I. Reference to Co-Pending Applications for Patent
The present Application is related to the following co-pending U.S. Patent application Ser. No. 11/186,152, entitled “Systems And Methods For Beamforming In Multi-Input Multi-Output Communication Systems” and filed on even date herewith. Application is also related to U.S. patent application Ser. No. 60/660,925 filed Mar. 10, 2005; and U.S. patent application Ser. No. 60/667,705 filed Apr. 1, 2005 each of which are assigned to the assignee hereof, and expressly incorporated by reference herein.
I. Field
The present document relates generally to wireless communication and amongst other things to beamforming for wireless communication systems.
II. Background
An orthogonal frequency division multiple access (OFDMA) system utilizes orthogonal frequency division multiplexing (OFDM). OFDM is a multi-carrier modulation technique that partitions the overall system bandwidth into multiple (N) orthogonal frequency subcarriers. These subcarriers may also be called tones, bins, and frequency channels. Each subcarrier is associated with a respective sub carrier that may be modulated with data. Up to N modulation symbols may be sent on the N total subcarriers in each OFDM symbol period. These modulation symbols are converted to the time-domain with an N-point inverse fast Fourier transform (IFFT) to generate a transformed symbol that contains N time-domain chips or samples.
In a frequency hopping communication system, data is transmitted on different frequency subcarriers during different time intervals, which may be referred to as “hop periods.” These frequency subcarriers may be provided by orthogonal frequency division multiplexing, other multi-carrier modulation techniques, or some other constructs. With frequency hopping, the data transmission hops from subcarrier to subcarrier in a pseudo-random manner. This hopping provides frequency diversity and allows the data transmission to better withstand deleterious path effects such as narrow-band interference, jamming, fading, and so on.
An OFDMA system can support multiple access terminals simultaneously. For a frequency hopping OFDMA system, a data transmission for a given access terminal may be sent on a “traffic” channel that is associated with a specific frequency hopping (FH) sequence. This FH sequence indicates the specific subcarriers to use for the data transmission in each hop period. Multiple data transmissions for multiple access terminals may be sent simultaneously on multiple traffic channels that are associated with different FH sequences. These FH sequences may be defined to be orthogonal to one another so that only one traffic channel, and thus only one data transmission, uses each subcarrier in each hop period. By using orthogonal FH sequences, the multiple data transmissions generally do not interfere with one another while enjoying the benefits of frequency diversity.
A problem that must be dealt with in all communication systems is that the receiver is located in a specific portion of an area served by the access point. In such cases, where a transmitter has multiple transmit antennas, the signals provided from each antenna need not be combined to provide maximum power at the receiver. In these cases, there may be problems with decoding of the signals received at the receiver. One way to deal with these problems is by utilizing beamforming.
Beamforming is a spatial processing technique that improves the signal-to-noise ratio of a wireless link with multiple antennas. Typically, beamforming may be used at either the transmitter and/or the receiver in a multiple antenna system. Beamforming provides many advantages in improving signal-to-noise ratios which improves decoding of the signals by the receiver.
A problem with beamforming for OFDM transmission systems is to obtain proper information regarding the channel(s) between a transmitter and receiver to generate beamforming weights in wireless communication systems, including OFDM systems. This is a problem due to the complexity required to calculate the beamforming weights and the need to provide sufficient information from the receiver to the transmitter.
Methods, apparatuses, and systems are provided that determine a type of channel information to feedback in wireless communication system are provided.
In one embodiment, a processor is operable to generate one of a hybrid channel information with optimal rank, a broadband channel information with optimal rank, or a beamformed channel information with optimal rank based upon whether the apparatus is scheduled.
In another embodiment, a method comprises determining whether a wireless communication device is scheduled to receive symbols. If the wireless communication device is scheduled to receive symbols, then generating beamformed channel information and if the wireless communication device is not scheduled to receive symbols, then generating broadband channel information.
Additionally, the determination as to the type of channel information to be generated may be informed based upon a distance between a current hop region and a prior hop region. Further, the determination as to the type of channel information to be generated may be informed based upon a number of hop periods since a certain type of feedback.
The features, nature, and advantages of the present embodiments may become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
a illustrates a block diagram of a forward link in a multiple access wireless communication system according to one embodiment;
b illustrates a block diagram of a reverse link in a multiple access wireless communication system according to one embodiment;
Referring to
Each cell includes several access terminals which are in communication with one or more sectors of each access point. For example, access terminals 130 and 132 are in communication base 142, access terminals 134 and 136 are in communication with access point 144, and access terminals 138 and 140 are in communication with access point 146.
It can be seen from
As used herein, an access point may be a fixed station used for communicating with the terminals and may also be referred to as, and include some or all the functionality of, a base station, a Node B, or some other terminology. An access terminal may also be referred to as, and include some or all the functionality of, a user equipment (UE), a wireless communication device, a terminal, a mobile station or some other terminology.
Referring to
In an OFDM frequency hopping system, one or more symbols 200 may be assigned to a given access terminal. In one embodiment of an allocation scheme as shown in
Each hop region 202 includes symbols 204 that are assigned to the one or more access terminals that are in communication with the sector of the access point and assigned to the hop region. During each hop period, or frame, the location of hop region 202 within the T symbol periods and S subcarriers varies according to a hopping sequence. In addition, the assignment of symbols 204 for the individual access terminals within hop region 202 may vary for each hop period.
The hop sequence may pseudo-randomly, randomly, or according to a predetermined sequence, select the location of the hop region 202 for each hop period. The hop sequences for different sectors of the same access point are designed to be orthogonal to one another to avoid “intra-cell” interference among the access terminal communicating with the same access point. Further, hop sequences for each access point may be pseudo-random with respect to the hop sequences for nearby access points. This may help randomize “inter-cell” interference among the access terminals in communication with different access points.
In the case of a reverse link communication, some of the symbols 204 of a hop region 202 are assigned to pilot symbols that are transmitted from the access terminals to the access point. The assignment of pilot symbols to the symbols 204 should preferably support space division multiple access (SDMA), where signals of different access terminals overlapping on the same hop region can be separated due to multiple receive antennas at a sector or access point, provided enough difference of spatial signatures corresponding to different access terminals.
It should be noted that while
It should be noted that while the embodiment of
Referring to
The broadband pilot symbols 310 and dedicated pilot symbols 322 may be utilized by the access terminals to generate channel quality information (CQI) regarding the channels between the access terminal and the access point for the channel between each transmit antenna that transmits symbols and receive antenna that receives these symbols. In an embodiment, the channel estimate may constitute noise, signal-to-noise ratios, pilot signal power, fading, delays, path-loss, shadowing, correlation, or any other measurable characteristic of a wireless communication channel.
In an embodiment, the CQI, which may be the effective signal-to-noise ratios (SNR), can be generated and provided to the access point separately for broadband pilot symbols 310 (referred to as the broadband CQI). The CQI may also be the effective signal-to-noise ratios (SNR) that are generated and provided to the access point separately for dedicated pilot symbols 322 (referred to as the dedicated-CQI or the beamformed CQI). The CQI can incorporate thermal noise and/or interference covaraince matrix or interference levels per receive antenna. The interference may be estimated from broadband pilots 310 or dedicated pilot symbols 322. This way, the access point can know the CQI for the entire bandwidth available for communication, as well as for the specific hop regions that have been used for transmission to the access terminal. The CQI from both broadband pilot symbols 310 and dedicated pilot symbols 322, independently, may provide more accurate rate prediction for the next packet to be transmitted, for large assignments with random hopping sequences and consistent hop region assignments for each user. Regardless of what type of CQI is fed-back, in some embodiments the broadband-CQI provided from the access terminal to the access point periodically and may be utilized for a power allocation on one or more forward link channels, such as forward link control channels.
Further, in those situation where the access terminal is not scheduled for forward link transmission or is irregularly scheduled, i.e. the access terminal is not scheduled for forward link transmission in during each hop period, the broadband-CQI can be provided to the access point for the next forward link transmission on a reverse link channel, such as the reverse link signaling or control channel. This broadband-CQI does not include beamforming gains since the broadband pilot symbols 310 are generally not beamformed.
In one embodiment (TDD systems), the access-point can derive the beamforming weights based upon its channel estimates using reverse link transmissions from the access terminal. The access point may derive channel estimates based upon symbols including the CQI transmitted from the access terminal over a dedicated channel, such as a signaling or control channel dedicated for feedback from the access terminal. The channel estimates may be utilized for beamforming weight generation.
In another embodiment (FDD systems), the access-point can derive the beamforming weights based upon channel estimates determined at the access terminal and provided over a reverse link transmissions to the access point. If the access terminal also has a reverse link assignment in each frame or hop period, whether in a separate or same hop period or frame as the forward link transmission, the channel estimate information may provided in the scheduled reverse link transmissions to the access point. The transmitted channel estimates may be utilized to for beamforming weight generation.
In another embodiment (FDD systems), the access-point can receive the beamforming weights from the access terminal over a reverse link transmission. If the access terminal also has a reverse link assignment in each frame or hop period, whether in a separate or same hop period or frame as the forward link transmission, the beamforming weights may be provided in the scheduled reverse link transmissions to the access point.
As used herein, the CQI (TDD), channel estimates (FDD), eigenbeam (FDD) feedback, or combinations thereof may termed as channel information utilized by an access point to generate beamforming weights.
Referring to
The coded data for each data stream may be multiplexed with pilot data using OFDM techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream is then modulated (i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed on provided by processor 430. In some embodiments, the number of parallel spatial streams may be varied according to the rank information that is transmitted from the user.
The modulation symbols for all data streams are then provided to a TX MIMO processor 446, which may further process the modulation symbols (e.g., for OFDM). TX MIMO processor 446 then provides NT symbol streams to NT transmitters (TMTR) 422a through 422t. In certain embodiments, TX MIMO processor 420 applies beamforming weights to the symbols of the data streams based upon the user to which the symbols are being transmitted and the antenna from which the symbol is being transmitted from that users channel response information.
Each transmitter 422 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. NT modulated signals from transmitters 422a through 422t are then transmitted from NT antennas 424a through 424t, respectively.
At receiver system 420, the transmitted modulated signals are received by NR antennas 452a through 452r and the received signal from each antenna 452 is provided to a respective receiver (RCVR) 454a through 454r. Each receiver 454 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.
An RX data processor 460 then receives and processes the NR received symbol streams from NR receivers 454a through 454r based on a particular receiver processing technique to provide the rank number of “detected” symbol streams. The processing by RX data processor 460 is described in further detail below. Each detected symbol stream includes symbols that are estimates of the modulation symbols transmitted for the corresponding data stream. RX data processor 460 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream which is provided to data sink 464 for storage and/or further processing. The processing by RX data processor 460 is complementary to that performed by TX MIMO processor 446 and TX data processor 444 at transmitter system 410.
The channel response estimate generated by RX processor 460 may be used to perform space, space/time processing at the receiver, adjust power levels, change modulation rates or schemes, or other actions. RX processor 460 may further estimate the signal-to-noise-and-interference ratios (SNRs) of the detected symbol streams, and possibly other channel characteristics, and provides these quantities to a processor 470. RX data processor 460 or processor 470 may further derive an estimate of the “effective” SNR for the system. Processor 470 then provides estimated channel information (CSI), which may comprise various types of information regarding the communication link and/or the received data stream. For example, the CSI may comprise only the operating SNR. In some embodiments, the channel information may comprises signal interference noise ratio (SINR). The CSI is then processed by a TX data processor 478, which also receives traffic data for a number of data streams from a data source 476, modulated by a modulator 480, conditioned by transmitters 454a through 454r, and transmitted back to transmitter system 410.
At transmitter system 410, the modulated signals from receiver system 450 are received by antennas 424, conditioned by receivers 422, demodulated by a demodulator 490, and processed by a RX data processor 492 to recover the CSI reported by the receiver system and to provide data to data sink 494 for storage and/or further processing. The reported CSI is then provided to processor 430 and used to (1) determine the data rates and coding and modulation schemes to be used for the data streams and (2) generate various controls for TX data processor 444 and TX MIMO processor 446.
It should be noted that the transmitter 410 transmits multiple steams of symbols to multiple receivers, e.g. access terminals, while receiver 420 transmits a single data stream to a single structure, e.g. an access point, thus accounting for the differing receive and transmit chains depicted. However, both may be MIMO transmitters thus making the receive and transmit identical.
At the receiver, various processing techniques may be used to process the NR received signals to detect the NT transmitted symbol streams. These receiver processing techniques may be grouped into two primary categories (i) spatial and space-time receiver processing techniques (which are also referred to as equalization techniques); and (ii) “successive nulling/equalization and interference cancellation” receiver processing technique (which is also referred to as “successive interference cancellation” or “successive cancellation” receiver processing technique).
MIMO channel formed by the NT transmit and NR receive antennas may be decomposed into NS independent channels, with NS≦min{NT, NR}. Each of the NS independent channels may also be referred to as a spatial subchannel (or a transmission channel) of the MIMO channel and corresponds to a dimension.
For a full-rank MIMO channel, where Ns=NT≦NR, an independent data stream may be transmitted from each of the NT transmit antennas. The transmitted data streams may experience different channel conditions (e.g., different fading and multipath effects) and may achieve different signal-to-noise-and-interference ratios (SNRs) for a given amount of transmit power. Moreover, in those cases that successive interference cancellation processing is used at the receiver to recover the transmitted data streams, and then different SNRs may be achieved for the data streams depending on the specific order in which the data streams are recovered. Consequently, different data rates may be supported by different data streams, depending on their achieved SNRs. Since the channel conditions typically vary with time, the data rate supported by each data stream also varies with time.
The MIMO design may have two modes of operation, single code word (SCW) and multiple-code word (MCW). In MCW mode, the transmitter can encode the data transmitted on each spatial layer independently, possibly with different rates. The receiver employs a successive interference cancellation (SIC) algorithm which works as follows: decode the first layer, and then subtract its contribution from the received signal after re-encoding and multiplying the encoded first layer with an “estimated channel,” then decode the second layer and so on. This “onion-peeling” approach means that each successively decoded layer sees increasing SNR and hence can support higher rates. In the absence of error-propagation, MCW design with SIC achieves maximum system transmission capacity based upon the channel conditions. The disadvantage of this design arise from the burden of “managing” the rates of each spatial layer: (a) increased CQI feedback (one CQI for each layer needs to be provided); (b) increased acknowledgement (ACK) or negative acknowledgement (NACK) messaging (one for each layer); (c) complications in Hybrid ARQ (HARQ) since each layer can terminate at different transmissions; (d) performance sensitivity of SIC to channel estimation errors with increased Doppler, and/or low SNR; and (e) increased decoding latency requirements since each successive layer cannot be decoded until prior layers are decoded.
In a SCW mode design, the transmitter encodes the data transmitted on each spatial layer with “identical data rates.” The receiver can employ a low complexity linear receiver such as a Minimum Mean Square Solution (MMSE) or Zero Frequency (ZF) receiver, or non-linear receivers such as QRM, for each tone. This allows reporting of the CQI by the receiver to be for only the “best” rank and hence results in reduced transmission overhead for providing this information.
Referring to
Referring to
As can be seen in
In time division duplexed communication, full channel reciprocity does not exist if the number of antennas used to transmit at the access terminal is less than the number of antennas used for reception at the access terminal. Hence, the forward link channel for all of the receive antennas at the access terminal is difficult to obtain.
In frequency division duplexed communication, feeding back channel state information for all of the eigenbeams of the forward link channel matrix may be inefficient or nearly impossible due to limited reverse link resources. Hence, the forward link channel for all of the receive antennas at the access terminal is difficult to obtain.
In an embodiment, the channel feedback is provided from the access terminal to the access point, for a subset of possible transmission paths between the transmit antennas at the access point and the receive antennas of the access terminal.
