Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation

Information

  • Patent Grant
  • 10219071
  • Patent Number
    10,219,071
  • Date Filed
    Tuesday, December 10, 2013
    11 years ago
  • Date Issued
    Tuesday, February 26, 2019
    6 years ago
Abstract
A method may include adaptively generating an anti-noise signal from filtering a reference microphone signal with an adaptive filter in conformity with an error microphone signal and the reference microphone signal. The method may also include adjusting the response of the adaptive filter by combining injected noise with the reference microphone signal and receiving the injected noise by a copy of the adaptive filter so that the response of the copy is controlled by the adaptive filter adapting to cancel a combination of the ambient audio sounds and the injected noise and controlling the response of the adaptive filter with the coefficients adapted in the copy, whereby the injected noise is not present in the anti-noise signal and wherein each of a sample rate of the copy and a rate of adapting of the adaptive filter is significantly less than a sample rate of the adaptive filter.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to adaptive noise cancellation in connection with an acoustic transducer, and more particularly, to bandlimiting anti-noise in personal audio devices having adaptive noise cancellation.


BACKGROUND

Personal audio devices, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as MP3 players and headphones or earbuds, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events. Because the acoustic environment around personal audio devices such as wireless telephones can change dramatically, depending on the sources of noise that are present and the position of the device itself, it is desirable to adapt the noise canceling to take into account such environmental changes. However, adaptive noise canceling circuits can be complex, consume additional power and can generate undesirable results under certain circumstances.


Therefore, it would be desirable to provide a personal audio device, including a wireless telephone, that provides noise cancellation in a variable acoustic environment.


SUMMARY

In accordance with the teachings of the present disclosure, the disadvantages and problems associated with improving audio performance of a personal audio device may be reduced or eliminated.


In accordance with embodiments of the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include an output, a reference microphone input, an error microphone input, and a processing circuit. The output may provide a signal to a transducer including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. The reference microphone input may receive a reference microphone signal indicative of the ambient audio sounds. The error microphone input may receive an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer. The processing circuit may implement an adaptive filter having a response that generates the anti-noise signal from the reference microphone signal to reduce the presence of the ambient audio sounds heard by the listener. The processing circuit may shape the response of the adaptive filter in conformity with the error microphone signal and the reference microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds at the error microphone. The response of the adaptive filter may be further adjusted independent of the adapting by combining injected noise with the reference microphone signal and the processing circuit further implements a copy of the adaptive filter to receive the injected noise so that the response of the copy of the adaptive filter is controlled by the adaptive filter adapting to cancel a combination of the ambient audio sounds and the injected noise. The processing circuit may further control the response of the adaptive filter with the coefficients adapted in the copy of the adaptive filter, whereby the injected noise is not present in the anti-noise signal. Each of a sample rate of the copy of the adaptive filter and a rate of adapting of the adaptive filter may be significantly less than a sample rate of the adaptive filter.


In accordance with these and other embodiments of the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include an output, a reference microphone input, an error microphone input, and a processing circuit. The output may provide a signal to a transducer including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. The reference microphone input may receive a reference microphone signal indicative of the ambient audio sounds. The error microphone input may receive an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer. The processing circuit may implement an adaptive filter having a response that generates the anti-noise signal from the reference microphone signal to reduce the presence of the ambient audio sounds heard by the listener. The processing circuit may shape the response of the adaptive filter in conformity with the error microphone signal and the reference microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds at the error microphone. The response of the adaptive filter may be further adjusted independent of the adapting by combining injected noise with the reference microphone signal, and the processing circuit may further implement a copy of the adaptive filter to receive the injected noise so that the response of the copy of the adaptive filter is controlled by the adaptive filter adapting to cancel a combination of the ambient audio sounds and the injected noise. The processing circuit may further control the response of the adaptive filter with the coefficients adapted in the copy of the adaptive filter, whereby the injected noise is not present in the anti-noise signal. The injected noise may be provided by a periodic shaped noise signal stored in a buffer, such that the copy of the adaptive filter generates a periodic error noise signal from the periodic shaped noise signal, further such that the processing circuit shapes the response of the adaptive filter in conformity with a combination of the error microphone signal and the periodic error noise signal, and a combination of the periodic shaped noise signal and the reference microphone signal.


In accordance with these and other embodiments of the present disclosure, a method may include receiving a reference microphone signal indicative of ambient audio sounds at the acoustic output of a transducer and receiving an error microphone signal indicative of an acoustic output of a transducer and the ambient audio sounds at the acoustic output of the transducer. The method may also include generating an anti-noise signal from filtering the reference microphone signal with an adaptive filter to reduce the presence of the ambient audio sounds heard by the listener and shaping the response of the adaptive filter in conformity with the error microphone signal and the reference microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds at the error microphone. The method may also include further adjusting the response of the adaptive filter by combining injected noise with the reference microphone signal and receiving the injected noise by a copy of the adaptive filter so that the response of the copy of the adaptive filter is controlled by the adaptive filter adapting to cancel a combination of the ambient audio sounds and the injected noise. The method may also include controlling the response of the adaptive filter with the coefficients adapted in the copy of the adaptive filter, whereby the injected noise is not present in the anti-noise signal and wherein each of a sample rate of the copy of the adaptive filter and a rate of adapting of the adaptive filter is significantly less than a sample rate of the adaptive filter.


In accordance with these and other embodiments of the present disclosure, a method may include receiving a reference microphone signal indicative of ambient audio sounds at the acoustic output of a transducer and receiving an error microphone signal indicative of an acoustic output of a transducer and the ambient audio sounds at the acoustic output of the transducer. The method may also include generating an anti-noise signal from filtering the reference microphone signal with an adaptive filter to reduce the presence of the ambient audio sounds heard by the listener and further adjusting the response of the adaptive filter by combining injected noise with the reference microphone signal. The method may also include receiving the injected noise by a copy of the adaptive filter so that the response of the copy of the adaptive filter is controlled by the adaptive filter adapting to cancel a combination of the ambient audio sounds and the injected noise and controlling the response of the adaptive filter with the coefficients adapted in the copy of the adaptive filter, whereby the injected noise is not present in the anti-noise signal and is provided by a periodic shaped noise signal stored in a buffer, such that the copy of the adaptive filter generates a periodic error noise signal from the periodic shaped noise signal. The method may additionally include shaping of the response of the adaptive filter in conformity with a combination of the error microphone signal and the periodic error noise signal, and a combination of the periodic shaped noise signal and the reference microphone signal.


