Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver

Information

  • Patent Grant
  • 10439448
  • Patent Number
    10,439,448
  • Date Filed
    Thursday, August 21, 2014
    10 years ago
  • Date Issued
    Tuesday, October 8, 2019
    5 years ago
Abstract
A method includes, at a transmitter, performing a test of communications with a receiver, the test comprising: (i) sending, by a communications component of the transmitter, a first message to the receiver, (ii) receiving, by the communications component, a second message from the receiver in response to the first message, and (iii) comparing operational metric(s) associated with the first and second messages with respective expected values for each of the operational metric(s) to determine an outcome for the test. The method further includes sending a report to a remote server that includes the determined outcome for the test, and after sending the report, stopping performance of the test and starting normal operation of the transmitter in which the transmitter transmits, by at least some of the transmitter's antennas, power waves to a location of the receiver. The receiver uses energy from the power waves to charge/power an electronic device.
Description
BACKGROUND

Field of the Disclosure


The present disclosure relates in general to wireless power transmission systems, and more specifically to methods for testing the communication between power transmitters and power receivers.


Background Information


The communication between a wireless power transmitter and a wireless power receiver of a wireless power transmission system may encounter unexpected or unpredictable errors due to conditions external to the system, due to defects within software design of the system, or due to degradation or unexpected operation of system hardware. The wireless power transmission system software may have communication error detection and correction methods so that normal operation of said system may continue in the event of any error.


This communication between the transmitter and the receiver is essential for wireless transmission of power from power transmitter to power receiver because transmitter uses communication connection with receiver to determine if the receiver is nearby or within power transmission range, to read the amount of power that the receiver is presently receiving and monitor this value while adjusting the direction of the transmitter's array of power transmission antennas to maximize power received by the receiver, and to command the receiver to electrically connect to its client device to transmit power to it, or disconnect when not powering it.


One limitation of wireless power transmission systems may be that defects in the system software may not be corrected and may cause interruption or unwanted cessation of normal operation of said system, if the system software is not tested for error conditions, if testing cannot be done manually, or if manual testing is inadvertently not done.


Another drawback may be that the failure of the system software to correctly respond to these error conditions may cause interruption or unwanted cessation of normal operation of the system if any error condition only occurs infrequently, and may only be detected by automatic test software.


The above mentioned problems, if not detected by automatic testing, may occur during system design development, during demonstrations, during production burn-in, or in the field of use after product installation during product normal operation.


Thus, there is a need for automatic test software that tests cases which cannot be tested manually or tests cases which occur so infrequently that it is not practical or there is not enough time to test manually.


SUMMARY

Systems and methods to use software to automatically test the communication between a wireless power transmitter and a wireless power receiver are disclosed. The disclosed systems and methods may be employed for antenna direction management and for wireless transmission of power from transmitter to receiver in a wireless power transmission system.


The disclosed systems may include power transmitters, power receivers, electronic devices, and suitable remote system managers.


According to one embodiment, the disclosed methods may be employed to perform an automatic self-test built in to power transmitters and power receivers. The self-test may be automatically run when a wireless power transmission system boots, or in response to a command from the system user.


The self-test may automatically establish communication connections between a power transmitter and each power receiver, and then may automatically continually begin testing the communication of all types of messages. Periodically, unexpected disconnection followed by re-connection and re-establishment of communication between power transmitter and power receiver may also be tested. Communication may be in real-time.


Counts of all actions and operations, performed by the wireless power transmission system while testing connections and communication, may be stored in metrics counters within a system database. When the test is complete, the metrics counters may be compared with expected values. If the metrics counters match the expected values, then test passes, otherwise test fails. Wireless power transmission system may report to the user the outcome of the test. Other methods may be employed to compare actions or operations with what is expected.


A user command may be employed to initiate a long term test of communication between a power transmitter and a power receiver to detect defects that may only occur infrequently. For example, the test may be performed overnight, over the weekend, or longer, among others.


Numerous other aspects, features and benefits of the present disclosure may be made apparent from the following detailed description taken together with the drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure can be better understood by referring to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure. In the figures, reference numerals designate corresponding parts throughout the different views.



FIG. 1 illustrates a wireless power transmission example situation using pocket-forming, according to an exemplary embodiment.



FIG. 2 illustrates a component level embodiment for a transmitter, according to an exemplary embodiment.



FIG. 3 illustrates a component level embodiment for a receiver, according to an exemplary embodiment.



FIG. 4 illustrates an exemplary embodiment of a wireless power network including a transmitter and wireless receivers, according to an exemplary embodiment.



FIG. 5 shows a wireless power transmission network diagram, according to an exemplary embodiment.



FIG. 6 is a flowchart showing a method for automatic initiation of a self-test of a power transmitter software at boot, according to an exemplary embodiment.



FIG. 7 is a flowchart showing a method for automatic initiation of a self-test during a normal operation of a power transmitter, according to an exemplary embodiment.



FIG. 8 is a flowchart showing a method for manually initiated power transmitter self-test, according to an exemplary embodiment.



FIG. 9 is a flowchart showing a method for performing a self-test of a power transmitter, according to an exemplary embodiment.





DETAILED DESCRIPTION

The present disclosure is here described in detail with reference to embodiments illustrated in the drawings, which form a part here. Other embodiments may be used and/or other changes may be made without departing from the spirit or scope of the present disclosure. The illustrative embodiments described in the detailed description are not meant to be limiting of the subject matter presented here.


Definitions

As used here, the following terms may have the following definitions:


“Adaptive pocket-forming” refers to dynamically adjusting pocket-forming to regulate power on one or more targeted receivers.


“App” refers to a software application that is run on a mobile, laptop, desktop, or server computer.


“BTLE”, or “BLE”, refers to Bluetooth low energy communication hardware and/or software.


“Charge”, or “Charging”, refers to the conversion of RF energy into electrical energy by a receiver, using an antenna, where the electrical energy may be transmitted through an electrical circuit connection from the receiver to an electrically connected client device, where the transmitted energy may be used by the device to charge its battery, to power its functions, or any suitable combination.


“LAN” refers to wired or wireless Local Area Network.


“Null-space” refers to areas or regions of space where pockets of energy do not form because of destructive interference patterns of RF waves.


“Operator” refers to a person who installs or operates the wireless power transmission system.


Operator may also be a system user.


“Pairing” refers to the association, within the wireless power transmission system's distributed system database, of a single electronic client device with a single power receiver. In one or more embodiments, this may allow a system to determine from said association which power receiver to transmit power to in order to charge said client device upon receiving a command, from a user or automatic system process, that a client device is to be charged.


“Pocket-forming” refers to generating two or more RF waves which converge in 3-D space, forming controlled constructive and destructive interference patterns.


“Pockets of energy” refers to areas or regions of space where energy or power may accumulate in the form of constructive interference patterns of RF waves.


“Power” refers to electrical energy, where “wireless power transmission” may be synonymous of “wireless energy transmission”, and “wireless power transmission” may be synonymous of “wireless energy transmission”.


“Receive identification” refers to an identification number or alphanumeric code or credential that is unique to a specific receiver.


“Receiver” refers to a device including at least one antenna element, at least one rectifying circuit and at least one power converter, which may utilize pockets of energy for powering, or charging an electronic device.


“System” refers to a wireless power transmission system that wirelessly transmits power from a transmitter to a receiver.


“System Computer” refers to one of the computers of a wireless power transmission system; is part of the communication network between all computers of the wireless power transmission system; may communicate through said network to any other system computer; and may be a wireless power transmitter, a wireless power receiver, a client device, a management service server, or any other.


“Transmitter” refers to a device, including a chip which may generate two or more RF signals, at least one RF signal being phase shifted and gain adjusted with respect to other RF signals, substantially all of which pass through one or more RF antenna such that focused RF signals are directed to a target.


“User” refers to a person using the system to provide wireless power transmission to a client device. User may be an operator.


“WIFI” refers to wireless network.


“Wireless power transmission” refers to transmitting energy wirelessly.


Description of the Drawings

The present disclosure describes methods for automatically testing the communication between wireless power transmitter and wireless power receiver, i.e. a transmitter to receiver auto test.


Methods disclosed here may be part of a wireless power transmission system including one or more wireless power transmitters, one or more wireless power receivers, and including one or more optional system management server or one or more optional mobile or hand-held computers, smart phones, or the like, that run the system management GUI app. This app may be made available at, downloaded, and installed from a public software app store or digital application distribution platform, such as Apple's iTunes, Google's Play Store, Amazon's Appstore, and the like.


The power transmitters and management servers may all communicate with each other through a distributed system database, and may also communicate present status and any status change to a remote information service that may be located in the Internet cloud.


One or more wireless power transmitters may automatically transmit power to any single wireless power receiver that is close enough for it to establish a communication connection with, using a suitable communication technology, including Bluetooth Low Energy or the like. Said receiver may then power or charge an electrically connected client device, such as mobile device, toy, remote control, lighting device, and the like. A single wireless power transmitter may also power multiple wireless power receivers simultaneously.


Alternately, the system can be configured by the system management GUI to automatically only transmit power to specific wireless power receivers depending on specific system criteria or conditions, such as the time or hour of the day for automatic time-based scheduled power transmission, power receiver physical location, owner of client device, or other any other suitable conditions and/or criteria.


The wireless power receiver is connected electrically to a client device, such a mobile phone, portable light, TV remote control, or any device that would otherwise require a battery or connection to wall power. In one or more embodiments, devices requiring batteries can have traditional batteries replaced by wireless power receiver batteries. The wireless power receiver then receives energy transmitted from the power transmitter, into receiver's antenna, rectifies, conditions, and sends the resulting electrical energy, through an electrical relay switch, to the electrically connected client device to power it or charge it.


A wireless power transmitter can transmit power to a wireless power receiver, which, in response, can power or charge its associated client device while device is in use or in motion anywhere within the power transmission range of the wireless power transmitter. The wireless power transmitter can power multiple devices at the same time.


The wireless power transmitter establishes a real-time communication connection with each receiver for the purpose of receiving feedback in real-time (such as 100 samples per second). This feedback from each receiver includes the measurement of energy presently being received, which is used by the transmitter to control the direction of the transmitter's antenna array so that it stays aimed at the receiver, even if the receiver moves to a different physical 3-D location or is in 3-D motion that changes its physical 3-D location.


Multiple wireless power transmitters can power a given, single receiver, in order to substantially increase power to it.


When a transmitter is done transmitting power to a receiver, it may communicate to the receiver that power transmission has ended, and disconnect communication. The wireless power transmitter may then examine its copy of the distributed system database to determine which, if any, receivers in power range it should next transmit power to.



FIG. 1 illustrates wireless power transmission 100 using pocket-forming. A transmitter 102 may transmit controlled Radio Frequency (RF) waves 104 which may converge in 3-D space. RF waves 104 may be controlled through phase and/or relative amplitude adjustments to form constructive and destructive interference patterns (pocket-forming). Pockets of Energy 106 may form at constructive interference patterns and may be 3-Dimensional in shape, whereas null-spaces may be generated at destructive interference patterns. A Receiver 108 may then utilize Pockets of Energy 106 produced by pocket-forming for charging or powering an electronic device, for example a laptop computer 110, and thus providing wireless power transmission 100. In embodiments disclosed here, there may be two or more transmitters 102 and one or more receivers 108 for powering various electronic devices. Examples of suitable electronic devices may include smartphones, tablets, music players, and toys, amongst others. In other embodiments, adaptive pocket-forming may be used to regulate power on suitable electronic devices.



FIG. 2 illustrates a component level embodiment for a transmitter 202 which may be utilized to provide wireless power transmission 100 as described in FIG. 1. Transmitter 202 may include a housing 204 where at least two or more antenna elements 206, at least one RF integrated circuit (RFIC 208), at least one digital signal processor (DSP) or micro-controller 210, and one optional communications component 212 may be included. Housing 204 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber. Antenna elements 206 may include suitable antenna types for operating in suitable frequency bands, such as 900 MHz, 2.5 GHz, or 5.8 GHz, and any other frequency bands that may conform to Federal Communications Commission (FCC) regulations part 18 (Industrial, Scientific and Medical equipment) or any other suitable regulations. Antenna elements 206 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Suitable antenna types may include, for example, patch antennas with heights from about ⅛ inches to about 6 inch and widths from about ⅛ inches to about 6 inch. Other antenna elements 206 types may be used, including meta-materials, dipole antennas, and others. RFIC 208 may include a chip for adjusting phases and/or relative magnitudes of RF signals, which may serve as inputs for antenna elements 206 for controlling pocket-forming. These RF signals may be produced using an external power supply 214 and a local oscillator chip (not shown) using a suitable piezoelectric materials. Micro-controller 210 may then process information sent by a receiver through its own antenna elements for determining optimum times and locations for pocket-forming. In some embodiments, the foregoing may be achieved through communications component 212. Communications component 212 may be based on standard wireless communication protocols which may include Bluetooth, Bluetooth Low Energy, Wi-Fi, and/or ZigBee, amongst others. In addition, communications component 212 may be used to transfer other information, including identifiers for the device or user, battery level, location or other such information. The micro-controller may determine the position of a device using any suitable technology capable of triangulation in communications component 212, including radar, infrared cameras, and sound devices, amongst others.


Multiple transmitter 202 units may be placed together in the same area to deliver more power to individual power receivers or to power more receivers at the same time, said power receivers being within power reception range of two or more of multiple power transmitters 202.