In an embodiment, the feedback may comprise of the CQI generated by the access point based upon one or more symbols transmitted from the access terminal to the access point, e.g. over a pilot or control channel. In these embodiments, the channel estimates for the number of transmission paths equal to the number of transmit antennas utilized at the access terminal for each receive antenna of the access point, may be derived from the CQI, by treating it like a pilot. This allows the beamforming weights to be recomputed on a regular basis and therefore be more accurately responsive to the conditions of the channel between the access terminal and the access point. This approach reduces the complexity of the processing required at the access terminal, since there is no processing related to generating beamforming weights at the access terminal. A beam-construction matrix may be generated at the Access Point using channel estimates obtained from the CQI, B(k)=[hFL(k)*b2 . . . bM] Where b2, b3, . . . , bM are random vectors. and is hFL(k) is the channel derived by using the CQI as a pilot. The information for hFL(k) may obtained by determining hRL(k) at the access point (AP). Note that hRL(k) is the channel estimates of the responsive pilot symbols transmitted from the transmit antenna(s) of the access terminal (AT) on the reverse link. It should be noted that hRL is only provided for a number of transmit antennas at the access terminal, depicted as being one in
In order to calculate the calibration errors, both the forward link and reverse link channel information may be utilized. In some embodiments, the coefficients λ1 may be determined based upon overall channel conditions at regular intervals and are not specific to any particular access terminal that is in communication with the access point. In other embodiments, the coefficients λ1 may be determined by utilizing an average from each of the access terminals in communication with the access point.
In another embodiment, the feedback may comprise of the eigenbeams calculated at the access terminal based upon pilot symbols transmitted from the access point. The eigenbeams may be averaged over several forward link frames or relate to a single frame. Further, in some embodiments, the eigenbeams may be averaged over multiple tones in the frequency domain. In other embodiments, only the dominant eigenbeams of the forward link channel matrix are provided. In other embodiments, the dominant eigenbeams may be averaged for two or more frames in the time-domain, or may be averaged over multiple tones in the frequency domain. This may be done to reduce both the computational complexity at the access terminal and the required transmission resources to provide the eigenbeams from the access terminal to the access point. An example beam-construction matrix generated at the access point, when 2 quantized eigenbeams are provided is given as: B(k)=[q1(k) q2(k) b3 . . . bM], where qi(k) are the quantized eigenbeams that are provided and b3 . . . bM are dummy vectors or otherwise generated by the access terminal.
In another embodiment, the feedback may comprise of the quantized channel estimates calculated at the access terminal based upon pilot symbols transmitted from the access point. The channel estimates may be averaged over several forward link frames or relate to a single frame. Further, in some embodiments, the channel estimates may be averaged over multiple tones in the frequency domain. An example beam-construction matrix generated at the access point when 2 rows of the FL-MIMO channel matrix are provided is given as: B(k)=HFL1 HFL2 b3 . . . bM, where HFLi is the i-th row of the FL-MIMO channel matrix.
In another embodiment, the feedback may comprise second order statistics of the channel, namely the transmit correlation matrix, calculated at the access terminal based upon pilot symbols transmitted from the access point. The second order statistics may be averaged over several forward link frames or relate to a single frame. In some embodiments, the channel statistics may be averaged over multiple tones in the frequency domain. In such a case, the eigenbeams can be derived from the transmit correlation matrix at the AP, and a beam-construction matrix can be created as: B(k)=[q1(k) q2(k) q3(k) . . . qM(k)] where qi(k) are the eigenbeams
In another embodiment, the feedback may comprise the eigenbeams of the second order statistics of the channel, namely the transmit correlation matrix, calculated at the access terminal based upon pilot symbols transmitted from the access point. The eigenbeams may be averaged over several forward link frames or relate to a single frame. Further, in some embodiments, the eigenbeams may be averaged over multiple tones in the frequency domain. In other embodiments, only the dominant eigenbeams of the transmit correlation matrix are provided. The dominant eigenbeams may be averaged over several forward link frames or relate to a single frame. Further, in some embodiments, the dominant eigenbeams may be averaged over multiple tones in the frequency domain. An example beam-construction matrix are when 2 quantized eigenbeams are feedback is given as: B(k)=[q1(k) q2(k) b3 . . . bM], where qi(k) are the quantized eigenbeams per-hop of the transmit correlation matrix
In further embodiments, the beam-construction matrix may be generated by a combination of channel estimate obtained from CQI and dominant eigenbeam feedback.
An example beam-construction matrix is given as:
B=[h*FLx1 . . . bM] Eq. 5
where x1 is a dominant eigenbeam for a particular hFL and h*FL is based on the CQI.
In other embodiments, the feedback may comprise of the CQI and estimated eigenbeams, channel estimates, transmit correlation matrix, eigenbeams of the transmit correlation matrix or any combination thereof.
A beam-construction matrix may be generated at the Access Point using channel estimates obtained from the CQI, estimated eigenbeams, channel estimates, transmit correlation matrix, eigenbeams of the transmit correlation matrix or any combination thereof.
In order to form the beamforming vectors for each transmission a QR decomposition of the beam-construction matrix B is performed to form pseudo-eigen vectors that each corresponds to a group of transmission symbols transmitted from the MT antennas to a particular access terminal.
V=QR(B)
V=[v1 v2 . . . vM] are pseudo-eigen vectors. Eq. 6
The individual scalars of the beamform vectors represent the beamforming weights that are applied to the symbols transmitted from the MT antennas to each access terminal. These vectors then are formed by the following:
where M is the number of layers utilized for transmission.
In order to decide how many eigenbeams should be used (rank prediction), and what transmission mode should be used to obtain maximum eigenbeam forming gains, several approaches may be utilized. If the access terminal is not scheduled, an estimate, e.g., a 7-bit channel estimate that may include rank information, may be computed based on the broadband pilots and reported along with the CQI. The control or signaling channel information transmitted from the access terminal, after being decoded, acts as a broadband pilot for the reverse link. By using this channel, the beamforming weights may be computed as shown above. The CQI computed also provides information for the rate prediction algorithm at the transmitter.
Alternatively, if the access terminal is scheduled to receive data on the forward link, the CQI, e.g. the CQI including optimal rank and the CQI for that rank, may be computed based on beamformed pilot symbols, e.g. pilot symbols 322 from
If the access terminal is scheduled to receive data on the forward link and the reverse link, the CQI, e.g. CQI, may be based on beamformed pilot symbols and can also be reported in-band, i.e. during the reverse link transmission to the access point.
In another embodiment, the access terminal can calculate the broadband pilot based CQI and hop-based pilot channel CQI for all ranks. After this, it can compute the beamforming gain which is provided due to beamforming at the access point. The beamforming gain may be calculated by the difference between the CQI of the broadband pilots and the hop-based pilots. After the beamforming gain is calculated, it may be factored into the CQI calculations of the broadband pilots to form a more accurate channel estimate of the broadband pilots for all ranks. Finally, the CQI, which includes the optimal rank and channel estimate for that rank, is obtained from this effective broadband pilot channel estimate and fed back to the access point, via a control or signaling channel.
Referring to
Bits are turbo-encoded by encoder block 606 and mapped to modulation symbols by mapping block 608 depending on the packet format (PF) 624, specified by a rate prediction block 602. The coded symbols are then de-multiplexed by a demultiplexer 610 to MT layers 612, which are provided to a beamforming module 614.
Beamforming module 614 generates beamforming weights used to alter a transmission power of each of the symbols of the MT layers 612 depending on the access terminals to which they are to be transmitted. The eigenbeam weights may be generated from the control or signaling channel information transmitted by the access terminal to the access point. The beamforming weights may be generated according to any of the embodiments as described above with respect to
The MT layers 612 after beamforming are provided to OFDM modulators 618a to 618t that interleave the output symbol streams with pilot symbols. The OFDM processing for each transmit antenna proceeds 620a to 620t then in an identical fashion, after which the signals are transmitted via a MIMO scheme.
In SISO encoder 604, turbo encoder 606 encodes the data stream, and in an embodiment uses ⅕ encoding rate. It should be noted that other types of encoders and encoding rates may be utilized. Symbol encoder 608 maps the encoded data into the constellation symbols for transmission. In one embodiment, the constellations may be Quadrature-Amplitude constellations. While a SISO encoder is described herein, other encoder types including MIMO encoders may be utilized.
Rate prediction block 602 processes the CQI information, including rank information, which is received at the access point for each access terminal. The rank information may be provided based upon broadband pilot symbols, hop based pilot symbols, or both. The rank information is utilized to determine the number of spatial layers to be transmitted by rate prediction block 602. In an embodiment, the rate prediction algorithm may use a 5-bitCQI feedback 622 approximately every 5 milliseconds. The packet format, e.g. modulation rate, is determined using several techniques. Exemplary techniques are depicted and disclosed in co-pending U.S. patent application Ser. No. 11/021,791, entitled “Performance Based Rank Prediction for MIMO Design,” and U.S. patent application Ser. No. 11/022,347, entitled “Capacity Based Rank Prediction for MIMO Design,” both of which are incorporated herein by reference as if set forth in their entireties.
Referring to
The output of hop buffer 706 is provided to an encoder 708, which may be a decoder that independently processes each carrier frequency of the OFDM band. Both hop buffer 706 and the decoder 708 are coupled to a hop based channel estimator 710 that uses the estimates of the forward link channel, with the eigenbeam weights to demodulate the information streams. The demodulated information provided by demodulator 712 streams are then provided to Log-Likelihood-Ratio (LLR)_block 714 and decoder 716, which may be a turbo decoder or other decoder to match the encoder used at the access point, that provide a decoded data stream for processing.
Referring to
Referring to
Referring to
Referring to
If the access terminal is not scheduled, channel information, e.g. CQI, and optimal rank are determined based upon the broadband pilot symbols, block 1102. If the access terminal is scheduled, then another determination is made as to whether the number of hop periods is greater than N hop periods since beamformed channel information has been provided, block 1104.
If the number is less than N, then either broadband channel information along with the optimal rank based upon that channel information is provided, block 1106, or hybrid channel information along with the optimal rank based upon that channel information is provided, block 1108. Whether the broadband channel information or hybrid channel information is provided, may be based upon the system design. Alternatively, the broadband channel information and hybrid channel information may be provided in alternative signals or based upon a predetermined pattern.
If the number is greater than N, then either beamformed channel information along with the optimal rank based upon that channel information is provided, block 1110, or hybrid channel information along with the optimal rank based upon that channel information is provided, block 1108. Whether the beamformed channel information or hybrid channel information is provided, may be based upon the system design. Alternatively, the beamformed channel information and hybrid channel information may be provided in alternative signals or based upon a predetermined pattern.
Referring to
If the access terminal is not scheduled, channel information, e.g. CQI, and optimal rank are determined based upon the broadband pilot symbols, block 1202. If the access terminal is scheduled, then another determination is made as to whether the distance between the location of the current hop region and a prior hop region is greater than threshold, block 1204. The prior hop region may be the hop region for the immediately prior hop period or for a hop period that is earlier than the current hop period. The threshold may be a function of system parameters.
If the distance is greater than the threshold, then either broadband channel information along with the optimal rank based upon that channel information is provided, block 1206, or hybrid channel information along with the optimal rank based upon that channel information is provided, block 1208. Whether the broadband channel information or hybrid channel information is provided, may be based upon the system design. Alternatively, the broadband channel information and hybrid channel information may be provided in alternative signals or based upon a predetermined pattern.
If the number is less than the threshold, then either beamformed channel information along with the optimal rank based upon that channel information is provided, block 1210, or hybrid channel information along with the optimal rank based upon that channel information is provided, block 1208. Whether the beamformed channel information or hybrid channel information is provided, may be based upon the system design. Alternatively, the beamformed channel information and hybrid channel information may be provided in alternative signals or based upon a predetermined pattern.
It should be noted that block 1104 or block 1204 may be skipped and if the access terminal is scheduled and the beamformed channel information or hybrid channel information may be provided according to the system design or predetermined pattern.