Technical advantages of the present disclosure may be readily apparent to one of ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1A is an illustration of an example personal audio device, in accordance with embodiments of the present disclosure;



FIG. 1B is an illustration of an example personal audio device with a headphone assembly coupled thereto, in accordance with embodiments of the present disclosure;



FIG. 2 is a block diagram of selected circuits within the personal audio device depicted in FIG. 1, in accordance with embodiments of the present disclosure;



FIG. 3A is a block diagram depicting selected signal processing circuits and functional blocks within an example active noise canceling (ANC) circuit of a coder-decoder (CODEC) integrated circuit of FIG. 2, in accordance with embodiments of the present disclosure;



FIG. 3B is a block diagram depicting selected signal processing circuits and functional blocks within another example ANC circuit of CODEC integrated circuit of FIG. 2, in accordance with embodiments of the present disclosure; and



FIG. 3C is a block diagram depicting selected signal processing circuits and functional blocks within yet another example ANC circuit of CODEC integrated circuit of FIG. 2, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

Referring now to FIG. 1A, a personal audio device 10 as illustrated in accordance with embodiments of the present disclosure is shown in proximity to a human ear 5. Personal audio device 10 is an example of a device in which techniques in accordance with embodiments of the invention may be employed, but it is understood that not all of the elements or configurations embodied in illustrated personal audio device 10, or in the circuits depicted in subsequent illustrations, are required in order to practice the invention recited in the claims. Personal audio device 10 may include a transducer such as speaker SPKR that reproduces distant speech received by personal audio device 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of personal audio device 10) to provide a balanced conversational perception, and other audio that requires reproduction by personal audio device 10, such as sources from webpages or other network communications received by personal audio device 10 and audio indications such as a low battery indication and other system event notifications. A near-speech microphone NS may be provided to capture near-end speech, which is transmitted from personal audio device 10 to the other conversation participant(s).


Personal audio device 10 may include adaptive noise cancellation (ANC) circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR. A reference microphone R may be provided for measuring the ambient acoustic environment, and may be positioned away from the typical position of a user's mouth, so that the near-end speech may be minimized in the signal produced by reference microphone R. Another microphone, error microphone E, may be provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker SPKR close to ear 5, when personal audio device 10 is in close proximity to ear 5. Circuit 14 within personal audio device 10 may include an audio CODEC integrated circuit (IC) 20 that receives the signals from reference microphone R, near-speech microphone NS, and error microphone E, and interfaces with other integrated circuits such as a radio-frequency (RF) integrated circuit 12 having a wireless telephone transceiver. In some embodiments of the disclosure, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that includes control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. In these and other embodiments, the circuits and techniques disclosed herein may be implemented partially or fully in software and/or firmware embodied in computer-readable media and executable by a controller or other processing device.


In general, ANC techniques of the present disclosure measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on reference microphone R, and by also measuring the same ambient acoustic events impinging on error microphone E, ANC processing circuits of personal audio device 10 adapt an anti-noise signal generated at the output of speaker SPKR from the output of reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events at error microphone E. Because acoustic path P(z) extends from reference microphone R to error microphone E, ANC circuits are effectively estimating acoustic path P(z) while removing effects of an electro-acoustic path S(z) that represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR including the coupling between speaker SPKR and error microphone E in the particular acoustic environment, which may be affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to personal audio device 10, when personal audio device 10 is not firmly pressed to ear 5. While the illustrated personal audio device 10 includes a two-microphone ANC system with a third near-speech microphone NS, some aspects of the present invention may be practiced in a system that does not include separate error and reference microphones, or a wireless telephone that uses near-speech microphone NS to perform the function of the reference microphone R. Also, in personal audio devices designed only for audio playback, near-speech microphone NS will generally not be included, and the near-speech signal paths in the circuits described in further detail below may be omitted, without changing the scope of the disclosure, other than to limit the options provided for input to the microphone covering detection schemes. In addition, although only one reference microphone R is depicted in FIG. 1, the circuits and techniques herein disclosed may be adapted, without changing the scope of the disclosure, to personal audio devices including a plurality of reference microphones.


Referring now to FIG. 1B, personal audio device 10 is depicted having a headphone assembly 13 coupled to it via audio port 15. Audio port 15 may be communicatively coupled to RF integrated circuit 12 and/or CODEC IC 20, thus permitting communication between components of headphone assembly 13 and one or more of RF integrated circuit 12 and/or CODEC IC 20. As shown in FIG. 1B, headphone assembly 13 may include a combox 16, a left headphone 18A, and a right headphone 18B. As used in this disclosure, the term “headphone” broadly includes any loudspeaker and structure associated therewith that is intended to be mechanically held in place proximate to a listener's ear or ear canal, and includes without limitation earphones, earbuds, and other similar devices. As more specific non-limiting examples, “headphone,” may refer to intra-canal earphones, intra-concha earphones, supra-concha earphones, and supra-aural earphones.


Combox 16 or another portion of headphone assembly 13 may have a near-speech microphone NS to capture near-end speech in addition to or in lieu of near-speech microphone NS of personal audio device 10. In addition, each headphone 18A, 18B may include a transducer such as speaker SPKR that reproduces distant speech received by personal audio device 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of personal audio device 10) to provide a balanced conversational perception, and other audio that requires reproduction by personal audio device 10, such as sources from webpages or other network communications received by personal audio device 10 and audio indications such as a low battery indication and other system event notifications. Each headphone 18A, 18B may include a reference microphone R for measuring the ambient acoustic environment and an error microphone E for measuring of the ambient audio combined with the audio reproduced by speaker SPKR close to a listener's ear when such headphone 18A, 18B is engaged with the listener's ear. In some embodiments, CODEC IC 20 may receive the signals from reference microphone R, near-speech microphone NS, and error microphone E of each headphone and perform adaptive noise cancellation for each headphone as described herein. In other embodiments, a CODEC IC or another circuit may be present within headphone assembly 13, communicatively coupled to reference microphone R, near-speech microphone NS, and error microphone E, and configured to perform adaptive noise cancellation as described herein.


The various microphones referenced in this disclosure, including reference microphones, error microphones, and near-speech microphones, may comprise any system, device, or apparatus configured to convert sound incident at such microphone to an electrical signal that may be processed by a controller, and may include without limitation an electrostatic microphone, a condenser microphone, an electret microphone, an analog microelectromechanical systems (MEMS) microphone, a digital MEMS microphone, a piezoelectric microphone, a piezo-ceramic microphone, or dynamic microphone.


Referring now to FIG. 2, selected circuits within personal audio device 10, which in other embodiments may be placed in whole or part in other locations such as one or more headphone assemblies 13, are shown in a block diagram. CODEC IC 20 may include an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal and generating a digital representation ref of the reference microphone signal, an ADC 21B for receiving the error microphone signal and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal and generating a digital representation ns of the near speech microphone signal. CODEC IC 20 may generate an output for driving speaker SPKR from an amplifier A1, which may amplify the output of a digital-to-analog converter (DAC) 23 that receives the output of a combiner 26. Combiner 26 may combine a source audio signal from audio signals is from internal audio sources 24 and/or downlink speech ds which may be received from radio frequency (RF) integrated circuit 22, the anti-noise signal generated by ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26, and a portion of near speech microphone signal ns so that the user of personal audio device 10 may hear his or her own voice in proper relation to downlink speech ds. Near speech microphone signal ns may also be provided to RF integrated circuit 22 and may be transmitted as uplink speech to the service provider via antenna ANT.