FIG. 3 illustrates a component level embodiment for a receiver 300 which may be used for powering or charging an electronic device as exemplified in wireless power transmission 100. Receiver 300 may include a housing 302 where at least one antenna element 304, one rectifier 306, one power converter 308 and an optional communications component 310 may be included. Housing 302 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber. Housing 302 may be an external hardware that may be added to different electronic equipment, for example in the form of cases, or may be embedded within electronic equipment as well. Antenna element 304 may include suitable antenna types for operating in frequency bands similar to the bands described for transmitter 202 from FIG. 2. Antenna element 304 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Using multiple polarizations can be beneficial in devices where there may not be a preferred orientation during usage or whose orientation may vary continuously through time, for example a smartphone or portable gaming system. On the contrary, for devices with well-defined orientations, for example a two-handed video game controller, there might be a preferred polarization for antennas which may dictate a ratio for the number of antennas of a given polarization. Suitable antenna types may include patch antennas with heights from about ⅛ inches to about 6 inch and widths from about ⅛ inches to about 6 inch. Patch antennas may have the advantage that polarization may depend on connectivity, i.e. depending on which side the patch is fed, the polarization may change. This may further prove advantageous as a receiver, such as receiver 300, may dynamically modify its antenna polarization to optimize wireless power transmission. Rectifier 306 may include diodes or resistors, inductors or capacitors to rectify the alternating current (AC) voltage generated by antenna element 304 to direct current (DC) voltage. Rectifier 306 may be placed as close as is technically possible to antenna element 304 to minimize losses. After rectifying AC voltage, DC voltage may be regulated using power converter 308. Power converter 308 can be a DC-DC converter which may help provide a constant voltage output, regardless of input, to an electronic device, or as in this embodiment to a battery 312. Typical voltage outputs can be from about 5 volts to about 10 volts. Lastly, communications component 310, similar to that of transmitter 202 from FIG. 2, may be included in receiver 300 to communicate with a transmitter 202 or to other electronic equipment.



FIG. 4 shows an exemplary embodiment of a wireless power transmission system 400 (WPTS) in which one or more embodiments of the present disclosure may operate. Wireless power transmission system 400 may include communication between one or more wireless power transmitters 402 and one or more wireless powered receivers 406 and within client device 438. Client device 404 may be paired with an adaptable paired receiver 406 that may enable wireless power transmission to the client device 404. In another embodiment, a client device 438 may include a wireless power receiver built in as part of the hardware of the device. Client device 404 or 438 may be any device which uses an energy power source, such as, laptop computers, stationary computers, mobile phones, tablets, mobile gaming devices, televisions, radios and/or any set of appliances that may require or benefit from an electrical power source.


In one embodiment, one or more wireless power transmitters 402 may include a microprocessor that integrates a power transmitter manager app 408 (PWR TX MGR APP) as embedded software, and a third party application programming interface 410 (Third Party API) for a Bluetooth Low Energy chip 412 (BTLE CHIP HW). Bluetooth Low Energy chip 412 may enable communication between wireless power transmitter 402 and other devices, including power receiver 406, client device 404 and 438, and others. Wireless power transmitter 402 may also include an antenna manager software 414 (Antenna MGR Software) to control an RF antenna array 416 that may be used to form controlled RF waves which may converge in 3-D space and create pockets of energy on wireless powered receivers. In some embodiments, one or more Bluetooth Low Energy chips 412 may utilize other wireless communication protocols, including WiFi, Bluetooth, LTE direct, or the like.


Power transmitter manager app 408 may call third party application programming interface 410 for running a plurality of functions, including the establishing of a connection, ending a connection, and sending data, among others. Third party application programming interface 410 may issue commands to Bluetooth Low Energy chip 412 according to the functions called by power transmitter manager app 408.


Power transmitter manager app 408 may also include a distributed system database 418, which may store relevant information associated with client device 404 or 438, such as their identifiers for a client device 404 or 438, voltage ranges for power receiver 406, location of a client device 404 or 438, signal strength and/or any other relevant information associated with a client device 404 or 438. Database 418 may also store information relevant to the wireless power network, including receiver ID's, transmitter ID's, end-user handheld devices, system management servers, charging schedules, charging priorities and/or any other data relevant to a wireless power network.


Third party application programming interface 410 at the same time may call power transmitter manager app 408 through a callback function which may be registered in the power transmitter manager app 408 at boot time. Third party application programming interface 410 may have a timer callback that may go for ten times a second, and may send callbacks every time a connection begins, a connection ends, a connection is attempted, or a message is received.


Client device 438 may include a power receiver app 420 (PWR RX APP), a third party application programming interface 422 (Third party API) for a Bluetooth Low Energy chip 424 (BTLE CHIP HW), and an RF antenna array 426 which may be used to receive and utilize the pockets of energy sent from wireless power transmitter 402.


Power receiver app 420 may call third party application programming interface 422 for running a plurality of functions, including establishing a connection, ending a connection, and sending data, among others. Third party application programming interface 422 may have a timer callback that may go for ten times a second, and may send callbacks every time a connection begins, a connection ends, a connection is attempted, or message is received.


Client device 404 may be paired to an adaptable power receiver 406 via a BTLE connection 428. A graphical user interface (GUI 430) may be used to manage the wireless power network from a client device 404. GUI 430 may be a software module that may be downloaded from any suitable application store and may run on any suitable operating system, including iOS and Android, amongst others. Client device 404 may also communicate with wireless power transmitter 402 via a BTLE connection 428 to send important data, such as an identifier for the device, battery level information, geographic location data, or any other information that may be of use for wireless power transmitter 402.


A wireless power manager 432 software may be used in order to manage wireless power transmission system 400. Wireless power manager 432 may be a software module hosted in memory and executed by a processor inside a computing device 434. The wireless power manager 432 may include a local application GUI, or host a web page GUI, from where a user 436 may see options and statuses, as well as execute commands to manage the wireless power transmission system 400. The computing device 434, which may be cloud-based, may be connected to the wireless power transmitter 402 through standard communication protocols, including Bluetooth, Bluetooth Low Energy, Wi-Fi, or ZigBee, amongst others. Power transmitter manager app 408 may exchange information with wireless power manager 432 in order to control access by and power transmission to client devices 404. Functions controlled by wireless power manager 432 may include scheduling power transmission for individual devices, prioritizing between different client devices, accessing credentials for each client, tracking physical locations of power receivers relative to power transmitter areas, broadcasting messages, and/or any functions required to manage the wireless power transmission system 400.



FIG. 5 illustrates a wireless power transmission system network 500, according to an exemplary embodiment.


According to some embodiments, wireless power transmission system network 500 may include multiple wireless power transmission systems 502 capable of communicating with a remote information service 504 through internet cloud 506.


In some embodiments, wireless power transmission system 502 may include one or more wireless power transmitters 508, one or more power receivers 510, one or more optional back-up servers 512 and a local network 514.


According to some embodiments, each power transmitter 508 may include wireless power transmitter manager 516 software and a distributed wireless power transmission system database 518. Each power transmitter 508 may be capable of managing and transmitting power to one or more power receivers 510, where each power receiver 510 may be capable of charging or providing power to one or more electronic devices 520.


Power transmitter managers 516 may control the behavior of power transmitters 508, monitor the state of charge of electronic devices 520, and control power receivers 510, keep track of the location of power receivers 510, execute power schedules, run system check-ups, and keep track of the energy provided to each of the different electronic devices 520, amongst others.


According to some embodiments, database 518 may store relevant information from electronic devices 520 such as, identifiers for electronic devices 520, voltage ranges for measurements from power receivers 510, location, signal strength and/or any relevant information from electronic devices 520. Database 518 may also store information relevant to the wireless power transmission system 502 such as, receiver ID's, transmitter ID's, end-user handheld device names or ID's, system management server ID's, charging schedules, charging priorities and/or any data relevant to a power transmission system network 500.


Additionally, in some embodiments, database 518 may store data of past and present system status.


The past system status data may include details such as the amount of power delivered to an electronic device 520, the amount of energy that was transferred to a group of electronic devices 520 associated with a user, the amount of time an electronic device 520 has been associated to a wireless power transmitter 508, pairing records, activities within the system, any action or event of any wireless power device in the system, errors, faults, and configuration problems, among others. Past system status data may also include power schedules, names, customer sign-in names, authorization and authentication credentials, encrypted information, physical areas of system operation, details for running the system, and any other suitable system or user-related information.


Present system status data stored in database 518 may include the locations and/or movements in the system, configuration, pairing, errors, faults, alarms, problems, messages sent between the wireless power devices, and tracking information, among others.


According to some exemplary embodiments, databases 518 within power transmitters 508 may further store future system status information, where the future status of the system may be forecasted or evaluated according to historical data from past system status data and present system status data.


In some embodiments, records from all device databases 518 in a wireless power transmission system 502 may also be stored and periodically updated in server 512. In some embodiments, wireless power transmission system network 500 may include two or more servers 512. In other embodiments, wireless power transmission system network 500 may not include any servers 512.


In another exemplary embodiment, wireless power transmitters 508 may further be capable of detecting failures in the wireless power transmission system 502. Examples of failures in power transmission system 502 may include overheating of any component, malfunction, and overload, among others. If a failure is detected by any of wireless power transmitters 508 within the system, then the failure may be analyzed by any wireless power transmitter manager 516 in the system. After the analysis is completed, a recommendation or an alert may be generated and reported to owner of the power transmission system or to a remote cloud-based information service, for distribution to system owner or manufacturer or supplier.


In some embodiments, power transmitters 508 may use network 514 to send and receive information. Network 514 may be a local area network, or any suitable communication system between the components of the wireless power transmission system 502. Network 514 may enable communication between power transmitters, system management servers 512 (if any), and other power transmission systems 502 (if any), amongst others.


According to some embodiments, network 514 may facilitate data communication between power transmission system 502 and remote information service 504 through internet cloud 506.


Remote information service 504 may be operated by the owner of the system, the manufacturer or supplier of the system, or a service provider. Remote management system may include business cloud 522, remote manager software 524, and one or more backend servers 526, where the remote manager software 524 may further include a general database 528. Remote manager software 524 may run on a backend server 526, which may be a one or more physical or virtual servers.


General database 528 may store additional backups of the information stored in the device databases 518. Additionally, general database 528 may store marketing information, customer billing, customer configuration, customer authentication, and customer support information, among others. In some embodiments, general database 528 may also store information, such as less popular features, errors in the system, problems report, statistics, and quality control, among others.


Each wireless power transmitter 508 may periodically establish a TCP communication connection with remote manager software 524 for authentication, problem report purposes or reporting of status or usage details, among others.



FIG. 6 is a flowchart showing a method for automatic initiation at boot 600 of a power transmitter self-test, according to an exemplary embodiment.


The method for automatic initiation at boot 600 of a power transmitter (PT) self-test may start when a PT manager boots-up 602 a PT. Subsequently, PT may scan 604 for all power receivers (PR) within communications range. For each PR found, wireless power transmission system may command PT to perform 606 a communication self-test for a finite period of time, and then PT stops 608 the communication self-test. If the PT finds a problem 610 during the self-test, PT manager may generate 612 a report to inform a user, at a computing device, of the problem. Afterwards, PT may start its normal operation 614.



FIG. 7 is a flowchart showing a method for automatic initiation during normal operation 700 of a PT self-test, according to an exemplary embodiment.


Periodically, a wireless power transmission system may automatically initiate an automatic self-test and report outcome to system user. The wireless power transmission system may automatically initiate test of an individual system unit or end-to-end test of complete system. Control of automatic initiation of test for one or more PTs by system may be configured by user. Control of automatic initiation may include when to start automatically initiated test, what to test, and how long to run the automatic test, among other parameters.


The method for automatic initiation during normal operation 700 of a PT self-test may start when a wireless power transmission system receives a user configuration 702 from a user computing device. User configuration 702 may be through a system management GUI web site hosted by the system management service that is cloud based or on a local server, or through a system management GUI app running on the user's mobile computing device.


Following user configuration 702, PT may start its normal operation 704, during which PT manager may employ the user configuration 702 to check 706 if it's time to perform the self-test. If current time does not correspond with the user configuration 702, PT may continue with its normal operation 704. If current time does correspond with the user configuration 702, wireless power transmission system may command each configured PT to perform 708 a communication self-test. Subsequently, after the period of time has been completed, according to user configuration 702, wireless power transmission system may command the PTs whose period has been completed to stop 710 self-test. Wireless power transmission system may then check 712 if testing has been performed long enough. If self-test has not been performed long enough, wireless power transmission system may command each configured PT to again perform 708 communication self-test. If self-test has been performed long enough PT manager application may send a report 714 of the outcome to the user computing device and inform the user that the automatic self-test has been performed.



FIG. 8 is a flowchart showing a method for manual initiation 800 of a PT self-test, according to an exemplary embodiment.


A user may employ a computing device and manually start a self-test of a single PT, specific set of PTs, or all system PTs. Manual initiation 800 of self-test may be commanded by a user computer device operating the system management GUI, either an app running on a user computing device, or a web site hosted by a system management server.


The method for manual initiation 800 of a PT self-test may start during PT normal operation 802. A user employs a computing device to configure 804 the test and subsequently command 806 a wireless power transmission system to start the test. The wireless power transmission system may then start 808 the test commanding 810 each configured PT to perform 812 the self-test. The algorithm employed by the wireless power transmission system to command the start of the test may be performed by a PT manager application in a wireless power transmission system cloud or a PT application running on the user computing device. The user, by means of a computing device, may specify the duration of test at start.


Wireless power transmission system may then check 814 if testing has been performed long enough. If self-test has not been performed long enough, wireless power transmission system may command the next configured PT to perform 812 a communication self-test. PT self-test may run indefinitely until self-test has been performed long enough or test is ended by a user by means of a computing device.


If self-test has been performed long enough or test is ended by a user computing device, then PT manager application may send a report 816 of the outcome to the user at the system management GUI and inform the user that the automatic self-test has been performed.



FIG. 9 is a flowchart showing a method for performing a PT communication self-test 900, according to an exemplary embodiment.


In one embodiment, when a PT boots-up, PT may scan for all PRs within the communication range. For each PR found, PT may perform an automatic communication self-test for a finite period of time, and then PT may stop self-test and may start normal operation. Once boot-time communication self-test has passed, PT may periodically check if a command to run self-test has been communicated to it from system management software that is external to the PT.


