dec 2018 | A1 |
20180374030 | Barday et al. | Dec 2018 | A1 |
20180375814 | Hart | Dec 2018 | A1 |
20190005210 | Wiederspohn et al. | Jan 2019 | A1 |
20190012211 | Selvaraj | Jan 2019 | A1 |
20190012672 | Francesco | Jan 2019 | A1 |
20190019184 | Lacey et al. | Jan 2019 | A1 |
20190050547 | Welsh et al. | Feb 2019 | A1 |
20190087570 | Sloane | Mar 2019 | A1 |
20190096020 | Barday et al. | Mar 2019 | A1 |
20190108353 | Sadeh et al. | Apr 2019 | A1 |
20190130132 | Barbas et al. | May 2019 | A1 |
20190138496 | Yamaguchi | May 2019 | A1 |
20190139087 | Dabbs et al. | May 2019 | A1 |
20190148003 | Van Hoe | May 2019 | A1 |
20190156053 | Vogel et al. | May 2019 | A1 |
20190156058 | Van Dyne et al. | May 2019 | A1 |
20190171801 | Barday et al. | Jun 2019 | A1 |
20190179652 | Hesener et al. | Jun 2019 | A1 |
20190180051 | Barday et al. | Jun 2019 | A1 |
20190182294 | Rieke et al. | Jun 2019 | A1 |
20190188402 | Wang et al. | Jun 2019 | A1 |
20190266200 | Francolla | Aug 2019 | A1 |
20190266201 | Barday et al. | Aug 2019 | A1 |
20190266350 | Barday et al. | Aug 2019 | A1 |
20190268343 | Barday et al. | Aug 2019 | A1 |
20190268344 | Barday et al. | Aug 2019 | A1 |
20190272492 | Elledge et al. | Sep 2019 | A1 |
20190294818 | Barday et al. | Sep 2019 | A1 |
20190332802 | Barday et al. | Oct 2019 | A1 |
20190332807 | Lafever et al. | Oct 2019 | A1 |
20190333118 | Crimmins et al. | Oct 2019 | A1 |
20190354709 | Brinskelle | Nov 2019 | A1 |
20190356684 | Sinha et al. | Nov 2019 | A1 |
20190362169 | Lin et al. | Nov 2019 | A1 |
20190362268 | Fogarty et al. | Nov 2019 | A1 |
20190377901 | Balzer et al. | Dec 2019 | A1 |
20190378073 | Lopez et al. | Dec 2019 | A1 |
20190384934 | Kim | Dec 2019 | A1 |
20190392162 | Stern et al. | Dec 2019 | A1 |
20190392170 | Barday et al. | Dec 2019 | A1 |
20190392171 | Barday et al. | Dec 2019 | A1 |
20200020454 | McGarvey et al. | Jan 2020 | A1 |
20200050966 | Enuka et al. | Feb 2020 | A1 |
20200051117 | Mitchell | Feb 2020 | A1 |
20200057781 | McCormick | Feb 2020 | A1 |
20200067979 | Wright | Feb 2020 | A1 |
20200074471 | Adjaoute | Mar 2020 | A1 |
20200081865 | Farrar et al. | Mar 2020 | A1 |
20200082270 | Gu et al. | Mar 2020 | A1 |
20200090197 | Rodriguez et al. | Mar 2020 | A1 |
20200092179 | Chieu et al. | Mar 2020 | A1 |
20200110589 | Bequet et al. | Apr 2020 | A1 |
20200110904 | Shinde et al. | Apr 2020 | A1 |
20200117737 | Gopalakrishnan et al. | Apr 2020 | A1 |
20200137097 | Zimmermann et al. | Apr 2020 | A1 |
20200143301 | Bowers | May 2020 | A1 |
20200143797 | Manoharan et al. | May 2020 | A1 |
20200159952 | Dain et al. | May 2020 | A1 |
20200159955 | Barlik et al. | May 2020 | A1 |
20200167653 | Manjunath et al. | May 2020 | A1 |
20200175424 | Kursun | Jun 2020 | A1 |
20200183655 | Barday et al. | Jun 2020 | A1 |
20200186355 | Davies | Jun 2020 | A1 |
20200193018 | Van Dyke | Jun 2020 | A1 |
20200193022 | Lunsford et al. | Jun 2020 | A1 |
20200210558 | Barday et al. | Jul 2020 | A1 |
20200210620 | Haletky | Jul 2020 | A1 |
20200211002 | Steinberg | Jul 2020 | A1 |
20200220901 | Barday et al. | Jul 2020 | A1 |
20200226156 | Borra et al. | Jul 2020 | A1 |
20200226196 | Brannon et al. | Jul 2020 | A1 |
20200242259 | Chirravuri et al. | Jul 2020 | A1 |
20200242719 | Lee | Jul 2020 | A1 |
20200250342 | Miller et al. | Aug 2020 | A1 |
20200252413 | Buzbee et al. | Aug 2020 | A1 |
20200252817 | Brouillette et al. | Aug 2020 | A1 |
20200272764 | Brannon et al. | Aug 2020 | A1 |
20200285755 | Kassoumeh et al. | Sep 2020 | A1 |
20200293679 | Handy Bosma et al. | Sep 2020 | A1 |
20200296171 | Mocanu et al. | Sep 2020 | A1 |
20200302089 | Barday et al. | Sep 2020 | A1 |
20200310917 | Tkachev et al. | Oct 2020 | A1 |
20200311310 | Barday et al. | Oct 2020 | A1 |
20200344243 | Brannon et al. | Oct 2020 | A1 |
20200356695 | Brannon et al. | Nov 2020 | A1 |
20200364369 | Brannon et al. | Nov 2020 | A1 |
20200372178 | Barday et al. | Nov 2020 | A1 |
20200394327 | Childress et al. | Dec 2020 | A1 |
20200401380 | Jacobs et al. | Dec 2020 | A1 |
20200401962 | Gottemukkala et al. | Dec 2020 | A1 |
20200410117 | Barday et al. | Dec 2020 | A1 |
20200410131 | Barday et al. | Dec 2020 | A1 |
20200410132 | Brannon et al. | Dec 2020 | A1 |
20210012341 | Garg et al. | Jan 2021 | A1 |
20210056569 | Silberman et al. | Feb 2021 | A1 |
20210075775 | Cheng et al. | Mar 2021 | A1 |
20210081567 | Park et al. | Mar 2021 | A1 |
20210099449 | Frederick et al. | Apr 2021 | A1 |
20210110047 | Victor | Apr 2021 | A1 |
20210124821 | Spivak et al. | Apr 2021 | A1 |
20210125089 | Nickl et al. | Apr 2021 | A1 |
20210152496 | Kim et al. | May 2021 | A1 |
20210182940 | Gupta et al. | Jun 2021 | A1 |
20210224402 | Sher-Jan et al. | Jul 2021 | A1 |
20210233157 | Crutchfield, Jr. | Jul 2021 | A1 |
20210243595 | Buck et al. | Aug 2021 | A1 |
20210248247 | Poothokaran et al. | Aug 2021 | A1 |
20210256163 | Fleming et al. | Aug 2021 | A1 |
20210279360 | Gimenez Palop et al. | Sep 2021 | A1 |
20210288995 | Attar et al. | Sep 2021 | A1 |
20210297441 | Olalere | Sep 2021 | A1 |
20210303828 | Lafreniere et al. | Sep 2021 | A1 |
20210312061 | Schroeder et al. | Oct 2021 | A1 |
20210314328 | Simons | Oct 2021 | A1 |
20210326786 | Sun et al. | Oct 2021 | A1 |
20210328969 | Gaddam et al. | Oct 2021 | A1 |
20210382949 | Yastrebenetsky et al. | Dec 2021 | A1 |
20210397735 | Samatov et al. | Dec 2021 | A1 |
20210400018 | Vettaikaran et al. | Dec 2021 | A1 |
20210406712 | Bhide et al. | Dec 2021 | A1 |
20220137850 | Boddu et al. | May 2022 | A1 |
20220171759 | Jindal et al. | Jun 2022 | A1 |
20220217045 | Blau et al. | Jul 2022 | A1 |
20220414255 | Wang et al. | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
2875255 | Dec 2013 | CA |
3056394 | Mar 2021 | CA |
111496802 | Aug 2020 | CN |
112115859 | Dec 2020 | CN |
1394698 | Mar 2004 | EP |
2031540 | Mar 2009 | EP |
20130024345 | Mar 2013 | KR |
20130062500 | Jun 2013 | KR |
2001033430 | May 2001 | WO |
20020067158 | Aug 2002 | WO |
20030050773 | Jun 2003 | WO |
2005008411 | Jan 2005 | WO |
2007002412 | Jan 2007 | WO |
2008134203 | Nov 2008 | WO |
2012174659 | Dec 2012 | WO |
2015116905 | Aug 2015 | WO |
2020146028 | Jul 2020 | WO |
2022006421 | Jan 2022 | WO |
Entry |
---|
Kirkham, et al, “A Personal Data Store for an Internet of Subjects,” IEEE, pp. 92-97 (Year: 2011). |
Korba, Larry et al.; “Private Data Discovery for Privacy Compliance in Collaborative Environments”; Cooperative Design, Visualization, and Engineering; Springer Berlin Heidelberg; Sep. 21, 2008; pp. 142-150. |
Kristian et al, “Human Facial Age Classification Using Active Shape Module, Geometrical Feature, and Support Vendor Machine on Early Growth Stage,” ISICO, 2015, pp. 1-8 (Year: 2015). |
Krol, Kat, et al, Control versus Effort in Privacy Warnings for Webforms, ACM, Oct. 24, 2016, pp. 13-23. |
Lamb et al, “Role-Based Access Control for Data Service Integration”, ACM, pp. 3-11 (Year: 2006). |
Lasierra et al, “Data Management in Home Scenarios Using an Autonomic Ontology-Based Approach,” IEEE, pp. 94-99 (Year: 2012). |
Leadbetter, et al, “Where Big Data Meets Linked Data: Applying Standard Data Models to Environmental Data Streams,” IEEE, pp. 2929-2937 (Year: 2016). |
Lenzerini et al, “Ontology-based Data Management,” ACM, pp. 5-6 (Year: 2011). |
Lewis, James et al, “Microservices,” Mar. 25, 2014 (Mar. 25, 2014),XP055907494, Retrieved from the Internet: https://martinfowler.com/articles/micr oservices.html. [retrieved on Mar. 31, 2022]. |
Li, Ninghui, et al, t-Closeness: Privacy Beyond k-Anonymity and I-Diversity, IEEE, 2014, p. 106-115. |
Liu et al, “A Novel Approach for Detecting Browser-based Silent Miner,” IEEE, pp. 490-497 (Year: 2018). |
Liu et al, “Cross-Geography Scientific Data Transferring Trends and Behavior,” ACM, pp. 267-278 (Year: 2018). |
Liu et al, “Overview on Ontology Mapping and Approach,” IEEE, pp. 592-595 (Year: 2011). |
Liu, Kun, et al, A Framework for Computing the Privacy Scores of Users in Online Social Networks, ACM Transactions on Knowledge Discovery from Data, vol. 5, No. 1, Article 6, Dec. 2010, 30 pages. |
Lu et al, “An HTTP Flooding Detection Method Based on Browser Behavior,” IEEE, pp. 1151-1154 (Year: 2006). |
Lu, “How Machine Learning Mitigates Racial Bias in the US Housing Market,” Available as SSRN 3489519, pp. 1-73, Nov. 2019 (Year: 2019). |
Luu, et al, “Combined Local and Holistic Facial Features for Age-Determination,” 2010 11th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Dec. 7, 2010, IEEE, pp. 900-904 (Year: 2010). |
Maret et al, “Multimedia Information Interchange: Web Forms Meet Data Servers”, IEEE, pp. 499-505 (Year: 1999). |
Martin, et al, “Hidden Surveillance by Web Sites: Web Bugs in Contemporary Use,” Communications of the ACM, vol. 46, No. 12, Dec. 2003, pp. 258-264. Internet source https://doi.org/10.1145/953460.953509. (Year: 2003). |
Matte et al, “Do Cookie Banners Respect my Choice ?: Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework,” 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 791-809 (Year: 2020). |
McGarth et al, “Digital Library Technology for Locating and Accessing Scientific Data”, ACM, pp. 188-194 (Year: 1999). |
Mesbah et al, “Crawling Ajax-Based Web Applications Through Dynamic Analysis of User Interface State Changes,” ACM Transactions on the Web (TWEB) vol. 6, No. 1, Article 3, Mar. 2012, pp. 1-30 (Year: 2012). |
Milic et al, “Comparative Analysis of Metadata Models on e-Government Open Data Platforms,” IEEE, pp. 119-130 (Year: 2021). |
Moscoso-Zea et al, “Datawarehouse Design for Educational Data Mining,” IEEE, pp. 1-6 (Year: 2016). |
Mudepalli et al, “An efficient data retrieval approach using blowfish encryption on cloud CipherText Retrieval in Cloud Computing” IEEE, pp. 267-271 (Year: 2017). |
Mundada et al, “Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web,” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 675-685 (Year: 2016). |
Nemec et al, “Assessment of Query Execution Performance Using Selected Business Intelligence Tools and Experimental Agile Oriented Data Modeling Approach,” Sep. 16, 2015, IEEE, pp. 1327-1333. (Year: 2015). |
Newman et al, “High Speed Scientific Data Transfers using Software Defined Networking,” ACM, pp. 1-9 (Year: 2015). |
Newman, “Email Archive Overviews using Subject Indexes”, ACM, pp. 652-653, 2002 (Year: 2002). |
Nishikawa, Taiji, English Translation of JP 2019154505, Aug. 27, 2019 (Year: 2019). |
Niu, et al, “Achieving Data Truthfulness and Privacy Preservation in Data Markets”, IEEE Transactions on Knowledge and Data Engineering, IEEE Service Centre, Los Alamitos, CA, US, vol. 31, No. 1, Jan. 1, 2019, pp. 105-119 (Year 2019). |
Notice of Filing Date for Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Apr. 12, 2018. |
Nouwens et al, “Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence,” ACM, pp. 1-13, Apr. 25, 2020 (Year: 2020). |
O'Keefe et al, “Privacy-Preserving Data Linkage Protocols,” Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004, pp. 94-102 (Year: 2004). |
Olenski, Steve, For Consumers, Data Is a Matter of Trust, CMO Network, Apr. 18, 2016, https://www.forbes.com/sites/steveolenski/2016/04/18/for-consumers-data-is-a-matter-of-trust/#2e48496278b3. |