Referring now to FIG. 3A, details of ANC circuit 30A are shown in accordance with embodiments of the present disclosure. Adaptive filter 32 may receive reference microphone signal ref and under ideal circumstances, may adapt its transfer function W(z) to be P(z)/S(z) to generate the anti-noise signal, which may be provided to an output combiner that combines the anti-noise signal with the audio to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. The coefficients of adaptive filter 32 may be controlled by a W coefficient control block 31 that uses a correlation of signals to determine the response of adaptive filter 32, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal ref present in error microphone signal err. The signals compared by W coefficient control block 31 may be a noise-modified reference microphone signal and a noise-modified playback corrected error. The noise-modified reference microphone signal may comprise reference microphone signal ref as shaped by a copy of an estimate of the response of path S(z) provided by filter 34B and as decimated by decimator 38A (in accordance with further description below) combined with a noise signal n(z) (also as described in further detail below). The noise-modified playback corrected error may be generated as described in greater detail below. Filter 34B may not be an adaptive filter, per se, but may have an adjustable response that is tuned to match the response of adaptive filter 34A described below, so that the response of filter 34B tracks the adapting of adaptive filter 34A.


By transforming reference microphone signal ref with a copy of the estimate of the response of path S(z), response SECOPY(z) of filter 34B, and minimizing the difference between the resultant noise-modified reference microphone signal and the noise-modified playback corrected error based on error microphone signal err, adaptive filter 32 may adapt to the desired response of P(z)/S(z). The noise-modified playback corrected error signal compared to noise-modified reference microphone signal by W coefficient control block 31 may be derived from a playback corrected error (labeled as “PBCE” in FIG. 3) which may be equal to error microphone signal err combined (e.g., by combiner 36) with an inverted amount of source audio signal (e.g., downlink audio signal ds and/or internal audio signal ia), that has been processed by filter response SE(z) of filter 34A, of which response SECOPY(z) is a copy. By injecting an inverted amount of source audio signal, adaptive filter 32 may be prevented from adapting to the relatively large amount of source audio signal present in error microphone signal err. However, by transforming that inverted copy of source audio signal with the estimate of the response of path S(z), the source audio that is removed from error microphone signal err to generate the playback corrected error should match the expected version of the source audio signal reproduced at error microphone signal err, because the electrical and acoustical path of S(z) is the path taken by the source audio signal to arrive at error microphone E.


To implement the above, adaptive filter 34A may have coefficients controlled by SE coefficient control block 33, which may compare the source audio signal and the playback corrected error. SE coefficient control block 33 may correlate the actual source audio signal with the components of the source audio signal that are present in error microphone signal err. Adaptive filter 34A may thereby be adapted to generate a secondary estimate signal from the source audio signal, that when subtracted from error microphone signal err to generate the playback corrected error, includes the content of error microphone signal err that is not due to the source audio signal.


As mentioned above, ANC circuit 30A may inject a noise signal n(z) using a noise generator 37 that may be supplied to a copy WCOPY(z) of the response W(z) of adaptive filter 32 provided by an adaptive filter 32C. A combiner 36B may add noise signal n(z) to the output of adaptive filter 34B provided to W coefficient control 31. Noise signal n(z), as shaped by filter 32C, may be subtracted from the output of combiner 36 by a combiner 36C so that noise signal n(z) is asymmetrically added to the correlation inputs to W coefficient control 31, with the result that the response W(z) of adaptive filter 32 may be biased by the completely correlated injection of noise signal n(z) to each correlation input to W coefficient control 31. Because the injected noise appears directly at the reference input to W coefficient control 31, does not appear in error microphone signal err, and only appears at the other input to W coefficient control 31 via the combining of the filtered noise at the output of filter 32C by combiner 36C, W coefficient control 31 may adapt W(z) to attenuate the frequencies present in noise signal n(z). The content of noise signal n(z) may not appear in the anti-noise signal, only in the response W(z) of adaptive filter 32 which may have amplitude decreases at the frequencies/bands in which noise signal n(z) has energy. For example, if it is desirable to decrease the response of W(z) in the vicinity of 1 kHz, noise signal n(z) can be generated to have a spectrum that has energy at 1 kHz, which will cause W coefficient control 31 to decrease the gain of adaptive filter 32 at 1 kHz in an attempt to cancel an apparent source of ambient acoustic sound due to injected noise signal n(z).


Implementation of noise signal n(z), filter 32C, and W coefficient control 31 may require significant processing resources, especially if such elements are operated at the same bandwidth as response W(z) of filter 32, and thus, addition and processing of such injected noise may contribute significantly to expense of producing a personal audio device including such an ANC circuit 30A. Such processing complexity and related expense may be reduced by implementation of a decimator 38A which may decimate reference microphone signal ref prior to its combination with noise signal n(z) by combiner 36B. Similarly, decimator 38B may decimate the playback corrected error prior to its combination with the noise signal n(z) as filtered by filter 32C. Because of the presence of decimators 38A and 38B, each of a sample rate of filter 32C and a rate of adapting of adaptive filter 32 (as controlled by W coefficient control block 31) may be significantly less (e.g., at least one order of magnitude less) than a sample rate of the adaptive filter. For example, in some embodiments filter 32 may sample at a rate of 1.5 MHz while noise generator 37, W coefficient control block 31, and filter 32C may operate at 48 kHz.


Referring now to FIG. 3B, details of another ANC circuit 30B are shown in accordance with an alternative embodiment of the present disclosure that may be used to implement ANC circuit 30 of FIG. 2. ANC circuit 30B is similar to ANC circuit 30A of FIG. 3A, so only differences between them will be described below. In ANC circuit 30B, noise signal n(z) may be continuously injected into combiner 36B, but may be only periodically added at combiner 36C. Thus, a switch 40 or other suitable component may be added such that filtered noise from filter 32C is added once every N samples. N may comprise any suitable integer number (e.g., 2 through 16). In addition, a multiplier 42 may be added to the path of the filtered noise such that the noise added each N samples is multiplied by N such that the noise-modified playback corrected error received at coefficient control block 31 is a reasonable estimate of the unfiltered noise injected into the noise-modified reference microphone signal. Accordingly, the sampling rate of filter 32C may be further significantly reduced (e.g., by a factor of 2 or more) beyond that described above in reference to ANC circuit 30A. For example, in some embodiments filter 32 may sample at a rate of 1.5 MHz, while noise generator 37 and W coefficient control block 31 may operate at 48 kHz, and filter 32C may operate at 48 kHz/N.