In other embodiments, wireless power transmission system may periodically automatically initiate the automatic communication self-test and report outcome to system user. The system may automatically initiate the communication self-test of an individual system unit or an end-to-end test of the complete system. Control of automatic initiation of test by system may be configured by a user.


In another embodiment, a user may manually start self-test of a single transmitter, specific set of transmitters, or all system transmitters. Communication self-test may run indefinitely until stopped by user, or user may specify duration of test at start.


In some embodiments, a wireless power transmission system management software may communicate the self-test command to a PT in response to a user command entered at a client device that is running a system mobile management app, or at the system web page that is hosted by the system management server.


In some embodiments, a wireless power transmission system management software may communicate the self-test command to a PT automatically in response to some trigger event, such as the passage of a finite amount of time, or other. The command may indicate that the PT should run the test until commanded to stop, or run the test for a specific duration.


Method for performing a PT communication self-test 900 may start when a wireless power transmission system's management application software, running on a system management server, selects 902 a PT to test. Subsequently, the selected PT may scan for all PRs within communication range. For each PR found, the PT may connect 904 and then initiate communication interchange 906 with PR. Communication interchange 906 may be in real-time. Once communication is established, the PT may perform any suitable type of system message exchange, employing any suitable type of system message between the PT and the PR. Then, PT may periodically disconnect and re-connect 908 from PR, in order to test re-connection. PT may update metrics counters with software actions and operations.


Afterwards, wireless power transmission manager app may check 910 if there is a problem of communication between PT and PR. If a problem is found, PT manager application may generate 912 a report to send to the wireless power transmission manager app on the system management server any unexpected patterns of metrics counters or, unexpected operation, or any test failure. If a problem is not found, PT may report that self-test passed to the wireless power transmission manager application.


The wireless power transmission manager app may then check 914 if testing has been performed long enough. If self-test has not been performed long enough, PT may connect 904 to the next PR, and then initiate communication interchange 906 with PR. If self-test has been performed long enough PT manager application may signal 916 the PR that the self-test has ended, and then end communication with PR.


PT may check 918 if there are other PRs to be tested and subsequently connect 904 with a PR to test and begin the process of method for performing a PT communication self-test 900. If there are no other PRs to be tested, the process may end and tested PT may begin normal operation.


If transmitter started the test at boot, then test may end after a finite duration that may be set or hard-coded in the system software.


If test was started by external management software to run for a finite duration, then test may end when transmitter determines that duration has elapsed.


If test was started by external management software to run indefinitely, then test may only end when external management software communicates a command to transmitter to end the test.


After the communication self-test ends, each PT performing the self-test may end communication connection with latest PR being tested. PRs may begin normal operation.


The counts of all actions and operations, performed by the wireless power transmission system while testing connections and communication may be stored in metrics counters within a database. When the PT communication self-test 900 is complete, said metrics counters may be compared with expected values. If said metrics counters match the expected values, then test passed, otherwise test failed. The wireless power transmission system may report to the user computing device the outcome of the test.


Examples

Example #1 is an embodiment of the application of method for performing a PT communication self-test 900, where a wireless power transmission system is being used in an office environment. The office environment includes a first and second wireless power transmitter, the two of which are in communication with a wireless power management service running on a server in the IT department. In example #1, the wireless power transmission system receives a command from a user computing device stating that the computing device is to be charged, and the wireless power transmission manager proceeds to command the PT within the communication range of the user computing device to perform PT communication self-test 900 as described in FIG. 9. The PT looks up in its copy of the system database the PR that powers said computing device. When checking the communication between the PT and the PR, unexpected patterns of metrics counters are identified and the self-test fails. The power transmitter manager software within the tested PT then generates a report including the information of the outcome of the self-test and communicates the generated report to the computing device, which is running the system management GUI, which notifies user computing device of test result.


The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the steps of the various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the steps in the foregoing embodiments may be performed in any order. Words such as “then,” “next,” etc. are not intended to limit the order of the steps; these words are simply used to guide the reader through the description of the methods. Although process flow diagrams may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination may correspond to a return of the function to the calling function or the main function.


The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.


Embodiments implemented in computer software may be implemented in software, firmware, middleware, microcode, hardware description languages, or any combination thereof. A code segment or machine-executable instructions may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.


The actual software code or specialized control hardware used to implement these systems and methods is not limiting of the invention. Thus, the operation and behavior of the systems and methods were described without reference to the specific software code being understood that software and control hardware can be designed to implement the systems and methods based on the description herein.


When implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable or processor-readable storage medium. The steps of a method or algorithm disclosed herein may be embodied in a processor-executable software module which may reside on a computer-readable or processor-readable storage medium. A non-transitory computer-readable or processor-readable media includes both computer storage media and tangible storage media that facilitate transfer of a computer program from one place to another. A non-transitory processor-readable storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such non-transitory processor-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other tangible storage medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer or processor. Disk and disc, as used herein, include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable medium and/or computer-readable medium, which may be incorporated into a computer program product.