Ozdikis et al, “Tool Support for Transformation from an OWL Ontology to an HLA Object Model,” ACM, pp. 1-6 (Year: 2010). |
Paes, “Student Research Abstract: Automatic Detection of Cross-Browser Incompatibilities using Machine Learning and Screenshot Similarity,” ACM, pp. 697-698, Apr. 3, 2017 (Year: 2017). |
Pearson, et al, “A Model-Based Privacy Compliance Checker,” IJEBR, vol. 5, No. 2, pp. 63-83, 2009, Nov. 21, 2008. [Online]. Available: http:/dx.doi.org/10.4018/jebr.2009040104 (Year: 2008). |
Pechenizkiy et al, “Process Mining Online Assessment Data,” Educational Data Mining, pp. 279-288 (Year: 2009). |
Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Mar. 27, 2018. |
Petrie et al, “The Relationship between Accessibility and Usability of Websites”, ACM, pp. 397-406 (Year: 2007). |
Ping et al, “Wide Area Placement of Data Replicas for Fast and Highly Available Data Access,” ACM, pp. 1-8 (Year: 2011). |
Popescu-Zeletin, “The Data Access and Transfer Support in a Local Heterogeneous Network (HMINET)”, IEEE, pp. 147-152 (Year: 1979). |
Porter, “De-Identified Data and Third Party Data Mining: The Risk of Re-Identification of Personal Information,” Shidler JL Com. & Tech. 5, 2008, pp. 1-9 (Year: 2008). |
Pretorius, et al, “Attributing Users Based on Web Browser History,” 2017 IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 69-74 (Year: 2017). |
Preuveneers et al, “Access Control with Delegated Authorization Policy Evaluation for Data-Driven Microservice Workflows,” Future Internet 2017, MDPI, pp. 1-21 (Year: 2017). |
Qiu, et al, “Design and Application of Data Integration Platform Based on Web Services and XML,” IEEE, pp. 253-256 (Year: 2016). |
Qu et al, “Metadata Type System: Integrate Presentation, Data Models and Extraction to Enable Exploratory Browsing Interfaces,” ACM, pp. 107-116 (Year: 2014). |
Radu, et al, “Analyzing Risk Evaluation Frameworks and Risk Assessment Methods,” IEEE, Dec. 12, 2020, pp. 1-6 (Year. 2020). |
Rakers, “Managing Professional and Personal Sensitive Information,” ACM, pp. 9-13, Oct. 24-27, 2010 (Year: 2010). |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
Written Opinion of the International Searching Authority, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
Written Opinion of the International Searching Authority, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
Written Opinion of the International Searching Authority, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
Written Opinion of the International Searching Authority, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274. |
Written Opinion of the International Searching Authority, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
Written Opinion of the International Searching Authority, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Written Opinion of the International Searching Authority, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
Written Opinion of the International Searching Authority, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930. |
Written Opinion of the International Searching Authority, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
Written Opinion of the International Searching Authority, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
Written Opinion of the International Searching Authority, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
Written Opinion of the International Searching Authority, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
Written Opinion of the International Searching Authority, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
Written Opinion of the International Searching Authority, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
Written Opinion of the International Searching Authority, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
Written Opinion of the International Searching Authority, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
Written Opinion of the International Searching Authority, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481. |
Written Opinion of the International Searching Authority, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
Written Opinion of the International Searching Authority, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
Written Opinion of the International Searching Authority, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
Written Opinion of the International Searching Authority, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
Written Opinion of the International Searching Authority, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
Written Opinion of the International Searching Authority, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
Written Opinion of the International Searching Authority, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
Written Opinion of the International Searching Authority, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631. |
Abdullah et al, “The Mapping Process of Unstructured Data to the Structured Data”, ACM, pp. 151-155 (Year: 2013). |
Acar, Gunes, et al, The Web Never Forgets, Computer and Communications Security, ACM, Nov. 3, 2014, pp. 674-689. |
Aghasian, Erfan, et al, Scoring Users' Privacy Disclosure Across Multiple Online Social Networks,IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Jul. 31, 2017, vol. 5, 2017. |
Agosti et al, “Access and Exchange of Hierarchically Structured Resources on the Web with the NESTOR Framework”, IEEE, pp. 659-662 (Year: 2009). |
Ahmad et al, “Task-Oriented Access Model for Secure Data Sharing Over Cloud,” ACM, pp. 1-7 (Year: 2015). |
Ahmad, et al, “Performance of Resource Management Algorithms for Processable Bulk Data Transfer Tasks in Grid Environments,” ACM, pp. 177-188 (Year: 2008). |
Alaa et al, “Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes,” Apr. 27, 2017, IEEE, vol. 65, issue 1, pp. 207-217 (Year: 2017). |
Ali et al, “Age Estimation from Facial Images Using Biometric Ratios and Wrinkle Analysis,” IEEE, 2015, pp. 1-5 (Year: 2015). |
Notice of Allowance, dated Jun. 29, 2022, from corresponding U.S. Appl. No. 17/675,118. |
Notice of Allowance, dated Jun. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/357,260. |
Notice of Allowance, dated Jun. 6, 2018, from corresponding U.S. Appl. No. 15/875,570. |
Notice of Allowance, dated Jun. 6, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Notice of Allowance, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Notice of Allowance, dated Jun. 8, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Notice of Allowance, dated Jun. 8, 2022, from corresponding U.S. Appl. No. 17/722,551. |
Notice of Allowance, dated Mar. 1, 2018, from corresponding U.S. Appl. No. 15/853,674. |
Notice of Allowance, dated Mar. 1, 2019, from corresponding U.S. Appl. No. 16/059,911. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 16/925,628. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 17/128,666. |
Notice of Allowance, dated Mar. 13, 2019, from corresponding U.S. Appl. No. 16/055,083. |
Notice of Allowance, dated Mar. 14, 2019, from corresponding U.S. Appl. No. 16/055,944. |
Notice of Allowance, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/778,704. |
Notice of Allowance, dated Mar. 16, 2021, from corresponding U.S. Appl. No. 17/149,380. |
Notice of Allowance, dated Mar. 16, 2022, from corresponding U.S. Appl. No. 17/486,350. |
Notice of Allowance, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/560,885. |
Notice of Allowance, dated Mar. 18, 2020, from corresponding U.S. Appl. No. 16/560,963. |
Notice of Allowance, dated Mar. 19, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Notice of Allowance, dated Mar. 2, 2018, from corresponding U.S. Appl. No. 15/858,802. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 16/872,130. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/535,098. |
Notice of Allowance, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/366,754. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/475,244. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/504,102. |
Notice of Allowance, dated Mar. 24, 2020, from corresponding U.S. Appl. No. 16/552,758. |
Notice of Allowance, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/054,780. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/560,889. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/578,712. |
Notice of Allowance, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/226,280. |
Notice of Allowance, dated Mar. 28, 2022, from corresponding U.S. Appl. No. 17/499,609. |
Notice of Allowance, dated Mar. 29, 2019, from corresponding U.S. Appl. No. 16/055,998. |
Notice of Allowance, dated Mar. 31, 2020, from corresponding U.S. Appl. No. 16/563,744. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/013,758. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/162,205. |
Notice of Allowance, dated Mar. 31, 2022, from corresponding U.S. Appl. No. 17/476,209. |
Notice of Allowance, dated Mar. 4, 2022, from corresponding U.S. Appl. No. 17/409,999. |
Notice of Allowance, dated May 1, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Notice of Allowance, dated May 11, 2020, from corresponding U.S. Appl. No. 16/786,196. |
Notice of Allowance, dated May 11, 2022, from corresponding U.S. Appl. No. 17/395,759. |
Notice of Allowance, dated May 13, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Notice of Allowance, dated May 18, 2022, from corresponding U.S. Appl. No. 17/670,354. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/808,496. |
Notice of Allowance, dated May 20, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Notice of Allowance, dated May 21, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated May 25, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Notice of Allowance, dated Apr. 27, 2022, from corresponding U.S. Appl. No. 17/573,999. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/135,445. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/181,828. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/592,922. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/670,352. |
Notice of Allowance, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Notice of Allowance, dated Apr. 29, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/565,265. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/820,346. |
Notice of Allowance, dated Apr. 30, 2021, from corresponding U.S. Appl. No. 16/410,762. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/493,332. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/572,298. |
Notice of Allowance, dated Apr. 8, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Notice of Allowance, dated Apr. 8, 2020, from corresponding U.S. Appl. No. 16/791,348. |
Notice of Allowance, dated Apr. 9, 2020, from corresponding U.S. Appl. No. 16/791,075. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Notice of Allowance, dated Aug. 12, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Notice of Allowance, dated Aug. 12, 2021, from corresponding U.S. Appl. No. 16/881,832. |
Notice of Allowance, dated Aug. 14, 2018, from corresponding U.S. Appl. No. 15/989,416. |
Notice of Allowance, dated Aug. 18, 2017, from corresponding U.S. Appl. No. 15/619,455. |