Referring now to FIG. 3C, details of another ANC circuit 30C are shown in accordance with an alternative embodiment of the present disclosure that may be used to implement ANC circuit 30 of FIG. 2. ANC circuit 30C is similar to ANC circuit 30A of FIG. 3A, so only differences between them will be described below. In ANC circuit 30C, instead of generating noise by noise generator 37 and filtering it, shaped noise itself may be stored in noise buffer 37B. In some embodiments, the shaped noise may be made periodic, for example, by taking a magnitude and phase response of a signal in a multiple-point fast Fourier transform and storing the inverse fast Fourier transform of the response in noise buffer 37B. Because filter 32C is, in some embodiments, a finite impulse response filter that slowly changes, the periodic shaped noise signal output by noise buffer 37B may be filtered by filter 32C, resulting in a periodic error noise signal output by filter 32C and stored in error buffer 44, assuming the response W(z) of filter 32C did not change. Such periodic error noise signal may be subtracted from the decimated playback corrected error by combiner 36C to generate the noise-modified playback corrected error applied to W coefficient control block 31. ANC circuit 30C may from time-to-time recompute the periodic error noise signal and store the recomputed periodic error noise signal in error buffer 44. For example, in some embodiments, ANC circuit 30C may recompute the periodic error noise signal and store the recomputed periodic error noise signal in error buffer 44 responsive to a substantial change in response WCOPY(z) of filter 32C. In these and other embodiments, ANC circuit 30C may recompute the periodic error noise signal and store the recomputed periodic error noise signal in error buffer 44 at periodic intervals less than the sample rate of the sample rate of filter 32C (e.g., every 100 milliseconds).