The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims
  • 1. A method of wireless power transmission, comprising: at a wireless power transmitter having a communications component, a plurality of antenna elements configured to transmit power waves, and at least one processor: performing a test of communications with a wireless power receiver, the test of communications comprising: sending, by the communications component, a first message to the wireless power receiver;receiving, by the communications component, a second message from the wireless power receiver in response to the first message; andcomparing, by the at least one processor, one or more operational metrics associated with the first and second messages with respective expected values for each of the one or more operational metrics to determine an outcome for the test;sending, by the communications component, a report to a remote server that includes the determined outcome for the test;receiving information from the remote server to authenticate the wireless power receiver, wherein authentication of the wireless power receiver is distinct and separate from the test of communications; andafter sending the report, stopping performance of the test and starting a normal operation of the wireless power transmitter in which the wireless power transmitter transmits, by at least some of the plurality of antennas, power waves that converge to form a constructive interference pattern in proximity to a location of the wireless power receiver,wherein the wireless power receiver uses energy from the constructive interference pattern to charge or power an electronic device that is coupled with the wireless power receiver.
  • 2. The method of claim 1, wherein, while performing the test, the wireless power transmitter has not started normal operation.
  • 3. The method of claim 2, wherein, while performing the test, the wireless power transmitter does not transmit power waves.
  • 4. The method of claim 1, wherein the outcome of test indicates that an error occurred in accordance with determining that at least one operational metric of the one or more operational metrics fails to meet a corresponding expected value for the at least one operational metric.
  • 5. The method of claim 1, wherein the outcome of the test indicates that the test passes in accordance with determining that each of the one or more operational metrics meets a respective corresponding expected value.
  • 6. The method of claim 1, further comprising, at the wireless power transmitter: before starting normal operation of the wireless power transmitter, detecting a plurality of wireless power receivers located in proximity to the wireless power transmitter, the plurality including the wireless power receiver,wherein starting normal operation occurs after communication with each wireless power receiver of the plurality of wireless power receivers is tested by the wireless power transmitter.
  • 7. The method of claim 6, further comprising, sending a new report to the remote server that indicates an outcome of respective tests of communications with each wireless power receiver of the plurality of wireless power receivers tested during performance of the test.
  • 8. The method of claim 1, further comprising, at the wireless power transmitter: detecting a trigger, wherein the test is performed in response to detecting the trigger.
  • 9. The method of claim 8, wherein detecting the trigger comprises one of the following: (i) detecting initiation of a start-up of the wireless power transmitter and (ii) detecting that the communications component has received a command from the remote server.
  • 10. The method of claim 1, wherein the wireless power transmitter is a far-field wireless power transmitter.
  • 11. A wireless power transmitter, comprising: at least one processor;a communications component;a plurality of antennas configured to transmit power waves; andmemory storing executable instructions that, when executed by the at least one processor, cause the wireless power transmitter to:perform a test of communications with a wireless power receiver, the executable instructions for performing the test of communications cause the wireless power transmitter to: send, by the communications component, a first message to the wireless power receiver;receive, by the communications component, a second message from the wireless power receiver in response to the first message; andcompare, by the at least one processor, one or more operational metrics associated with the first and second messages with respective expected values for each of the one or more operational metrics to determine an outcome for the test;send, by the communications component, a report to a remote server that includes the determined outcome for the test;receive information from the remote server to authenticate the wireless power receiver, wherein authentication of the wireless power receiver is distinct and separate from the test of communications; andafter sending the report, stop performance of the test and start a normal operation of the wireless power transmitter in which the wireless power transmitter transmits, by at least some of the plurality of antennas, power waves that converge to form a constructive interference pattern in proximity to a location of the wireless power receiver,wherein the wireless power receiver uses energy from the constructive interference pattern to charge or power an electronic device that is coupled with the wireless power receiver.
  • 12. The wireless power transmitter of claim 11, wherein, while performing the test, the wireless power transmitter has not started normal operation.
  • 13. The wireless power transmitter of claim 11, wherein, while performing the test, the wireless power transmitter does not transmit power waves.
  • 14. The wireless power transmitter of claim 11, wherein the outcome of test indicates that an error occurred in accordance with determining that at least one operational metric of the one or more operational metrics fails to meet a corresponding expected value for the at least one operational metric.
  • 15. The wireless power transmitter of claim 11, wherein the outcome of the test indicates that the test passes in accordance with determining that each of the one or more operational metrics meets a respective corresponding expected value.
  • 16. The wireless power transmitter of claim 11, wherein the instructions, when executed by the at least one processor, further cause the wireless power transmitter to: before starting normal operation of the wireless power transmitter, detect a plurality of wireless power receivers located in proximity to the wireless power transmitter, the plurality including the wireless power receiver,wherein starting normal operation occurs after communication with each wireless power receiver of the plurality of wireless power receivers is tested by the wireless power transmitter.
  • 17. The wireless power transmitter of claim 16, wherein the instructions, when executed by the at least one processor, further cause the wireless power transmitter to: send a new report to the remote server that indicates an outcome of respective tests of communications with each wireless power receiver of the plurality of wireless power receivers tested during performance of the test.
  • 18. The wireless power transmitter of claim 11, wherein the instructions, when executed by the at least one processor, further cause the wireless power transmitter to: detect a trigger, wherein the test is performed in response to detecting the trigger; andthe trigger comprises one of the following: (i) detecting initiation of a start-up of the wireless power transmitter and (ii) detecting that the communications component has received a command from the remote server.
  • 19. The wireless power transmitter of claim 11, wherein the wireless power transmitter is a far-field wireless power transmitter.
  • 20. A non-transitory computer-readable storage medium storing executable instructions that, when executed by a wireless power transmitter with at least one processor, a communications component, and a plurality of antennas configured to transmit power waves, cause the wireless power transmitter to: perform a test of communications with a wireless power receiver, the executable instructions for performing the test of communications cause the wireless power transmitter to: send, by the communications component, a first message to the wireless power receiver;receive, by the communications component, a second message from the wireless power receiver in response to the first message; andcompare, by the at least one processor, one or more operational metrics associated with the first and second messages with respective expected values for each of the one or more operational metrics to determine an outcome for the test;send, by the communications component, a report to a remote server that includes the determined outcome for the test;receive information from the remote server to authenticate the wireless power receiver, wherein authentication of the wireless power receiver is distinct and separate from the test of communications; andafter sending the report, stop performance of the test and start a normal operation of the wireless power transmitter in which the wireless power transmitter transmits, by at least some of the plurality of antennas, power waves that converge to form a constructive interference pattern in proximity to a location of the wireless power receiver,wherein the wireless power receiver uses energy from the constructive interference pattern to charge or power an electronic device that is coupled with the wireless power receiver.
US Referenced Citations (1102)
Number Name Date Kind
787412 Tesla Apr 1905 A
3167775 Guertler Jan 1965 A
3434678 Brown et al. May 1965 A
3696384 Lester Oct 1972 A
3754269 Clavin Aug 1973 A
4101895 Jones, Jr. Jul 1978 A
4360741 Fitzsimmons et al. Nov 1982 A
4944036 Hyatt Jul 1990 A
4995010 Knight Feb 1991 A
5200759 McGinnis Apr 1993 A
5211471 Rohrs May 1993 A
5548292 Hirshfield et al. Aug 1996 A
5556749 Mitsuhashi et al. Sep 1996 A
5568088 Dent et al. Oct 1996 A
5646633 Dahlberg Jul 1997 A
5697063 Kishigami et al. Dec 1997 A
5712642 Hulderman Jan 1998 A
5936527 Isaacman et al. Aug 1999 A
5982139 Parise Nov 1999 A
6046708 MacDonald, Jr. et al. Apr 2000 A
6127799 Krishnan Oct 2000 A
6127942 Welle Oct 2000 A
6163296 Lier et al. Dec 2000 A
6271799 Rief Aug 2001 B1
6289237 Mickle et al. Sep 2001 B1
6329908 Frecska Dec 2001 B1
6421235 Ditzik Jul 2002 B2
6437685 Hanaki Aug 2002 B2
6456253 Rummeli et al. Sep 2002 B1
6476795 Berocher et al. Nov 2002 B1
6501414 Amdt et al. Dec 2002 B2
6583723 Watanabe et al. Jun 2003 B2
6597897 Tang Jul 2003 B2
6615074 Mickle et al. Sep 2003 B2
6650376 Obitsu Nov 2003 B1
6664920 Mott et al. Dec 2003 B1
6680700 Hilgers Jan 2004 B2
6798716 Charych Sep 2004 B1
6803744 Sabo Oct 2004 B1
6856291 Mickle et al. Feb 2005 B2
6911945 Korva Jun 2005 B2
6960968 Odendaal et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6988026 Breed et al. Jan 2006 B2
7003350 Denker et al. Feb 2006 B2
7027311 Vanderelli et al. Apr 2006 B2
7068234 Sievenpiper Jun 2006 B2
7068991 Parise Jun 2006 B2
7079079 Jo et al. Jul 2006 B2
7183748 Unno et al. Feb 2007 B1
7191013 Miranda et al. Mar 2007 B1
7193644 Carter Mar 2007 B2
7196663 Bolzer et al. Mar 2007 B2
7205749 Hagen et al. Apr 2007 B2
7215296 Abramov et al. May 2007 B2
7222356 Yonezawa et al. May 2007 B1
7274334 o'Riordan et al. Sep 2007 B2
7274336 Carson Sep 2007 B2
7351975 Brady et al. Apr 2008 B2
7359730 Dennis et al. Apr 2008 B2
7372408 Gaucher May 2008 B2
7392068 Dayan Jun 2008 B2
7403803 Mickle et al. Jul 2008 B2
7443057 Nunally Oct 2008 B2
7451839 Perlman Nov 2008 B2
7463201 Chiang et al. Dec 2008 B2
7614556 Overhultz et al. Nov 2009 B2
7639994 Greene et al. Dec 2009 B2
7643312 Vanderelli et al. Jan 2010 B2
7652577 Madhow et al. Jan 2010 B1
7679576 Riedel et al. Mar 2010 B2
7702771 Ewing et al. Apr 2010 B2
7786419 Hyde et al. Aug 2010 B2
7812771 Greene et al. Oct 2010 B2
7830312 Choudhury et al. Nov 2010 B2
7844306 Shearer et al. Nov 2010 B2
7868482 Greene et al. Jan 2011 B2
7898105 Greene et al. Mar 2011 B2
7904117 Doan et al. Mar 2011 B2
7925308 Greene et al. Apr 2011 B2
7948208 Partovi et al. May 2011 B2
8055003 Mittleman et al. Nov 2011 B2
8070595 Alderucci et al. Dec 2011 B2
8072380 Crouch Dec 2011 B2
8092301 Alderucci et al. Jan 2012 B2
8099140 Arai Jan 2012 B2
8115448 John Feb 2012 B2
8159090 Greene et al. Apr 2012 B2
8159364 Zeine Apr 2012 B2
8180286 Yamasuge May 2012 B2
8228194 Mickle Jul 2012 B2
8234509 Gioscia et al. Jul 2012 B2
8264101 Hyde et al. Sep 2012 B2
8264291 Morita Sep 2012 B2