The above processes may be performed utilizing TX processor 444 or 478, TX MIMO processor 446, RX processors 460 or 492, processor 430 or 470, memory 432 or 472, and combinations thereof. Further processes, operations, and features described with respect to
The techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, software, or a combination thereof. For a hardware implementation, the processing units within a access point or a access terminal may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
For a software implementation, the techniques described herein may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in memory units and executed by processors. The memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the features, functions, operations, and embodiments disclosed herein. Various modifications to these embodiments may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from their spirit or scope. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present Application for Patent claims priority to Provisional Application No. 60/660,719 entitled “Apparatus to Obtain Pseudo Eigen Beamforming Gains in MIMO Systems” filed Mar. 10, 2005, and Provisional Application Ser. No. 60/678,610 entitled “SYSTEM AND METHODS FOR GENERATING BEAMFORMING GAINS IN MULTI-INPUT MULTI-OUTPUT COMMUNICATION SYSTEMS” filed May 6, 2005 and Provisional Application Ser. No. 60/691,467 entitled “SYSTEMS AND METHODS FOR BEAMFORMING IN MULTI-INPUT MULTI-OUTPUT COMMUNICATION SYSTEMS” filed Jun. 16, 2005 and Provisional Application Ser. No. 60/691,432 entitled “SYSTEMS AND METHODS FOR BEAMFORMING AND RATE CONTROL IN A MULTI-INPUT MULTI-OUTPUT COMMUNICATION SYSTEM” filed Jun. 16, 2005 and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4393276 | Steele et al. | Jul 1983 | A |
4554668 | Deman et al. | Nov 1985 | A |
4747137 | Matsunaga | May 1988 | A |
4783779 | Takahata et al. | Nov 1988 | A |
4783780 | Alexis | Nov 1988 | A |
4975952 | Mabey et al. | Dec 1990 | A |
5008900 | Critchlow et al. | Apr 1991 | A |
5115248 | Roederer et al. | May 1992 | A |
5268694 | Jan et al. | Dec 1993 | A |
5282222 | Fattouche et al. | Jan 1994 | A |
5363408 | Paik et al. | Nov 1994 | A |
5371761 | Daffara et al. | Dec 1994 | A |
5384810 | Amrany et al. | Jan 1995 | A |
5406551 | Saito et al. | Apr 1995 | A |
5410538 | Roche et al. | Apr 1995 | A |
5455839 | Eyuboglu et al. | Oct 1995 | A |
5465253 | Rahnema | Nov 1995 | A |
5491727 | Petit et al. | Feb 1996 | A |
5513379 | Benveniste et al. | Apr 1996 | A |
5539748 | Raith et al. | Jul 1996 | A |
5548582 | Brajal et al. | Aug 1996 | A |
5553069 | Ueno et al. | Sep 1996 | A |
5583869 | Grube et al. | Dec 1996 | A |
5594738 | Crisler et al. | Jan 1997 | A |
5604744 | Andersson et al. | Feb 1997 | A |
5612978 | Blanchard et al. | Mar 1997 | A |
5625876 | Gilhousen et al. | Apr 1997 | A |
5684491 | Newman et al. | Nov 1997 | A |
5726978 | Frodigh et al. | Mar 1998 | A |
5732113 | Schmidl et al. | Mar 1998 | A |
5745487 | Hamaki | Apr 1998 | A |
5768276 | Diachina et al. | Jun 1998 | A |
5790537 | Yoon et al. | Aug 1998 | A |
5812938 | Gilhousen et al. | Sep 1998 | A |
5815488 | Williams et al. | Sep 1998 | A |
5822368 | Wang et al. | Oct 1998 | A |
5828650 | Malkamaki et al. | Oct 1998 | A |
5838268 | Frenkel et al. | Nov 1998 | A |
5867478 | Baum et al. | Feb 1999 | A |
5870393 | Yano et al. | Feb 1999 | A |
5887023 | Mabuchi et al. | Mar 1999 | A |
5907585 | Suzuki et al. | May 1999 | A |
5920571 | Houck et al. | Jul 1999 | A |
5926470 | Tiedemann, Jr. et al. | Jul 1999 | A |
5933421 | Alamouti et al. | Aug 1999 | A |
5949814 | Odenwalder et al. | Sep 1999 | A |
5953325 | Willars et al. | Sep 1999 | A |
5955992 | Shattil et al. | Sep 1999 | A |
5956642 | Larsson et al. | Sep 1999 | A |
5995992 | Eckard et al. | Nov 1999 | A |
5999826 | Whinnett | Dec 1999 | A |
6002942 | Park et al. | Dec 1999 | A |
6016123 | Barton et al. | Jan 2000 | A |
6038150 | Yee et al. | Mar 2000 | A |
6038263 | Kotzin et al. | Mar 2000 | A |
6038450 | Brink et al. | Mar 2000 | A |
6052364 | Chalmers et al. | Apr 2000 | A |
6061337 | Light et al. | May 2000 | A |
6067315 | Sandin | May 2000 | A |
6075350 | Peng et al. | Jun 2000 | A |
6075797 | Thomas | Jun 2000 | A |
6076114 | Wesley et al. | Jun 2000 | A |
6088345 | Sakoda et al. | Jul 2000 | A |
6088592 | Doner et al. | Jul 2000 | A |
6108323 | Gray | Aug 2000 | A |
6108550 | Wiorek et al. | Aug 2000 | A |
6112094 | Dent et al. | Aug 2000 | A |
6128776 | Kang et al. | Oct 2000 | A |
6138037 | Jaamies | Oct 2000 | A |
6141317 | Marchok et al. | Oct 2000 | A |
6154484 | Lee et al. | Nov 2000 | A |
6169910 | Tamil et al. | Jan 2001 | B1 |
6172993 | Kim et al. | Jan 2001 | B1 |
6175550 | van Nee et al. | Jan 2001 | B1 |
6175650 | Sindhu et al. | Jan 2001 | B1 |
6176550 | Lamart et al. | Jan 2001 | B1 |
6198775 | Khayrallah et al. | Mar 2001 | B1 |
6215983 | Dogan et al. | Apr 2001 | B1 |
6226280 | Roark et al. | May 2001 | B1 |
6232918 | Wax et al. | May 2001 | B1 |
6240129 | Reusens et al. | May 2001 | B1 |
6249683 | Lundby et al. | Jun 2001 | B1 |
6256478 | Allen et al. | Jul 2001 | B1 |
6271946 | Chang et al. | Aug 2001 | B1 |
6272122 | Wee et al. | Aug 2001 | B1 |
6310704 | Dogan et al. | Oct 2001 | B1 |
6317435 | Tiedemann, Jr. et al. | Nov 2001 | B1 |
6335922 | Tiedemann, Jr. et al. | Jan 2002 | B1 |
6337659 | Kim et al. | Jan 2002 | B1 |
6337983 | Bonta et al. | Jan 2002 | B1 |
6353637 | Mansour et al. | Mar 2002 | B1 |
6363060 | Sarkar | Mar 2002 | B1 |
6374115 | Barnes et al. | Apr 2002 | B1 |
6377539 | Kang et al. | Apr 2002 | B1 |
6377809 | Rezaiifar et al. | Apr 2002 | B1 |
6388998 | Kasturia et al. | May 2002 | B1 |
6393008 | Cheng et al. | May 2002 | B1 |
6393012 | Pankaj | May 2002 | B1 |
6401062 | Murashima | Jun 2002 | B1 |
6438369 | Huang et al. | Aug 2002 | B1 |
6449246 | Barton et al. | Sep 2002 | B1 |
6466800 | Sydon et al. | Oct 2002 | B1 |
6473467 | Wallace et al. | Oct 2002 | B1 |
6477317 | Itokawa | Nov 2002 | B1 |
6478422 | Hansen | Nov 2002 | B1 |
6483820 | Davidson et al. | Nov 2002 | B1 |
6487243 | Hwang et al. | Nov 2002 | B1 |
6496790 | Kathavate et al. | Dec 2002 | B1 |
6501810 | Karim et al. | Dec 2002 | B1 |
6507601 | Parsa et al. | Jan 2003 | B2 |
6519462 | Lu et al. | Feb 2003 | B1 |
6529525 | Pecen et al. | Mar 2003 | B1 |
6535666 | Dogan et al. | Mar 2003 | B1 |
6539008 | Ahn et al. | Mar 2003 | B1 |
6539213 | Richards et al. | Mar 2003 | B1 |
6542485 | Mujtaba et al. | Apr 2003 | B1 |
6542743 | Soliman | Apr 2003 | B1 |
6563806 | Yano et al. | May 2003 | B1 |
6563881 | Sakoda et al. | May 2003 | B1 |
6577739 | Hurtig et al. | Jun 2003 | B1 |
6584140 | Lee et al. | Jun 2003 | B1 |
6590881 | Wallace et al. | Jul 2003 | B1 |
6597746 | Amrany et al. | Jul 2003 | B1 |
6601206 | Marvasti | Jul 2003 | B1 |
6614857 | Buehrer et al. | Sep 2003 | B1 |
6625172 | Odenwalder et al. | Sep 2003 | B2 |
6636568 | Kadous et al. | Oct 2003 | B2 |
6654339 | Bohnke et al. | Nov 2003 | B1 |
6654431 | Barton et al. | Nov 2003 | B1 |
6657949 | Jones, IV et al. | Dec 2003 | B1 |
6658258 | Chen et al. | Dec 2003 | B1 |
6674787 | Dick et al. | Jan 2004 | B1 |
6674810 | Cheng et al. | Jan 2004 | B1 |
6675012 | Gray et al. | Jan 2004 | B2 |
6678318 | Lai et al. | Jan 2004 | B1 |
6690951 | Cuffaro et al. | Feb 2004 | B1 |
6693952 | Chuah et al. | Feb 2004 | B1 |
6701165 | Ho et al. | Mar 2004 | B1 |
6704571 | Moon | Mar 2004 | B1 |
6711400 | Aura et al. | Mar 2004 | B1 |
6717908 | Vijayan et al. | Apr 2004 | B2 |
6721568 | Gustavsson et al. | Apr 2004 | B1 |
6724719 | Tong et al. | Apr 2004 | B1 |
6731602 | Watanabe et al. | May 2004 | B1 |
6735244 | Hasegawa et al. | May 2004 | B1 |
6744743 | Walton et al. | Jun 2004 | B2 |
6748220 | Chow et al. | Jun 2004 | B1 |
6751444 | Meiyappan et al. | Jun 2004 | B1 |
6751456 | Bilgic et al. | Jun 2004 | B2 |
6754511 | Halford et al. | Jun 2004 | B1 |
6763009 | Bedekar et al. | Jul 2004 | B1 |
6765969 | Vook et al. | Jul 2004 | B1 |
6776165 | Jin et al. | Aug 2004 | B2 |
6776765 | Soukup et al. | Aug 2004 | B2 |
6778513 | Kasapi et al. | Aug 2004 | B2 |
6785341 | Walton et al. | Aug 2004 | B2 |
6798736 | Black et al. | Sep 2004 | B1 |
6799043 | Tiedemann, Jr. et al. | Sep 2004 | B2 |
6802035 | Catreux et al. | Oct 2004 | B2 |
6804307 | Popovic | Oct 2004 | B1 |
6813284 | Vayanos et al. | Nov 2004 | B2 |
6821535 | Nurmi et al. | Nov 2004 | B2 |
6828293 | Hazenkamp et al. | Dec 2004 | B1 |
6829293 | Jones et al. | Dec 2004 | B2 |
6831943 | Dabak et al. | Dec 2004 | B1 |
6842487 | Larsson | Jan 2005 | B1 |
6850481 | Wu et al. | Feb 2005 | B2 |
6850509 | Lee et al. | Feb 2005 | B2 |
6862271 | Medvedev et al. | Mar 2005 | B2 |
6870808 | Liu et al. | Mar 2005 | B1 |
6870826 | Ishizu et al. | Mar 2005 | B1 |
6904097 | Agami et al. | Jun 2005 | B2 |
6904283 | Li et al. | Jun 2005 | B2 |
6904550 | Sibecas et al. | Jun 2005 | B2 |
6907020 | Periyalwar et al. | Jun 2005 | B2 |
6907269 | Yamaguchi et al. | Jun 2005 | B2 |
6909707 | Rotstein et al. | Jun 2005 | B2 |
6909797 | Romsdahl et al. | Jun 2005 | B2 |
6917602 | Toskala et al. | Jul 2005 | B2 |
6917821 | Kadous et al. | Jul 2005 | B2 |
6927728 | Vook et al. | Aug 2005 | B2 |
6928047 | Xia et al. | Aug 2005 | B1 |
6934266 | Dulin et al. | Aug 2005 | B2 |
6934275 | Love et al. | Aug 2005 | B1 |
6934340 | Dollard et al. | Aug 2005 | B1 |
6940827 | Li et al. | Sep 2005 | B2 |
6940842 | Proctor, Jr. | Sep 2005 | B2 |
6940845 | Benveniste et al. | Sep 2005 | B2 |
6954448 | Farley et al. | Oct 2005 | B2 |
6954481 | Laroia et al. | Oct 2005 | B1 |
6954622 | Nelson et al. | Oct 2005 | B2 |
6961364 | Laroia et al. | Nov 2005 | B1 |
6963543 | Diep et al. | Nov 2005 | B2 |
6970682 | Crilly, Jr. et al. | Nov 2005 | B2 |
6975868 | Joshi et al. | Dec 2005 | B2 |
6980540 | Laroia et al. | Dec 2005 | B1 |
6985434 | Wu et al. | Jan 2006 | B2 |
6985453 | Lundby et al. | Jan 2006 | B2 |
6985466 | Yun et al. | Jan 2006 | B1 |
6985498 | Laroia et al. | Jan 2006 | B2 |
6987746 | Song | Jan 2006 | B1 |
6993342 | Kuchibhotla et al. | Jan 2006 | B2 |
7002900 | Walton et al. | Feb 2006 | B2 |
7006529 | Alastalo et al. | Feb 2006 | B2 |
7006557 | Subrahmanya et al. | Feb 2006 | B2 |
7006848 | Ling et al. | Feb 2006 | B2 |
7009500 | Rao et al. | Mar 2006 | B2 |
7010048 | Shattil et al. | Mar 2006 | B1 |
7013143 | Love et al. | Mar 2006 | B2 |
7016318 | Pankaj et al. | Mar 2006 | B2 |
7016319 | Baum et al. | Mar 2006 | B2 |
7016425 | Kraiem et al. | Mar 2006 | B1 |
7020110 | Walton et al. | Mar 2006 | B2 |
7039356 | Nguyen et al. | May 2006 | B2 |
7039370 | Laroia et al. | May 2006 | B2 |
7042856 | Walton et al. | May 2006 | B2 |
7042857 | Krishnan et al. | May 2006 | B2 |
7047006 | Classon et al. | May 2006 | B2 |
7050402 | Schmidl et al. | May 2006 | B2 |
7050405 | Attar et al. | May 2006 | B2 |
7054301 | Sousa et al. | May 2006 | B1 |
7061898 | Hashem et al. | Jun 2006 | B2 |
7069009 | Li et al. | Jun 2006 | B2 |
7072315 | Liu et al. | Jul 2006 | B1 |
7079867 | Chun et al. | Jul 2006 | B2 |
7085574 | Gaal et al. | Aug 2006 | B2 |
7095708 | Alamouti et al. | Aug 2006 | B1 |
7095709 | Walton et al. | Aug 2006 | B2 |
7099299 | Liang et al. | Aug 2006 | B2 |
7099630 | Brunner et al. | Aug 2006 | B2 |
7103384 | Chun et al. | Sep 2006 | B2 |
7106319 | Ishiyama | Sep 2006 | B2 |
7113808 | Hwang et al. | Sep 2006 | B2 |
7120134 | Tiedemann, Jr. et al. | Oct 2006 | B2 |
7120395 | Tong et al. | Oct 2006 | B2 |
7126928 | Tiedemann, Jr. et al. | Oct 2006 | B2 |
7131086 | Yamasaki et al. | Oct 2006 | B2 |
7133460 | Bae et al. | Nov 2006 | B2 |
7139328 | Thomas et al. | Nov 2006 | B2 |
7142864 | Laroia et al. | Nov 2006 | B2 |
7145940 | Gore et al. | Dec 2006 | B2 |
7145959 | Harel et al. | Dec 2006 | B2 |
7149199 | Sung et al. | Dec 2006 | B2 |
7149238 | Agee et al. | Dec 2006 | B2 |
7151761 | Palenius | Dec 2006 | B1 |
7151936 | Wager et al. | Dec 2006 | B2 |