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. An integrated circuit for implementing at least a portion of a personal audio device, comprising: an output for providing a signal to a transducer including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer;a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds;an error microphone input for receiving an error microphone signal indicative of the acoustic output of the transducer and the ambient audio sounds at the transducer; anda processing circuit that implements an adaptive filter having a response that generates the anti-noise signal from the reference microphone signal to reduce the presence of the ambient audio sounds heard by the listener, wherein: the processing circuit shapes the response of the adaptive filter in conformity with the error microphone signal and the reference microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds present in the error microphone signal;the response of the adaptive filter is further adjusted independent of the adapting by combining injected noise with the reference microphone signal and the processing circuit further implements a copy of the adaptive filter to receive the injected noise so that the response of the copy of the adaptive filter is controlled by the adaptive filter adapting to cancel a combination of the ambient audio sounds and the injected noise;the processing circuit further controls the response of the adaptive filter with the coefficients adapted in the copy of the adaptive filter, whereby the injected noise is not present in the anti-noise signal; andeach of a sample rate of the copy of the adaptive filter and a rate of adapting of the adaptive filter is significantly less than a sample rate of the adaptive filter and the sample rate of the copy of the adaptive filter is significantly less than the rate of adapting of the adaptive filter.
  • 2. The integrated circuit of claim 1, wherein the processing circuit further implements a first decimator for decimating the reference microphone signal to the sample rate of the copy of the adaptive filter and a second decimator for decimating the error microphone signal to the sample rate of the copy of the adaptive filter, such that the processing circuit shapes the response of the adaptive filter in conformity with the decimated error microphone signal and the decimated reference microphone signal.
  • 3. The integrated circuit of claim 1, wherein the processing circuit shapes the response of the adaptive filter in conformity with a first signal combining the reference microphone signal with the injected noise and a second signal comprising the error microphone signal combined with a periodic sample of the injected noise filtered by the copy of the adaptive filter.
  • 4. The integrated circuit of claim 1, wherein the response of the adaptive filter is reduced in frequency regions in a frequency range of the injected noise.
  • 5. The integrated circuit of claim 1, wherein the injected noise is provided by a periodic shaped noise signal stored in a buffer, such that the copy of the adaptive filter generates a periodic error noise signal from the periodic shaped noise signal, further such that the processing circuit shapes the response of the adaptive filter in conformity with a combination of the error microphone signal and the periodic error noise signal, and a combination of the periodic shaped noise signal and the reference microphone signal.
  • 6. The integrated circuit of claim 5, wherein the processing circuit stores the periodic error noise signal in a second buffer, such that the processing circuit shapes the response of the adaptive filter in conformity with a combination of the error microphone signal, the periodic error noise signal stored in the buffer, and a combination of the periodic shaped noise signal and the reference microphone signal.
  • 7. The integrated circuit of claim 6, wherein the processing circuit updates the second buffer with the periodic error noise signal responsive to a substantial change in the response of the adaptive filter.
  • 8. The integrated circuit of claim 6, wherein the processing circuit updates the second buffer at periodic intervals, wherein the frequency of the periodic intervals is significantly less than a sample rate of the copy of the adaptive filter.
  • 9. A method comprising: receiving a reference microphone signal indicative of ambient audio sounds at the acoustic output of a transducer;receiving an error microphone signal indicative of an acoustic output of the transducer and the ambient audio sounds at the acoustic output of the transducer;generating an anti-noise signal from filtering the reference microphone signal with an adaptive filter to reduce the presence of the ambient audio sounds heard by a listener and shaping a response of the adaptive filter in conformity with the error microphone signal and the reference microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds present in the error microphone signal;further adjusting the response of the adaptive filter by combining injected noise with the reference microphone signal;receiving the injected noise by a copy of the adaptive filter so that the response of the copy of the adaptive filter is controlled by the adaptive filter adapting to cancel a combination of the ambient audio sounds and the injected noise; andcontrolling the response of the adaptive filter with the coefficients adapted in the copy of the adaptive filter, whereby the injected noise is not present in the anti-noise signal;wherein each of a sample rate of the copy of the adaptive filter and a rate of adapting of the adaptive filter is significantly less than a sample rate of the adaptive filter and the sample rate of the copy of the adaptive filter is significantly less than the rate of adapting of the adaptive filter.
  • 10. The method of claim 9, further comprising decimating the reference microphone signal to the sample rate of the copy of the adaptive filter; anddecimating the error microphone signal to the sample rate of the copy of the adaptive filter, such that the processing circuit shapes the response of the adaptive filter in conformity with the decimated error microphone signal and the decimated reference microphone signal.
  • 11. The method of claim 9, wherein shaping the response of the adaptive filter comprises shaping the response of the adaptive filter in conformity with a first signal combining the reference microphone signal with the injected noise and a second signal comprising the error microphone signal combined with a periodic sample of the injected noise filtered by the copy of the adaptive filter.
  • 12. The method of claim 9, wherein the response of the adaptive filter is reduced in frequency regions in a frequency range of the injected noise.
  • 13. The method of claim 9, wherein: the injected noise is not present in the anti-noise signal and is provided by a periodic shaped noise signal stored in a buffer, such that the copy of the adaptive filter generates a periodic error noise signal from the periodic shaped noise signal; andthe method further comprise shaping of the response of the adaptive filter in conformity with a combination of the error microphone signal and the periodic error noise signal, and a combination of the periodic shaped noise signal and the reference microphone signal.