8276325 Clifton et al. Oct 2012 B2
8278784 Cook et al. Oct 2012 B2
8284101 Fusco Oct 2012 B2
8310201 Wright Nov 2012 B1
8338991 Von Novak et al. Dec 2012 B2
8362745 Tinaphong Jan 2013 B2
8380255 Shearer et al. Feb 2013 B2
8384600 Huang et al. Feb 2013 B2
8410953 Zeine Apr 2013 B2
8411963 Luff Apr 2013 B2
8432062 Greene et al. Apr 2013 B2
8432071 Huang et al. Apr 2013 B2
8446248 Zeine May 2013 B2
8447234 Cook et al. May 2013 B2
8451189 Fluhler May 2013 B1
8452235 Kirby et al. May 2013 B2
8457656 Perkins et al. Jun 2013 B2
8461817 Martin et al. Jun 2013 B2
8467733 Leabman Jun 2013 B2
8497601 Hall et al. Jul 2013 B2
8497658 Von Novak et al. Jul 2013 B2
8552597 Song et al. Aug 2013 B2
8558661 Zeine Oct 2013 B2
8560026 Chanterac Oct 2013 B2
8604746 Lee Dec 2013 B2
8614643 Leabman Dec 2013 B2
8621245 Shearer et al. Dec 2013 B2
8626249 Kuusilinna et al. Jan 2014 B2
8629576 Levine Jan 2014 B2
8653966 Rao et al. Feb 2014 B2
8674551 Low et al. Mar 2014 B2
8686685 Moshfeghi Apr 2014 B2
8686905 Shtrom Apr 2014 B2
8712355 Black et al. Apr 2014 B2
8712485 Tam Apr 2014 B2
8718773 Wills et al. May 2014 B2
8729737 Schatz et al. May 2014 B2
8736228 Freed et al. May 2014 B1
8770482 Ackermann et al. Jul 2014 B2
8772960 Yoshida Jul 2014 B2
8823319 Von Novak, III et al. Sep 2014 B2
8832646 Wendling Sep 2014 B1
8854176 Zeine Oct 2014 B2
8860364 Low et al. Oct 2014 B2
8897770 Frolov et al. Nov 2014 B1
8903456 Chu et al. Dec 2014 B2
8917057 Hui Dec 2014 B2
8923189 Leabman Dec 2014 B2
8928544 Massie et al. Jan 2015 B2
8937408 Ganem et al. Jan 2015 B2
8946940 Kim et al. Feb 2015 B2
8963486 Kirby et al. Feb 2015 B2
8970070 Sada et al. Mar 2015 B2
8989053 Skaaksrud et al. Mar 2015 B1
9000616 Greene et al. Apr 2015 B2
9001622 Perry Apr 2015 B2
9006934 Kozakai et al. Apr 2015 B2
9021277 Shearer et al. Apr 2015 B2
9030161 Lu et al. May 2015 B2
9059598 Kang et al. Jun 2015 B2
9059599 Won et al. Jun 2015 B2
9077188 Moshfeghi Jul 2015 B2
9083595 Rakib et al. Jul 2015 B2
9088216 Garrity et al. Jul 2015 B2
9124125 Leabman et al. Sep 2015 B2
9130397 Leabman et al. Sep 2015 B2
9130602 Cook Sep 2015 B2
9142998 Yu et al. Sep 2015 B2
9143000 Leabman et al. Sep 2015 B2
9143010 Urano Sep 2015 B2
9153074 Zhou et al. Oct 2015 B2
9178389 Hwang Nov 2015 B2
9225196 Huang et al. Dec 2015 B2
9240469 Sun et al. Jan 2016 B2
9242411 Kritchman et al. Jan 2016 B2
9244500 Cain et al. Jan 2016 B2
9252628 Leabman et al. Feb 2016 B2
9270344 Rosenberg Feb 2016 B2
9276329 Jones et al. Mar 2016 B2
9282582 Dunsbergen et al. Mar 2016 B1
9294840 Anderson et al. Mar 2016 B1
9297896 Andrews Mar 2016 B1
9318898 John Apr 2016 B2
9368020 Bell et al. Jun 2016 B1
9401977 Gaw Jul 2016 B1
9409490 Kawashima Aug 2016 B2
9419335 Pintos Aug 2016 B2
9444283 Son et al. Sep 2016 B2
9450449 Leabman et al. Sep 2016 B1
9461502 Lee et al. Oct 2016 B2
9520725 Masaoka et al. Dec 2016 B2
9520748 Hyde et al. Dec 2016 B2
9522270 Perryman et al. Dec 2016 B2
9537354 Bell et al. Jan 2017 B2
9537357 Leabman Jan 2017 B2
9537358 Leabman Jan 2017 B2
9538382 Bell et al. Jan 2017 B2
9544640 Lau Jan 2017 B2
9559553 Bae Jan 2017 B2
9564773 Pogorelik et al. Feb 2017 B2
9571974 Choi et al. Feb 2017 B2
9590317 Zimmerman et al. Mar 2017 B2
9590444 Walley Mar 2017 B2
9620996 Zeine Apr 2017 B2
9647328 Dobric May 2017 B2
9706137 Scanlon et al. Jul 2017 B2
9711999 Hietala et al. Jul 2017 B2
9723635 Nambord et al. Aug 2017 B2
9793758 Leabman Oct 2017 B2
9793764 Perry Oct 2017 B2
9800172 Leabman Oct 2017 B1
9806564 Leabman Oct 2017 B2
9819230 Petras et al. Nov 2017 B2
9825674 Leabman Nov 2017 B1
9843229 Leabman Dec 2017 B2
9847669 Leabman Dec 2017 B2
9847677 Leabman Dec 2017 B1
9853361 Chen et al. Dec 2017 B2
9853692 Bell et al. Dec 2017 B1
9866279 Bell et al. Jan 2018 B2
9867032 Verma et al. Jan 2018 B2
9871301 Contopanagos Jan 2018 B2
9876380 Leabman et al. Jan 2018 B1
9876394 Leabman Jan 2018 B1
9876536 Bell et al. Jan 2018 B1
9882394 Bell et al. Jan 2018 B1
9887584 Bell et al. Feb 2018 B1
9893555 Leabman et al. Feb 2018 B1
9893564 de Rochemont Feb 2018 B2
9899844 Bell et al. Feb 2018 B1
9899861 Leabman et al. Feb 2018 B1
9917477 Bell et al. Mar 2018 B1
9923386 Leabman et al. Mar 2018 B1
9939864 Bell et al. Apr 2018 B1
9965009 Bell et al. May 2018 B1
9966765 Leabman May 2018 B1
9967743 Bell et al. May 2018 B1
9973008 Leabman May 2018 B1
10003211 Leabman et al. Jun 2018 B1
10014728 Leabman Jul 2018 B1
10027159 Hosseini Jul 2018 B2
10038337 Leabman et al. Jul 2018 B1
10050462 Leabman et al. Aug 2018 B1
10056782 Leabman Aug 2018 B1
10063064 Bell et al. Aug 2018 B1
10068703 Contopanagos Sep 2018 B1
10075008 Bell et al. Sep 2018 B1
10090699 Leabman Oct 2018 B1
10090886 Bell et al. Oct 2018 B1
10103552 Leabman et al. Oct 2018 B1
10122219 Hosseini et al. Nov 2018 B1
10124754 Leabman Nov 2018 B1
10128686 Leabman et al. Nov 2018 B1
10134260 Bell et al. Nov 2018 B1
10135112 Hosseini Nov 2018 B1
10135294 Leabman Nov 2018 B1
10141771 Hosseini et al. Nov 2018 B1
10153645 Bell et al. Dec 2018 B1
10153653 Bell et al. Dec 2018 B1
10153660 Leabman et al. Dec 2018 B1
10158259 Leabman Dec 2018 B1
10164478 Leabman Dec 2018 B2
10170917 Bell et al. Jan 2019 B1
10186892 Hosseini et al. Jan 2019 B2
10193396 Bell et al. Jan 2019 B1
10199835 Bell Feb 2019 B2
10199849 Bell Feb 2019 B1
10205239 Contopanagos et al. Feb 2019 B1
10211674 Leabman et al. Feb 2019 B1
10223717 Bell Mar 2019 B1
10224758 Leabman et al. Mar 2019 B2
10224982 Leabman Mar 2019 B1
10230266 Leabman et al. Mar 2019 B1
10243414 Leabman et al. Mar 2019 B1
10256657 Hosseini et al. Apr 2019 B2
10256677 Hosseini et al. Apr 2019 B2
10263432 Leabman et al. Apr 2019 B1
10263476 Leabman Apr 2019 B2
10270261 Bell et al. Apr 2019 B2
10277054 Hosseini Apr 2019 B2
20010027876 Tsukamoto et al. Oct 2001 A1
20020001307 Nguyen et al. Jan 2002 A1
20020024471 Ishitobi Feb 2002 A1
20020028655 Rosener et al. Mar 2002 A1
20020034958 Oberschmidt et al. Mar 2002 A1
20020054330 Jinbo et al. May 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020095980 Breed et al. Jul 2002 A1
20020103447 Terry Aug 2002 A1
20020123776 Von Arx Sep 2002 A1
20020133592 Matsuda Sep 2002 A1
20020171594 Fang Nov 2002 A1
20020172223 Stilp Nov 2002 A1
20030005759 Breed et al. Jan 2003 A1
20030058187 Billiet et al. Mar 2003 A1
20030076274 Phelan et al. Apr 2003 A1
20030179152 Watada et al. Sep 2003 A1
20030179573 Chun Sep 2003 A1
20030192053 Sheppard et al. Oct 2003 A1
20040019624 Sukegawa Jan 2004 A1
20040020100 O'Brian et al. Feb 2004 A1
20040036657 Forster et al. Feb 2004 A1
20040066251 Eleftheriades et al. Apr 2004 A1
20040113543 Daniels Jun 2004 A1
20040119675 Washio et al. Jun 2004 A1
20040107641 Walton et al. Jul 2004 A1
20040130425 Dayan et al. Jul 2004 A1
20040130442 Breed Jul 2004 A1
20040142733 Parise Jul 2004 A1
20040145342 Lyon Jul 2004 A1
20040196190 Mendolia et al. Oct 2004 A1
20040203979 Attar et al. Oct 2004 A1
20040207559 Milosavljevic Oct 2004 A1
20040218759 Yacobi Nov 2004 A1
20040259604 Mickle et al. Dec 2004 A1
20040263124 Wieck et al. Dec 2004 A1
20050007276 Barrick et al. Jan 2005 A1
20050030118 Wang Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050055316 Williams Mar 2005 A1
20050077872 Single Apr 2005 A1
20050093766 Turner May 2005 A1
20050116683 Cheng Jun 2005 A1
20050117660 Vialle et al. Jun 2005 A1
20050134517 Gottl Jun 2005 A1
20050171411 KenKnight Aug 2005 A1
20050198673 Kit et al. Sep 2005 A1
20050227619 Lee et al. Oct 2005 A1
20050232469 Schofield Oct 2005 A1
20050237249 Nagel Oct 2005 A1
20050237258 Abramov et al. Oct 2005 A1
20050282591 Shaff Dec 2005 A1
20060013335 Leabman Jan 2006 A1
20060019712 Choi Jan 2006 A1
20060030279 Leabman et al. Feb 2006 A1
20060033674 Essig, Jr. et al. Feb 2006 A1
20060071308 Tang et al. Apr 2006 A1
20060092079 de Rochemont May 2006 A1
20060094425 Mickle et al. May 2006 A1
20060113955 Nunally Jun 2006 A1
20060119532 Yun et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060160517 Yoon Jul 2006 A1
20060183473 Ukon Aug 2006 A1
20060190063 Kanzius Aug 2006 A1
20060192913 Shutou et al. Aug 2006 A1
20060199620 Greene et al. Sep 2006 A1
20060238365 Vecchione et al. Oct 2006 A1
20060266564 Perlman et al. Nov 2006 A1
20060266917 Baldis et al. Nov 2006 A1
20060278706 Hatakayama et al. Dec 2006 A1
20060284593 Nagy et al. Dec 2006 A1
20060287094 Mahaffey et al. Dec 2006 A1
20070007821 Rossetti Jan 2007 A1
20070019693 Graham Jan 2007 A1
20070021140 Keyes Jan 2007 A1
20070060185 Simon et al. Mar 2007 A1
20070070490 Tsunoda et al. Mar 2007 A1
20070090997 Brown et al. Apr 2007 A1
20070093269 Leabman et al. Apr 2007 A1
20070097653 Gilliland et al. May 2007 A1
20070103110 Sagoo May 2007 A1
20070106894 Zhang May 2007 A1
20070109121 Cohen May 2007 A1
20070139000 Kozuma Jun 2007 A1
20070149162 Greene et al. Jun 2007 A1
20070164868 Deavours et al. Jul 2007 A1
20070173196 Gallic Jul 2007 A1
20070173214 Mickle et al. Jul 2007 A1
20070178857 Greene et al. Aug 2007 A1
20070178945 Cook et al. Aug 2007 A1
20070182367 Partovi Aug 2007 A1
20070191074 Harrist et al. Aug 2007 A1
20070191075 Greene et al. Aug 2007 A1
20070197281 Stronach Aug 2007 A1
20070210960 Rofougaran et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070228833 Stevens et al. Oct 2007 A1
20070257634 Leschin et al. Nov 2007 A1
20070273486 Shiotsu Nov 2007 A1
20070291165 Wang Dec 2007 A1
20070296639 Hook et al. Dec 2007 A1
20070298846 Greene et al. Dec 2007 A1
20080014897 Cook et al. Jan 2008 A1
20080024376 Norris et al. Jan 2008 A1
20080062062 Borau et al. Mar 2008 A1
20080062255 Gal Mar 2008 A1
20080067874 Tseng Mar 2008 A1
20080074324 Puzella et al. Mar 2008 A1
20080089277 Aledander et al. Apr 2008 A1
20080110263 Klessel et al. May 2008 A1
20080113816 Mahaffey et al. May 2008 A1
20080122297 Arai May 2008 A1
20080123383 Shionoiri May 2008 A1
20080129536 Randall et al. Jun 2008 A1
20080140278 Breed Jun 2008 A1
20080169910 Greene et al. Jul 2008 A1
20080197802 Onishi Aug 2008 A1
20080204342 Kharadly Aug 2008 A1
20080204350 Tam et al. Aug 2008 A1
20080210762 Osada et al. Sep 2008 A1
20080211458 Lawther et al. Sep 2008 A1
20080233890 Baker Sep 2008 A1
20080248758 Schedelbeck et al. Oct 2008 A1
20080248846 Stronach et al. Oct 2008 A1
20080258993 Gummalla et al. Oct 2008 A1
20080266191 Hilgers Oct 2008 A1
20080278378 Chang et al. Nov 2008 A1
20080309452 Zeine Dec 2008 A1
20090002493 Kates Jan 2009 A1
20090010316 Rofougaran et al. Jan 2009 A1
20090019183 Wu et al. Jan 2009 A1
20090036065 Siu Feb 2009 A1
20090047998 Alberth, Jr. Feb 2009 A1
20090058354 Harrison Mar 2009 A1
20090058361 John Mar 2009 A1
20090058731 Geary et al. Mar 2009 A1
20090060012 Gresset et al. Mar 2009 A1
20090067208 Martin et al. Mar 2009 A1
20090073066 Jordon et al. Mar 2009 A1
20090096412 Huang Apr 2009 A1
20090096413 Partovi Apr 2009 A1
20090102292 Cook et al. Apr 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090108679 Porwal Apr 2009 A1
20090128262 Lee et al. May 2009 A1
20090157911 Aihara Jun 2009 A1
20090200985 Zane et al. Aug 2009 A1
20090206791 Jung Aug 2009 A1
20090207090 Pettus et al. Aug 2009 A1
20090207092 Nysen et al. Aug 2009 A1
20090218884 Soar Sep 2009 A1
20090218891 McCollough Sep 2009 A1
20090219903 Alamouti et al. Sep 2009 A1
20090243397 Cook et al. Oct 2009 A1
20090264069 Yamasuge Oct 2009 A1
20090271048 Wakamatsu Oct 2009 A1
20090280866 Lo et al. Nov 2009 A1
20090281678 Wakamatsu Nov 2009 A1
20090284082 Mohammadian Nov 2009 A1
20090284083 Karalis et al. Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090284227 Mohammadian et al. Nov 2009 A1
20090284325 Rossiter et al. Nov 2009 A1
20090286475 Toncich et al. Nov 2009 A1
20090286476 Toncich et al. Nov 2009 A1
20090291634 Saarisalo Nov 2009 A1
20090299175 Bernstein et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20090315412 Yamamoto et al. Dec 2009 A1
20090322281 Kamijo et al. Dec 2009 A1
20100001683 Huang et al. Jan 2010 A1
20100007307 Baarman et al. Jan 2010 A1
20100007569 Sim et al. Jan 2010 A1
20100019686 Gutierrez, Jr. Jan 2010 A1
20100019908 Cho et al. Jan 2010 A1
20100026605 Yang et al. Feb 2010 A1
20100027379 Saulnier et al. Feb 2010 A1
20100029383 Dai Feb 2010 A1
20100033021 Bennett Feb 2010 A1
20100033390 Alamouti et al. Feb 2010 A1
20100041453 Grimm, Jr. Feb 2010 A1
20100044123 Perlman et al. Feb 2010 A1
20100054200 Tsai Mar 2010 A1
20100060534 Oodachi Mar 2010 A1
20100066631 Puzella et al. Mar 2010 A1
20100075607 Hosoya Mar 2010 A1
20100079005 Hyde et al. Apr 2010 A1
20100082193 Chiappetta Apr 2010 A1
20100087227 Francos et al. Apr 2010 A1
20100090656 Shearer et al. Apr 2010 A1
20100109443 Cook et al. May 2010 A1
20100117926 DeJean, II May 2010 A1
20100119234 Suematsu et al. May 2010 A1
20100123618 Martin et al. May 2010 A1
20100123624 Minear et al. May 2010 A1
20100127660 Cook et al. May 2010 A1
20100142418 Nishioka et al. Jun 2010 A1