Notice of Allowance, dated Aug. 20, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Notice of Allowance, dated Aug. 22, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Notice of Allowance, dated Aug. 24, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Notice of Allowance, dated Aug. 26, 2019, from corresponding U.S. Appl. No. 16/443,374. |
Notice of Allowance, dated Aug. 26, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Notice of Allowance, dated Aug. 28, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Notice of Allowance, dated Aug. 3, 2022, from corresponding U.S. Appl. No. 17/668,714. |
Notice of Allowance, dated Aug. 30, 2018, from corresponding U.S. Appl. No. 15/996,208. |
Notice of Allowance, dated Aug. 31, 2021, from corresponding U.S. Appl. No. 17/326,901. |
Notice of Allowance, dated Aug. 4, 2021, from corresponding U.S. Appl. No. 16/895,278. |
Notice of Allowance, dated Aug. 4, 2022, from corresponding U.S. Appl. No. 17/670,349. |
Notice of Allowance, dated Aug. 7, 2020, from corresponding U.S. Appl. No. 16/901,973. |
Notice of Allowance, dated Aug. 9, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 16/881,699. |
Notice of Allowance, dated Aug. 9, 2022, from corresponding U.S. Appl. No. 17/832,313. |
Notice of Allowance, dated Dec. 10, 2018, from corresponding U.S. Appl. No. 16/105,602. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/593,634. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Notice of Allowance, dated Dec. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/347,853. |
Notice of Allowance, dated Dec. 15, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Notice of Allowance, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Notice of Allowance, dated Dec. 17, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Notice of Allowance, dated Dec. 18, 2019, from corresponding U.S. Appl. No. 16/659,437. |
Notice of Allowance, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Notice of Allowance, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/656,835. |
Notice of Allowance, dated Dec. 23, 2020, from corresponding U.S. Appl. No. 17/068,557. |
Notice of Allowance, dated Dec. 3, 2019, from corresponding U.S. Appl. No. 16/563,749. |
Notice of Allowance, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Notice of Allowance, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/159,634. |
Notice of Allowance, dated Dec. 31, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Notice of Allowance, dated Dec. 4, 2019, from corresponding U.S. Appl. No. 16/594,670. |
Notice of Allowance, dated Dec. 5, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Notice of Allowance, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Notice of Allowance, dated Dec. 8, 2021, from corresponding U.S. Appl. No. 17/397,472. |
Notice of Allowance, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,261. |
Notice of Allowance, dated Dec. 9, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Notice of Allowance, dated Feb. 1, 2022, from corresponding U.S. Appl. No. 17/346,509. |
Notice of Allowance, dated Feb. 10, 2020, from corresponding U.S. Appl. No. 16/552,765. |
Notice of Allowance, dated Feb. 11, 2021, from corresponding U.S. Appl. No. 17/086,732. |
Notice of Allowance, dated Feb. 12, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Notice of Allowance, dated Feb. 13, 2019, from corresponding U.S. Appl. No. 16/041,563. |
Notice of Allowance, dated Feb. 14, 2019, from corresponding U.S. Appl. No. 16/226,272. |
Notice of Allowance, dated Feb. 14, 2022, from corresponding U.S. Appl. No. 16/623,157. |
Notice of Allowance, dated Feb. 19, 2019, from corresponding U.S. Appl. No. 16/159,632. |
Notice of Allowance, dated Feb. 19, 2021, from corresponding U.S. Appl. No. 16/832,451. |
Notice of Allowance, dated Feb. 22, 2022, from corresponding U.S. Appl. No. 17/535,065. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/034,355. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/068,198. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,253. |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/234,205. |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/549,170. |
Notice of Allowance, dated Feb. 25, 2020, from corresponding U.S. Appl. No. 16/714,355. |
Notice of Allowance, dated Feb. 25, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Notice of Allowance, dated Feb. 26, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/041,468. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/226,290. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 16/827,039. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/068,558. |
Notice of Allowance, dated Feb. 4, 2022, from corresponding U.S. Appl. No. 17/520,272. |
Notice of Allowance, dated Feb. 8, 2022, from corresponding U.S. Appl. No. 17/342,153. |
Notice of Allowance, dated Jan. 1, 2021, from corresponding U.S. Appl. No. 17/026,727. |
Notice of Allowance, dated Jan. 11, 2022, from corresponding U.S. Appl. No. 17/371,350. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/334,948. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/463,775. |
Notice of Allowance, dated Jan. 14, 2020, from corresponding U.S. Appl. No. 16/277,715. |
Notice of Allowance, dated Jan. 15, 2021, from corresponding U.S. Appl. No. 17/030,714. |
Notice of Allowance, dated Jan. 18, 2018, from corresponding U.S. Appl. No. 15/619,478. |
Notice of Allowance, dated Jan. 18, 2019 from corresponding U.S. Appl. No. 16/159,635. |
Notice of Allowance, dated Jan. 2, 2020, from corresponding U.S. Appl. No. 16/410,296. |
Notice of Allowance, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Jan. 24, 2022, from corresponding U.S. Appl. No. 17/340,699. |
Hammer, Eran et al., “The OAuth 2.0 Authorization Framework; draft-ietf-oauth-v2-26,” Internet Engineering Task Force, IETF; StandardWorkingDraft, Internet Society (ISOC) 4, Rue Des Falaises CH- 1205 Geneva, Switzerland, Jun. 8, 2012 (Jun. 8, 2012), pp. 1-71, XP015083227, [retrieved on Jun. 8, 2012] the whole document. |
Invitation to Pay Additional Fees, dated May 2, 2023, from corresponding International Application No. PCT/US2023/011446. |
Notice of Allowance, dated Jul. 26, 2023, from corresponding U.S. Appl. No. 18/109,556. |
Notice of Allowance, dated Jun. 2, 2023, from corresponding U.S. Appl. No. 18/096,935. |
Notice of Allowance, dated May 10, 2023, from corresponding U.S. Appl. No. 17/872,084. |
Office Action, dated Jul. 20, 2023, from corresponding U.S. Appl. No. 18/104,981. |
Office Action, dated May 4, 2023, from corresponding U.S. Appl. No. 18/096,935. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Advisory Action, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Advisory Action, dated Jun. 19, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Advisory Action, dated Jun. 2, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Advisory Action, dated May 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Final Office Action, dated Apr. 1, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Final Office Action, dated Apr. 23, 2020, from corresponding U.S. Appl. No. 16/572,347. |
Final Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/149,421. |
Final Office Action, dated Apr. 27, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Final Office Action, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Final Office Action, dated Apr. 5, 2022, from corresponding U.S. Appl. No. 17/013,756. |
Final Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Final Office Action, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Final Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Aug. 28, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Aug. 5, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Final Office Action, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Final Office Action, dated Dec. 10, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Final Office Action, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Final Office Action, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Feb. 19, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Final Office Action, dated Feb. 25, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Final Office Action, dated Feb. 3, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Final Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Final Office Action, dated Jan. 17, 2018, from corresponding U.S. Appl. No. 15/619,278. |
Final Office Action, dated Jan. 21, 2020, from corresponding U.S. Appl. No. 16/410,762. |
Final Office Action, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Final Office Action, dated Jan. 23, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Final Office Action, dated Jul. 1, 2022, from corresponding U.S. Appl. No. 17/187,329. |
Final Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Final Office Action, dated Jul. 6, 2022, from corresponding U.S. Appl. No. 17/200,698. |
Final Office Action, dated Jul. 7, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Final Office Action, dated Jun. 10, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Jun. 29, 2022, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Jun. 9, 2022, from corresponding U.S. Appl. No. 17/494,220. |
Final Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/373,444. |
Final Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Final Office Action, dated Mar. 26, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Mar. 5, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Final Office Action, dated Mar. 6, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Final Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Final Office Action, dated May 14, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Final Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Final Office Action, dated May 2, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Final Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/499,582. |
Final Office Action, dated Nov. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Final Office Action, dated Oct. 26, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Reardon et al., User-Level Secure Deletion on Log-Structured File Systems, ACM, 2012, retrieved online on Apr. 22, 2021, pp. 1-11. Retrieved from the Internet: URL: http://citeseerx.ist.psu.edu/viewdoc/download;isessionid=450713515DC7F19F8ED09AE961D4B60E. (Year: 2012). |
Regulation (EU) 2016/679, “On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation),” Official Journal of the European Union, May 4, 2016, pp. L 119/1-L 119/88 (Year: 2016). |
Roesner et al, “Detecting and Defending Against Third-Party Tracking on the Web,” 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 11, 2013, pp. 1-14, ACM (Year: 2013). |
Rozepz, “What is Google Privacy Checkup? Everything You Need to Know,” Tom's Guide web post, Apr. 26, 2018, pp. 1-11 (Year: 2018). |
Sachinopoulou et al, “Ontology-Based Approach for Managing Personal Health and Wellness Information,” IEEE, pp. 1802-1805 (Year: 2007). |
Salim et al, “Data Retrieval and Security using Lightweight Directory Access Protocol”, IEEE, pp. 685-688 (Year: 2009). |