7154936 | Bjerke et al. | Dec 2006 | B2 |
7155236 | Chen et al. | Dec 2006 | B2 |
7157351 | Cheng et al. | Jan 2007 | B2 |
7161971 | Tiedemann, Jr. et al. | Jan 2007 | B2 |
7164649 | Walton et al. | Jan 2007 | B2 |
7164696 | Sano et al. | Jan 2007 | B2 |
7167916 | Willen et al. | Jan 2007 | B2 |
7170937 | Zhou | Jan 2007 | B2 |
7177297 | Agrawal et al. | Feb 2007 | B2 |
7177351 | Kadous | Feb 2007 | B2 |
7180627 | Moylan et al. | Feb 2007 | B2 |
7181170 | Love et al. | Feb 2007 | B2 |
7184426 | Padovani et al. | Feb 2007 | B2 |
7184713 | Kadous et al. | Feb 2007 | B2 |
7188300 | Eriksson et al. | Mar 2007 | B2 |
7197282 | Dent et al. | Mar 2007 | B2 |
7200177 | Miyoshi et al. | Apr 2007 | B2 |
7209712 | Holtzman | Apr 2007 | B2 |
7215979 | Nakagawa et al. | May 2007 | B2 |
7230942 | Laroia et al. | Jun 2007 | B2 |
7233634 | Hassell et al. | Jun 2007 | B1 |
7236747 | Meacham et al. | Jun 2007 | B1 |
7242722 | Krauss et al. | Jul 2007 | B2 |
7243150 | Sher et al. | Jul 2007 | B2 |
7248559 | Ma et al. | Jul 2007 | B2 |
7248841 | Agee et al. | Jul 2007 | B2 |
7254158 | Agrawal et al. | Aug 2007 | B2 |
7257167 | Lau et al. | Aug 2007 | B2 |
7257406 | Ji et al. | Aug 2007 | B2 |
7257423 | Iochi et al. | Aug 2007 | B2 |
7260153 | Nissani et al. | Aug 2007 | B2 |
7280467 | Smee et al. | Oct 2007 | B2 |
7289570 | Schmidl et al. | Oct 2007 | B2 |
7289585 | Sandhu et al. | Oct 2007 | B2 |
7290195 | Guo et al. | Oct 2007 | B2 |
7292651 | Li | Nov 2007 | B2 |
7292863 | Chen et al. | Nov 2007 | B2 |
7295509 | Laroia et al. | Nov 2007 | B2 |
7313086 | Aizawa et al. | Dec 2007 | B2 |
7313126 | Yun et al. | Dec 2007 | B2 |
7313174 | Alard et al. | Dec 2007 | B2 |
7313407 | Shapira et al. | Dec 2007 | B2 |
7327812 | Auer et al. | Feb 2008 | B2 |
7330701 | Mukkavilli et al. | Feb 2008 | B2 |
7336727 | Mukkavilli et al. | Feb 2008 | B2 |
7349371 | Schein et al. | Mar 2008 | B2 |
7349667 | Magee et al. | Mar 2008 | B2 |
7356000 | Oprescu-Surcobe et al. | Apr 2008 | B2 |
7356005 | Derryberry et al. | Apr 2008 | B2 |
7356073 | Heikkila | Apr 2008 | B2 |
7359327 | Oshiba | Apr 2008 | B2 |
7363055 | Castrogiovanni et al. | Apr 2008 | B2 |
7366223 | Chen et al. | Apr 2008 | B1 |
7366253 | Kim et al. | Apr 2008 | B2 |
7366520 | Haustein et al. | Apr 2008 | B2 |
7369531 | Cho et al. | May 2008 | B2 |
7372911 | Lindskog et al. | May 2008 | B1 |
7372912 | Seo et al. | May 2008 | B2 |
7379489 | Zuniga et al. | May 2008 | B2 |
7382764 | Uehara et al. | Jun 2008 | B2 |
7392014 | Baker et al. | Jun 2008 | B2 |
7394865 | Borran et al. | Jul 2008 | B2 |
7403745 | Dominique et al. | Jul 2008 | B2 |
7403748 | Keskitalo et al. | Jul 2008 | B1 |
7406119 | Yamano et al. | Jul 2008 | B2 |
7406336 | Astely et al. | Jul 2008 | B2 |
7411898 | Erlich et al. | Aug 2008 | B2 |
7412212 | Hottinen et al. | Aug 2008 | B2 |
7418043 | Shattil et al. | Aug 2008 | B2 |
7418246 | Kim et al. | Aug 2008 | B2 |
7423991 | Cho et al. | Sep 2008 | B2 |
7426426 | Van Baren et al. | Sep 2008 | B2 |
7428426 | Kiran et al. | Sep 2008 | B2 |
7433661 | Kogiantis et al. | Oct 2008 | B2 |
7437164 | Agrawal et al. | Oct 2008 | B2 |
7443835 | Lakshmi et al. | Oct 2008 | B2 |
7447270 | Hottinen et al. | Nov 2008 | B1 |
7450532 | Chae et al. | Nov 2008 | B2 |
7450548 | Haustein et al. | Nov 2008 | B2 |
7460466 | Lee et al. | Dec 2008 | B2 |
7463698 | Fujii et al. | Dec 2008 | B2 |
7468943 | Gu et al. | Dec 2008 | B2 |
7469011 | Lin et al. | Dec 2008 | B2 |
7471963 | Kim et al. | Dec 2008 | B2 |
7483408 | Bevan et al. | Jan 2009 | B2 |
7483719 | Kim et al. | Jan 2009 | B2 |
7486408 | Van Der Schaar et al. | Feb 2009 | B2 |
7486735 | Dubuc et al. | Feb 2009 | B2 |
7492788 | Zhang et al. | Feb 2009 | B2 |
7499393 | Ozluturk et al. | Mar 2009 | B2 |
7508748 | Kadous | Mar 2009 | B2 |
7508842 | Baum et al. | Mar 2009 | B2 |
7512096 | Kuzminskiy et al. | Mar 2009 | B2 |
7545867 | Lou et al. | Jun 2009 | B1 |
7548506 | Ma et al. | Jun 2009 | B2 |
7551546 | Ma et al. | Jun 2009 | B2 |
7551564 | Mattina | Jun 2009 | B2 |
7558293 | Choi et al. | Jul 2009 | B2 |
7567621 | Sampath et al. | Jul 2009 | B2 |
7573900 | Kim et al. | Aug 2009 | B2 |
7599327 | Zhuang | Oct 2009 | B2 |
7616955 | Kim et al. | Nov 2009 | B2 |
7627051 | Shen et al. | Dec 2009 | B2 |
7664061 | Hottinen | Feb 2010 | B2 |
7676007 | Choi et al. | Mar 2010 | B1 |
7684507 | Levy | Mar 2010 | B2 |
7724777 | Sutivong et al. | May 2010 | B2 |
7768979 | Sutivong et al. | Aug 2010 | B2 |
7899497 | Kish et al. | Mar 2011 | B2 |
7916624 | Laroia et al. | Mar 2011 | B2 |
7924699 | Laroia et al. | Apr 2011 | B2 |
7990843 | Laroia et al. | Aug 2011 | B2 |
7990844 | Laroia et al. | Aug 2011 | B2 |
8014271 | Laroia et al. | Sep 2011 | B2 |
8045512 | Khandekar et al. | Oct 2011 | B2 |
8095141 | Teague | Jan 2012 | B2 |
8098568 | Laroia et al. | Jan 2012 | B2 |
8098569 | Laroia et al. | Jan 2012 | B2 |
8295154 | Laroia et al. | Oct 2012 | B2 |
8331463 | Jayaraman et al. | Dec 2012 | B2 |
8446892 | Ji et al. | May 2013 | B2 |
8462859 | Sampath et al. | Jun 2013 | B2 |
8477684 | Khandekar et al. | Jul 2013 | B2 |
8565194 | Gorokhov et al. | Oct 2013 | B2 |
8693405 | Ji et al. | Apr 2014 | B2 |
20010021180 | Lee et al. | Sep 2001 | A1 |
20010021650 | Bilgic et al. | Sep 2001 | A1 |
20010024427 | Suzuki | Sep 2001 | A1 |
20010030948 | Tiedemann, Jr. | Oct 2001 | A1 |
20010047424 | Alastalo et al. | Nov 2001 | A1 |
20010053140 | Choi et al. | Dec 2001 | A1 |
20010055294 | Motoyoshi et al. | Dec 2001 | A1 |
20010055297 | Benveniste et al. | Dec 2001 | A1 |
20020000948 | Chun et al. | Jan 2002 | A1 |
20020015405 | Sepponen et al. | Feb 2002 | A1 |
20020018157 | Zhang et al. | Feb 2002 | A1 |
20020039912 | Yamaguchi et al. | Apr 2002 | A1 |
20020044524 | Laroia et al. | Apr 2002 | A1 |
20020058525 | Kasapi et al. | May 2002 | A1 |
20020061742 | Lapaille et al. | May 2002 | A1 |
20020077152 | Johnson et al. | Jun 2002 | A1 |
20020085521 | Tripathi et al. | Jul 2002 | A1 |
20020090004 | Rinchiuso | Jul 2002 | A1 |
20020090024 | Tan et al. | Jul 2002 | A1 |
20020101839 | Farley et al. | Aug 2002 | A1 |
20020122381 | Wu et al. | Sep 2002 | A1 |
20020122400 | Vayanos et al. | Sep 2002 | A1 |
20020122403 | Hashem et al. | Sep 2002 | A1 |
20020128035 | Jokinen et al. | Sep 2002 | A1 |
20020147953 | Catreux et al. | Oct 2002 | A1 |
20020159422 | Li et al. | Oct 2002 | A1 |
20020160769 | Gray et al. | Oct 2002 | A1 |
20020160781 | Bark et al. | Oct 2002 | A1 |
20020168946 | Aizawa et al. | Nov 2002 | A1 |
20020172293 | Kuchi et al. | Nov 2002 | A1 |
20020176398 | Nidda | Nov 2002 | A1 |
20020181571 | Yamano et al. | Dec 2002 | A1 |
20020191569 | Sung et al. | Dec 2002 | A1 |
20020193146 | Wallace et al. | Dec 2002 | A1 |
20030002464 | Rezaiifar et al. | Jan 2003 | A1 |
20030020651 | Crilly, Jr. et al. | Jan 2003 | A1 |
20030027579 | Sydon | Feb 2003 | A1 |
20030035491 | Walton et al. | Feb 2003 | A1 |
20030036359 | Dent et al. | Feb 2003 | A1 |
20030040283 | Kawai et al. | Feb 2003 | A1 |
20030043732 | Walton et al. | Mar 2003 | A1 |
20030043764 | Kim et al. | Mar 2003 | A1 |
20030063579 | Lee | Apr 2003 | A1 |
20030068983 | Kim et al. | Apr 2003 | A1 |
20030072254 | Ma et al. | Apr 2003 | A1 |
20030072255 | Ma et al. | Apr 2003 | A1 |
20030072280 | McFarland et al. | Apr 2003 | A1 |
20030072395 | Jia et al. | Apr 2003 | A1 |
20030073409 | Nobukiyo et al. | Apr 2003 | A1 |
20030073464 | Giannakis et al. | Apr 2003 | A1 |
20030076890 | Hochwald et al. | Apr 2003 | A1 |
20030086371 | Walton et al. | May 2003 | A1 |
20030086393 | Vasudevan et al. | May 2003 | A1 |
20030096579 | Ito et al. | May 2003 | A1 |
20030103520 | Chen et al. | Jun 2003 | A1 |
20030109226 | Brunner et al. | Jun 2003 | A1 |
20030109266 | Rafiah et al. | Jun 2003 | A1 |
20030112745 | Zhuang et al. | Jun 2003 | A1 |
20030123414 | Tong et al. | Jul 2003 | A1 |
20030125040 | Walton et al. | Jul 2003 | A1 |
20030128658 | Walton et al. | Jul 2003 | A1 |
20030133426 | Schein et al. | Jul 2003 | A1 |
20030142648 | Semper | Jul 2003 | A1 |
20030142729 | Subrahmanya et al. | Jul 2003 | A1 |
20030147371 | Choi et al. | Aug 2003 | A1 |
20030157900 | Gaal et al. | Aug 2003 | A1 |
20030161281 | Dulin et al. | Aug 2003 | A1 |
20030161282 | Medvedev et al. | Aug 2003 | A1 |
20030165189 | Kadous et al. | Sep 2003 | A1 |
20030181170 | Sim | Sep 2003 | A1 |
20030185310 | Ketchum et al. | Oct 2003 | A1 |
20030190897 | Lei et al. | Oct 2003 | A1 |
20030193915 | Lee et al. | Oct 2003 | A1 |
20030202491 | Tiedemann, Jr. et al. | Oct 2003 | A1 |
20030202560 | Tiedemann, Jr. et al. | Oct 2003 | A1 |
20030216156 | Chun et al. | Nov 2003 | A1 |
20030228850 | Hwang | Dec 2003 | A1 |
20030235255 | Ketchum et al. | Dec 2003 | A1 |
20040001429 | Ma et al. | Jan 2004 | A1 |
20040001460 | Bevan et al. | Jan 2004 | A1 |
20040002364 | Trikkonen et al. | Jan 2004 | A1 |
20040009783 | Miyoshi et al. | Jan 2004 | A1 |
20040010623 | Sher et al. | Jan 2004 | A1 |
20040015692 | Green et al. | Jan 2004 | A1 |
20040017785 | Zelst et al. | Jan 2004 | A1 |
20040032443 | Moylan et al. | Feb 2004 | A1 |
20040042558 | Hwang et al. | Mar 2004 | A1 |
20040048609 | Kosaka et al. | Mar 2004 | A1 |
20040048630 | Shapira et al. | Mar 2004 | A1 |
20040054999 | Willen et al. | Mar 2004 | A1 |
20040057394 | Holtzman et al. | Mar 2004 | A1 |
20040058687 | Kim et al. | Mar 2004 | A1 |
20040066754 | Hottinen et al. | Apr 2004 | A1 |
20040066761 | Giannakis et al. | Apr 2004 | A1 |
20040066772 | Moon et al. | Apr 2004 | A1 |
20040067756 | Wager et al. | Apr 2004 | A1 |
20040072565 | Nobukiyo et al. | Apr 2004 | A1 |
20040076185 | Kim et al. | Apr 2004 | A1 |
20040077345 | Turner et al. | Apr 2004 | A1 |
20040077379 | Smith et al. | Apr 2004 | A1 |
20040081073 | Walton et al. | Apr 2004 | A1 |
20040081195 | El-Maleh et al. | Apr 2004 | A1 |
20040087325 | Cheng et al. | May 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040097215 | Abe et al. | May 2004 | A1 |
20040097240 | Chen et al. | May 2004 | A1 |
20040098505 | Clemmensen et al. | May 2004 | A1 |
20040105489 | Kim et al. | Jun 2004 | A1 |
20040114618 | Tong et al. | Jun 2004 | A1 |
20040120411 | Walton et al. | Jun 2004 | A1 |
20040125792 | Bradbury et al. | Jul 2004 | A1 |
20040128605 | Sibecas et al. | Jul 2004 | A1 |
20040131007 | Smee et al. | Jul 2004 | A1 |
20040131008 | Zuniga et al. | Jul 2004 | A1 |
20040131038 | Kim et al. | Jul 2004 | A1 |
20040131110 | Alard et al. | Jul 2004 | A1 |
20040136344 | Kim et al. | Jul 2004 | A1 |
20040136349 | Walton et al. | Jul 2004 | A1 |
20040156328 | Walton et al. | Aug 2004 | A1 |
20040160914 | Sarkar et al. | Aug 2004 | A1 |
20040160933 | Odenwalder et al. | Aug 2004 | A1 |
20040162083 | Chen et al. | Aug 2004 | A1 |
20040165564 | Kim et al. | Aug 2004 | A1 |
20040166867 | Hawe et al. | Aug 2004 | A1 |
20040166887 | Laroia et al. | Aug 2004 | A1 |
20040170152 | Nagao et al. | Sep 2004 | A1 |
20040170157 | Kim et al. | Sep 2004 | A1 |
20040171384 | Holma et al. | Sep 2004 | A1 |
20040171385 | Haustein et al. | Sep 2004 | A1 |
20040178954 | Vook et al. | Sep 2004 | A1 |
20040179480 | Attar et al. | Sep 2004 | A1 |
20040179494 | Attar et al. | Sep 2004 | A1 |
20040179506 | Padovani et al. | Sep 2004 | A1 |
20040179627 | Ketchum et al. | Sep 2004 | A1 |
20040181569 | Attar et al. | Sep 2004 | A1 |
20040185792 | Alexiou et al. | Sep 2004 | A1 |
20040190640 | Dubuc et al. | Sep 2004 | A1 |
20040202257 | Mehta et al. | Oct 2004 | A1 |
20040208138 | Hayashi et al. | Oct 2004 | A1 |
20040218520 | Aizawa et al. | Nov 2004 | A1 |
20040219819 | Di Mascio et al. | Nov 2004 | A1 |
20040219919 | Whinnett et al. | Nov 2004 | A1 |
20040224711 | Panchal et al. | Nov 2004 | A1 |
20040228267 | Agrawal et al. | Nov 2004 | A1 |
20040228313 | Cheng et al. | Nov 2004 | A1 |
20040229615 | Agrawal et al. | Nov 2004 | A1 |
20040240419 | Abrishamkar et al. | Dec 2004 | A1 |
20040240572 | Brutel et al. | Dec 2004 | A1 |