20100142509 Zhu et al. Jun 2010 A1
20100148723 Cook et al. Jun 2010 A1
20100151808 Toncich et al. Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100156741 Vazquez et al. Jun 2010 A1
20100164296 Kurs et al. Jul 2010 A1
20100164433 Janefalker et al. Jul 2010 A1
20100167664 Szinl Jul 2010 A1
20100171461 Baarman et al. Jul 2010 A1
20100174629 Taylor et al. Jul 2010 A1
20100176934 Chou et al. Jul 2010 A1
20100181961 Novak et al. Jul 2010 A1
20100181964 Huggins et al. Jul 2010 A1
20100194206 Burdo et al. Aug 2010 A1
20100201189 Kirby et al. Aug 2010 A1
20100201201 Mobarhan et al. Aug 2010 A1
20100201314 Toncich et al. Aug 2010 A1
20100207572 Kirby et al. Aug 2010 A1
20100210233 Cook et al. Aug 2010 A1
20100213895 Keating et al. Aug 2010 A1
20100214177 Parsche Aug 2010 A1
20100222010 Ozaki et al. Sep 2010 A1
20100225270 Jacobs et al. Sep 2010 A1
20100227570 Hendin Sep 2010 A1
20100237709 Hall et al. Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100256831 Abramo et al. Oct 2010 A1
20100259110 Kurs et al. Oct 2010 A1
20100259447 Crouch Oct 2010 A1
20100264747 Hall et al. Oct 2010 A1
20100277003 Von Novak et al. Nov 2010 A1
20100277121 Hall et al. Nov 2010 A1
20100289341 Ozaki et al. Nov 2010 A1
20100295372 Hyde et al. Nov 2010 A1
20100308767 Rofougaran et al. Dec 2010 A1
20100309079 Rofougaran et al. Dec 2010 A1
20100309088 Hyvonen et al. Dec 2010 A1
20100315045 Zeine Dec 2010 A1
20100316163 Forenza et al. Dec 2010 A1
20100327766 Recker et al. Dec 2010 A1
20100328044 Waffenschmidt et al. Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20110013198 Shirley Jan 2011 A1
20110028114 Kerselaers Feb 2011 A1
20110031928 Soar Feb 2011 A1
20110032149 Leabman Feb 2011 A1
20110032866 Leabman Feb 2011 A1
20110034190 Leabman Feb 2011 A1
20110034191 Leabman Feb 2011 A1
20110043047 Karalis et al. Feb 2011 A1
20110043163 Baarman et al. Feb 2011 A1
20110043327 Baarman et al. Feb 2011 A1
20110050166 Cook et al. Mar 2011 A1
20110055037 Hayashigawa et al. Mar 2011 A1
20110056215 Ham Mar 2011 A1
20110057607 Carobolante Mar 2011 A1
20110057853 Kim et al. Mar 2011 A1
20110074342 MacLaughlin Mar 2011 A1
20110074349 Ghovanloo Mar 2011 A1
20110074620 Wintermantel Mar 2011 A1
20110078092 Kim et al. Mar 2011 A1
20110090126 Szini et al. Apr 2011 A1
20110109167 Park et al. May 2011 A1
20110114401 Kanno et al. May 2011 A1
20110115303 Baarman et al. May 2011 A1
20110115432 El-Maleh May 2011 A1
20110115605 Dimig et al. May 2011 A1
20110121660 Azancot et al. May 2011 A1
20110122018 Tarng et al. May 2011 A1
20110122026 DeLaquil et al. May 2011 A1
20110127845 Walley et al. Jun 2011 A1
20110127952 Walley et al. Jun 2011 A1
20110133655 Recker et al. Jun 2011 A1
20110133691 Hautanen Jun 2011 A1
20110148578 Aloi et al. Jun 2011 A1
20110151789 Viglione et al. Jun 2011 A1
20110154429 Stantchev Jun 2011 A1
20110156494 Mashinsky Jun 2011 A1
20110156640 Moshfeghi Jun 2011 A1
20110163128 Taguchi et al. Jul 2011 A1
20110175455 Hashiguchi Jul 2011 A1
20110175461 Tinaphong Jul 2011 A1
20110181120 Liu et al. Jul 2011 A1
20110182245 Malkamaki et al. Jul 2011 A1
20110184842 Melen Jul 2011 A1
20110188207 Won et al. Aug 2011 A1
20110194543 Zhao et al. Aug 2011 A1
20110195722 Walter et al. Aug 2011 A1
20110199046 Tsai et al. Aug 2011 A1
20110215086 Yeh Sep 2011 A1
20110217923 Ma Sep 2011 A1
20110220634 Yeh Sep 2011 A1
20110221389 Won et al. Sep 2011 A1
20110222272 Yeh Sep 2011 A1
20110243040 Khan et al. Oct 2011 A1
20110243050 Yanover Oct 2011 A1
20110244913 Kim et al. Oct 2011 A1
20110248573 Kanno et al. Oct 2011 A1
20110248575 Kim et al. Oct 2011 A1
20110249678 Bonicatto Oct 2011 A1
20110254377 Widmer et al. Oct 2011 A1
20110254503 Widmer et al. Oct 2011 A1
20110259953 Baarman et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110278941 Krishna et al. Nov 2011 A1
20110279226 Chen et al. Nov 2011 A1
20110281535 Low et al. Nov 2011 A1
20110282415 Eckhoff et al. Nov 2011 A1
20110285213 Kowalewski Nov 2011 A1
20110286374 Shin et al. Nov 2011 A1
20110291489 Tsai et al. Dec 2011 A1
20110302078 Failing Dec 2011 A1
20110304216 Baarman Dec 2011 A1
20110304437 Beeler Dec 2011 A1
20110304521 Ando et al. Dec 2011 A1
20120013196 Kim et al. Jan 2012 A1
20120013198 Uramoto et al. Jan 2012 A1
20120013296 Heydari et al. Jan 2012 A1
20120019419 Prat et al. Jan 2012 A1
20120043887 Mesibov Feb 2012 A1
20120051109 Kim et al. Mar 2012 A1
20120051294 Guillouard Mar 2012 A1
20120056486 Endo et al. Mar 2012 A1
20120056741 Zhu et al. Mar 2012 A1
20120068906 Asher et al. Mar 2012 A1
20120074891 Anderson et al. Mar 2012 A1
20120231856 Lee et al. Mar 2012 A1
20120080944 Recker et al. Apr 2012 A1
20120080957 Cooper et al. Apr 2012 A1
20120086284 Capanella et al. Apr 2012 A1
20120095617 Martin et al. Apr 2012 A1
20120098350 Campanella et al. Apr 2012 A1
20120098485 Kang et al. Apr 2012 A1
20120099675 Kitamura et al. Apr 2012 A1
20120103562 Clayton May 2012 A1
20120104849 Jackson May 2012 A1
20120105252 Wang May 2012 A1
20120112532 Kesler et al. May 2012 A1
20120119914 Uchida May 2012 A1
20120126743 Rivers, Jr. May 2012 A1
20120132647 Beverly et al. May 2012 A1
20120133214 Yun et al. May 2012 A1
20120142291 Rath et al. Jun 2012 A1
20120146426 Sabo Jun 2012 A1
20120146576 Partovi Jun 2012 A1
20120146577 Tanabe Jun 2012 A1
20120147802 Ukita et al. Jun 2012 A1
20120150670 Taylor et al. Jun 2012 A1
20120153894 Widmer Jun 2012 A1
20120157019 Li Jun 2012 A1
20120161531 Kim et al. Jun 2012 A1
20120161544 Kashiwagi et al. Jun 2012 A1
20120169276 Wang Jul 2012 A1
20120169278 Choi Jul 2012 A1
20120173418 Beardsmore et al. Jul 2012 A1
20120181973 Lyden Jul 2012 A1
20120182427 Marshall Jul 2012 A1
20120187851 Huggins et al. Aug 2012 A1
20120193999 Zeine Aug 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jian et al. Aug 2012 A1
20120206299 Valdes-Garcia Aug 2012 A1
20120211214 Phan Aug 2012 A1
20120212071 Myabayashi et al. Aug 2012 A1
20120212072 Miyabayashi et al. Aug 2012 A1
20120214462 Chu et al. Aug 2012 A1
20120214536 Kim et al. Aug 2012 A1
20120200399 Chae Sep 2012 A1
20120228392 Cameron et al. Sep 2012 A1
20120228956 Kamata Sep 2012 A1
20120235636 Partovi Sep 2012 A1
20120242283 Kim et al. Sep 2012 A1
20120248886 Kesler et al. Oct 2012 A1
20120248891 Drennen Oct 2012 A1
20120249051 Son et al. Oct 2012 A1
20120262002 Widmer et al. Oct 2012 A1
20120267900 Huffman et al. Oct 2012 A1
20120268238 Park et al. Oct 2012 A1
20120274154 DeLuca Nov 2012 A1
20120280650 Kim et al. Nov 2012 A1
20120292993 Mettler et al. Nov 2012 A1
20120293021 Teggatz et al. Nov 2012 A1
20120293119 Park et al. Nov 2012 A1
20120299389 Lee et al. Nov 2012 A1
20120299540 Perry Nov 2012 A1
20120299541 Perry Nov 2012 A1
20120299542 Perry Nov 2012 A1
20120300588 Perry Nov 2012 A1
20120300592 Perry Nov 2012 A1
20120300593 Perry Nov 2012 A1
20120306705 Sakurai et al. Dec 2012 A1
20120306707 Yang et al. Dec 2012 A1
20120306720 Tanmi et al. Dec 2012 A1
20120309295 Maguire Dec 2012 A1
20120309308 Kim et al. Dec 2012 A1
20120309332 Liao Dec 2012 A1
20120313449 Kurs Dec 2012 A1
20120313835 Gebretnsae Dec 2012 A1
20120326660 Lu et al. Dec 2012 A1
20130002550 Zalewski Jan 2013 A1
20130018439 Chow et al. Jan 2013 A1
20130024059 Miller et al. Jan 2013 A1
20130026981 Van Der Lee Jan 2013 A1
20130026982 Rothenbaum Jan 2013 A1
20130032589 Chung Feb 2013 A1
20130033571 Steen Feb 2013 A1
20130038124 Newdoll et al. Feb 2013 A1
20130038402 Karalis et al. Feb 2013 A1
20130043738 Park et al. Feb 2013 A1
20130044035 Zhuang Feb 2013 A1
20130049471 Oleynik Feb 2013 A1
20130049475 Kim et al. Feb 2013 A1
20130049484 Weissentern et al. Feb 2013 A1
20130057078 Lee Mar 2013 A1
20130057205 Lee et al. Mar 2013 A1
20130057210 Negaard et al. Mar 2013 A1
20130057364 Kesler et al. Mar 2013 A1
20130058379 Kim et al. Mar 2013 A1
20130063082 Lee et al. Mar 2013 A1
20130063143 Adalsteinsson et al. Mar 2013 A1
20130069444 Waffenschmidt et al. Mar 2013 A1
20130077650 Traxler et al. Mar 2013 A1
20130078918 Crowley et al. Mar 2013 A1
20130082651 Park et al. Apr 2013 A1
20130082653 Lee et al. Apr 2013 A1
20130083774 Son et al. Apr 2013 A1
20130088082 Kang et al. Apr 2013 A1
20130088090 Wu Apr 2013 A1
20130088192 Eaton Apr 2013 A1
20130088331 Cho Apr 2013 A1
20130093388 Partovi Apr 2013 A1
20130099389 Hong et al. Apr 2013 A1
20130099586 Kato Apr 2013 A1
20130106197 Bae et al. May 2013 A1
20130107023 Tanaka et al. May 2013 A1
20130119777 Rees May 2013 A1
20130119778 Jung May 2013 A1
20130119929 Partovi May 2013 A1
20130120217 Ueda et al. May 2013 A1
20130132010 Winger et al. May 2013 A1
20130134923 Smith May 2013 A1
20130137455 Xia May 2013 A1
20130141037 Jenwatanavet et al. Jun 2013 A1
20130148341 Williams Jun 2013 A1
20130149975 Yu et al. Jun 2013 A1
20130154387 Lee et al. Jun 2013 A1
20130155748 Sundstrom Jun 2013 A1
20130157729 Tabe Jun 2013 A1
20130162335 Kim et al. Jun 2013 A1
20130169061 Microshnichenko et al. Jul 2013 A1
20130169219 Gray Jul 2013 A1
20130169348 Shi Jul 2013 A1
20130171939 Tian et al. Jul 2013 A1
20130175877 Abe et al. Jul 2013 A1
20130178253 Karaoguz Jul 2013 A1
20130181881 Christie et al. Jul 2013 A1
20130187475 Vendik Jul 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130197320 Albert et al. Aug 2013 A1
20130200064 Clayton Aug 2013 A1
20130207477 Nam et al. Aug 2013 A1
20130207604 Zeine Aug 2013 A1
20130207879 Rada et al. Aug 2013 A1
20130210357 Qin et al. Aug 2013 A1
20130221757 Cho et al. Aug 2013 A1
20130222201 Ma et al. Aug 2013 A1
20130234530 Miyauchi Sep 2013 A1
20130234536 Chemishkian et al. Sep 2013 A1
20130234658 Endo et al. Sep 2013 A1
20130241306 Aber et al. Sep 2013 A1
20130241468 Moshfeghi Sep 2013 A1
20130241474 Moshfeghi Sep 2013 A1
20130249478 Hirano Sep 2013 A1
20130249479 Partovi Sep 2013 A1
20130250102 Scanlon et al. Sep 2013 A1
20130254578 Huang Sep 2013 A1
20130264997 Lee et al. Oct 2013 A1
20130268782 Tam et al. Oct 2013 A1
20130270923 Cook et al. Oct 2013 A1
20130278076 Proud Oct 2013 A1
20130278209 Von Novak Oct 2013 A1
20130285464 Miwa Oct 2013 A1
20130285477 Lo et al. Oct 2013 A1
20130285606 Ben-Shalom et al. Oct 2013 A1
20130288600 Kuusilinna et al. Oct 2013 A1
20130288617 Kim et al. Oct 2013 A1
20130293423 Moshfeghi Nov 2013 A1
20130307751 Yu-Juin et al. Nov 2013 A1
20130310020 Kazuhiro Nov 2013 A1
20130311798 Sultenfuss Nov 2013 A1
20130328417 Takeuchi Dec 2013 A1
20130334883 Kim et al. Dec 2013 A1
20130339108 Ryder et al. Dec 2013 A1
20130343208 Sexton et al. Dec 2013 A1
20130343251 Zhang Dec 2013 A1
20140001846 Mosebrook Jan 2014 A1
20140001875 Nahidipour Jan 2014 A1
20140001876 Fujiwara et al. Jan 2014 A1
20140006017 Sen Jan 2014 A1
20140008992 Leabman Jan 2014 A1
20140008993 Leabman Jan 2014 A1
20140009108 Leabman Jan 2014 A1
20140009110 Lee Jan 2014 A1
20140011531 Burstrom et al. Jan 2014 A1
20140015336 Weber et al. Jan 2014 A1
20140015344 Mohamadi Jan 2014 A1
20140021907 Yu et al. Jan 2014 A1
20140021908 McCool Jan 2014 A1
20140035524 Zeine Feb 2014 A1
20140035526 Tripathi et al. Feb 2014 A1
20140035786 Ley Feb 2014 A1
20140049422 Von Novak et al. Feb 2014 A1
20140055098 Lee et al. Feb 2014 A1
20140057618 Zirwas et al. Feb 2014 A1
20140062395 Kwon et al. Mar 2014 A1
20140086125 Polo et al. Mar 2014 A1
20140091756 Ofstein et al. Apr 2014 A1
20140091968 Harel et al. Apr 2014 A1
20140104157 Burns Apr 2014 A1
20140111147 Soar Apr 2014 A1
20140113689 Lee Apr 2014 A1
20140117946 Muller et al. May 2014 A1
20140118140 Amis May 2014 A1
20140128107 An May 2014 A1
20140132210 Partovi May 2014 A1
20140133279 Khuri-Yakub May 2014 A1
20140139034 Sankar et al. May 2014 A1
20140139039 Cook et al. May 2014 A1
20140139180 Kim et al. May 2014 A1
20140141838 Cai et al. May 2014 A1
20140142876 John et al. May 2014 A1
20140143933 Low et al. May 2014 A1
20140145879 Pan May 2014 A1
20140145884 Dang et al. May 2014 A1
20140152117 Sanker Jun 2014 A1
20140159651 Von Novak et al. Jun 2014 A1
20140159652 Hall et al. Jun 2014 A1
20140159662 Furui Jun 2014 A1
20140159667 Kim et al. Jun 2014 A1
20140169385 Hadani et al. Jun 2014 A1
20140175893 Sengupta et al. Jun 2014 A1
20140176054 Porat et al. Jun 2014 A1
20140176061 Cheatham, III et al. Jun 2014 A1
20140177399 Teng et al. Jun 2014 A1
20140184148 Van Der Lee et al. Jul 2014 A1
20140184155 Cha Jul 2014 A1
20140184163 Das et al. Jul 2014 A1
20140184170 Jeong Jul 2014 A1
20140191568 Partovi Jul 2014 A1
20140194092 Wanstedt et al. Jul 2014 A1
20140194095 Wanstedt et al. Jul 2014 A1
20140197691 Wang Jul 2014 A1
20140206384 Kim et al. Jul 2014 A1
20140210281 Ito et al. Jul 2014 A1
20140217967 Zeine et al. Aug 2014 A1
20140225805 Pan et al. Aug 2014 A1
20140232320 Ento July et al. Aug 2014 A1
20140232610 Shigemoto et al. Aug 2014 A1
20140239733 Mach et al. Aug 2014 A1
20140241231 Zeine Aug 2014 A1
20140245036 Oishi Aug 2014 A1
20140246416 White Sep 2014 A1
20140247152 Proud Sep 2014 A1