Sanchez-Rola et al, “Can I Opt Out Yet?: GDPR and the Global Illusion of Cookie Control,” Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, 2019, pp. 340-351 (Year: 2019). |
Santhisree, et al, “Web Usage Data Clustering Using Dbscan Algorithm and Set Similarities,” IEEE, pp. 220-224 (Year: 2010). |
Sanzo et al, “Analytical Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data Access Patterns,” ACM, pp. 69-78 (Year: 2010). |
Sarkar et al, “Towards Enforcement of the EU GDPR: Enabling Data Erasure,” 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, 2018, pp. 222-229, IEEE (Year: 2018). |
Schwartz, Edward J., et al, 2010 IEEE Symposium on Security and Privacy: All You Ever Wanted to Know About Dynamic Analysis and forward Symbolic Execution (but might have been afraid to ask), Carnegie Mellon University, IEEE Computer Society, 2010, p. 317-331. |
Sedinic et al, “Security Risk Management in Complex Organization,” May 29, 2015, IEEE, pp. 1331-1337 (Year: 2015). |
Shahriar et al, “A Model-Based Detection of Vulnerable and Malicious Browser Extensions,” IEEE, pp. 198-207 (Year: 2013). |
Shankar et al, “Doppleganger: Better Browser Privacy Without the Bother,” Proceedings of the 13th ACM Conference on Computer and Communications Security; [ACM Conference on Computer and Communications Security], New York, NY : ACM, US, Oct. 30, 2006, pp. 154-167 (Year: 2006). |
Shulz et al, “Generative Data Models for Validation and Evaluation of Visualization Techniques,” ACM, pp. 1-13 (Year: 2016). |
Singh, et al, “A Metadata Catalog Service for Data Intensive Applications,” ACM, pp. 1-17 (Year: 2003). |
Sjosten et al, “Discovering Browser Extensions via Web Accessible Resources,” ACM, pp. 329-336, Mar. 22, 2017 (Year: 2017). |
Slezak, et al., “Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries,” ACM, pp. 1337-1345 (Year: 2008). |
Soceanu, et al., “Managing the Privacy and Security of eHealth Data,” May 29, 2015, IEEE, pp. 1-8 (Year: 2015). |
Srinivasan et al., “Descriptive Data Analysis of File Transfer Data,” ACM, pp. 1-8 (Year: 2014). |
Stack Overflow, “Is there a way to force a user to scroll to the bottom of a div?,” Stack Overflow, pp. 1-11, Nov. 2013. [Online]. Available: https://stackoverflow.com/questions/2745935/is-there-a-way-to-force-a-user-to- scroll-to-the-bottom-of-a-div (Year: 2013). |
Stern, Joanna, “iPhone Privacy Is Broken . . . and Apps Are to Blame”, The Wall Street Journal, wsj.com, May 31, 2019. |
Strodl, et al, “Personal & SOHO Archiving,” Vienna University of Technology, Vienna, Austria, JCDL '08, Jun. 16-20, 2008, Pittsburgh, Pennsylvania, USA, pp. 115-123 (Year: 2008). |
Sukumar et al, “Review on Modern Data Preprocessing Techniques in Web Usage Mining (WUM),” IEEE, 2016, pp. 64-69 (Year: 2016). |
Symantec, Symantex Data Loss Prevention—Discover, monitor, and protect confidential data; 2008; Symantec Corporation; http://www.mssuk.com/images/Symantec%2014552315_IRC_BR_DLP_03.09_sngl.pdf. |
Tanasa et al, “Advanced Data Preprocessing for Intersites Web Usage Mining,” IEEE, Mar. 2004, pp. 59-65 (Year: 2004). |
The Cookie Collective, Optanon Cookie Policy Generator, The Cookie Collective, Year 2016, http://web.archive.org/web/20160324062743/https:/optanon.com/. |
Thomas et al, “MooM—A Prototype Framework for Management of Ontology Mappings,” IEEE, pp. 548-555 (Year: 2011). |
TRUSTe Announces General Availability of Assessment Manager for Enterprises to Streamline Data Privacy Management with Automation, PRNewswire, Mar. 4, 2015. |
Tsai et al, “Determinants of Intangible Assets Value: The Data Mining Approach,” Knowledge Based System, pp. 67-77 http://www.elsevier.com/locate/knosys (Year: 2012). |
Tuomas Aura et al., Scanning Electronic Documents for Personally Identifiable Information, ACM, Oct. 30, 2006, retrieved online on Jun. 13, 2019, pp. 41-49. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/1180000/1179608/p41-aura.pdf? (Year: 2006). |
Van Eijk et al, “The Impact of User Location on Cookie Notices (Inside and Outside of the European Union,” IEEE Security & Privacy Workshop on Technology and Consumer Protection (CONPRO '19), Jan. 1, 2019 (Year: 2019). |
Vukovic et al, “Managing Enterprise IT Systems Using Online Communities, ” Jul. 9, 2011, IEEE, pp. 552-559. (Year: 2011). |
Wang et al, “Revealing Key Non-Financial Factors for Online Credit-Scoring in E-Financing,” 2013, IEEE, pp. 1-6 (Year: 2013). |
Wang et al, “Secure and Efficient Access to Outsourced Data,” ACM, pp. 55-65 (Year: 2009). |
Weaver et al, “Understanding Information Preview in Mobile Email Processing”, ACM, pp. 303-312, 2011 (Year: 2011). |
Wong et al, “Ontology Mapping for the Interoperability Problem in Network Management,” IEEE, pp. 2058-2068 (Year: 2005). |
Wu et al, “Data Mining with Big Data,” IEEE, Jan. 2014, pp. 97-107, vol. 26, No. 1, (Year: 2014). |
www.truste.com (1), 200150207, Internet Archive Wayback Machine, www.archive.org,2_7_2015. |
Xu, et al, “GatorShare: A File System Framework for High-Throughput Data Management,” ACM, pp. 776-786 (Year: 2010). |
Yang et al, “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems,” IEEE, pp. 1790-1801 (Year: 2013). |
Yang et al, “Mining Web Access Sequence with Improved Apriori Algorithm,” IEEE, 2017, pp. 780-784 (Year: 2017). |
Ye et al, “An Evolution-Based Cache Scheme for Scalable Mobile Data Access,” ACM, pp. 1-7 (Year: 2007). |
Yin et al, “Multibank Memory Optimization for Parallel Data Access in Multiple Data Arrays”, ACM, pp. 1-8 (Year: 2016). |
Yiu et al, “Outsourced Similarity Search on Metric Data Assets”, IEEE, pp. 338-352 (Year: 2012). |
Yu, “Using Data from Social Media Websites to Inspire the Design of Assistive Technology”, ACM, pp. 1-2 (Year: 2016). |
Yu, et al, “Performance and Fairness Issues in Big Data Transfers,” ACM, pp. 9-11 (Year: 2014). |
Yue et al, “An Automatic HTTP Cookie Management System,” Computer Networks, Elsevier, Amsterdam, NL, vol. 54, No. 13, Sep. 15, 2010, pp. 2182-2198 (Year: 2010). |
Zannone, et al, “Maintaining Privacy on Derived Objects,” ACM, pp. 10-19 (Year: 2005). |
Zeldovich, Nickolai, et al, Making Information Flow Explicit in HiStar, OSDI '06: 7th USENIX Symposium on Operating Systems Design and Implementation, USENIX Association, p. 263-278. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/865,874. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 17/199,514. |
Notice of Allowance, dated May 27, 2020, from corresponding U.S. Appl. No. 16/820,208. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 17/198,757. |
Notice of Allowance, dated May 27, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Notice of Allowance, dated May 28, 2019, from corresponding U.S. Appl. No. 16/277,568. |
Notice of Allowance, dated May 28, 2020, from corresponding U.S. Appl. No. 16/799,279. |
Notice of Allowance, dated May 28, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Notice of Allowance, dated May 31, 2022, from corresponding U.S. Appl. No. 17/679,715. |
Notice of Allowance, dated May 5, 2017, from corresponding U.S. Appl. No. 15/254,901. |
Notice of Allowance, dated May 5, 2020, from corresponding U.S. Appl. No. 16/563,754. |
Notice of Allowance, dated May 6, 2022, from corresponding U.S. Appl. No. 17/666,886. |
Notice of Allowance, dated May 7, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Notice of Allowance, dated May 7, 2021, from corresponding U.S. Appl. No. 17/194,662. |
Notice of Allowance, dated Nov. 14, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Notice of Allowance, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/491,871. |
Notice of Allowance, dated Nov. 2, 2018, from corresponding U.S. Appl. No. 16/054,762. |
Notice of Allowance, dated Nov. 22, 2021, from corresponding U.S. Appl. No. 17/383,889. |
Notice of Allowance, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Notice of Allowance, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 17/027,019. |
Notice of Allowance, dated Nov. 25, 2020, from corresponding U.S. Appl. No. 17/019,771. |
Notice of Allowance, dated Nov. 26, 2019, from corresponding U.S. Appl. No. 16/563,735. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/570,712. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/577,634. |
Notice of Allowance, dated Nov. 3, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Notice of Allowance, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/560,965. |
Notice of Allowance, dated Nov. 7, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Notice of Allowance, dated Nov. 8, 2018, from corresponding U.S. Appl. No. 16/042,642. |
Notice of Allowance, dated Nov. 9, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Notice of Allowance, dated Oct. 1, 2021, from corresponding U.S. Appl. No. 17/340,395. |
Notice of Allowance, dated Oct. 10, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/054,672. |
Notice of Allowance, dated Oct. 17, 2019, from corresponding U.S. Appl. No. 16/563,741. |
Notice of Allowance, dated Oct. 21, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Notice of Allowance, dated Oct. 21, 2020, from corresponding U.S. Appl. No. 16/834,812. |
Notice of Allowance, dated Oct. 22, 2021, from corresponding U.S. Appl. No. 17/346,847. |
Notice of Allowance, dated Oct. 3, 2019, from corresponding U.S. Appl. No. 16/511,700. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Notice of Allowance, dated Sep. 1, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Notice of Allowance, dated Sep. 12, 2019, from corresponding U.S. Appl. No. 16/512,011. |
Notice of Allowance, dated Sep. 12, 2022, from corresponding U.S. Appl. No. 17/674,187. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Sep. 14, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Notice of Allowance, dated Sep. 16, 2020, from corresponding U.S. Appl. No. 16/915,097. |
Notice of Allowance, dated Sep. 17, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Zhang et al, “Data Transfer Performance Issues for a Web Services Interface to Synchrotron Experiments”, ACM, pp. 59-65 (Year: 2007). |
Zhang et al, “Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data”, ACM, pp. 1425-1434 (Year: 2015). |
Zheng, et al, “Methodologies for Cross-Domain Data Fusion: An Overview,” IEEE, pp. 16-34 (Year: 2015). |
Zheng, et al, “Toward Assured Data Deletion in Cloud Storage,” IEEE, vol. 34, No. 3, pp. 101-107 May/Jun. 2020 (Year: 2020). |
Zhu, et al., “Dynamic Data Integration Using Web Services,” IEEE, pp. 1-8 (Year: 2004). |
Office Action, dated Oct. 26, 2018, from corresponding U.S. Appl. No. 16/041,468. |
Office Action, dated Oct. 8, 2019, from corresponding U.S. Appl. No. 16/552,765. |
Office Action, dated Sep. 1, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,375. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,478. |
Office Action, dated Sep. 15, 2021, from corresponding U.S. Appl. No. 16/623,157. |
Office Action, dated Sep. 16, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Office Action, dated Sep. 19, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Office Action, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Office Action, dated Sep. 22, 2017, from corresponding U.S. Appl. No. 15/619,278. |
Office Action, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/342,153. |