20040248604 | Vaidyanathan et al. | Dec 2004 | A1 |
20040252529 | Huber et al. | Dec 2004 | A1 |
20040252629 | Hasegawa et al. | Dec 2004 | A1 |
20040252655 | Lim et al. | Dec 2004 | A1 |
20040252662 | Cho | Dec 2004 | A1 |
20040257979 | Ro et al. | Dec 2004 | A1 |
20040264507 | Cho et al. | Dec 2004 | A1 |
20040264585 | Borran et al. | Dec 2004 | A1 |
20040264593 | Shim et al. | Dec 2004 | A1 |
20050002412 | Sagfors et al. | Jan 2005 | A1 |
20050002440 | Alamouti et al. | Jan 2005 | A1 |
20050002467 | Seo et al. | Jan 2005 | A1 |
20050002468 | Walton et al. | Jan 2005 | A1 |
20050003782 | Wintzell | Jan 2005 | A1 |
20050008091 | Boutros et al. | Jan 2005 | A1 |
20050009486 | Al-Dhahir et al. | Jan 2005 | A1 |
20050013263 | Kim et al. | Jan 2005 | A1 |
20050025093 | Yun et al. | Feb 2005 | A1 |
20050030886 | Wu et al. | Feb 2005 | A1 |
20050030964 | Tiedemann et al. | Feb 2005 | A1 |
20050034079 | Gunasekar et al. | Feb 2005 | A1 |
20050041611 | Sandhu et al. | Feb 2005 | A1 |
20050041618 | Wei et al. | Feb 2005 | A1 |
20050041750 | Lau et al. | Feb 2005 | A1 |
20050041775 | Batzinger et al. | Feb 2005 | A1 |
20050044206 | Johansson et al. | Feb 2005 | A1 |
20050047517 | Georgios et al. | Mar 2005 | A1 |
20050052991 | Kadous et al. | Mar 2005 | A1 |
20050053081 | Andersson et al. | Mar 2005 | A1 |
20050053151 | Lin et al. | Mar 2005 | A1 |
20050063298 | Ling et al. | Mar 2005 | A1 |
20050068921 | Liu | Mar 2005 | A1 |
20050073976 | Fujii et al. | Apr 2005 | A1 |
20050084000 | Krauss et al. | Apr 2005 | A1 |
20050085195 | Tong et al. | Apr 2005 | A1 |
20050085197 | Laroia et al. | Apr 2005 | A1 |
20050085236 | Gerlach et al. | Apr 2005 | A1 |
20050111397 | Attar et al. | May 2005 | A1 |
20050113100 | Oprescu-Surcobe et al. | May 2005 | A1 |
20050122898 | Jang et al. | Jun 2005 | A1 |
20050128683 | Watanabe et al. | Jun 2005 | A1 |
20050128983 | Kim et al. | Jun 2005 | A1 |
20050135324 | Kim et al. | Jun 2005 | A1 |
20050135498 | Yee | Jun 2005 | A1 |
20050141624 | Lakshmipathi et al. | Jun 2005 | A1 |
20050147024 | Jung et al. | Jul 2005 | A1 |
20050147025 | Auer et al. | Jul 2005 | A1 |
20050152484 | Sandhu et al. | Jul 2005 | A1 |
20050157807 | Shim et al. | Jul 2005 | A1 |
20050159162 | Park | Jul 2005 | A1 |
20050164709 | Balasubramanian et al. | Jul 2005 | A1 |
20050165949 | Teague | Jul 2005 | A1 |
20050174981 | Heath et al. | Aug 2005 | A1 |
20050175070 | Grob et al. | Aug 2005 | A1 |
20050180311 | Wang et al. | Aug 2005 | A1 |
20050180313 | Kim et al. | Aug 2005 | A1 |
20050181799 | Laroia et al. | Aug 2005 | A1 |
20050192011 | Hong et al. | Sep 2005 | A1 |
20050195733 | Walton et al. | Sep 2005 | A1 |
20050195852 | Vayanos et al. | Sep 2005 | A1 |
20050195886 | Lampinen et al. | Sep 2005 | A1 |
20050201296 | Vannithamby et al. | Sep 2005 | A1 |
20050207367 | Onggosanusi et al. | Sep 2005 | A1 |
20050215196 | Krishnan et al. | Sep 2005 | A1 |
20050215251 | Krishnan et al. | Sep 2005 | A1 |
20050226204 | Uehara et al. | Oct 2005 | A1 |
20050239465 | Lee et al. | Oct 2005 | A1 |
20050243791 | Park et al. | Nov 2005 | A1 |
20050246548 | Laitinen et al. | Nov 2005 | A1 |
20050249266 | Brown et al. | Nov 2005 | A1 |
20050254416 | Laroia et al. | Nov 2005 | A1 |
20050254467 | Li et al. | Nov 2005 | A1 |
20050254477 | Lee et al. | Nov 2005 | A1 |
20050254556 | Fujii et al. | Nov 2005 | A1 |
20050259005 | Chiang et al. | Nov 2005 | A1 |
20050259723 | Blanchard et al. | Nov 2005 | A1 |
20050259757 | Wu et al. | Nov 2005 | A1 |
20050265220 | Erlich et al. | Dec 2005 | A1 |
20050265293 | Ro et al. | Dec 2005 | A1 |
20050265470 | Kishigami et al. | Dec 2005 | A1 |
20050271012 | Agrawal et al. | Dec 2005 | A1 |
20050276347 | Mujtaba et al. | Dec 2005 | A1 |
20050276348 | Vandenameele | Dec 2005 | A1 |
20050277423 | Sandhu et al. | Dec 2005 | A1 |
20050281029 | Inamoto et al. | Dec 2005 | A1 |
20050281290 | Khandekar et al. | Dec 2005 | A1 |
20050282500 | Wang et al. | Dec 2005 | A1 |
20050286408 | Jin et al. | Dec 2005 | A1 |
20050289256 | Cudak et al. | Dec 2005 | A1 |
20060002451 | Fukuta et al. | Jan 2006 | A1 |
20060013285 | Kobayashi et al. | Jan 2006 | A1 |
20060018336 | Sutivong et al. | Jan 2006 | A1 |
20060018347 | Agrawal et al. | Jan 2006 | A1 |
20060018397 | Sampath et al. | Jan 2006 | A1 |
20060026344 | Sun Hsu et al. | Feb 2006 | A1 |
20060029289 | Yamaguchi et al. | Feb 2006 | A1 |
20060034164 | Ozluturk et al. | Feb 2006 | A1 |
20060034173 | Teague et al. | Feb 2006 | A1 |
20060039332 | Kotzin | Feb 2006 | A1 |
20060039344 | Khan | Feb 2006 | A1 |
20060039500 | Yun et al. | Feb 2006 | A1 |
20060040655 | Kim et al. | Feb 2006 | A1 |
20060045003 | Choi et al. | Mar 2006 | A1 |
20060050770 | Wallace et al. | Mar 2006 | A1 |
20060056340 | Hottinen et al. | Mar 2006 | A1 |
20060057958 | Ngo et al. | Mar 2006 | A1 |
20060067421 | Walton et al. | Mar 2006 | A1 |
20060078075 | Stamoulis et al. | Apr 2006 | A1 |
20060083159 | Laroia et al. | Apr 2006 | A1 |
20060083183 | Teague et al. | Apr 2006 | A1 |
20060089104 | Kaikkonen et al. | Apr 2006 | A1 |
20060092054 | Li et al. | May 2006 | A1 |
20060093065 | Thomas et al. | May 2006 | A1 |
20060104333 | Rainbolt et al. | May 2006 | A1 |
20060104381 | Menon et al. | May 2006 | A1 |
20060107171 | Skraparlis | May 2006 | A1 |
20060109814 | Kuzminskiy et al. | May 2006 | A1 |
20060111054 | Pan et al. | May 2006 | A1 |
20060111148 | Mukkavilli et al. | May 2006 | A1 |
20060114858 | Walton et al. | Jun 2006 | A1 |
20060120469 | Maltsev et al. | Jun 2006 | A1 |
20060120471 | Learned et al. | Jun 2006 | A1 |
20060126491 | Ro et al. | Jun 2006 | A1 |
20060133269 | Prakash et al. | Jun 2006 | A1 |
20060133455 | Agrawal et al. | Jun 2006 | A1 |
20060133521 | Sampath et al. | Jun 2006 | A1 |
20060140289 | Mandyam et al. | Jun 2006 | A1 |
20060146867 | Lee et al. | Jul 2006 | A1 |
20060153239 | Julian et al. | Jul 2006 | A1 |
20060155534 | Lin et al. | Jul 2006 | A1 |
20060156199 | Palanki et al. | Jul 2006 | A1 |
20060172704 | Nishio et al. | Aug 2006 | A1 |
20060189321 | Oh et al. | Aug 2006 | A1 |
20060193294 | Jorswieck et al. | Aug 2006 | A1 |
20060203708 | Sampath et al. | Sep 2006 | A1 |
20060203794 | Sampath et al. | Sep 2006 | A1 |
20060203932 | Palanki et al. | Sep 2006 | A1 |
20060209670 | Gorokhov et al. | Sep 2006 | A1 |
20060209732 | Gorokhov et al. | Sep 2006 | A1 |
20060209754 | Ji et al. | Sep 2006 | A1 |
20060209764 | Kim et al. | Sep 2006 | A1 |
20060209973 | Gorokhov et al. | Sep 2006 | A1 |
20060215777 | Krishnamoorthi | Sep 2006 | A1 |
20060218459 | Hedberg | Sep 2006 | A1 |
20060223449 | Sampath et al. | Oct 2006 | A1 |
20060233124 | Palanki et al. | Oct 2006 | A1 |
20060233131 | Gore et al. | Oct 2006 | A1 |
20060233222 | Reial et al. | Oct 2006 | A1 |
20060262754 | Andersson et al. | Nov 2006 | A1 |
20060270427 | Shida et al. | Nov 2006 | A1 |
20060274836 | Sampath et al. | Dec 2006 | A1 |
20060280114 | Osseiran et al. | Dec 2006 | A1 |
20060285485 | Agrawal et al. | Dec 2006 | A1 |
20060285515 | Julian et al. | Dec 2006 | A1 |
20060286974 | Gore et al. | Dec 2006 | A1 |
20060286982 | Prakash et al. | Dec 2006 | A1 |
20060286995 | Onggosanusi et al. | Dec 2006 | A1 |
20060291371 | Sutivong et al. | Dec 2006 | A1 |
20060292989 | Gerlach et al. | Dec 2006 | A1 |
20070004430 | Hyun et al. | Jan 2007 | A1 |
20070005749 | Sampath | Jan 2007 | A1 |
20070009011 | Coulson et al. | Jan 2007 | A1 |
20070019596 | Barriac et al. | Jan 2007 | A1 |
20070025345 | Bachl et al. | Feb 2007 | A1 |
20070041311 | Baum et al. | Feb 2007 | A1 |
20070041404 | Palanki et al. | Feb 2007 | A1 |
20070041457 | Kadous et al. | Feb 2007 | A1 |
20070047485 | Gorokhov et al. | Mar 2007 | A1 |
20070047495 | Ji et al. | Mar 2007 | A1 |
20070049218 | Gorokhov et al. | Mar 2007 | A1 |
20070053282 | Tong et al. | Mar 2007 | A1 |
20070053383 | Choi et al. | Mar 2007 | A1 |
20070060178 | Gorokhov et al. | Mar 2007 | A1 |
20070064669 | Classon et al. | Mar 2007 | A1 |
20070070952 | Yoon et al. | Mar 2007 | A1 |
20070071147 | Sampath et al. | Mar 2007 | A1 |
20070097853 | Khandekar et al. | May 2007 | A1 |
20070097889 | Wang et al. | May 2007 | A1 |
20070097897 | Teague et al. | May 2007 | A1 |
20070097908 | Khandekar et al. | May 2007 | A1 |
20070097909 | Khandekar et al. | May 2007 | A1 |
20070097910 | Ji et al. | May 2007 | A1 |
20070097922 | Parekh et al. | May 2007 | A1 |
20070097927 | Gorokhov et al. | May 2007 | A1 |
20070097942 | Gorokhov et al. | May 2007 | A1 |
20070097981 | Papasakellariou et al. | May 2007 | A1 |
20070098050 | Khandekar et al. | May 2007 | A1 |
20070098120 | Wang et al. | May 2007 | A1 |
20070099666 | Astely et al. | May 2007 | A1 |
20070110172 | Faulkner et al. | May 2007 | A1 |
20070115795 | Gore et al. | May 2007 | A1 |
20070149194 | Das et al. | Jun 2007 | A1 |
20070149228 | Das | Jun 2007 | A1 |
20070159969 | Das et al. | Jul 2007 | A1 |
20070160115 | Palanki et al. | Jul 2007 | A1 |
20070165738 | Barriac et al. | Jul 2007 | A1 |
20070177631 | Popovic et al. | Aug 2007 | A1 |
20070177681 | Choi et al. | Aug 2007 | A1 |
20070183303 | Pi et al. | Aug 2007 | A1 |
20070183386 | Muharemovic et al. | Aug 2007 | A1 |
20070207812 | Borran et al. | Sep 2007 | A1 |
20070211616 | Khandekar et al. | Sep 2007 | A1 |
20070211667 | Agrawal et al. | Sep 2007 | A1 |
20070230324 | Li et al. | Oct 2007 | A1 |
20070242653 | Yang et al. | Oct 2007 | A1 |
20070263743 | Lee et al. | Nov 2007 | A1 |
20070280336 | Zhang et al. | Dec 2007 | A1 |
20070281702 | Lim et al. | Dec 2007 | A1 |
20080039129 | Li et al. | Feb 2008 | A1 |
20080063099 | Laroia et al. | Mar 2008 | A1 |
20080095223 | Tong et al. | Apr 2008 | A1 |
20080095262 | Hoo et al. | Apr 2008 | A1 |
20080151829 | Khandekar et al. | Jun 2008 | A1 |
20080181139 | Rangarajan et al. | Jul 2008 | A1 |
20080214222 | Atarashi et al. | Sep 2008 | A1 |
20080253279 | Ma et al. | Oct 2008 | A1 |
20080267157 | Lee et al. | Oct 2008 | A1 |
20080299983 | Kwak et al. | Dec 2008 | A1 |
20090003466 | Taherzadehboroujeni et al. | Jan 2009 | A1 |
20090010351 | Laroia et al. | Jan 2009 | A1 |
20090022098 | Novak et al. | Jan 2009 | A1 |
20090041150 | Tsai et al. | Feb 2009 | A1 |
20090110103 | Maltsev et al. | Apr 2009 | A1 |
20090129501 | Mehta et al. | May 2009 | A1 |
20090180459 | Orlik et al. | Jul 2009 | A1 |
20090197646 | Tamura et al. | Aug 2009 | A1 |
20090201826 | Gorokhov et al. | Aug 2009 | A1 |
20090201872 | Gorokhov et al. | Aug 2009 | A1 |
20090213750 | Gorokhov et al. | Aug 2009 | A1 |
20090213950 | Gorokhov et al. | Aug 2009 | A1 |
20090262641 | Laroia et al. | Oct 2009 | A1 |
20090262699 | Wengerter et al. | Oct 2009 | A1 |
20090285163 | Zhang et al. | Nov 2009 | A1 |
20090287977 | Chang et al. | Nov 2009 | A1 |
20100002570 | Walton et al. | Jan 2010 | A9 |
20100135242 | Nam et al. | Jun 2010 | A1 |
20100220800 | Erell et al. | Sep 2010 | A1 |
20100232384 | Farajidana et al. | Sep 2010 | A1 |
20100238902 | Ji et al. | Sep 2010 | A1 |
20100254263 | Chen et al. | Oct 2010 | A1 |
20110064070 | Gore et al. | Mar 2011 | A1 |
20110235733 | Laroia et al. | Sep 2011 | A1 |
20110235745 | Laroia et al. | Sep 2011 | A1 |
20110235746 | Laroia et al. | Sep 2011 | A1 |
20110235747 | Laroia et al. | Sep 2011 | A1 |
20110255518 | Agrawal et al. | Oct 2011 | A9 |
20110306291 | Ma et al. | Dec 2011 | A1 |
20120002623 | Khandekar et al. | Jan 2012 | A1 |
20120063441 | Palanki | Mar 2012 | A1 |
20120120925 | Kadous et al. | May 2012 | A1 |
20120140798 | Kadous et al. | Jun 2012 | A1 |
20120140838 | Kadous et al. | Jun 2012 | A1 |
20130016678 | Laroia et al. | Jan 2013 | A1 |
20130208681 | Gore et al. | Aug 2013 | A1 |
20130287138 | Ma et al. | Oct 2013 | A1 |
20130315200 | Gorokhov et al. | Nov 2013 | A1 |
20140247898 | Laroia et al. | Sep 2014 | A1 |
20140376518 | Palanki et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2348137 | Nov 2001 | CA |
2477536 | Sep 2003 | CA |
2540688 | May 2005 | CA |
2577369 | Mar 2006 | CA |