20140252813 Lee et al. Sep 2014 A1
20140252866 Walsh et al. Sep 2014 A1
20140265725 Angle et al. Sep 2014 A1
20140265727 Berte Sep 2014 A1
20140265943 Angle et al. Sep 2014 A1
20140266025 Jakubowski Sep 2014 A1
20140266946 Bily et al. Sep 2014 A1
20140273892 Nourbakhsh Sep 2014 A1
20140281655 Angle et al. Sep 2014 A1
20140292090 Cordeiro et al. Oct 2014 A1
20140300452 Rofe et al. Oct 2014 A1
20140312706 Fiorello et al. Oct 2014 A1
20140325218 Shimizu et al. Oct 2014 A1
20140327320 Muhs et al. Nov 2014 A1
20140327390 Park et al. Nov 2014 A1
20140333142 Desrosiers Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140354063 Leabman et al. Dec 2014 A1
20140354221 Leabman et al. Dec 2014 A1
20140355718 Guan et al. Dec 2014 A1
20140357309 Leabman et al. Dec 2014 A1
20140368048 Leabman Dec 2014 A1
20140368161 Leabman et al. Dec 2014 A1
20140368405 Ek et al. Dec 2014 A1
20140375139 Tsukamoto Dec 2014 A1
20140375253 Leabman et al. Dec 2014 A1
20140375255 Leabman et al. Dec 2014 A1
20140375258 Arkhipenkov Dec 2014 A1
20140375261 Manova-Elssibony et al. Dec 2014 A1
20140376646 Leabman et al. Dec 2014 A1
20150001949 Leabman et al. Jan 2015 A1
20150002086 Matos et al. Jan 2015 A1
20150003207 Lee et al. Jan 2015 A1
20150008980 Kim et al. Jan 2015 A1
20150011160 Uurgovan et al. Jan 2015 A1
20150015180 Miller et al. Jan 2015 A1
20150015182 Brandtman et al. Jan 2015 A1
20150015192 Leabamn Jan 2015 A1
20150015194 Leabman et al. Jan 2015 A1
20150015195 Leabman et al. Jan 2015 A1
20150021990 Myer et al. Jan 2015 A1
20150022008 Leabman et al. Jan 2015 A1
20150022009 Leabman et al. Jan 2015 A1
20150022010 Leabman et al. Jan 2015 A1
20150023204 Wil et al. Jan 2015 A1
20150028688 Masaoka Jan 2015 A1
20150028694 Leabman et al. Jan 2015 A1
20150028697 Leabman et al. Jan 2015 A1
20150028875 Irie et al. Jan 2015 A1
20150029397 Leabman et al. Jan 2015 A1
20150035378 Calhoun et al. Feb 2015 A1
20150035715 Kim et al. Feb 2015 A1
20150039482 Fuinaga Feb 2015 A1
20150041459 Leabman et al. Feb 2015 A1
20150042264 Leabman et al. Feb 2015 A1
20150042265 Leabman et al. Feb 2015 A1
20150044977 Ramasamy et al. Feb 2015 A1
20150046526 Bush et al. Feb 2015 A1
20150061404 Lamenza et al. Mar 2015 A1
20150076917 Leabman et al. Mar 2015 A1
20150076927 Leabman et al. Mar 2015 A1
20150077036 Leabman et al. Mar 2015 A1
20150077037 Leabman et al. Mar 2015 A1
20150091520 Blum et al. Apr 2015 A1
20150091706 Chemishkian et al. Apr 2015 A1
20150097442 Muurinen Apr 2015 A1
20150097663 Sloo et al. Apr 2015 A1
20150102681 Leabman et al. Apr 2015 A1
20150102764 Leabman et al. Apr 2015 A1
20150102769 Leabman et al. Apr 2015 A1
20150102973 Hand et al. Apr 2015 A1
20150108848 Joehren Apr 2015 A1
20150109181 Hyde et al. Apr 2015 A1
20150115877 Aria et al. Apr 2015 A1
20150115878 Park Apr 2015 A1
20150123483 Leabman et al. May 2015 A1
20150123496 Leabman et al. May 2015 A1
20150128733 Taylor et al. May 2015 A1
20150130285 Leabman et al. May 2015 A1
20150130293 Hajimiri et al. May 2015 A1
20150137612 Yamakawa et al. May 2015 A1
20150148664 Stolka et al. May 2015 A1
20150155737 Mayo Jun 2015 A1
20150155738 Leabman et al. Jun 2015 A1
20150162751 Leabman et al. Jun 2015 A1
20150162779 Lee et al. Jun 2015 A1
20150171513 Chen et al. Jun 2015 A1
20150171656 Leabman et al. Jun 2015 A1
20150171658 Manova-Elssibony Jun 2015 A1
20150171931 Won et al. Jun 2015 A1
20150177326 Chakraborty Jun 2015 A1
20150181117 Park et al. Jun 2015 A1
20150187491 Yanagawa Jul 2015 A1
20150188352 Peek et al. Jul 2015 A1
20150199665 Chu Jul 2015 A1
20150201385 Mercer et al. Jul 2015 A1
20150207333 Baarman et al. Jul 2015 A1
20150222126 Leabman et al. Aug 2015 A1
20150233987 Von Novak, III et al. Aug 2015 A1
20150234144 Cameron et al. Aug 2015 A1
20150236520 Baarman Aug 2015 A1
20150244070 Cheng et al. Aug 2015 A1
20150244080 Gregoire Aug 2015 A1
20150244187 Horie Aug 2015 A1
20150244201 Chu Aug 2015 A1
20150244341 Ritter et al. Aug 2015 A1
20150249484 Mach et al. Sep 2015 A1
20150255989 Walley et al. Sep 2015 A1
20150256097 Gudan et al. Sep 2015 A1
20150263534 Lee et al. Sep 2015 A1
20150263548 Cooper Sep 2015 A1
20150270618 Zhu et al. Sep 2015 A1
20150270622 Takasaki et al. Sep 2015 A1
20150270741 Leabman et al. Sep 2015 A1
20150280484 Radziemski et al. Oct 2015 A1
20150288074 Harper et al. Oct 2015 A1
20150288438 Maltsev et al. Oct 2015 A1
20150311585 Church et al. Oct 2015 A1
20150312721 Singh Oct 2015 A1
20150318729 Leabman Nov 2015 A1
20150326024 Bell et al. Nov 2015 A1
20150326025 Bell et al. Nov 2015 A1
20150326051 Bell et al. Nov 2015 A1
20150326063 Leabman et al. Nov 2015 A1
20150326068 Bell et al. Nov 2015 A1
20150326069 Petras et al. Nov 2015 A1
20150326070 Petras et al. Nov 2015 A1
20150326071 Contopanagos Nov 2015 A1
20150326072 Petras et al. Nov 2015 A1
20150326142 Petras et al. Nov 2015 A1
20150327085 Hadani Nov 2015 A1
20150333528 Leabman Nov 2015 A1
20150333529 Leabman Nov 2015 A1
20150333573 Leabman Nov 2015 A1
20150333800 Perry et al. Nov 2015 A1
20150340759 Bridgelall et al. Nov 2015 A1
20150340903 Bell et al. Nov 2015 A1
20150340909 Bell et al. Nov 2015 A1
20150340910 Petras et al. Nov 2015 A1
20150340911 Bell et al. Nov 2015 A1
20150341087 Moore et al. Nov 2015 A1
20150349574 Leabman Dec 2015 A1
20150358222 Berger et al. Dec 2015 A1
20150365137 Miller et al. Dec 2015 A1
20150365138 Miller et al. Dec 2015 A1
20160005068 Im et al. Jan 2016 A1
20160012695 Bell et al. Jan 2016 A1
20160013656 Bell et al. Jan 2016 A1
20160013677 Bell et al. Jan 2016 A1
20160013678 Bell et al. Jan 2016 A1
20160013855 Campos Jan 2016 A1
20160020636 Khlat Jan 2016 A1
20160020647 Leabman et al. Jan 2016 A1
20160020649 Bell et al. Jan 2016 A1
20160020830 Bell et al. Jan 2016 A1
20160042206 Pesavento et al. Feb 2016 A1
20160054396 Bell et al. Feb 2016 A1
20160054440 Younis Feb 2016 A1
20160056635 Bell Feb 2016 A1
20160056640 Mao Feb 2016 A1
20160056669 Bell Feb 2016 A1
20160056966 Bell Feb 2016 A1
20160065005 Won et al. Mar 2016 A1
20160079799 Khlat Mar 2016 A1
20160087483 Hietala et al. Mar 2016 A1
20160087486 Pogorelik et al. Mar 2016 A1
20160094091 Shin et al. Mar 2016 A1
20160094092 Davlantes et al. Mar 2016 A1
20160099601 Leabman et al. Apr 2016 A1
20160099602 Leabman et al. Apr 2016 A1
20160099609 Leabman et al. Apr 2016 A1
20160099610 Leabman et al. Apr 2016 A1
20160099611 Leabman et al. Apr 2016 A1
20160099612 Leabman et al. Apr 2016 A1
20160099613 Leabman et al. Apr 2016 A1
20160099614 Leabman et al. Apr 2016 A1
20160099755 Leabman et al. Apr 2016 A1
20160099756 Leabman et al. Apr 2016 A1
20160099757 Leabman et al. Apr 2016 A1
20160099758 Leabman et al. Apr 2016 A1
20160100124 Leabman et al. Apr 2016 A1
20160100312 Bell et al. Apr 2016 A1
20160112787 Rich Apr 2016 A1
20160126752 Vuori et al. May 2016 A1
20160126776 Kim et al. May 2016 A1
20160141908 Jakl et al. May 2016 A1
20160164563 Khawand et al. Jun 2016 A1
20160181849 Govindaraj Jun 2016 A1
20160181854 Leabman Jun 2016 A1
20160181867 Daniel et al. Jun 2016 A1
20160181873 Mitcheson et al. Jun 2016 A1
20160191121 Bell Jun 2016 A1
20160202343 Okutsu Jul 2016 A1
20160204622 Leabman Jul 2016 A1
20160204642 Oh Jul 2016 A1
20160233582 Piskun Aug 2016 A1
20160238365 Wixey et al. Aug 2016 A1
20160240908 Strong Aug 2016 A1
20160248276 Hong et al. Aug 2016 A1
20160294225 Blum et al. Oct 2016 A1
20160299210 Zeine Oct 2016 A1
20160301240 Zeine Oct 2016 A1
20160323000 Liu et al. Nov 2016 A1
20160336804 Son et al. Nov 2016 A1
20160339258 Perryman et al. Nov 2016 A1
20160359367 Rothschild Dec 2016 A1
20160380464 Chin et al. Dec 2016 A1
20160380466 Yang et al. Dec 2016 A1
20170005481 Von Novak, III Jan 2017 A1
20170005516 Leabman et al. Jan 2017 A9
20170005524 Akuzawa et al. Jan 2017 A1
20170005530 Zeine et al. Jan 2017 A1
20170025903 Song et al. Jan 2017 A1
20170026087 Tanabe Jan 2017 A1
20170040700 Leung Feb 2017 A1
20170043675 Jones et al. Feb 2017 A1
20170047784 Jung et al. Feb 2017 A1
20170187225 Hosseini Feb 2017 A1
20170063168 Uchida Mar 2017 A1
20170077733 Jeong et al. Mar 2017 A1
20170085112 Leabman et al. Mar 2017 A1
20170085120 Leabman et al. Mar 2017 A1
20170085127 Leabman Mar 2017 A1
20170085437 Condeixa et al. Mar 2017 A1
20170092115 Sloo et al. Mar 2017 A1
20170104263 Hosseini Apr 2017 A1
20170110888 Leabman Apr 2017 A1
20170110889 Bell Apr 2017 A1
20170110914 Bell Apr 2017 A1
20170127196 Blum et al. May 2017 A1
20170163076 Park et al. Jun 2017 A1
20170168595 Sakaguchi et al. Jun 2017 A1
20170179771 Leabman Jun 2017 A1
20170187198 Leabman Jun 2017 A1
20170187222 Hosseini Jun 2017 A1
20170187223 Hosseini Jun 2017 A1
20170187224 Hosseini Jun 2017 A1
20170187228 Hosseini Jun 2017 A1
20170187247 Leabman Jun 2017 A1
20170187248 Leabman Jun 2017 A1
20170187422 Hosseini Jun 2017 A1
20170338695 Port Nov 2017 A1
20180040929 Chappelle Feb 2018 A1
20180048178 Leabman Feb 2018 A1
20180123400 Leabman May 2018 A1
20180131238 Leabman May 2018 A1
20180159338 Leabman et al. Jun 2018 A1
20180159355 Leabman Jun 2018 A1
20180166924 Hosseini Jun 2018 A1
20180166925 Hosseini Jun 2018 A1
20180198199 Hosseini Jul 2018 A1
20180212474 Hosseini Jul 2018 A1
20180226840 Leabman Aug 2018 A1
20180241255 Leabman Aug 2018 A1
20180248409 Johnston Aug 2018 A1
20180262014 Bell Sep 2018 A1
20180262040 Contopanagos Sep 2018 A1
20180262060 Johnston Sep 2018 A1
20180269570 Hosseini Sep 2018 A1
20180287431 Liu et al. Oct 2018 A1
20180331429 Kornaros Nov 2018 A1
20180331581 Hosseini Nov 2018 A1
20180337534 Bell et al. Nov 2018 A1
20180375340 Bell et al. Dec 2018 A1
20180375368 Leabman Dec 2018 A1
20180376235 Leabman Dec 2018 A1
20190074133 Contopanagos Mar 2019 A1
Foreign Referenced Citations (58)
Number Date Country
102292896 Dec 2011 CN
102860037 Jan 2013 CN
203826555 Sep 2014 CN
104090265 Oct 2014 CN
103380561 Sep 2017 CN
2000216655 Feb 2002 DE
1028482 Aug 2000 EP
1081506 Mar 2001 EP
2397973 Jun 2010 EP
2346136 Jul 2011 EP
2545635 Jan 2013 EP
3067983 Sep 2016 EP
3145052 Mar 2017 EP
2404497 Feb 2005 GB
2006157586 Jun 2006 JP
2007043432 Feb 2007 JP
2008167017 Jul 2008 JP
2013162624 Aug 2013 JP
2015128349 Jul 2015 JP
WO2015177859 Apr 2017 JP
20060061776 Jun 2006 KR
20070044302 Apr 2007 KR
100755144 Sep 2007 KR
20110132059 Dec 2011 KR
20110135540 Dec 2011 KR
20120009843 Feb 2012 KR
20120108759 Oct 2012 KR
1020130026977 Mar 2013 KR
9952173 Oct 1999 WO
WO 200111716 Feb 2001 WO
2004077550 Sep 2004 WO
WO 2004077550 Sep 2004 WO
2003091943 Nov 2006 WO
WO 2003091943 Nov 2006 WO
WO 2006122783 Nov 2006 WO
2008156571 Dec 2008 WO
2010022181 Feb 2010 WO
WO 2010039246 Apr 2010 WO
WO 2010138994 Dec 2010 WO
2011112022 Sep 2011 WO
WO 2012177283 Dec 2012 WO
2013035190 Mar 2013 WO
WO 2013031988 Mar 2013 WO
WO 2013042399 Mar 2013 WO
WO 2013052950 Apr 2013 WO
WO 2013105920 Jul 2013 WO
WO 2014075103 May 2014 WO
WO 2014132258 Sep 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014197472 Dec 2014 WO
WO 2014209587 Dec 2014 WO
WO 2015038773 Mar 2015 WO
WO 2015097809 Jul 2015 WO
WO 2015161323 Oct 2015 WO
WO 2016024869 Feb 2016 WO
WO 2016048512 Mar 2016 WO
WO 2016187357 Nov 2016 WO
Non-Patent Literature Citations (171)
Entry
International Search Report dated Jan. 27, 2015 corresponding to International Patent Application No. PCT/US2014/037170, 4 pages.
International Search Report dated Oct. 16, 2014 corresponding to International Patent Application No. PCT/US2014/041546, 4 pages.
International Search Report dated Oct. 13, 2014 corresponding to International Patent Application No. PCT/US2014/041534, 4 pages.
International Search Report dated Nov. 12, 2014 corresponding to International Patent Application No. PCT/US2014/046956, 4 pages.
Written Opinion of the International Searching Authority dated Nov. 12, 2014 corresponding to International Patent Application No. PCT/US2014/046956, 6 pages.
International Search Report dated Sep. 12, 2014 corresponding to International Patent Application No. PCT/US2014/037072, 3 pages.
Energous Corp., Written Opinion, PCT/US2014/037170 , dated Sep. 15, 2014, 7 pgs.
Energous Corp., IPRP, PCT/US2014/037170, dated Nov. 10, 2015, 8 pgs.
Energous Corp., Written Opinion, PCT/US2014/041534, dated Oct. 13, 2014, 6 pgs.
Energous Corp., IPRP, PCT/US2014/041534, dated Dec. 29, 2015, 7 pgs.
Energous Corp., Written Opinion, PCT/US2014/037072, dated Sep. 12, 2014, 5 pgs.
Energous Corp., IPRP, PCT/US2014/037072, dated Nov. 10, 2015, 6 pgs.
Energous Corp., ISRWO, PCT/US2014/068568, dated Mar. 20, 2015, 10 pgs.
Energous Corp., IPRP, PCT/US2014/068568, dated Jun. 14, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/055195, dated Dec. 22, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/055195, dated Mar. 22, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/67287, dated Feb. 2, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/67291, dated Mar. 4, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2015/67242, dated Mar. 16, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/67243, dated Mar. 10, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/037109, dated Apr. 8, 2016, 12 pgs.