Office Action, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Office Action, dated Sep. 5, 2017, from corresponding U.S. Appl. No. 15/619,469. |
Office Action, dated Sep. 6, 2017, from corresponding U.S. Appl. No. 15/619,479. |
Office Action, dated Sep. 7, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Office Action, dated Sep. 8, 2017, from corresponding U.S. Appl. No. 15/619,251. |
Office Action, dated Sep. 8, 2022, from corresponding U.S. Appl. No. 17/850,244. |
Restriction Requirement, dated Apr. 10, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Restriction Requirement, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/584,187. |
Restriction Requirement, dated Apr. 13, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Restriction Requirement, dated Apr. 24, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Restriction Requirement, dated Aug. 7, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Restriction Requirement, dated Aug. 9, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Restriction Requirement, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/475,244. |
Restriction Requirement, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 15/169,668. |
Restriction Requirement, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,395. |
Restriction Requirement, dated Jan. 18, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Restriction Requirement, dated Jul. 28, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Restriction Requirement, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Restriction Requirement, dated May 5, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Restriction Requirement, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/366,754. |
Restriction Requirement, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/586,202. |
Restriction Requirement, dated Nov. 21, 2016, from corresponding U.S. Appl. No. 15/254,901. |
Restriction Requirement, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/563,744. |
Restriction Requirement, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/055,984. |
Restriction Requirement, dated Oct. 6, 2021, from corresponding U.S. Appl. No. 17/340,699. |
Restriction Requirement, dated Sep. 15, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Restriction Requirement, dated Sep. 9, 2019, from corresponding U.S. Appl. No. 16/505,426. |
Notice of Allowance, dated Apr. 12, 2017, from corresponding U.S. Appl. No. 15/256,419. |
Notice of Allowance, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/479,807. |
Notice of Allowance, dated Apr. 14, 2022, from corresponding U.S. Appl. No. 17/572,276. |
Notice of Allowance, dated Apr. 17, 2020, from corresponding U.S. Appl. No. 16/593,639. |
Notice of Allowance, dated Apr. 19, 2021, from corresponding U.S. Appl. No. 17/164,029. |
Notice of Allowance, dated Apr. 2, 2019, from corresponding U.S. Appl. No. 16/160,577. |
Notice of Allowance, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/162,006. |
Notice of Allowance, dated Apr. 20, 2022, from corresponding U.S. Appl. No. 17/573,808. |
Notice of Allowance, dated Apr. 22, 2021, from corresponding U.S. Appl. No. 17/163,701. |
Notice of Allowance, dated Apr. 25, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Office Action, dated Aug. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Office Action, dated Aug. 4, 2022, from corresponding U.S. Appl. No. 17/828,953. |
Office Action, dated Aug. 6, 2019, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Aug. 6, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Office Action, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/578,712. |
Office Action, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/476,209. |
Office Action, dated Dec. 14, 2018, from corresponding U.S. Appl. No. 16/104,393. |
Office Action, dated Dec. 15, 2016, from corresponding U.S. Appl. No. 15/256,419. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/563,754. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/565,265. |
Office Action, dated Dec. 16, 2020, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/395,759. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/499,582. |
Office Action, dated Dec. 18, 2020, from corresponding U.S. Appl. No. 17/030,714. |
Office Action, dated Dec. 19, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Dec. 2, 2019, from corresponding U.S. Appl. No. 16/560,963. |
Office Action, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 17/504,102. |
Office Action, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/593,639. |
Office Action, dated Dec. 24, 2020, from corresponding U.S. Appl. No. 17/068,454. |
Office Action, dated Dec. 27, 2021, from corresponding U.S. Appl. No. 17/493,332. |
Office Action, dated Dec. 29, 2021, from corresponding U.S. Appl. No. 17/479,807. |
Office Action, dated Dec. 3, 2018, from corresponding U.S. Appl. No. 16/055,998. |
Office Action, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/160,577. |
Office Action, dated Dec. 7, 2021, from corresponding U.S. Appl. No. 17/499,609. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/013,758. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/068,198. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Office Action, dated Feb. 15, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Office Action, dated Feb. 16, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Office Action, dated Feb. 17, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated Feb. 18, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Feb. 2, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Office Action, dated Feb. 26, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Office Action, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Office Action, dated Feb. 5, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Office Action, dated Feb. 6, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Office Action, dated Feb. 9, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated Feb. 9, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Office Action, dated Jan. 14, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Office Action, dated Jan. 18, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Office Action, dated Jan. 21, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Office Action, dated Jan. 22, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Office Action, dated Jan. 25, 2022, from corresponding U.S. Appl. No. 17/494,220. |
Office Action, dated Jan. 27, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Dwork, Cynthia, Differential Privacy, Microsoft Research, p. 1-12. |
Edinger et al, “Age and Gender Estimation of Unfiltered Faces,” IEEE, 2014, pp. 2170-2179 (Year: 2014). |
Emerson, et al, “A Data Mining Driven Risk Profiling Method for Road Asset Management,” ACM, pp. 1267-1275 (Year: 2013). |
Enck, William, et al, TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, ACM Transactions on Computer Systems, vol. 32, No. 2, Article 5, Jun. 2014, p. 5:1-5:29. |
Everypixel Team, “A New Age Recognition API Detects the Age of People on Photos,” May 20, 2019, pp. 1-5 (Year: 2019). |
Ex Parte Quayle Action, dated May 10, 2022, from corresponding U.S. Appl. No. 17/668,714. |
Falbo et al, “An Ontological Approach to Domain Engineering,” ACM, pp. 351-358 (Year: 2002). |
Fan et al, “Intrusion Investigations with Data-hiding for Computer Log-file Forensics,” IEEE, pp. 1-6 (Year: 2010). |
Final Written Decision Regarding Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, dated Oct. 10, 2019. |
Francis, Andre, Business Mathematics and Statistics, South-Western Cengage Learning, 2008, Sixth Edition. |
Friedman et al, “Data Mining with Differential Privacy,” ACM, Jul. 2010, pp. 493-502 (Year: 2010). |
Frikken, Keith B., et al, Yet Another Privacy Metric for Publishing Micro-data, Miami University, Oct. 27, 2008, p. 117-121. |
Fung et al, “Discover Information and Knowledge from Websites using an Integrated Summarization and Visualization Framework”, IEEE, pp. 232-235 (Year: 2010). |
Gajare et al, “Improved Automatic Feature Selection Approach for Health Risk Prediction,” Feb. 16, 2018, IEEE, pp. 816-819 (Year: 2018). |
Geko et al, “An Ontology Capturing the Interdependence of the General Data Protection Regulation (GDPR) and Information Security,” ACM, pp. 1-6, Nov. 15-16, 2018 (Year: 2018). |
Golab, et al, “Issues in Data Stream Management,” ACM, SIGMOD Record, vol. 32, No. 2, Jun. 2003, pp. 5-14 (Year: 2003). |
Golfarelli et al, “Beyond Data Warehousing: What's Next in Business Intelligence?,” ACM, pp. 1-6 (Year: 2004). |
Gonçalves et al, “The XML Log Standard for Digital Libraries: Analysis, Evolution, and Deployment,” IEEE, pp. 312-314 (Year: 2003). |
Goni, Kyriaki, “Deletion Process_Only you can see my history: Investigating Digital Privacy, Digital Oblivion, and Control on Personal Data Through an Interactive Art Installation,” ACM, 2016, retrieved online on Oct. 3, 2019, pp. 324-333. Retrieved from the Internet URL: http://delivery.acm.org/10.1145/2920000/291. |
Gowadia et al, “RDF Metadata for XML Access Control,” ACM, pp. 31-48 (Year: 2003). |
Grolinger, et al, “Data Management in Cloud Environments: NoSQL and NewSQL Data Stores,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1-24 (Year: 2013). |
Guo, et al, “OPAL: A Passe-partout for Web Forms,” ACM, pp. 353-356 (Year: 2012). |
Gustarini, et al, “Evaluation of Challenges in Human Subject Studies “In-the-Wild” Using Subjects' Personal Smartphones,” ACM, pp. 1447-1456 (Year: 2013). |
HacigüMüs, Hakan, et al, Executing SQL over Encrypted Data in the Database-Service-Provider Model, ACM, Jun. 4, 2002, pp. 216-227. |
Han et al, “Demographic Estimation from Face Images: Human vs. Machine Performance,” IEEE, 2015, pp. 1148-1161 (Year: 2015). |
Hauch, et al, “Information Intelligence: Metadata for Information Discovery, Access, and Integration,” ACM, pp. 793-798 (Year: 2005). |
He et al, “A Crowdsourcing Framework for Detecting of Cross-Browser Issues in Web Application,” ACM, pp. 1-4, Nov. 6, 2015 (Year: 2015). |
Heil et al, “Downsizing and Rightsizing,” https://web.archive.org/web/20130523153311/https://www.referenceforbusiness.com/management/De-Ele/Downsizing-and-Rightsizing.html (Year: 2013). |
Hernandez, et al, “Data Exchange with Data-Metadata Translations,” ACM, pp. 260-273 (Year: 2008). |
Hinde, “A Model to Assess Organisational Information Privacy Maturity Against the Protection of Personal Information Act Dissertation University of Cape Town” 2014, pp. 1-121 (Year: 2014). |
Hodge, et al, “Managing Virtual Data Marts with Metapointer Tables,” pp. 1-7 (Year: 2002). |
Horrall et al, “Evaluating Risk: IBM's Country Financial Risk and Treasury Risk Scorecards,” Jul. 21, 2014, IBM, vol. 58, issue 4, pp. 2:1-2:9 (Year: 2014). |
Hu, et al, “Attribute Considerations for Access Control Systems,” NIST Special Publication 800-205, Jun. 2019, pp. 1-42 (Year: 2019). |
Hu, et al, “Guide to Attribute Based Access Control (ABAC) Definition and Considerations (Draft),” NIST Special Publication 800-162, pp. 1-54 (Year: 2013). |
Huang, et al, “A Study on Information Security Management with Personal Data Protection,” IEEE, Dec. 9, 2011, pp. 624-630 (Year: 2011). |