  • 14. The method of claim 13, further comprising storing the periodic error noise signal in a second buffer, such that the response of the adaptive filter is shaped in conformity with a combination of the error microphone signal, the periodic error noise signal stored in the buffer, and a combination of the periodic shaped noise signal and the reference microphone signal.
  • 15. The method of claim 14, further comprising updating the second buffer with the periodic error noise signal responsive to a substantial change in the response of the adaptive filter.
  • 16. The method of claim 14, further comprising updating the second buffer at periodic intervals, wherein the frequency of the periodic intervals is significantly less than a sample rate of the copy of the adaptive filter.
US Referenced Citations (325)
Number Name Date Kind
4649507 Inaba et al. Mar 1987 A
5117401 Feintuch May 1992 A
5204827 Fujita et al. Apr 1993 A
5251263 Andrea et al. Oct 1993 A
5272656 Genereux Dec 1993 A
5278913 Delfosse et al. Jan 1994 A
5321759 Yuan Jun 1994 A
5337365 Hamabe et al. Aug 1994 A
5359662 Yuan et al. Oct 1994 A
5377276 Terai et al. Dec 1994 A
5410605 Sawada et al. Apr 1995 A
5425105 Lo et al. Jun 1995 A
5445517 Kondou et al. Aug 1995 A
5465413 Enge et al. Nov 1995 A
5481615 Eatwell et al. Jan 1996 A
5548681 Gleaves et al. Aug 1996 A
5559893 Krokstad Sep 1996 A
5563819 Nelson Oct 1996 A
5586190 Trantow et al. Dec 1996 A
5633795 Popovich May 1997 A
5640450 Watanabe Jun 1997 A
5668747 Ohashi Sep 1997 A
5696831 Inanga Dec 1997 A
5699437 Finn Dec 1997 A
5706344 Finn Jan 1998 A
5740256 Castello Da Costa et al. Apr 1998 A
5768124 Stothers et al. Jun 1998 A
5809152 Nakamura et al. Sep 1998 A
5815582 Claybaugh et al. Sep 1998 A
5832095 Daniels Nov 1998 A
5909498 Smith Jun 1999 A
5940519 Kuo Aug 1999 A
5946391 Dragwidge et al. Aug 1999 A
5991418 Kuo Nov 1999 A
6041126 Terai et al. Mar 2000 A
6118878 Jones Sep 2000 A
6185300 Romesburg Feb 2001 B1
6219427 Kates et al. Apr 2001 B1
6278786 McIntosh Aug 2001 B1
6282176 Hemkumar Aug 2001 B1
6317501 Matsuo Nov 2001 B1
6418228 Terai et al. Jul 2002 B1
6434246 Kates et al. Aug 2002 B1
6434247 Kates et al. Aug 2002 B1
6522746 Marchok et al. Feb 2003 B1
6683960 Fujii et al. Jan 2004 B1
6766292 Chandran et al. Jul 2004 B1
6768795 Feltstrom et al. Jul 2004 B2
6850617 Weigand Feb 2005 B1
6940982 Watkins Sep 2005 B1
7058463 Ruha et al. Jun 2006 B1
7103188 Jones Sep 2006 B1
7110864 Restrepo et al. Sep 2006 B2
7181030 Rasmussen et al. Feb 2007 B2
7330739 Somayajula Feb 2008 B2
7365669 Melanson Apr 2008 B1
7368918 Henson et al. May 2008 B2
7406179 Ryan Jul 2008 B2
7441173 Restrepo et al. Oct 2008 B2
7466838 Moseley Dec 2008 B1
7555081 Keele, Jr. Jun 2009 B2
7680456 Muhammad et al. Mar 2010 B2
7742790 Konchitsky et al. Jun 2010 B2
7817808 Konchitsky et al. Oct 2010 B2
7885417 Christoph Feb 2011 B2
8019050 Mactavish et al. Sep 2011 B2
8107637 Asada et al. Jan 2012 B2
8144888 Berkhoff et al. Mar 2012 B2
8155334 Joho et al. Apr 2012 B2
8165313 Carreras Apr 2012 B2
8249262 Chua et al. Aug 2012 B2
8254589 Mitsuhata Aug 2012 B2
8290537 Lee et al. Oct 2012 B2
8311243 Tucker et al. Nov 2012 B2
8325934 Kuo Dec 2012 B2
8363856 Lesso Jan 2013 B2
8374358 Buck et al. Feb 2013 B2
8379884 Horibe et al. Feb 2013 B2
8401200 Tiscareno et al. Mar 2013 B2
8401204 Odent et al. Mar 2013 B2
8411872 Stothers et al. Apr 2013 B2
8442251 Jensen et al. May 2013 B2
8526627 Asao et al. Sep 2013 B2
8526628 Massie et al. Sep 2013 B1
8532310 Gauger, Jr. et al. Sep 2013 B2
8539012 Clark Sep 2013 B2
8804974 Melanson Aug 2014 B1
8848936 Kwatra et al. Sep 2014 B2
8907829 Naderi Dec 2014 B1
8908877 Abdollahzadeh Milani et al. Dec 2014 B2
8909524 Stoltz et al. Dec 2014 B2
8942976 Li et al. Jan 2015 B2
8948407 Alderson et al. Feb 2015 B2
8948410 Van Leest Feb 2015 B2
8958571 Kwatra et al. Feb 2015 B2
8977545 Zeng et al. Mar 2015 B2
9020160 Gauger, Jr. Apr 2015 B2
9066176 Hendrix et al. Jun 2015 B2
9082391 Yermech et al. Jul 2015 B2
9094744 Lu et al. Jul 2015 B1
9106989 Li et al. Aug 2015 B2
9107010 Abdollahzadeh Milani et al. Aug 2015 B2
9203366 Eastty Dec 2015 B2
9264808 Zhou et al. Feb 2016 B2
9294836 Zhou et al. Mar 2016 B2
9392364 Milani et al. Jul 2016 B1
9460701 Yong et al. Oct 2016 B2
9462376 Alderson Oct 2016 B2
9478210 Hellman Oct 2016 B2
9478212 Sorensen et al. Oct 2016 B1
9479860 Kwatra et al. Oct 2016 B2
20010053228 Jones Dec 2001 A1
20020003887 Zhang et al. Jan 2002 A1
20030063759 Brennan et al. Apr 2003 A1
20030072439 Gupta Apr 2003 A1
20030185403 Sibbald Oct 2003 A1
20040001450 He et al. Jan 2004 A1
20040017921 Mantovani Jan 2004 A1
20040047464 Yu et al. Mar 2004 A1
20040120535 Woods Jun 2004 A1
20040122879 McGrath Jun 2004 A1
20040165736 Hetherington et al. Aug 2004 A1
20040167777 Hetherington et al. Aug 2004 A1
20040176955 Farinelli, Jr. Sep 2004 A1
20040196992 Ryan Oct 2004 A1
20040202333 Czermak et al. Oct 2004 A1
20040240677 Onishi et al. Dec 2004 A1
20040242160 Ichikawa et al. Dec 2004 A1
20040264706 Ray et al. Dec 2004 A1
20050004796 Trump et al. Jan 2005 A1
20050018862 Fisher Jan 2005 A1
20050110568 Robinson et al. May 2005 A1
20050117754 Sakawaki Jun 2005 A1
20050175187 Wright et al. Aug 2005 A1
20050207585 Christoph Sep 2005 A1
20050240401 Ebenezer Oct 2005 A1
20060013408 Lee Jan 2006 A1
20060018460 McCree Jan 2006 A1
20060035593 Leeds Feb 2006 A1
20060055910 Lee Mar 2006 A1
20060069556 Nadjar et al. Mar 2006 A1
20060109941 Keele, Jr. May 2006 A1
20060153400 Fujita et al. Jul 2006 A1
20070030989 Kates Feb 2007 A1
20070033029 Sakawaki Feb 2007 A1
20070038447 Inoue et al. Feb 2007 A1
20070047742 Taenzer et al. Mar 2007 A1
20070053524 Haulick et al. Mar 2007 A1
20070076896 Hosaka et al. Apr 2007 A1
20070154031 Avendano et al. Jul 2007 A1
20070208520 Zhang et al. Sep 2007 A1
20070258597 Rasmussen et al. Nov 2007 A1
20070297620 Choy Dec 2007 A1
20080019548 Avendano Jan 2008 A1
20080101589 Horowitz et al. May 2008 A1
20080107281 Togami et al. May 2008 A1
20080144853 Sommerfeldt et al. Jun 2008 A1
20080166002 Amsel Jul 2008 A1
20080177532 Greiss et al. Jul 2008 A1
20080181422 Christoph Jul 2008 A1
20080226098 Haulick et al. Sep 2008 A1
20080240413 Mohammed et al. Oct 2008 A1
20080240455 Inoue et al. Oct 2008 A1
20080240457 Innoue et al. Oct 2008 A1
20090012783 Klein Jan 2009 A1
20090034748 Sibbald Feb 2009 A1
20090041260 Jorgensen et al. Feb 2009 A1
20090046867 Clemow Feb 2009 A1
20090060222 Jeong et al. Mar 2009 A1
20090080670 Solbeck et al. Mar 2009 A1
20090086990 Christoph Apr 2009 A1
20090136057 Taenzer May 2009 A1
20090175461 Nakamura et al. Jul 2009 A1
20090175466 Elko et al. Jul 2009 A1
20090196429 Ramakrishnan et al. Aug 2009 A1
20090220107 Every et al. Sep 2009 A1
20090238369 Ramakrishnan et al. Sep 2009 A1
20090245529 Asada et al. Oct 2009 A1
20090254340 Sun et al. Oct 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090296965 Kojima Dec 2009 A1
20090304200 Kim et al. Dec 2009 A1
20090311979 Husted et al. Dec 2009 A1
20100014683 Maeda et al. Jan 2010 A1
20100014685 Wurm Jan 2010 A1
20100061564 Clemow et al. Mar 2010 A1
20100069114 Lee et al. Mar 2010 A1
20100082339 Konchitsky et al. Apr 2010 A1
20100098263 Pan et al. Apr 2010 A1
20100098265 Pan et al. Apr 2010 A1
20100124335 Shridhar et al. May 2010 A1
20100124336 Shridhar et al. May 2010 A1
20100124337 Wertz et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100142715 Goldstein et al. Jun 2010 A1
20100150367 Mizuno Jun 2010 A1
20100158330 Guissin et al. Jun 2010 A1
20100166203 Peissig et al. Jul 2010 A1