Energous Corp., IPRP, PCT/US2014/037109, dated Apr. 12, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/67275, dated Mar. 3, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067245, dated Mar. 17, 2016, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/041546, dated Oct. 16, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2015/67250, dated Mar. 30, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067325, dated Mar. 10, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2014/040697, dated Oct. 1, 2014, 12 pgs.
Energous Corp.,IPRP, PCT/US2014/040697, dated Dec. 8, 2015, 9 pgs.
Energous Corp., ISRWO, PCT/US2014/040705, dated Sep. 23, 2014, 8 pgs.
Energous Corp., IPRP, PCT/US2014/040705, dated Dec. 8, 2015, 6 pgs.
Energous Corp., ISRWO, PCT/US2015/067249, dated Mar. 29, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067246, dated May 11, 2016, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/059317, dated Feb. 24, 2015, 13 pgs.
Energous Corp., IPRP, PCT/US2014/059317, dated Apr. 12, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/049669, dated Nov. 13, 2014, 10 pgs.
Energous Corp., IPRP, PCT/US2014/049669, dated Feb. 9, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/041323, dated Oct. 1, 2014, 10 pgs.
Energous Corp., IPRP, PCT/US2014/041323, dated Dec. 22, 2015, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/048002, dated Nov. 13, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/048002, dated Jan. 26, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/062682, dated Feb. 12, 2015, 10 pgs.
Energous Corp., IPRP, PCT/US2014/062682, dated May 3, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/049666, dated Nov. 10, 2014, 7 pgs.
Energous Corp., IPRP, PCT/US2014/049666, dated Feb. 9, 2016, 5 pgs.
Energous Corp., ISRWO, PCT/US2014/046961, dated Nov. 24, 2014, 16 pgs.
Energous Corp., IPRP, PCT/US2014/046961, dated Jan. 19, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067279, dated Mar. 11, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/041342, dated Jan. 27, 2015, 10 pgs.
Energous Corp., IPRP, PCT/US2014/041342, dated Dec. 15, 2015, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/046941, dated Nov. 6, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/046941, dated Jan. 19, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2014/062661, dated Jan. 27, 2015, 12 pgs.
Energous Corp., IPRP, PCT/US2014/062661, dated May 3, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/059871, dated Jan. 23, 2015, 12 pgs.
Energous Corp., IPRP, PCT/US2014/059871, dated Apr. 12, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2014/045102, dated Oct. 28, 2014, 14 pgs.
Energous Corp., IPRP, PCT/US2014/045102, dated Jan. 12, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/059340, dated Jan. 15, 2015, 10 pgs.
Energous Corp., IPRP, PCT/US2014/059340, dated Jan. 15, 2015, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067282, dated Jul. 5, 2016, 7 pgs.
Supplementary European Search Report, EP Patent Application No. EP14818136-5, dated Jul. 21, 2016, 9 pgs.
L.H. Hsieh et al. Development of a Retrodirective Wireless Microwave Power Transmission System, IEEE, 2003 pp. 393-396.
B.D. Van Veen et al., Beamforming: A Versatile Approach to Spatial Filtering, IEEE, ASSP Magazine, Apr. 1988, pp. 4-24.
Leabman, Adaptive Band-partitioning for Interference Cancellation in Communication System, Thesis Massachusetts Institute of Technology, Feb. 1997, pp. 1-70.
Panda, SIW based Slot Array Antenna and Power Management Circuit for Wireless Energy Harvesting Applications, IEEE APSURSI, Jul. 2012, 2 pgs.
Singh, Wireless Power Transfer Using Metamaterial Bonded Microstrip Antenna for Smart Grid WSN: In Fourth International Conference on Advances in Computing and Communications (ICACC), Aug. 27-29, 2014, Abstract 299.
T. Gill et al. “A System for Change Detection and Human Recognition in Voxel Space using the Microsoft Kinect Sensor,” 2011 IEEE Applied Imagery Pattern Recognition Workshop. 8 pgs.
J. Han et al. Enhanced Computer Vision with Microsoft Kinect Sensor: A Review, IEEE Transactions on Cybermetics vol. 43, No. 5. pp. 1318-1334.
Energous Corp., IPRP, PCT/US2014/046956, dated Jan. 19, 2016, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067291, dated Jul. 4, 2017, 4 pgs.
Energous Corp., IPRP, PCT/US2015/067242, dated Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067243, dated Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067275, dated Jul. 4, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067245, dated Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2014/041546, dated Dec. 29, 2015, 9 pgs.
Energous Corp., IPRP, PCT/US2015/67250, dated Mar. 30, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2015/067325, dated Jul. 4, 2017, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067249, dated Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067246, dated Jun. 27, 2017, 9 pgs.
Energous Corp., IPRP, PCT/US2015/067279, dated Jul. 4, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067282, dated Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2014/041558, dated Dec. 29, 2015, 6 pgs.
Energous Corp., ISRWO, PCT/US2014/045119, dated Oct. 13, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/045119, dated Jan. 12, 2016, 9 pgs.
Energous Corp., ISRWO PCT/US2014/045237, dated Oct. 13, 2014, 16 pgs.
Energous Corp., IPRP , PCT/US2014/045237, dated Jan. 12, 2016, 12 pgs.
Energous Corp., ISRWO , PCT/US2014/054897, dated Feb. 17, 2015, 10 pgs.
Energous Corp., IPRP , PCT/US2014/054897, dated Mar. 15, 2016, 8 pgs.
Energous Corp., ISRWO , PCT/US2015/067334, dated Mar. 3, 2016, 6 pgs.
Energous Corp., IPRP , PCT/US2015/067334, dated Jul. 4, 2017, 5 pgs.
Energous Corp., ISRWO , PCT/US2014/047963, dated Nov. 7, 2014, 13 pgs.
Energous Corp., IPRP , PCT/US2014/047963, dated Jan. 26, 2016, 10 pgs.
Energous Corp., ISRWO , PCT/US2014/054891, dated Dec. 18, 2014, 12 pgs.
Energous Corp., IPRP , PCT/US2014/054891, dated Mar. 15, 2016, 10 pgs.
Energous Corp., ISRWO , PCT/US2014/054953, dated Dec. 4, 2014, 7 pgs.
Energous Corp., IPRP , PCT/US2014/054953, dated Mar. 22, 2016, 5 pgs.
Energous Corp., ISRWO , PCT/US2015/067294, dated Mar. 29, 2016, 7 pgs.
Energous Corp., IPRP , PCT/US2015/067294, dated Jul. 4, 2017, 6 pgs.
Energous Corp., ISRWO , PCT/US2014/062672 dated Jan. 26, 2015, 11 pgs.
Energous Corp., IPRP , PCT/US2014/062672 dated May 10, 2016, 8 pgs.
Energous Corp., ISRWO , PCT/US2014/044810 dated Oct. 21, 2014, 12 pgs.
Energous Corp., IPRP , PCT/US2014/044810, dated Jan. 5, 2016, 10 pgs.
Energous Corp., ISRWO , PCT/US2015/067271, dated Mar. 11, 2016, 6 pgs.
Energous Corp., IPRP , PCT/US2015/067271, dated Jul. 4, 2017, 5 pgs.
Energous Corp., ISWRO , PCT/US2014/040648, dated Oct. 10, 2014, 11 pgs.
Energous Corp., IPRP , PCT/US2014/040648, dated Dec. 8, 2015, 8 pgs.
Energous Corp., ISRWO , PCT/US2014/049673, dated Nov. 18, 2014, 10 pgs.
Energous Corp., IPRP , PCT/US2014/049673, dated Feb. 9, 2016, 6 pgs.
Energous Corp., ISRWO , PCT/US2014/068282, dated Mar. 19, 2015, 13 pgs.
Energous Corp., IPRP, PCT/US2014/068282, dated Jun. 7, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/068586, dated Mar. 20, 2015, 11 pgs.
Energous Corp., IPRP, PCT/US2014/068586, dated Jun. 14, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068504, dated Mar. 30, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068495, dated Mar. 30, 2017, 9 pgs.
Energous Corp., IPRP, PCT/US2015/067287, dated Jul. 4, 2017, 6 pgs.
Energous Corp., ISRWO, PCT/US2016/068551, dated Mar. 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068498, dated May 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068993, dated Mar. 13, 2017, 12 pgs.
Energous Corp., ISRWO, PCT/US2016/068565, dated Mar. 8, 2017, 11 pgs.
Energous Corp., ISRWO, PCT/US2016/068987, dated May 8, 2017, 10 pgs.
Energous Corp., ISRWO, PCT/US2016/069316 , dated Mar. 16, 2017, 15 pgs.
European Search Report, EP Patent Application No. EP16189052.0, dated Jan. 31, 2017, 11 pgs.
European Search Report, EP Patent Application No. EP16189319-3, dated Feb. 1, 2017, 9 pgs.
European Search Report, EP Patent Application No. EP14822971, dated Feb. 1, 2017, 9 pgs.
European Search Report, EP Patent Application No. EP16189987, dated Feb. 1, 2017, 8 pgs.
European Search Report, EP Patent Application No. 16196205.5, dated Mar. 28, 2017, 7 pgs.
European Search Report, EP Patent Application No. 16189300, dated Feb. 28, 2017, 4 pgs.
European Search Report, EP Patent Application No. 16189988.5, dated Mar. 1, 2017, 4 pgs.
European Search Report, EP Patent Application No. 16189982.5, dated Jan. 27, 2017, 9 pgs.
European Search Report, EP Patent Application No. 16189974, dated Mar. 2, 2017, 5 pgs.
European Search Report, EP Patent Application No. 16193743, dated Feb. 2, 2017, 5 pgs.
European Search Report, EP Patent Application No. 14868901.1, dated Jul. 7, 2017, 5 pgs.
Zhai, “A Practical wireless charging system based on ultra-wideband retro-reflective beamforming” 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON 2010, pp. 1-4.
Mao: BeamStar: An Edge-Based Approach to Routing in Wireless Sensors Networks, IEEE Transactions on Mobile Computing, IEEE Service Center, Los Alamitos, CA US, vol. 6, No. 11, Nov. 1, 2007, 13 pgs.
Smolders—Institute of Electrical 1-15 and Electronics Engineers: “Broadband microstrip array antennas” Digest of the Antennas and Propagation Society International Symposium. Seattle, WA Jun. 19-24, 1994. Abstract 3 pgs.
Paolo Nenzi et al; “U-Helix: On-chip short conical antenna”, 2013 7th European Conference on Antennas and Propagation (EUCAP), ISBN:978-1-4673-2187-7, IEEE, Apr. 8, 2013, 5 pgs.
Adamiuk G et al; “Compact, Dual-Polarized UWB-Antanna, Embedded in a Dielectric” IEEE Transactions on Antenna and Propagation, IEEE Service Center, Piscataway, NJ, US vol. 56, No. 2, ISSN: 0018-926X, abstract; Figure 1, Feb. 1, 2010, 8 pgs.
Mascarenas et al.; “Experimental Studies of Using Wireless Energy Transmission for Powering Embedded Sensor Nodes.” Nov. 28, 2009, Journal of Sound and Vibration, pp. 2421-2433.
Li et al. High-Efficiency Switching-Mode Charger System Design Considerations with Dynamic Power Path Management, Mar./Apr. 2012 Issue, 8 pgs.
European Search Report. EP15876036, May 3, 2018, 8 pgs.
European Search Report. EP15874273, Apr. 27, 2018, 7 pgs.
Supplemental European Search Report. EP3241277, Jun. 13, 2018, 10 pgs.
Energous Corp., ISRWO, PCT/US2018/012806, Mar. 23, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2017/046800, Sep. 11, 2017, 13 pgs.
Energous Corp., ISRWO, PCT/US2017/065886, Apr. 6, 2018, 13 pgs.
Order Granting Reexamination Request Control No. 90013793 Aug. 31, 2016, 23 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00023-Institution Decision, Nov. 29, 2016, 29 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00024-Institution Decision, Nov. 29, 2016, 50 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00024-Judgement-Adverse, Jan. 20, 2017, 3 pgs.
ReExam Ordered Control No. 90013793 Feb. 2, 2017, 8 pgs.
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00024, May 31, 2016, 122 pgs.
Ossia Inc. vs Energous Corp., Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, May 31,2016, 92 pgs.
Ossia Inc. vs Energous Corp., Patent Owner Preliminary Response, Sep. 8, 2016, 95 pgs.
Ossia Inc. vs Energous Corp., Petition for Post Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 86 pgs.
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00023, May 31, 2016, 144 pgs.
Energous Corp., ISRWO , PCT/US2016/069313 Nov. 13, 2017, 10 pgs.
Energous Corp., IPRP , PCT/US2016/069313 Jul. 3, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/068504, Jun. 26, 2018, 5 pgs.
Energous Corp., IPRP, PCT/US2016/068495, Jun. 26, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/068551, Jun. 26, 2018, 6 pgs.
Energous Corp., IPRP, PCT/US2016/068498, Jun. 26, 2018, 6 pgs.
Energous Corp., IPRP, PCT/US2016/068993, Jul. 3, 2018, 10 pgs.
Energous Corp., IPRP, PCT/US2016/068565, Jun. 26, 2018, 9 pgs.
Energous Corp., IPRP, PCT/US2016/068987, Jul. 3, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/069316 , Jul. 3, 2018, 12 pgs.
Energous Corp., IPRP, PCT/US2017/046800, Feb. 12, 2019, 10 pgs.
Energous Corp., ISRWO, PCT/US2018/031768, Jul. 3, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/0351082, Dec. 12, 2018, 9 pgs.
Supplemental European Search Report. EP15876043.9, Aug. 8, 2018, 9 pgs.
Extended European Search Report. EP18204043.6, Feb. 14, 2019, 5 pgs.
Related Publications (1)
Number Date Country
20160054395 A1 Feb 2016 US