Huettner, “Digital Risk Management: Protecting Your Privacy, Improving Security, and Preparing for Emergencies,” IEEE, pp. 136-138 (Year: 2006). |
Huner et al, “Towards a Maturity Model for Corporate Data Quality Management”, ACM, pp. 231-238, 2009 (Year: 2009). |
Hunton & Williams LLP, The Role of Risk Management in Data Protection, Privacy Risk Framework and the Risk- based Approach to Privacy, Centre for Information Policy Leadership, Workshop II, Nov. 23, 2014. |
Huo et al, “A Cloud Storage Architecture Model for Data-Intensive Applications,” IEEE, pp. 1-4 (Year: 2011). |
Imran et al, “Searching in Cloud Object Storage by Using a Metadata Model”, IEEE, 2014, retrieved online on Apr. 1, 2020, pp. 121-128. Retrieved from the Internet: URL: https://ieeeexplore.ieee.org/stamp/stamp.jsp? (Year: 2014). |
Iordanou et al, “Tracing Cross Border Web Tracking,” Oct. 31, 2018, pp. 329-342, ACM (Year: 2018). |
Islam, et al, “Mixture Model Based Label Association Techniques for Web Accessibility,” ACM, pp. 67-76 (Year: 2010). |
Jayasinghe et al, “Matching Facial Images Using Age Related Morphing Changes,” ISSRI, 2009, pp. 2901-2907 (Year: 2009). |
Jensen, et al, “Temporal Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, No. 1, Jan./Feb. 1999, pp. 36-44 (Year: 1999). |
Jiahao Chen et al. “Fairness Under Unawareness: Assessing Disparity when Protected Class is Unobserved,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Nov. 27, 2018 (Nov. 27, 2018), Section 2, Figure 2. (Year 2018). |
Joel Reardon et al., Secure Data Deletion from Persistent Media, ACM, Nov. 4, 2013, retrieved online on Jul. 13, 2019, pp. 271-283. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/2520000/2516699/p271-reardon.pdf? (Year: 2013). |
Jones et al, “AI and the Ethics of Automating Consent,” IEEE, pp. 64-72, May 2018 (Year: 2018). |
Joonbakhsh et al, “Mining and Extraction of Personal Software Process measures through IDE Interaction logs,” ACM/IEEE, 2018, retrieved online on Dec. 2, 2019, pp. 78-81. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/3200000/3196462/p78-joonbakhsh.pdf? (Year: 2018). |
Jun et al, “Scalable Multi-Access Flash Store for Big Data Analytics,” ACM, pp. 55-64 (Year: 2014). |
Khan et al, “Wrinkles Energy Based Age Estimation Using Discrete Cosine Transform,” IEEE, 2015, pp. 1-4 (Year: 2015). |
Final Office Action, dated Oct. 28, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Final Office Action, dated Oct. 29, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Sep. 17, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Final Office Action, dated Sep. 22, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Final Office Action, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Final Office Action, dated Sep. 24, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Final Office Action, dated Sep. 25, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Final Office Action, dated Sep. 28, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Final Office Action, dated Sep. 8, 2020, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Apr. 1, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Office Action, dated Apr. 15, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Apr. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Office Action, dated Apr. 18, 2022, from corresponding U.S. Appl. No. 17/670,349. |
Office Action, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Office Action, dated Apr. 20, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Office Action, dated Apr. 22, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Office Action, dated Apr. 22, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Office Action, dated Apr. 26, 2022, from corresponding U.S. Appl. No. 17/151,334. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Office Action, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Office Action, dated Apr. 5, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Office Action, dated Apr. 8, 2022, from corresponding U.S. Appl. No. 16/938,509. |
Office Action, dated Aug. 12, 2022, from corresponding U.S. Appl. No. 17/679,734. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/505,430. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Office Action, dated Aug. 15, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Office Action, dated Aug. 17, 2022, from corresponding U.S. Appl. No. 17/373,444. |
Office Action, dated Aug. 17, 2022, from corresponding U.S. Appl. No. 17/836,430. |
Office Action, dated Aug. 18, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Office Action, dated Aug. 19, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Office Action, dated Aug. 19, 2022, from corresponding U.S. Appl. No. 17/584,187. |
Office Action, dated Aug. 2, 2022, from corresponding U.S. Appl. No. 17/670,354. |
Office Action, dated Aug. 20, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Office Action, dated Aug. 23, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Office Action, dated Aug. 24, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Aug. 27, 2019, from corresponding U.S. Appl. No. 16/410,296. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/334,948. |
Office Action, dated Aug. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Notice of Allowance, dated Nov. 16, 2022, from corresponding U.S. Appl. No. 17/860,255. |
Notice of Allowance, dated Nov. 9, 2022, from corresponding U.S. Appl. No. 17/187,329. |
Notice of Allowance, dated Sep. 30, 2022, from corresponding U.S. Appl. No. 17/867,068. |
Office Action, dated Nov. 15, 2022, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Oct. 27, 2022, from corresponding U.S. Appl. No. 17/161,159. |
International Search Report, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
International Search Report, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930. |
International Search Report, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
International Search Report, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
International Search Report, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
International Search Report, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
International Search Report, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
International Search Report, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
International Search Report, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
International Search Report, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
International Search Report, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481. |
International Search Report, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893. |
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
International Search Report, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
International Search Report, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
International Search Report, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
International Search Report, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
International Search Report, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
International Search Report, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
International Search Report, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
International Search Report, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
International Search Report, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631. |
Lebeau, Franck, et al., “Model-Based Vulnerability Testing for Web Applications,” 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, pp. 445-452, IEEE, 2013 (Year: 2013). |
Liu, Yandong, et al., “Finding the Right Consumer: Optimizing for Conversion in Display Advertising Campaigns,” Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Feb. 2, 2012, pp. 473-428 (Year: 2012). |
Lizar et al., “Usable Consents: Tracking and Managing Use of Personal Data with a Consent Transaction Receipt,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 647-652 (Year: 2014). |
Ma Ziang, et al., “LibRadar: Fast and Accurate Detection of Third-Party Libraries in Android Apps,” 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion (ICSE-C), ACM, May 14, 2016, pp. 653-656, DOI: http://dx.doi.org/10.1145/2889160.2889178, p. 653, r.col, par. 1-3; figure 3 (Year: 2016). |
Mandal, et al., “Automated Age Prediction Using Wrinkles Features of Facial Images and Neural Network,” International Journal of Emerging Engineering Research and Technology, vol. 5, Issue 2, Feb. 2017, pp. 12-20 (Year: 2017). |
Moiso et al., “Towards a User-Centric Personal Data Ecosystem The Role of the Bank of Individual's Data,” 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, 2012, pp. 202-209 (Year: 2012). |
Pfeifle, Sam, The Privacy Advisor, IAPP and AvePoint Launch New Free PIA Tool, International Association of Privacy Professionals, Mar. 5, 2014. |
Pfeifle, Sam, The Privacy Advisor, IAPP Heads to Singapore with APIA Template in Tow, International Association of Privacy Professionals, https://iapp.org/news/a/iapp-heads-to-singapore-with-apia-template_in_tow/, Mar. 28, 2014, p. 1-3. |
Qing-Jiang et al., “The (P. a, K) Anonymity Model for Privacy Protection of Personal Information in the Social Networks,” 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2 IEEE, 2011, pp. 420-423 (Year: 2011). |
Srivastava, Agrima, et al., Measuring Privacy Leaks in Online Social Networks, International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013. |
Tanwar, et al., “Live Forensics Analysis: Violations of Business Security Policy,” 2014 International Conference on Contemporary Computing and Informatics (IC31), 2014, pp. 971-976 (Year: 2014). |
Thuraisingham, “Security Issues for the Semantic Web,” Proceedings 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, Dallas, TX, USA, 2003, pp. 633-638 (Year: 2003). |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
Written Opinion of the International Searching Authority, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
Written Opinion of the International Searching Authority, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
Written Opinion of the International Searching Authority, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
Written Opinion of the International Searching Authority, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
Notice of Allowance, dated Jan. 25, 2021, from corresponding U.S. Appl. No. 16/410,336. |
Notice of Allowance, dated Jan. 26, 2018, from corresponding U.S. Appl. No. 15/619,469. |
Notice of Allowance, dated Jan. 26, 2022, from corresponding U.S. Appl. No. 17/491,906. |
Notice of Allowance, dated Jan. 29, 2020, from corresponding U.S. Appl. No. 16/278,119. |
Notice of Allowance, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/472,948. |
Notice of Allowance, dated Jan. 5, 2022, from corresponding U.S. Appl. No. 17/475,241. |
Notice of Allowance, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/595,327. |
Notice of Allowance, dated Jan. 6, 2022, from corresponding U.S. Appl. No. 17/407,765. |