20100166206 Macours Jul 2010 A1
20100183175 Chen et al. Jul 2010 A1
20100195838 Bright Aug 2010 A1
20100195844 Christoph et al. Aug 2010 A1
20100207317 Iwami et al. Aug 2010 A1
20100226210 Kordis et al. Sep 2010 A1
20100246855 Chen Sep 2010 A1
20100266137 Sibbald et al. Oct 2010 A1
20100272276 Carreras et al. Oct 2010 A1
20100272283 Carreras et al. Oct 2010 A1
20100272284 Marcel et al. Oct 2010 A1
20100274564 Bakalos et al. Oct 2010 A1
20100284546 DeBrunner et al. Nov 2010 A1
20100291891 Ridgers et al. Nov 2010 A1
20100296666 Lin Nov 2010 A1
20100296668 Lee et al. Nov 2010 A1
20100310086 Magrath et al. Dec 2010 A1
20100310087 Ishida Dec 2010 A1
20100316225 Saito et al. Dec 2010 A1
20100322430 Isberg Dec 2010 A1
20110002468 Tanghe Jan 2011 A1
20110007907 Park et al. Jan 2011 A1
20110026724 Doclo Feb 2011 A1
20110091047 Konchitsky et al. Apr 2011 A1
20110096933 Eastty Apr 2011 A1
20110099010 Zhang Apr 2011 A1
20110106533 Yu May 2011 A1
20110116643 Tiscareno May 2011 A1
20110129098 Delano et al. Jun 2011 A1
20110130176 Magrath et al. Jun 2011 A1
20110144984 Konchitsky Jun 2011 A1
20110150257 Jensen Jun 2011 A1
20110158419 Theverapperuma et al. Jun 2011 A1
20110206214 Christoph et al. Aug 2011 A1
20110222698 Asao et al. Sep 2011 A1
20110222701 Donaldson et al. Sep 2011 A1
20110249826 Van Leest Oct 2011 A1
20110288860 Schevciw et al. Nov 2011 A1
20110293103 Park et al. Dec 2011 A1
20110299695 Nicholson Dec 2011 A1
20110305347 Wurm Dec 2011 A1
20110317848 Ivanov et al. Dec 2011 A1
20120057720 Van Leest Mar 2012 A1
20120084080 Konchitsky et al. Apr 2012 A1
20120135787 Kusunoki et al. May 2012 A1
20120140917 Nicholson et al. Jun 2012 A1
20120140942 Loeda Jun 2012 A1
20120140943 Hendrix et al. Jun 2012 A1
20120148062 Scarlett et al. Jun 2012 A1
20120155666 Nair Jun 2012 A1
20120170766 Alves et al. Jul 2012 A1
20120179458 Oh et al. Jul 2012 A1
20120185524 Clark Jul 2012 A1
20120207317 Abdollahzadeh Milani et al. Aug 2012 A1
20120215519 Park et al. Aug 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120259626 Li et al. Oct 2012 A1
20120263317 Shin et al. Oct 2012 A1
20120281850 Hyatt Nov 2012 A1
20120300958 Klemmensen Nov 2012 A1
20120300960 Mackay et al. Nov 2012 A1
20120308021 Kwatra et al. Dec 2012 A1
20120308024 Alderson et al. Dec 2012 A1
20120308025 Hendrix et al. Dec 2012 A1
20120308026 Kamath et al. Dec 2012 A1
20120308027 Kwatra Dec 2012 A1
20120308028 Kwatra et al. Dec 2012 A1
20120310640 Kwatra et al. Dec 2012 A1
20120316872 Stoltz et al. Dec 2012 A1
20130010982 Elko et al. Jan 2013 A1
20130022213 Alcock Jan 2013 A1
20130083939 Fellers et al. Apr 2013 A1
20130156238 Birch et al. Jun 2013 A1
20130182792 Wyville Jul 2013 A1
20130222516 Do et al. Aug 2013 A1
20130243198 Van Rumpt Sep 2013 A1
20130243225 Yokota Sep 2013 A1
20130259251 Bakalos Oct 2013 A1
20130272539 Kim et al. Oct 2013 A1
20130287218 Alderson et al. Oct 2013 A1
20130287219 Hendrix et al. Oct 2013 A1
20130301842 Hendrix et al. Nov 2013 A1
20130301846 Alderson et al. Nov 2013 A1
20130301847 Alderson et al. Nov 2013 A1
20130301848 Zhou et al. Nov 2013 A1
20130301849 Alderson Nov 2013 A1
20130315403 Samuelsson Nov 2013 A1
20130343556 Bright Dec 2013 A1
20130343571 Rayala et al. Dec 2013 A1
20140036127 Pong et al. Feb 2014 A1
20140044275 Goldstein et al. Feb 2014 A1
20140050332 Nielsen et al. Feb 2014 A1
20140051483 Schoerkmaier Feb 2014 A1
20140072134 Po et al. Mar 2014 A1
20140072135 Bajic et al. Mar 2014 A1
20140086425 Jensen et al. Mar 2014 A1
20140126735 Gauger, Jr. May 2014 A1
20140169579 Azmi Jun 2014 A1
20140177851 Kitazawa et al. Jun 2014 A1
20140177890 Hojlund et al. Jun 2014 A1
20140211953 Alderson et al. Jul 2014 A1
20140226827 Abdollahzadeh Milani et al. Aug 2014 A1
20140270223 Li et al. Sep 2014 A1
20140270224 Zhou et al. Sep 2014 A1
20140277022 Hendrix et al. Sep 2014 A1
20140294182 Axelsson Oct 2014 A1
20140307887 Alderson Oct 2014 A1
20140307888 Alderson et al. Oct 2014 A1
20140307890 Zhou et al. Oct 2014 A1
20140307899 Hendrix et al. Oct 2014 A1
20140314244 Yong et al. Oct 2014 A1
20140314246 Hellman Oct 2014 A1
20140314247 Zhang Oct 2014 A1
20140341388 Goldstein Nov 2014 A1
20140369517 Zhou et al. Dec 2014 A1
20150078572 Abdollahzadeh Milani et al. Mar 2015 A1
20150092953 Abdollahzadeh Milani et al. Apr 2015 A1
20150104032 Kwatra et al. Apr 2015 A1
20150161980 Alderson et al. Jun 2015 A1
20150161981 Kwatra Jun 2015 A1
20150163592 Alderson Jun 2015 A1
20150195646 Kumar et al. Jul 2015 A1
20150256660 Kaller et al. Sep 2015 A1
20150256953 Kwatra et al. Sep 2015 A1
20150269926 Alderson et al. Sep 2015 A1
20150365761 Alderson et al. Dec 2015 A1
20160180830 Lu et al. Jun 2016 A1
Foreign Referenced Citations (88)
Number Date Country
101552939 Oct 2009 CN
105284126 Jan 2016 CN
105308678 Feb 2016 CN
105324810 Feb 2016 CN
10543170 Mar 2016 CN
10545387 Mar 2016 CN
102011013343 Sep 2012 DE
0412902 Feb 1991 EP
0756407 Jan 1997 EP
0898266 Feb 1999 EP
1691577 Aug 2006 EP
1880699 Jan 2008 EP
1921603 May 2008 EP
1947642 Jul 2008 EP
2133866 Dec 2009 EP
2237573 Oct 2010 EP
2259250 Dec 2010 EP
2216774 Aug 2011 EP
239550 Dec 2011 EP
2395501 Dec 2011 EP
2551845 Jan 2013 EP
2583074 Apr 2013 EP
2984648 Feb 2016 EP
2987160 Feb 2016 EP
2987162 Feb 2016 EP
2987337 Feb 2016 EP
2401744 Nov 2004 GB
2436657 Oct 2007 GB
2455821 Jun 2009 GB
2455824 Jun 2009 GB
2455828 Jun 2009 GB
2484722 Apr 2012 GB
2539280 Dec 2016 GB
06006246 Jan 1994 JP
H06186985 Jul 1994 JP
H06232755 Aug 1994 JP
07098592 Apr 1995 JP
07325588 Dec 1995 JP
H11305783 Nov 1999 JP
2000089770 Mar 2000 JP
2002010355 Jan 2002 JP
2004007107 Jan 2004 JP
2006217542 Aug 2006 JP
2007060644 Mar 2007 JP
2008015046 Jan 2008 JP
2010277025 Dec 2010 JP
2011061449 Mar 2011 JP
9304529 Mar 1993 WO
9407212 Mar 1994 WO
1999011045 Mar 1999 WO
2003015074 Feb 2003 WO
2003015275 Feb 2003 WO
WO2004009007 Jan 2004 WO
2004017303 Feb 2004 WO
2006125061 Nov 2006 WO
2006128768 Dec 2006 WO
2007007916 Jan 2007 WO
2007011337 Jan 2007 WO
2007110807 Oct 2007 WO
2007113487 Nov 2007 WO
2009041012 Apr 2009 WO
2009110087 Sep 2009 WO
2010117714 Oct 2010 WO
2011035061 Mar 2011 WO
2012107561 Aug 2012 WO
2012119808 Sep 2012 WO
2012134874 Oct 2012 WO
2012166273 Dec 2012 WO
2012166388 Dec 2012 WO
2013106370 Jul 2013 WO
2014158475 Oct 2014 WO
2014168685 Oct 2014 WO
2014172005 Oct 2014 WO
2014172006 Oct 2014 WO
2014172010 Oct 2014 WO
2014172019 Oct 2014 WO
2014172021 Oct 2014 WO
2014200787 Dec 2014 WO
2015038255 Mar 2015 WO
2015088639 Jun 2015 WO
2015088639 Jun 2015 WO
2015088651 Jun 2015 WO
2015088653 Jun 2015 WO
2015134225 Sep 2015 WO
2015191691 Dec 2015 WO
2016054186 Apr 2016 WO
2016100602 Jun 2016 WO
2016198481 Dec 2016 WO
Non-Patent Literature Citations (64)
Entry
Parkins, et al., Narrowband and broadband active control in an enclosure using the acoustic energy density, J. Acoust. Soc. Am. Jul. 2000, pp. 192-203, vol. 108, issue 1, U.S.
International Patent Application No. PCT/US2015/022113, International Search Report and Written Opinion, dated Jul. 23, 2015, 13 pages.
International Patent Application No. PCT/US2014/049600, International Search Report and Written Opinion, dated Jan. 14, 2015, 12 pages.
International Patent Application No. PCT/US2014/061753, International Search Report and Written Opinion, dated Feb. 9, 2015, 8 pages.
International Patent Application No. PCT/US2014/061548, International Search Report and Written Opinion, dated Feb. 12, 2015, 13 pages.
International Patent Application No. PCT/US2014/060277, International Search Report and Written Opinion, dated Mar. 9, 2015, 11 pages.