19931400 | Dec 1994 | CL |
1997846 | Jan 1998 | CL |
27102004 | Aug 2005 | CL |
22892004 | Sep 2005 | CL |
30862004 | Oct 2005 | CL |
29932005 | May 2006 | CL |
15212006 | Mar 2007 | CL |
14922006 | Apr 2007 | CL |
14892006 | May 2007 | CL |
14902006 | May 2007 | CL |
46151 | Dec 2009 | CL |
1252919 | May 2000 | CN |
1267437 | Sep 2000 | CN |
1284795 | Feb 2001 | CN |
1296682 | May 2001 | CN |
1344451 | Apr 2002 | CN |
1346221 | Apr 2002 | CN |
1383631 | Dec 2002 | CN |
1386344 | Dec 2002 | CN |
1402916 | Mar 2003 | CN |
1424835 | Jun 2003 | CN |
1132474 | Dec 2003 | CN |
1467938 | Jan 2004 | CN |
1487755 | Apr 2004 | CN |
1520220 | Aug 2004 | CN |
1525678 | Sep 2004 | CN |
1642051 | Jul 2005 | CN |
1642335 | Jul 2005 | CN |
1647436 | Jul 2005 | CN |
19800653 | Jul 1999 | DE |
19800953 | Jul 1999 | DE |
19957288 | May 2001 | DE |
10240138 | Aug 2003 | DE |
10254384 | Jun 2004 | DE |
0488976 | Jun 1992 | EP |
0568291 | Nov 1993 | EP |
0740431 | Oct 1996 | EP |
0786889 | Jul 1997 | EP |
0805576 | Nov 1997 | EP |
0807989 | Nov 1997 | EP |
0844796 | May 1998 | EP |
0981222 | Feb 2000 | EP |
1001570 | May 2000 | EP |
1047209 | Oct 2000 | EP |
1061687 | Dec 2000 | EP |
1091516 | Apr 2001 | EP |
1093241 | Apr 2001 | EP |
1148673 | Oct 2001 | EP |
1172983 | Jan 2002 | EP |
1180907 | Feb 2002 | EP |
1187506 | Mar 2002 | EP |
1204217 | May 2002 | EP |
1255369 | Nov 2002 | EP |
1267513 | Dec 2002 | EP |
1074099 | Feb 2003 | EP |
1286490 | Feb 2003 | EP |
1335504 | Aug 2003 | EP |
1351538 | Oct 2003 | EP |
1376920 | Jan 2004 | EP |
1392073 | Feb 2004 | EP |
1434365 | Jun 2004 | EP |
1441469 | Jul 2004 | EP |
1445873 | Aug 2004 | EP |
1465449 | Oct 2004 | EP |
1478204 | Nov 2004 | EP |
1507421 | Feb 2005 | EP |
1513356 | Mar 2005 | EP |
1531575 | May 2005 | EP |
1533950 | May 2005 | EP |
1538863 | Jun 2005 | EP |
1542488 | Jun 2005 | EP |
1601149 | Nov 2005 | EP |
1643669 | Apr 2006 | EP |
1898542 | Mar 2008 | EP |
1941693 | Jul 2011 | EP |
2584884 | Jan 1987 | FR |
2279540 | Jan 1995 | GB |
2279540 | Jan 1995 | GB |
2348776 | Oct 2000 | GB |
2412541 | Sep 2005 | GB |
2412541 | Sep 2005 | GB |
167573 | Feb 2011 | IL |
201872 | May 2012 | IL |
H04111544 | Apr 1992 | JP |
4301931 | Oct 1992 | JP |
H0746248 | Feb 1995 | JP |
7336323 | Dec 1995 | JP |
8116329 | May 1996 | JP |
08288927 | Nov 1996 | JP |
9008725 | Jan 1997 | JP |
H09501548 | Feb 1997 | JP |
9131342 | May 1997 | JP |
9182148 | Jul 1997 | JP |
09214404 | Aug 1997 | JP |
9284200 | Oct 1997 | JP |
10117162 | May 1998 | JP |
H10210000 | Aug 1998 | JP |
10322304 | Dec 1998 | JP |
H11168453 | Jun 1999 | JP |
11191756 | Jul 1999 | JP |
11196109 | Jul 1999 | JP |
11508417 | Jul 1999 | JP |
11239155 | Aug 1999 | JP |
11298954 | Oct 1999 | JP |
11331927 | Nov 1999 | JP |
2000022618 | Jan 2000 | JP |
2000102065 | Apr 2000 | JP |
2000184425 | Jun 2000 | JP |
2000511750 | Sep 2000 | JP |
2000332724 | Nov 2000 | JP |
2001016644 | Jan 2001 | JP |
2001045573 | Feb 2001 | JP |
2001057545 | Feb 2001 | JP |
2001156732 | Jun 2001 | JP |
2001238269 | Aug 2001 | JP |
2001245355 | Sep 2001 | JP |
2001249802 | Sep 2001 | JP |
2001285927 | Oct 2001 | JP |
2001521698 | Nov 2001 | JP |
2001526012 | Dec 2001 | JP |
2002026790 | Jan 2002 | JP |
2002111556 | Apr 2002 | JP |
2002515203 | May 2002 | JP |
2002290148 | Oct 2002 | JP |
2002534925 | Oct 2002 | JP |
2002534941 | Oct 2002 | JP |
2002538696 | Nov 2002 | JP |
200318054 | Jan 2003 | JP |
2003032218 | Jan 2003 | JP |
2003500909 | Jan 2003 | JP |
200369472 | Mar 2003 | JP |
2003101515 | Apr 2003 | JP |
2003169367 | Jun 2003 | JP |
2003174426 | Jun 2003 | JP |
2003199173 | Jul 2003 | JP |
2003520523 | Jul 2003 | JP |
2003235072 | Aug 2003 | JP |
2003249907 | Sep 2003 | JP |
2003292667 | Oct 2003 | JP |
2003318857 | Nov 2003 | JP |
2003347985 | Dec 2003 | JP |
2003348047 | Dec 2003 | JP |
2003536308 | Dec 2003 | JP |
2004007643 | Jan 2004 | JP |
2004023716 | Jan 2004 | JP |
2004048716 | Feb 2004 | JP |
200472457 | Mar 2004 | JP |
2004072157 | Mar 2004 | JP |
2004096142 | Mar 2004 | JP |
2004507151 | Mar 2004 | JP |
2004507950 | Mar 2004 | JP |
2004153676 | May 2004 | JP |
2004158901 | Jun 2004 | JP |
2004162388 | Jun 2004 | JP |
2004194262 | Jul 2004 | JP |
2004201296 | Jul 2004 | JP |
2004215022 | Jul 2004 | JP |
2004221972 | Aug 2004 | JP |
2004266818 | Sep 2004 | JP |
2004529524 | Sep 2004 | JP |
2004297276 | Oct 2004 | JP |
2004297370 | Oct 2004 | JP |
2004297756 | Oct 2004 | JP |
2004534456 | Nov 2004 | JP |
2004535106 | Nov 2004 | JP |
2005006337 | Jan 2005 | JP |
2005020530 | Jan 2005 | JP |
2005502218 | Jan 2005 | JP |
2005506757 | Mar 2005 | JP |
2005110130 | Apr 2005 | JP |
2005130491 | May 2005 | JP |
2005167502 | Jun 2005 | JP |
2005197772 | Jul 2005 | JP |
2005203961 | Jul 2005 | JP |
2005521327 | Jul 2005 | JP |
2005521358 | Jul 2005 | JP |
2005236678 | Sep 2005 | JP |
2006505172 | Feb 2006 | JP |
2006505230 | Feb 2006 | JP |
2006506860 | Feb 2006 | JP |
2006211537 | Aug 2006 | JP |
2006518173 | Aug 2006 | JP |
2006524930 | Nov 2006 | JP |
2007500486 | Jan 2007 | JP |
2007503790 | Feb 2007 | JP |
2007519281 | Jul 2007 | JP |
2007520309 | Jul 2007 | JP |
2007525043 | Aug 2007 | JP |
2007527127 | Sep 2007 | JP |
2008505587 | Feb 2008 | JP |
2008535398 | Aug 2008 | JP |
4188372 | Nov 2008 | JP |
2008546314 | Dec 2008 | JP |
04694628 | Jun 2011 | JP |
0150275 | Nov 1998 | KR |
20000060428 | Oct 2000 | KR |
100291476 | Mar 2001 | KR |
20010056333 | Apr 2001 | KR |
20010087715 | Sep 2001 | KR |
20030007965 | Jan 2003 | KR |
20030035969 | May 2003 | KR |
20040063057 | Jul 2004 | KR |
200471652 | Aug 2004 | KR |
20040103441 | Dec 2004 | KR |
20040103441 | Dec 2004 | KR |
20050063826 | Jun 2005 | KR |
100606099 | Jul 2006 | KR |
95121152 | Dec 1997 | RU |
2141168 | Nov 1999 | RU |
2141706 | Nov 1999 | RU |
2159007 | Nov 2000 | RU |
2162275 | Jan 2001 | RU |
2183387 | Jun 2002 | RU |
2192094 | Oct 2002 | RU |
2197778 | Jan 2003 | RU |
2201033 | Mar 2003 | RU |
2207723 | Jun 2003 | RU |
2207723 | Jun 2003 | RU |
2208913 | Jul 2003 | RU |
2210866 | Aug 2003 | RU |
2216101 | Nov 2003 | RU |
2216103 | Nov 2003 | RU |
2216105 | Nov 2003 | RU |
2225080 | Feb 2004 | RU |
2235429 | Aug 2004 | RU |
2235432 | Aug 2004 | RU |
2237379 | Sep 2004 | RU |
2238611 | Oct 2004 | RU |
2242091 | Dec 2004 | RU |
2250564 | Apr 2005 | RU |
2257008 | Jul 2005 | RU |
2267224 | Dec 2005 | RU |
2005129079 | Feb 2006 | RU |
2285338 | Oct 2006 | RU |
2285351 | Oct 2006 | RU |
2292655 | Jan 2007 | RU |
2005106258 | Oct 2008 | RU |
2349043 | Mar 2009 | RU |
1320883 | Jun 1987 | SU |
508960 | Nov 2002 | TW |
508960 | Nov 2002 | TW |
510132 | Nov 2002 | TW |
200302642 | Aug 2003 | TW |
200401572 | Jan 2004 | TW |
I232040 | May 2005 | TW |
248266 | Jan 2006 | TW |
200718128 | May 2007 | TW |
WO9408432 | Apr 1994 | WO |
WO-9521494 | Aug 1995 | WO |
WO-9613920 | May 1996 | WO |
WO9701256 | Jan 1997 | WO |
WO9737456 | Oct 1997 | WO |
WO-9746033 | Dec 1997 | WO |
WO-9800946 | Jan 1998 | WO |
WO-9814026 | Apr 1998 | WO |
WO9837706 | Aug 1998 | WO |
WO9848581 | Oct 1998 | WO |
WO9853561 | Nov 1998 | WO |
WO9854919 | Dec 1998 | WO |
WO-9941871 | Aug 1999 | WO |
WO-9944313 | Sep 1999 | WO |
WO-9944383 | Sep 1999 | WO |
WO-9952250 | Oct 1999 | WO |
WO9953713 | Oct 1999 | WO |
WO-9959265 | Nov 1999 | WO |
WO9960729 | Nov 1999 | WO |
0004728 | Jan 2000 | WO |
WO0002397 | Jan 2000 | WO |
WO0033503 | Jun 2000 | WO |
0051389 | Aug 2000 | WO |
WO0070897 | Nov 2000 | WO |
WO0101596 | Jan 2001 | WO |
WO0117125 | Mar 2001 | WO |
WO0126269 | Apr 2001 | WO |
WO-0139523 | May 2001 | WO |
WO0145300 | Jun 2001 | WO |
WO-0148969 | Jul 2001 | WO |
WO-0158054 | Aug 2001 | WO |
WO-0160106 | Aug 2001 | WO |
0165637 | Sep 2001 | WO |
WO0169814 | Sep 2001 | WO |
WO0182543 | Nov 2001 | WO |
WO-0182544 | Nov 2001 | WO |
WO-0189112 | Nov 2001 | WO |
0195427 | Dec 2001 | WO |
WO0193505 | Dec 2001 | WO |
WO-0204936 | Jan 2002 | WO |
WO0207375 | Jan 2002 | WO |
0215432 | Feb 2002 | WO |
WO0215616 | Feb 2002 | WO |
WO-0219746 | Mar 2002 | WO |
WO-0231991 | Apr 2002 | WO |
WO-0233848 | Apr 2002 | WO |
0245293 | Jun 2002 | WO |
WO0245456 | Jun 2002 | WO |
WO-0249306 | Jun 2002 | WO |
WO0249385 | Jun 2002 | WO |
WO02049305 | Jun 2002 | WO |
WO02060138 | Aug 2002 | WO |
WO02065675 | Aug 2002 | WO |
WO02082689 | Oct 2002 | WO |
WO-02082743 | Oct 2002 | WO |
WO02089434 | Nov 2002 | WO |
WO02093782 | Nov 2002 | WO |
WO02093819 | Nov 2002 | WO |
WO02100027 | Dec 2002 | WO |
WO-03001696 | Jan 2003 | WO |
WO03001696 | Jan 2003 | WO |
WO03001761 | Jan 2003 | WO |
WO-03001981 | Jan 2003 | WO |
WO-03003617 | Jan 2003 | WO |
WO03019819 | Mar 2003 | WO |
WO03030414 | Apr 2003 | WO |
WO03034644 | Apr 2003 | WO |
WO03043262 | May 2003 | WO |
WO03043369 | May 2003 | WO |
03049409 | Jun 2003 | WO |
WO03058871 | Jul 2003 | WO |
03069816 | Aug 2003 | WO |
WO03067783 | Aug 2003 | WO |
WO03069832 | Aug 2003 | WO |
WO03073646 | Sep 2003 | WO |
WO03075479 | Sep 2003 | WO |
WO03085876 | Oct 2003 | WO |
WO03088538 | Oct 2003 | WO |
WO03094384 | Nov 2003 | WO |
WO03103331 | Dec 2003 | WO |
WO2004002047 | Dec 2003 | WO |
WO2004004370 | Jan 2004 | WO |
WO2004008671 | Jan 2004 | WO |
WO-2004008681 | Jan 2004 | WO |
WO2004015912 | Feb 2004 | WO |
WO2004016007 | Feb 2004 | WO |
WO2004021605 | Mar 2004 | WO |
WO2004023834 | Mar 2004 | WO |
2004028037 | Apr 2004 | WO |
WO-2004030238 | Apr 2004 | WO |
WO-2004032443 | Apr 2004 | WO |
2004038984 | May 2004 | WO |
2004040825 | May 2004 | WO |
WO2004038954 | May 2004 | WO |
WO-2004038972 | May 2004 | WO |
WO-2004038988 | May 2004 | WO |
WO-2004040690 | May 2004 | WO |
WO-2004040827 | May 2004 | WO |
WO2004047354 | Jun 2004 | WO |
WO2004049618 | Jun 2004 | WO |
WO-2004051872 | Jun 2004 | WO |
2004056022 | Jul 2004 | WO |
WO2004062255 | Jul 2004 | WO |
WO2004064294 | Jul 2004 | WO |
WO2004064295 | Jul 2004 | WO |
WO2004066520 | Aug 2004 | WO |
WO2004068721 | Aug 2004 | WO |
WO-2004073276 | Aug 2004 | WO |
WO2004075023 | Sep 2004 | WO |
WO2004075442 | Sep 2004 | WO |
WO2004075448 | Sep 2004 | WO |
WO2004075468 | Sep 2004 | WO |
WO2004075596 | Sep 2004 | WO |
WO2004077850 | Sep 2004 | WO |
WO2004084509 | Sep 2004 | WO |
WO-2004086706 | Oct 2004 | WO |
WO-2004086711 | Oct 2004 | WO |
2004098072 | Nov 2004 | WO |
WO 2004095851 | Nov 2004 | WO |
WO2004095730 | Nov 2004 | WO |
WO2004095854 | Nov 2004 | WO |
WO2004098222 | Nov 2004 | WO |
WO2004102815 | Nov 2004 | WO |
WO2004102816 | Nov 2004 | WO |
2004114564 | Dec 2004 | WO |
2004114615 | Dec 2004 | WO |
WO2004105272 | Dec 2004 | WO |
WO2004114549 | Dec 2004 | WO |
WO2005002253 | Jan 2005 | WO |
WO2005011163 | Feb 2005 | WO |
WO-2005015795 | Feb 2005 | WO |
WO-2005015797 | Feb 2005 | WO |
WO2005015810 | Feb 2005 | WO |
WO-2005015941 | Feb 2005 | WO |
WO2005018270 | Feb 2005 | WO |
WO2005020488 | Mar 2005 | WO |
WO2005020490 | Mar 2005 | WO |
WO2005022811 | Mar 2005 | WO |
WO2005025110 | Mar 2005 | WO |
WO2005032004 | Apr 2005 | WO |
2005043780 | May 2005 | WO |
WO2005043855 | May 2005 | WO |
WO2005046080 | May 2005 | WO |
2005055465 | Jun 2005 | WO |
WO2005055484 | Jun 2005 | WO |
WO-2005055527 | Jun 2005 | WO |
WO2005060192 | Jun 2005 | WO |
WO-2005065062 | Jul 2005 | WO |
WO-2005069538 | Jul 2005 | WO |
WO2005074184 | Aug 2005 | WO |
2005086440 | Sep 2005 | WO |
WO-2005096538 | Oct 2005 | WO |
WO2005122628 | Dec 2005 | WO |
WO2006007292 | Jan 2006 | WO |
WO2006019710 | Feb 2006 | WO |
WO-2006026344 | Mar 2006 | WO |
WO2006044487 | Apr 2006 | WO |
2006062356 | Jun 2006 | WO |
WO2006069300 | Jun 2006 | WO |
WO2006069301 | Jun 2006 | WO |
WO2006069397 | Jun 2006 | WO |
WO2006077696 | Jul 2006 | WO |
WO-2006096784 | Sep 2006 | WO |
WO-2006099349 | Sep 2006 | WO |
WO-2006099545 | Sep 2006 | WO |
WO-2006099577 | Sep 2006 | WO |
WO-2006127544 | Nov 2006 | WO |
WO-2006134032 | Dec 2006 | WO |
WO-2006138196 | Dec 2006 | WO |
WO-2006138573 | Dec 2006 | WO |
WO2006138581 | Dec 2006 | WO |
2007022430 | Feb 2007 | WO |