Notice of Allowance, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/222,725. |
Notice of Allowance, dated Jan. 8, 2020, from corresponding U.S. Appl. No. 16/600,879. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/403,358. |
Notice of Allowance, dated Jul. 12, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Notice of Allowance, dated Jul. 14, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Notice of Allowance, dated Jul. 15, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Notice of Allowance, dated Jul. 16, 2020, from corresponding U.S. Appl. No. 16/901,979. |
Notice of Allowance, dated Jul. 17, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Notice of Allowance, dated Jul. 17, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Notice of Allowance, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/306,252. |
Notice of Allowance, dated Jul. 20, 2022, from corresponding U.S. Appl. No. 16/938,509. |
Notice of Allowance, dated Jul. 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Notice of Allowance, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Notice of Allowance, dated Jul. 26, 2019, from corresponding U.S. Appl. No. 16/409,673. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/207,316. |
Notice of Allowance, dated Jul. 27, 2022, from corresponding U.S. Appl. No. 17/679,750. |
Notice of Allowance, dated Jul. 29, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Notice of Allowance, dated Jul. 31, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Notice of Allowance, dated Jul. 7, 2022, from corresponding U.S. Appl. No. 17/571,871. |
Notice of Allowance, dated Jul. 8, 2021, from corresponding U.S. Appl. No. 17/201,040. |
Notice of Allowance, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/813,321. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 17/216,436. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/278,123. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/363,454. |
Notice of Allowance, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/679,734. |
Notice of Allowance, dated Jun. 16, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Notice of Allowance, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Notice of Allowance, dated Jun. 17, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Notice of Allowance, dated Jun. 18, 2019, from corresponding U.S. Appl. No. 16/410,566. |
Notice of Allowance, dated Jun. 19, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/042,673. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Notice of Allowance, dated Jun. 2, 2021, from corresponding U.S. Appl. No. 17/198,581. |
Notice of Allowance, dated Jun. 2, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Notice of Allowance, dated Jun. 21, 2019, from corresponding U.S. Appl. No. 16/404,439. |
Notice of Allowance, dated Jun. 22, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Notice of Allowance, dated Jun. 23, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Notice of Allowance, dated Jun. 27, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Office Action, dated Jan. 28, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Office Action, dated Jan. 29, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Office Action, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Office Action, dated Jan. 4, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Jan. 4, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Office Action, dated Jan. 7, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Office Action, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Office Action, dated Jul. 13, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jul. 15, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Jul. 18, 2019, from corresponding U.S. Appl. No. 16/410,762. |
Office Action, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Office Action, dated Jul. 21, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Office Action, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Office Action, dated Jul. 24, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Jul. 27, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Jul. 27, 2022, from corresponding U.S. Appl. No. 17/831,713. |
Office Action, dated Jul. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Jul. 7, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Jun. 1, 2022, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/689,683. |
Office Action, dated Jun. 24, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Jun. 24, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Office Action, dated Jun. 27, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Office Action, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Office Action, dated Mar. 1, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Mar. 11, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Office Action, dated Mar. 12, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Office Action, dated Mar. 15, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Mar. 20, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/571,871. |
Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/187,329. |
Office Action, dated Mar. 23, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Office Action, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Office Action, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Final Office Action, dated Mar. 13, 2023, from corresponding U.S. Appl. No. 17/161,159. |
International Search Report, dated Jan. 27, 2023, from corresponding International Application No. PCT/US2022/045520. |
Notice of Allowance, dated Feb. 14, 2023, from corresponding U.S. Appl. No. 17/373,444. |
Notice of Allowance, dated Feb. 2, 2023, from corresponding U.S. Appl. No. 17/850,244. |
Notice of Allowance, dated Jan. 25, 2023, from corresponding U.S. Appl. No. 17/675,760. |
Notice of Allowance, dated Mar. 13, 2023, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Feb. 2, 2023, from corresponding U.S. Appl. No. 17/872,266. |
Office Action, dated Jan. 12, 2023, from corresponding U.S. Appl. No. 17/872,084. |
Written Opinion of the International Searching Authority, dated Jan. 27, 2023, from corresponding International Application No. PCT/US2022/045520. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 16/041,545. |
Notice of Allowance, dated Sep. 18, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Notice of Allowance, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Notice of Allowance, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Notice of Allowance, dated Sep. 23, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Notice of Allowance, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/334,939. |
Notice of Allowance, dated Sep. 25, 2020, from corresponding U.S. Appl. No. 16/983,536. |
Notice of Allowance, dated Sep. 27, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Notice of Allowance, dated Sep. 27, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Notice of Allowance, dated Sep. 28, 2018, from corresponding U.S. Appl. No. 16/041,520. |
Notice of Allowance, dated Sep. 29, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Notice of Allowance, dated Sep. 4, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/901,662. |
Notice of Allowance, dated Sep. 9, 2021, from corresponding U.S. Appl. No. 17/334,909. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036912. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036917. |
Invitation to Pay Additional Search Fees, dated Aug. 24, 2017, from corresponding International Application No. PCT/US2017/036888. |
Invitation to Pay Additional Search Fees, dated Jan. 18, 2019, from corresponding International Application No. PCT/US2018/055736. |
Invitation to Pay Additional Search Fees, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055773. |
Invitation to Pay Additional Search Fees, dated Jan. 8, 2019, from corresponding International Application No. PCT/US2018/055774. |
Invitation to Pay Additional Search Fees, dated Oct. 23, 2018, from corresponding International Application No. PCT/US2018/045296. |
Agrawal et al., “Securing Electronic Health Records Without Impeding the Flow of Information,” International Journal of Medical Informatics 76, 2007, pp. 471-479 (Year: 2007). |
AvePoint, Installing and Configuring the APIA System, International Association of Privacy Professionals, AvePoint, Inc. |
Bang et al, “Building an Effective and Efficient Continuous Web Application Security Program,” 2016 International Conference on Cyber Security Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2016, pp. 1-4 (Year: 2016). |
Binns, et al, “Data Havens, or Privacy Sans Frontières? A Study of International Personal Data Transfers,” ACM, pp. 273-274 (Year: 2002). |
Czeskis et al, “Lightweight Server Support for Browser-based CSRF Protection,” Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 273-284 (Year: 2013). |
Falahrastegar, Marjan, et al., Tracking Personal Identifiers Across the Web, Medical Image Computing and Computer-Assisted Intervention—Miccai 2015, 18th International Conference, Oct. 5, 2015, Munich, Germany. |
Friedman et al, “Informed Consent in the Mozilla Browser: Implementing Value-Sensitive Design,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, IEEE, pp. 1-10 (Year: 2002). |
Ghiglieri, Marco et al; Personal DLP for Facebook, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops); IEEE; Mar. 24, 2014; pp. 629-634. |
Gilda, et al., “Blockchain for Student Data Privacy and Consent,” 2018 International Conference on Computer Communication and Informatics, Jan. 4-6, 2018, IEEE, pp. 1-5 (Year: 2018). |
Halevy, et al., “Schema Mediation in Peer Data Management Systems,” IEEE, Proceedings of the 19th International Conference on Data Engineering, 2003, pp. 505-516 (Year: 2003). |
IAPP, Daily Dashboard, PIA Tool Stocked With New Templates for DPI, Infosec, International Association of Privacy Professionals, Apr. 22, 2014. |
IAPP, ISO/IEC 27001 Information Security Management Template, Resource Center, International Association of Privacy Professionals. |
International Search Report, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
International Search Report, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
International Search Report, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
International Search Report, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
International Search Report, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
International Search Report, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
International Search Report, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
International Search Report, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274. |
International Search Report, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
International Search Report, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Beelders et al, “The Influence of Syntax Highlighting on Scanning and Reading Behaviour for Source Code,” SAICSIT Sep. 26-28, 2016, Johannesburg, South Africa, ACM, pp. 1-10 (Year: 2016). |
Final Office Action, dated Aug. 17, 2023, from corresponding U.S. Appl. No. 17/872,266. |