Kuo, Sen and Tsai, Jianming, Residual noise shaping technique for active noise control systems, J. Acoust. Soc. Am. 95 (3), Mar. 1994, pp. 1665-1668.
Combined Search and Examination Report, Application No. GB1512832.5, dated Jan. 28, 2016, 7 pages.
International Patent Application No. PCT/US2015/066260, International Search Report and Written Opinion, dated Apr. 21, 2016, 13 pages.
Combined Search and Examination Report, Application No. GB1519000.2, dated Apr. 21, 2016, 5 pages.
Ray, Laura et al., Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY, vol. 120, No. 4, Jan. 2006, pp. 2026-2036.
International Patent Application No. PCT/US2014/017112, International Search Report and Written Opinion, dated May 8, 2015, 22 pages.
Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, Mar. 14-19, 2010 pp. 349-352.
Ryan, et al., “Optimum near-field performance of microphone arrays subject to a far-field beampattern constraint”, 2248 J. Acoust. Soc. Am. 108, Nov. 2000.
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, vol. 9, No. 1, Jan. 2002.
Martin, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Trans. on Speech and Audio Processing, col. 9, No. 5, Jul. 2001.
Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. 7th EUSIPCO '94, Edinburgh, U.K., Sep. 13-16, 1994, pp. 1182-1195.
Cohen, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Trans. on Speech & Audio Proc., vol. 11, Issue 5, Sep. 2003.
Black, John W., “An Application of Side-Tone in Subjective Tests of Microphones and Headsets”, Project Report No. NM 001 064.01.20, Research Report of the U.S. Naval School of Aviation Medicine, Feb. 1, 1954, 12 pages (pp. 1-12 in pdf), Pensacola, FL, US.
Lane, et al., “Voice Level: Autophonic Scale, Perceived Loudness, and the Effects of Sidetone”, The Journal of the Acoustical Society of America, Feb. 1961, pp. 160-167, vol. 33, No. 2., Cambridge, MA, US.
Liu, et al., “Compensatory Responses to Loudness-shifted Voice Feedback During Production of Mandarin Speech”, Journal of the Acoustical Society of America, Oct. 2007, pp. 2405-2412, vol. 122, No. 4.
Paepcke, et al., “Yelling in the Hall: Using Sidetone to Address a Problem with Mobile Remote Presence Systems”, Symposium on User Interface Software and Technology, Oct. 16-19, 2011, 10 pages (pp. 1-10 in pdf), Santa Barbara, CA, US.
Peters, Robert W., “The Effect of High-Pass and Low-Pass Filtering of Side-Tone Upon Speaker Intelligibility”, Project Report No. NM 001 064.01.25, Research Report of the U.S. Naval School of Aviation Medicine, Aug. 16, 1954, 13 pages (pp. 1-13 in pdf), Pensacola, FL, US.
Therrien, et al., “Sensory Attenuation of Self-Produced Feedback: The Lombard Effect Revisited”, PLOS ONE, Nov. 2012, pp. 1-7, vol. 7, Issue 11, e49370, Ontario, Canada.
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded on May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphones-with-noise-cancellation-tech.
International Patent Application No. PCT/US2014/017096, International Search Report and Written Opinion, dated May 27, 2014, 11 pages.
Jin, et al., “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB.
Erkelens et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech, and Language Processing, vol. 16, No. 6, Aug. 2008.
Rao et al., “A Novel Two Stage Single Channle Speech Enhancement Technique”, India Conference (INDICON) 2011 Annual IEEE, IEEE, Dec. 15, 2011.
Rangachari et al., “A noise-estimation algorithm for highly non-stationary environments” Speech Communication, Elsevier Science Publishers, vol. 48, No. 2, Feb. 1, 2006.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017343, dated Aug. 8, 2014, 22 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/018027, dated Sep. 4, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017374, dated Sep. 8, 2014, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019395, dated Sep. 9, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019469, dated Sep. 12, 2014, 13 pages.
Feng, Jinwei et al., “A broadband self-tuning active noise equaliser”, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 62, No. 2, Oct. 1, 1997, pp. 251-256.
Zhang, Ming et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, New York, NY, vol. 11, No. 1, Jan. 1, 2003.
Lopez-Gaudana, Edgar et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, 2008, MWSCAS 2008, Aug. 10, 2008, pp. 277-280.
Widrow, B. et al., Adaptive Noise Cancelling: Principles and Applications, Proceedings of the IEEE, IEEE, New York, NY, U.S., vol. 63, No. 13, Dec. 1975, pp. 1692-1716.
Morgan, Dennis R. et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, U.S., vol. 43, No. 8, Aug. 1995, pp. 1819-1829.
International Patent Application No. PCT/US2014/040999, International Search Report and Written Opinion, dated Oct. 18, 2014, 12 pages.
International Patent Application No. PCT/US2013/049407, International Search Report and Written Opinion, dated Jun. 18, 2014, 13 pages.
International Patent Application No. PCT/US2015/017124, International Search Report and Written Opinion, dated Jul. 13, 2015, 19 pages.
International Patent Application No. PCT/US2015/035073, International Search Report and Written Opinion, dated Oct. 8, 2015, 11 pages.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/EP2016/063079, dated Dec. 12, 2016.
Goeckler, H.G. et al.: Efficient Multirate Digital Filters Based on Fractional Polyphase Decomposition for Subnyquist Processing, Proceedings of the European Conference on Circuit Theory and Design, vol. 1, Jan. 1, 1999, pp. 409-412.
Examination Report under Section 18(3), United Kingdom Application No. GB1512832.5, dated Feb. 2, 2017.
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals,” IEEE Signal Processing Letters, Apr. 1998, pp. 95-97, vol. 5, No. 4, IEEE Press, Piscataway, NJ.
Toochinda, et al. “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA.
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ.
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ.
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ.
Mali, Dilip, “Comparison of DC Offset Effects on LMS Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher.
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications.
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA.
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA.
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, pp. 264-267, vol. 1, Kobe, Japan.
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China.
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, pp. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ.
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, pp. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ.
D. Senderowicz et al., “Low-Voltage Double-Sampled Delta-Sigma Converters,” IEEE J. Solid-State Circuits, vol. 37, pp. 1215-1225, Dec. 1997, 13 pages.
P.J. Hurst and K.C. Dyer, “An improved double sampling scheme for switched-capacitor delta-sigma modulators,” IEEE Int. Symp. Circuits Systems, May 1992, vol. 3, pp. 1179-1182, 4 pages.
Lopez-Caudana, Edgar Omar, Active Noise Cancellation: The Unwanted Signal and the Hybrid Solution, Adaptive Filtering Applications, Dr. Lino Garcia, ISBN: 978-953-307-306-4, InTech.
Booji, P.S., Berkhoff, A.P., Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones, Proceedings of ISMA2010 including USD2010, pp. 151-166.
Related Publications (1)
Number Date Country
20150163592 A1 Jun 2015 US