WO-2007024934 | Mar 2007 | WO |
WO-2007024935 | Mar 2007 | WO |
WO2007025160 | Mar 2007 | WO |
WO-2007051159 | May 2007 | WO |
Entry |
---|
Lau, et al., “On the Design of MIMO Block-Fading Channels with Feedback-Link Capacity Constraint,” IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ, US, v. 52, No. 1, Jan. 2004, pp. 62-70, XP001189908. |
Written Opinion—PCT/US06/008987, International Search Authority—European Patent Office—Sep. 1, 2006. |
International Preliminary Report on Patentability—PCT/US06/008987, International Bureau of WIPO-Sep. 12, 2007. |
3GPP TS 33.220 V.1.1.0 XX,XX, “3rd Generation Partnership Projects; Technical Specification Group Services and System Aspects; Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (Release 6)” Feb. 9, 2004, pp. 1-17, figure 4, XP002996023. |
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA (Release 7), 3GPP TR 25.814 v0.3.1 (Nov. 2005). |
B. Sklar: “The process of thus correcting the channel-induced distortion is called equalization”, Digital Communications, PTR Prentice Hall, Upper Saddle River, New Jersey, 1998, Formatting and Baseband Transmission, Chap. 2, Section 2.11.2, pp. 104-105. |
Bahai, Saltzberg: “System Architecture,” Multi-Carrier Digital Communications, Kluwer Academic, New York, NY, XP-002199501, 1999, pp. 17-21. |
Bingham: “Other Types of MCM,” ADSL, VDSL, and Multicarrier Modulation, John wiley & Sons, New York, XP-002199502. 2000, pp. 111-113. |
Carl R. Nassar, Balasubramaniam Natarajan and Steve Shattil: Introduction of Carrier Interference to Spread Spectrum Multiple Access, Apr. 1999, IEEE, pp. 1-5. |
Chennakeshu, et al. “A Comparison of Diversity Schemes for a Mixed-Mode Slow Frequency-Hopped Cellular System,” IEEE, 1993, pp. 1749-1753. |
Chennakeshu, et al. “Capacity Analysis of a TDMA-Based Slow-frequency-Hopped Cellular System,” IEEE Transaction on Vehicular Technology, vol. 45., No. 3, Aug. 1996, pp. 531-542. |
Chiani, et al. “Outage Evaluation for Slow Frequency-Hopping Mobile Radio Systems” IEEE Transactions on Communications, vol. 47, No. 12, pp. 1865-1874, Dec. 1999. |
Choi, et al., “Design of the Optimum Pilot Pattern for Channel Estimation in OFDM Systems,” Global Telecommunications Conference, IEEE Communications Society, Globecom, Dallas, Texas (2004), pp. 3661-3665. |
Czylwik: “Comparison Between Adaptive OFDM and Single Carrier Modulation with Frequency Domain Equalization,” IEEE 47th Vehicular Technology Conference, vol. 2, May 4-7, 1997, pp. 865-869. |
Das, Arnab, et al. “Adaptive, asynchronous incremental redundancy (A-IR) with fixed transmission time intervals TTI for HSDPA.” IEEE, pp. 1083-1087, Sep. 2002. |
Das, et al. “On The Reverse Link Interference Structure for Next Generation Cellular Systems,” European Microwave Conference, Oct. 11, 2004, pp. 3068-3072. |
Digital cellular telecommunications system (Phase 2+); Mobile radio interface layer 3 specification (GSM 04.08 version 7.7.1 Release 1998); ETSI EN 300 940 V7.7.1 (Oct. 2000), pp. 1,2,91-93. |
Dinis, et al., “A Multiple Access Scheme for the Uplink of Broadband Wireless Systems,” IEEE Global Telecommunications Conference, 2004, Globecom '04, vol. 6, Nov. 29-Dec. 3, 2004, pp. 3808-3812. |
Favre et al: “Self-Adaptive Transmission Procedure” IBM Technical Disclosure Bulletin, IBM Corporation, Sep. 1976, vol. 19, No. 4, pp. 1283-1284, New York, New York. |
Fuchs, et al., “A Novel Tree-Based Scheduling Algorithm for the Downlink of Multi-User MIMO Systems with ZF Beamforming,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, Proceedings, Philadelphia, PA, pp. 1121-1124. |
Groe, et al., “CDMA Mobile Radio Design,” Sep. 26, 2001, Artech House, Norwood, MA 02062, pp. 257-259. |
Hermann Rohling et al., : “Performance Comparison of Different Multiple Access Schemes for the Downlink of an OFDM Communication System”, Vehicular Technology. |
Conference, 1997, 47th IEEE, vol. 3, May 4-7, 1997, pp. 1365-1369. |
Hill, et al., “Cyclic Shifting and Time Inversion of Partial Transmit Sequences to Reduce the Peak-to-Average Power Ratio in OFDM,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, Sep. 18, 2000, Piscataway, NJ, pp. 1256-1259. |
International Search Report and Written Opinion-PCT/US06/008987, International Search Authority—European Patent Office, Sep. 1, 2006. |
J.S. Chow and J.M. Cioffi: “A cost-effective maximum likelihood reciever for multicarrier systems”, Proc. IEEE Int. Conf. On Comm., pp. 948-952, Jun. 1992. |
JE, et al. “A Novel Multiple Access Scheme for Uplink Cellular Systems,” IEEE Vehicular Technology Conference, Sep. 26, 2004, pp. 984-988. |
John B. Groe, Lawrence E. Larson, “CDMA Mobile Radio Design” Sep. 26, 2001, Artech House, Norwood, MA02062 580530, XP002397967, pp. 157-159. |
Kaleh: “Channel Equalization for Block Transmission Systems,” IEEE Journal on Selected Areas in Communications, vol. 13, No. 1, Jan. 1995, pp. 110-121. |
Kappes, J.M., and Sayegh, S.1., “Programmable Demultiplexer/Demodulator Processor,” COMSAT Laboratories, IEEE, 1990, pp. 230-234. |
Karsten Bruninghaus et al., : “Multi-Carrier Spread Spectrum and Its relationship to Single-Carrier Transmission”, Vehicular technology Conference, 1998, VTC 98, 48th IEEE, vol. 3, May 18-21, 1998, pp. 2329-2332. |
Keller, et al.: “Adaptive Multicarrier Modulation: A Convenient Framework for Time-Frequency Processing in Wireless Communications,” Proceedings of the IEEE, vol. 88, No. 5, May 2000, pp. 611-640. |
Kim, et al. “Performance of TDMA System With SFH and 2-Bit Differentially Detected GMSK Over Rayleigh Fading Channel,” IEEE Vehicular Technology Conference, Apr. 28, 1996, pp. 789-793. |
Kishiyama Y et al: “Investigation of Optimum Pilot Channel Structure for VSF-OFCDM Broadband Wireless Access in Forward Link”, IEEE Vehicular Technology Conference, New York, NY, US, vol. 4, Apr. 22, 2003, pp. 139-144. |
Kostic, et al. “Dynamic Frequency Hopping in Wireless Cellular Systems-Simulations of Full-Replacement and Reduced-Overhead Methods,” IEEE Vehicular Technology Conference, May 16, 1999, pp. 914-918. |
Kostic, et al. “Fundamentals of Dynamic Frequency Hopping in Cellular Systems,” IEEE Journal on Selected Areas in Communications, vol. 19, No. 11, Nov. 2001, pp. 2254-2266. |
Lacroix, et al.: “A Study of OFDM Parameters for High Data Rate Radio LAN's,” 2000 IEEE 51st Vehicular Technology Conference Proceedings, vol. 2, May 15-18, 2000, pp. 1075-1079. |
Laroia, R. et al: “An integrated approach based on cross-layer optimization—Designing a mobile broadband wireless access network” IEEE Signal Processing Magazine, IEEE Service Center, Piscataway, NJ, US, vol. 21, No. 5, Sep. 2004, pp. 20-28, XP011118149. |
Leon, et al., “Cyclic Delay Diversity for Single Carrier-Cyclic Prefix Systems,” Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Oct. 28, 2005, Piscataway, NJ, pp. 519-523. |
Lettieri et al: “Adaptive frame length control for improving wireless link throughput, range, and energy efficiency”, INFOCOM 98, 17th Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 29-Apr. 2, 1998, pp. 564-571, vol. 2, IEEE San Francisco, CA, New York, New York. |
Lott: “Comparison of Frequency and Time Domain Differential Modulation in an OFDM System for Wireless ATM,” 1999 IEEE 49th Vehicular Technology Conference, vol. 2, Jul. 1999, pp. 877-883. |
Mignone, et al.: “CD3-OFDM: A New Channel Estimation Method to Improve the Spectrum Efficiency in Digital Terrestrial Television Systems,” International Broadcasting Convention, Sep. 14-18, 1995 Conference Publication No. 413, IEE 1995, pp. 122-128. |
Molisch, et al., MIMO systems with antenna selection, IEEE Microwave Magazine, URL: http://ieeexplore.ieee.org/ie15/6668/28677/01284943.pdf, Retrieved on Dec. 8, 2006, pp. 46-56 (2004). |
Naofal Al-Dhahir: “A Bandwidth-Optimized Reduced-Complexity Equalized Multicarrier Transceiver”, IEEE Transactions on Communications, vol. 45, No. 8, Aug. 1997. |
Naofal Al-Dhahir: “Optimum Finite-Length Equalization for Multicarrier Transceivers”, IEEE Trans. on Comm., pp. 56-64, Jan. 1996. |
Nassar, Carl R., et al., “High-Performance MC-CDMA via Carrier Interferometry Codes”, IEEE Transactions on Vehicular Technology, vol. 50, No. 6, Nov. 2001. |
Net Working Group, T. Dierks, C. Allen, Certicom; The TLS Protocol Version 1.0; Jan. 1999. |
NTT DoCoMo, et al.: “Orthogonal Common Pilot Channel and Scrambling Code in Evolved UTRA Downlink,” 3GPP TSG RAN WG1 #42 on LTE, pp. 1-8 (Aug.-Sep. 2005). |
Sari, et al., “Transmission Techniques for Digital Terrestrial TV Broadcasting,” IEEE Communications Magazine, Feb. 1995, pp. 100-109. |
Schnell, et al, “Application of IFDMA to Mobile Radio Transmission,” IEEE 1998 International Conference on Universal Personal Communications, vol. 2, Oct. 5-9, 1998, pp. 1267-1272. |
Schnell, et al., “A Promising New Wideband Multiple-Access Scheme for Future Mobile Communications Systems,” European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 10, No. 4, Jul. 1999, pp. 417-427. |
Shattil et al., “Array Control Systems for Multicarrier Protocols Using a Frequency-Shifted Feedback Cavity”, IEEE, 1999. |
Sklar: “Formatting and Baseband Transmission”, Chapter 2, pp. 54, 104-106. Jan. 2001. |
Sorger U. et al., : “Interleave FDMA-a new spread-spectrum multiple-access scheme”, IEEE Int. Conference on Atlanta, GA, USA, Jun. 7-11, 1998, XP010284733. |
Tellado, “Multicarrier Modulation with Low Par,” Kluwer Academic, Dordrecht, NL, XP-002199500, 2000, pp. 6-11 and 55-60. |
Tellambura, “Use of m-sequences for OFDM Peak-to-Average Power Ratio Reduction,” Electronics Letters, vol. 33, No. 15, Jul. 17, 1997, pp. 1300-1301. |
TIA/EIA/IS-2000 “Standards for CDMA2000 Spread Spectrum Systems” Version 1.0 Jul. 1999. |
TIA/EIA/IS-95 “Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System” Jul. 1993. |
TIA-1121.001 “Physical Layer for Ultra Mobile Broadband (UMB) Air Interface Specification,” 3GPP2 C.S0084-001-0, Version 2.0 (Aug. 2007). |
TIA-1121.002 “Medium Access Control Layer for Ultra Mobile Broadband (UMB) Air Interface Specification,” 3GPP2 C.S0084-002-0, Version 2.0 (Aug. 2007). |
Tomcik, J.: “MBFDD and MBTDD Wideband Mode: Technology Overview,” IEEE 802.20 Working Group Mobile Broadband Wireless Access, Jan. 2006, pp. 1-109, XP002429968. |
Tomcik, J.: “QFDD Technology Overview Presentation,” IEEE 802.20 Working Group on Mobile Broadband Wireless Access, Slides/pp. 1-73, Nov. 15, 2005 and Oct. 28, 2005. |
Torrieri, “Cellular Frequency-Hopping CDMA Systems,” IEEE Vehicular Technology Conference, May 16, 1999, pp. 919-925. |
Toufik I et al., “Channel allocation algorithms for multi-carrier systems”, Vehicular Technology Conference, 2004. VTC2004-FALL. 2004 IEEE 60TH Los Angeles, CA, USA, Sep. 26-29, 2004, pp. 1129-1133, XP010786798, ISBN: 07-7803-8521-7. |
Xiaodong, et al., “M-Sequences for OFDM Peak-to-Average Power Ratio Reduction and Error Correction,” Electronics Letters, vol. 33, Issue 7, Mar. 27, 1997, pp. 554-555. |
Zekri, et al., “DMT Signals with Low Peak-to-Average Power Ratio,” Proceedings, IEEE International Symposium on Computers and Communications, 1999, Jul. 6-8, 1999, pp. 362-368. |
Wang et al., “Improving performance of multi-user OFDM systems using bit-wise interleaver” Electronics Letters IEE Stevenage, GB, vol. 37. No. 19, Sep. 13, 2001, pp. 1173-1174 XP006017222. |
Yun et al., “Performance of an LDPC-Coded Frequency-Hopping QFDMA System Based on Resource Allocation in the Uplink” Vehicular Technology-Conference 2004. VTO 2004-Spring, 2004 IEEE 59th Milan, Italy May 17-19, 2004, Piscataway, NJ, USA, vol. 4, May 17, 2004. pp. 1925-1928. XP010766497. |
S. Nishimura et al., “Downlink Null-Formation Using Receiving Antenna Selection in MIMO/SDMA”, Technical Search Report of Electric Information Communication Academic Conference, Feb. 28, 2002, vol. 101, No. 683, pp. 17-22, RCS 2001-286. |