Hall-Holt et al, “Stripe Boundary Codes for Real-Time Structured-Light Range Scanning of Moving Objects,” IEEE, pp. 359-366 (Year: 2001). |
International Search Report, dated Aug. 9, 2023, from corresponding International Application No. PCT/US2023/011446. |
Office Action, dated Aug. 9, 2023, from corresponding U.S. Appl. No. 17/743,749. |
Office Action, dated Sep. 21, 2023, from corresponding U.S. Appl. No. 18/116,791. |
Written Opinion of the International Searching Authority, dated Aug. 9, 2023, from corresponding International Application No. PCT/US2023/011446. |
Alkalha et al, “Investigating the Effects of Human Resource Policies on Organizational Performance: An Empirical Study on Commercial Banks Operating in Jordan,” European Journal of Economics, Finance and Administrative Science, pp. 1-22 (Year: 2012). |
Aman et al, “Detecting Data Tampering Attacks in Synchrophasor Networks using Time Hopping,” IEEE, pp. 1-6 (Year: 2016). |
Amar et al, “Privacy-Aware Infrastructure for Managing Personal Data,” ACM, pp. 571-572, Aug. 22-26, 2016 (Year: 2016). |
Antunes et al, “Preserving Digital Data in Heterogeneous Environments”, ACM, pp. 345-348, 2009 (Year: 2009). |
Ardagna, et al, “A Privacy-Aware Access Control System,” Journal of Computer Security, 16:4, pp. 369-397 (Year: 2008). |
AvePoint, Automating Privacy Impact Assessments, AvePoint, Inc. |
AvePoint, AvePoint Privacy Impact Assessment 1: User Guide, Cumulative Update 2, Revision E, Feb. 2015, AvePoint, Inc. |
Ball, et al, “Aspects of the Computer-Based Patient Record,” Computers in Healthcare, Springer-Verlag New York Inc., pp. 1-23 (Year: 1992). |
Banerjee et al, “Link Before You Share: Managing Privacy Policies through Blockchain,” IEEE, pp. 4438-4447 (Year: 2017). |
Bansal et al, “Integrating Big Data: A Semantic Extract-Transform-Load Framework,” IEEE, pp. 42-50 (Year. 2015). |
Bao et al, “Performance Modeling and Workflow Scheduling of Microservice-Based Applications in Clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, No. 9, Sep. 2019, pp. 2101-2116 (Year: 2019). |
Barker, “Personalizing Access Control by Generalizing Access Control,” ACM, pp. 149-158 (Year. 2010). |
Barr, “Amazon Rekognition Update—Estimated Age Range for Faces,” AWS News Blog, Feb. 10, 2017, pp. 1-5 (Year: 2017). |
Bayardo et al, “Technological Solutions for Protecting Privacy,” Computer 36.9 (2003), pp. 115-118, (Year: 2003). |
Berezovskiy et al, “A framework for dynamic data source identification and orchestration on the Web”, ACM, pp. 1-8 (Year: 2010). |
Bertino et al, “On Specifying Security Policies for Web Documents with an XML-based Language,” ACM, pp. 57-65 (Year: 2001). |
Bertino et al, “Towards Mechanisms for Detection and Prevention of Data Exfiltration by Insiders,” Mar. 22, 2011, ACM, pp. 10-19 (Year: 2011). |
Bhargav-Spantzel et al, Receipt Management—Transaction History based Trust Establishment, 2007, ACM, p. 82-91. |
Bhuvaneswaran et al, “Redundant Parallel Data Transfer Schemes for the Grid Environment”, ACM, pp. 18 (Year: 2006). |
Bieker, et al, “Privacy-Preserving Authentication Solutions—Best Practices for Implementation and EU Regulatory Perspectives,” Oct. 29, 2014, IEEE, pp. 1-10 (Year: 2014). |
Bin, et al, “Research on Data Mining Models for the Internet of Things,” IEEE, pp. 1-6 (Year: 2010). |
Bindschaedler et al, “Privacy Through Fake Yet Semantically Real Traces,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, May 27, 2015 (Year: 2015). |
Bjorn Greif, “Cookie Pop-up Blocker: Cliqz Automatically Denies Consent Requests,” Cliqz.com, pp. 1-9, Aug. 11, 2019 (Year: 2019). |
Borgida, “Description Logics in Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, No. 5, Oct. 1995, pp. 671-682 (Year: 1995). |
Brandt et al, “Efficient Metadata Management in Large Distributed Storage Systems,” IEEE, pp. 1-9 (Year. 2003). |
Bujlow et al, “Web Tracking: Mechanisms, Implications, and Defenses,” Proceedings of the IEEE, Aug. 1, 2017, vol. 5, No. 8, pp. 1476-1510 (Year: 2017). |
Byun, Ji-Won, Elisa Bertino, and Ninghui Li. “Purpose based access control of complex data for privacy protection.” Proceedings of the tenth ACM symposium on Access control models and technologies. ACM, 2005. (Year: 2005). |
Carminati et al, “Enforcing Access Control Over Data Streams,” ACM, pp. 21-30 (Year. 2007). |
Carpineto et al, “Automatic Assessment of Website Compliance to the European Cookie Law with CooLCheck,” Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 135-138 (Year. 2016). |
Castro et al, “Creating Lightweight Ontologies for Dataset Description,” IEEE, pp. 1-4 (Year: 2014). |
Cerpzone, “How to Access Data on Data Archival Storage and Recovery System”, https://www.saj.usace.army.mil/Portals/44/docs/Environmental/Lake%20O%20Watershed/15February2017/How%20To%20Access%20Model%20Data%20on%20DASR.pdf?ver=2017-02-16-095535-633, Feb. 16, 2017. |
Cha et al, “A Data-Driven Security Risk Assessment Scheme for Personal Data Protection,” IEEE, pp. 50510-50517 (Year: 2018). |
Cha, et al, “Process-Oriented Approach for Validating Asset Value for Evaluating Information Security Risk,” IEEE, Aug. 31, 2009, pp. 379-385 (Year: 2009). |
Chang et al, “A Ranking Approach for Human Age Estimation Based on Face Images,” IEEE, 2010, pp. 3396-3399 (Year: 2010). |
Chapados et al, “Scoring Models for Insurance Risk Sharing Pool Optimization,” 2008, IEEE, pp. 97-105 (Year: 2008). |
Cheng, Raymond, et al, “Radiatus: A Shared-Nothing Server-Side Web Architecture,” Proceedings of the Seventh ACM Symposium on Cloud Computing, Oct. 5, 2016, pp. 237-250 (Year: 2016). |
Choi et al, “A Survey on Ontology Mapping,” ACM, pp. 34-41 (Year. 2006). |
Choi et al, “Retrieval Effectiveness of Table of Contents and Subject Headings,” ACM, pp. 103-104 (Year: 2007). |
Chowdhury et al, “A System Architecture for Subject-Centric Data Sharing”, ACM, pp. 1-10 (Year: 2018). |
Chowdhury et al, “Managing Data Transfers in Computer Clusters with Orchestra,” ACM, pp. 98-109 (Year: 2011). |
Civili et al, “Mastro Studio: Managing Ontology-Based Data Access Applications,” ACM, pp. 1314-1317, Aug. 26-30, 2013 (Year: 2013). |
Cruz et al, “Interactive User Feedback in Ontology Matching Using Signature Vectors,” IEEE, pp. 1321-1324 (Year: 2012). |
Cudre-Mauroux, “ESWC 2008 Ph.D. Symposium,” The ESWC 2008 Ph.D. Symposium is sponsored by the Okkam project (http://fp7.okkam.org/), MIT, pp. 1-92 (Year: 2008). |
Cui et al, “Domain Ontology Management Environment,” IEEE, pp. 1-9 (Year. 2000). |
Decision Regarding Institution of Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 11, 2018. |
Degeling et al, “We Value Your Privacy . . . Now Take Some Cookies: Measuring the GDPRs Impact on Web Privacy,” arxiv.org, Comell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Aug. 15, 2018, pp. 1-15 (Year: 2019). |
Dimou et al, “Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval”, ACM, pp. 145-152 (Year: 2015). |
Dokholyan et al, “Regulatory and Ethical Considerations for Linking Clinical and Administrative Databases,” American Heart Journal 157.6 (2009), pp. 971-982 (Year: 2009). |
Dowling, “Auditing Global HR Compliance,” published May 23, 2014, retrieved from https://www.shrm.org/resourcesandtools/hr-topics/ global-hr/pages/auditing-global-hr-compliance.aspx Jul. 2, 2022 (Year. 2014). |
Dunkel et al, “Data Organization and Access for Efficient Data Mining”, IEEE, pp. 522-529 (Year. 1999). |
Office Action, dated Mar. 30, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Office Action, dated Mar. 4, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/509,974. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Office Action, dated May 15, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated May 16, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/679,750. |
Office Action, dated May 17, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Office Action, dated May 18, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Office Action, dated May 2, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Office Action, dated May 2, 2019, from corresponding U.S. Appl. No. 16/104,628. |
Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/674,187. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Office Action, dated May 5, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated May 9, 2022, from corresponding U.S. Appl. No. 16/840,943. |
Office Action, dated Nov. 1, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/380,485. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,355. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/373,444. |
Office Action, dated Nov. 15, 2018, from corresponding U.S. Appl. No. 16/059,911. |
Office Action, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/552,758. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/486,350. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,885. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,889. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/572,347. |
Office Action, dated Nov. 19, 2019, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Nov. 20, 2019, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Nov. 23, 2018, from corresponding U.S. Appl. No. 16/042,673. |
Office Action, dated Nov. 23, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Office Action, dated Nov. 26, 2021, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Nov. 4, 2021, from corresponding U.S. Appl. No. 17/491,906. |
Office Action, dated Nov. 8, 2021, from corresponding U.S. Appl. No. 16/872,130. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/041,563. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,083. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,944. |
Office Action, dated Oct. 12, 2021, from corresponding U.S. Appl. No. 17/346,509. |
Office Action, dated Oct. 14, 2020, from corresponding U.S. Appl. No. 16/927,658. |
Office Action, dated Oct. 15, 2018, from corresponding U.S. Appl. No. 16/054,780. |
Office Action, dated Oct. 15, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Office Action, dated Oct. 16, 2019, from corresponding U.S. Appl. No. 16/557,392. |
Office Action, dated Oct. 16, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Office Action, dated Oct. 23, 2018, from corresponding U.S. Appl. No. 16/055,961. |
Office Action, dated Jan. 16, 2024, from corresponding U.S. Appl. No. 18/110,511. |
Notice of Allowance, dated Nov. 30, 2023, from corresponding U.S. Appl. No. 18/104,981. |
Choe et al, “Understanding Quantified-Selfers' Practices in Collecting and Exploring Personal Data,” ACM, pp. 1143-1152 (Year: 2014). |
Final Office Action, dated Feb. 8, 2024, from corresponding U.S. Appl. No. 17/743,749. |
Jesus et al, “Consent Receipts for a Usable and Auditable Web of Personal Data,” IEEE, pp. 28545-28563 (Year: 2022). |
Su et al, “Privacy as a Service: Protecting the Individual in Healthcare Data Processing,” IEEE, pp. 49-59 (Year: 2016). |
Office Action, dated Feb. 14, 2024, from corresponding U.S. Appl. No. 17/717,587. |
Number | Date | Country | |
---|---|---|---|
20230007043 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
63057382 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17387421 | Jul 2021 | US |
Child | 17942242 | US |