Jim Tomcik Qualcomm Incorporated: “QFDD Technology Overview Presentation”, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, [Online] Nov. 15, 2005, pp. 1-73, XP002467626. |
Maniatis, I. et al., “Pilots for joint channel estimation in multi-user OFDM mobile radio systems,” Spread Spectrum Techniques and Applications, 2002 IEEE Seventh International Symposium, Sep. 2, 2002, pp. 44-48, XP010615562. |
Blum et al, “On Optimum MIMO with antenna selection,” IEEE International Conference on Communications: Conference Proceedings, vol. 1, Apr. 28, 2002, pp. 386-390. |
Catreux, S. et al.: “Simulation results for an interference-limited multiple input multiple output cellular system”., Global Telecommmunications Conference, 2000. GLOBECOM '00. IEEE. Dec. 1, 2000. vol. 2, pp. 1094-1096 http://ieeexplore.ieee.org/ie15/7153/19260/00891306.pdf?tp=&isnumber=19260&arnumbe r=8913063&punumber=7153. |
Chiani, et al. “Outage Evaluation for Slow Frequency-Hopping Mobile Radio Systems” IEEE Transactions on Communications, vol. 47, No. 12, Dec. 1999, pp. 1865-1874,. |
Chung, S. et al.: “Low complexity algorithm for rate and power quantization in extended V-Blast” VTC Fall 2001. IEEE 54th. Vehicular Technology Conference Proceedings. Atlantic City, NJ, Oct. 7-11, 2001, vol. 1 of 4, pp. 910-914, Conf. 54. |
El Gamal, et al.: “Universal Space-Time Coding,” IEEE Transactions on Information Theory, vol. 49, Issue 5, pp. 1097-1119, XP011074756, ISSN: 0018-9448, May 2003. |
Hochwald et al., “Achieving near-capacity on a multiple-antenna channel,” IEEE Transactions on Communications, IEEE Service Center, Piscataway, New Jersey, vol. 51, No. 3, pp. 389-399 (2003). |
Kiessling et al, “Short-term and long-term diagonalization of correlated MIMO channels with adaptive modulation” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, Sep. 15, 2002, pp. 593-597. |
Kousa, M. et al: “Adaptive Binary Coding for Diversity Communication Systems” IEEE International Conference on Personal Wireless Communications Proceedings, pp. 80-84, XP000992269, 1997. |
Nokia, “Uplink Considerations for UTRA LTE”, 3GPP TSG RAN WG1#40bis, Beijing, CN, R1-050251, 3GPP, Apr. 4, 2005, pp. 1-9. |
NTT DoCoMo, “Downlink Multiple Access Scheme for Evolved UTRA”, 3GPP R1-050249, 3GPP, Apr. 4, 2005, pp. 1-8. |
Prasad, N. et al.: “Analysis of Decision Feedback Detection for MIMO Rayleigh Fading Channels and Optimum Allocation of Transmitter Powers and QAM Constellations,” pp. 1-10, 39th Annual Conference on Comm. Control and Comput., Monticello, IL Oct. 2001. |
Qualcomm Europe: “Description and link simulations for Ofdma based E-UTRA uplink” 3GPP Draft; R1-051100, 3RD Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, no. San Diego, USA; 20051004, Oct. 4, 2005, pp. 1-10, XP050100715. |
Schnell et al., “Application of IFDMA to Mobile Radio Transmission”, IEEE 1998 International Conference on Universal Personal Communications, vol. 2, Oct. 5-9, 1998, pp. 1267-1272. |
Widdup, B. et al., “A highly-parallel VLSI architecture for a list sphere detector,” IEEE International Conference, Paris, Fance, vol. 5, pp. 2720-2725 (2004). |
Wiesel, A. et al.: “Efficient implementation of sphere demodulation” Signal Processing Advances in Wireless Communications, 2003. SPAWC 2003. 4th IEEE Workshop on Rome. Italy Jun. 15-18, 2003, Piscataway, NJ, USA, IEEE, US, Jun. 15, 2003, pp. 36-40, XP010713463. |
Guo, K. Et al.: “Providing end-to-end QoS for multimedia applications in 3G wireless networks,” Proceedings vol. 5242, SPIE ITCom 2003 Conf. Internet Multimedia Management Systems IV, Nov. 26, 2003, pp. 1-14, DOI: 10.1117/12.514061. |
Sumii, Kenji et al.: “A Study on Computational Complexity Reduction of Iterative Decoding for Turbo-coded MIMO-SDM Using Sphere Decoding,” Technical Report of IEICE. RCS, Nov. 9, 2010, vol. 104, No. 675, pp. 43-48. |
Tomcik, T.: “QTDD Performance Report 2,” IEEE C802.20-05/88, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, <http://ieee802.org/20/>, pp. 1-56, XP002386798 (Nov. 15, 2005). |
Translation of Office Action in Chinese Application 2006800295980 corresponding to U.S. Appl. No. 11/260,895, citing CN1346221 and CN1383631 dated Feb. 16, 2011. |
Translation of Office Action in Japan application 2008-538193 corresponding to U.S. Appl. No. 11/261,065, citing JP11196109, JP10322304 and JP09008725 dated Mar. 8, 2011. |
Translation of Office Action in Korean application 10-2007-7031029 corresponding to U.S. Appl. No. 11/260,931, citing US20030202491 and KR20040063057 dated Jan. 28, 2011. |
Translation of Office Action in Canadian application 2625987 corresponding to U.S. Appl. No. 11/261,065, citing CA2557369 dated Apr. 12, 2011. |
Translation of Office Action in Chinese application 200680040236.1 corresponding to U.S. Appl. No. 11/261,065, citing US20040048609 and CN1402916 dated Feb. 18, 2011. |
Translation of Office Action in Chinese application 200680048265.2 corresponding to U.S. Appl. No. 11/260,931, citing U.S. Pat. No.6904097, WO2004095851, CN1344451 dated Jan. 26, 2011. |
Translation of Office Action in Chinese application 200680048832.4 corresponding to U.S. Appl. No. 11/261,158, citing CN1132474 dated Dec. 31, 2010. |
Translation of Office Action in Japanese Application 2008-514880 corresponding to U.S. Appl. No. 11/445,377, citing JP2007519281 and JP2006505172 dated Nov. 9, 2010. |
Translation of Office Action in Japanese application 2008-528103 corresponding to U.S. Appl. No. 11/260,924, citing JP2005502218, JP2004534456, JP2003348047, JP2003199173, JP2004529524, JP11508417, JP2001238269, JP2005130491 and JP2003500909 dated Feb. 8, 2011. |
Translation of Office Action in Japanese Application 2008-529216 corresponding to U.S. Appl. No. 11/261,159, citing GB2348776 , WO2004098222, WO2005065062 and WO2004102815.Dated Jan. 11, 2011. |
Translation of Office Action in Japanese application 2008-538181 corresponding to U.S. Appl. No. 11/511,735, citing WO04064295, JP2002515203, JP8288927, JP7336323 and JP200157545 dated Jan. 25, 2011. |
Voltz, P. J.,“Characterization of the optimum transmitter correlation matrix for MIMO with antenna subset selection”, IEEE Transactions on Communications, vol. 51, No. 11, pp. 1779-1782, (Nov. 1, 2003). |
Yongmei Dai,; Sumei Sun; Zhongding Lei; Yuan Li.: “A List Sphere Decoder based turbo receiver for groupwise space time trellis coded (GSTTC) systems,” 2004 IEEE 59th Vehicular Technology Conference, vol. 2, pp. 804-808, May 17, 2004, doi: 10.1109/VETECS.2004.1388940. |
Sklar, B., “The process of thus correcting the channel-induced distortion is called equalization”, Digital Communications, PTR Prentice Hall, Upper Saddle River, New Jersey, 1998, Formatting and Baseband Transmission, Chap. 2, Section 2.11.2, pp. 104-106. |
Downlink 3GPP Draft; R1-071718, 3RD Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. Ran WG1, No. St. Julian; 20070403, Apr. 3, 2007, XP050105640 [retrieved on Apr. 3, 2007]. |
Bengtsson, M. et at, “A Generalization of Weighted Subspace Fitting to Full-Rank Models”, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, US, vol. 49, No. 5, pp. 1002-1012, May 1, 2001. |
Dammann, A. et al., “Beamforming in Combination with Space-Time Diversity for Broadband OFDM Systems”, ICC 2002. 2002 IEEE International Conference on Communications. Apr. 28-May 2, 2002, pp. 165-171, XP010589479. |
Ken Murakami et al., “Status Toward Standardization at IEEE 802.3ah and items on the construction of GE-PON system ,” Technical Report of the Institute of Electronics, Information and Communication Engineers, Jun. 13, 2003, vol. 103, No. 124, pp. 1-6, IN2003-24. |
Physical Channels and Multiplexing in Evolved UTRA Downlink TSG-RAN Working Group 1 Meeting, XX, XX, vol. RI-050590, Jun. 20, 2005, pp. 1-24, XP003006923 the whole document. |
Siemens, “Evolved UTRA uplink scheduling and frequency reuse” [online], 3GPP TSG-RAN WG1 # 41 R1-050476, Internet <URL:http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—41/Docs/R1-050476.zip>, May 9, 2005. |
Viswanath, P. et al, “Opportunistic Beamforming Using Dumb Antennas” IEEE Transactions on Information Theory, IEEE USA, vol. 48, No. 6, Jun. 2002, pp. 1277-1294, XP002314708 ISSN: 0018-9448 abstract right-hand col., paragraph 1. |
Yatawatta, S. et al., “Energy Efficient Channel Estimation in MIMO Systems”, 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 18-23, 2005, Philadelphia, vol. 4, pp. 317-320, Mar. 18, 2005. |
European Search Report—EP10184156—Search Authority—Munich—Jun. 14, 2012. |
Miorandi D., et al., “Analysis of master-slave protocols for real-time industrial communications over IEEE 802.11 WLANs” Industrial Informatics, 2004. INDIN '04, 2nd IEEE International Conference on Berlin, Germany 24-26 June 2004. Piscataway, NJ, USA IEEE, Jun. 24, 2004, pp. 143-148, XP010782619, ISBN 0789385136, Para 3, point B. |
Jim Tomcik, QFDD and QTDD: Technology Overview, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, Oct. 28, 2005, pp. 48-50, URL, http://www.IEEE802.org/20/Contribs/C802.20-05-68.zip. |
Nokia: “Compact signalling of multi-code allocation for HSDPA”, version 2,3GPP R1-02-0018, Jan. 11, 2002. |
Anonymous: “3GPP TS 36.211 V8.0.0; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)” 3RD Generation Partnership Project; Technical Specification Group Radio Access Network, [Online] 2007, XP002520076 Retrieved from the Internet: URL:http://www.Sgpp.org/ftp/Specs/html-info/36211.htm> [retrieved on Sep. 27, 2007] Section 5. |
Sethi M, et al., “Code Reuse DA-CDMA-A Space Time Approach”, Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2297-2300, May 13-17, 2002. |
Bhushan N., “UHDR Overview”, C30-20060522-037, Denver, CO, May 22, 2006, pp. 1-115. |
Samsung: “Uplink Transmission and Multiplexing for EUTRA”, 3GPP Draft; R1-050605 UL Multiplexing, Jun. 16, 2005, XP050111420. |
Tachikawa (Editor); “W-CDMA Mobile Communication Systems,” John Wiley & Sons Ltd., Japan, Maruzen: pp. 82-213, Jun. 25, 2001. |
LG Electronics: “PAPR comparison of uplink MA schemes”, 3GPP TSG RAN WG1 Meeting #41, R1-050475, May, 9-13, 2005, p. 6. |
Motorola,“Uplink Numerology and Frame Structure”, 3GPP TAG RAN1 #41 Meeting R1-050397, May 13, 2005. |
Samsung Electonics Co. Ltd.; “Uplink Multiple Access and Multiplexing for Evolved UTRA”, R1-050439, May 3, 2005, pp. 1-22, XP55018616, Retrieved from the Internet: URL:http://www.3gpp.org/f-tp/tsg—ran/WG1—R1/TSGR1/Docs/ [retrieved on Feb. 7, 2012]. |
Tomcik J., “QFDD and QTDD: Proposed Draft Air Interface Specification,” IEEE 802.20-05169, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, Oct. 28, 2005, pp. 1-6, 1-7, 1-16, 6-65, 7-11, 7-33, 7-37-7-55, 9-21, 9-22, 9-24-9-32. |
Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Mobile Station (MS)-Base Station System (BSS)interface; Radio Link Control/Medium Access Control (RLC/MAC) protocol (GSM 04.60 version 8.4.1 Release 1999), 3GPP Standard; ETSI EN 301 349, 3RD Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. V8.4.1, 1 Oct. 2000, pp. 1-243, XP050358534. |
Institute for Infocomm Research et al., “Intra-Node B Macro Diversity based on Cyclic Delay Transmissions”, 3GPP TSG RAN WG1 #42 on LTE, R1-050795, Aug. 29-Sep. 2, 2005, pp. 1-5. |
Zhang H., “A new space-time-frequency MIMO-OFDM scheme with cyclic delay diversity”, Frontiers of Mobile and Wireless Communication, 2004. Proceedings of the IEEE 6th Circuits and Systems Symposium on vol. 2, Jun. 2, 2004, pp. 647 to 650. |
Sommer D., et al., “Coherent OFDM transmission at 60 GHz”, Vehicular Technology Conference, 1999, VTC 1999-Fall, IEEE VTS 50TH Amsterdam, Netherlands Sep. 19-22, 1999, Piscataway, NJ, USA, IEEE, US, vol. 3, Sep. 19, 1999, pp. 1545-1549, XP010353233, DOI: 10.1109/VETECF.1999.801553, ISBN: 978-0-78035435-7. |
Number | Date | Country | |
---|---|---|---|
20060203891 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60660719 | Mar 2005 | US | |
60678610 | May 2005 | US | |
60691467 | Jun 2005 | US | |
60691432 | Jun 2005 | US |