Amyloid fibrils are insoluble aggregates of enzymes, proteins, polypeptides, peptides, and hormones that form long, ordered fibers including β-sheet structures. In the human body, formation of amyloid fibril related species, including protofibrils, mature fibrils and oligomers has been associated with more than 20 human diseases, including neurodegenerative diseases, e.g., Huntington's disease, Alzheimer's disease, Parkinson's disease, fatal familial insomnia, familial amyloid polyneuropathy, atherosclerosis, cerebral amyloid angiopathy, transmissible spongiform encephalopathy; and diseases affecting other organs, e.g., the liver, pancreas, heart, thyroid, such as diabetes mellitus type 2, medullary carcinoma of the thyroid, cardiac arrhythmias, isolated atrial amyloidosis, rheumatoid arthritis, aortic medial amyloid, prolactinomas, heredity non-neuropathic systemic amyloidosis, dialysis related amyloidosis, Finnish amyloidosis, lattice corneal dystrophy, systemic AL amyloidosis, sporadic inclusion body myositis, etc. In addition, amyloid fibrils present in the seminal fluid have been shown to enhance HIV infectivity. Currently there is no cure for these diseases and in many cases even diagnostics, i.e., identification of the presence of amyloid fibril related species, can be performed only on postmortem tissues.
Some embodiments of the disclosed subject matter are directed to a method of detecting amyloid fibril related species. Some embodiments of the disclosed subject matter are directed to a method of monitoring for the presence or progression of amyloid diseases. In some embodiments, the method includes providing a sample from an individual to be monitored. In some embodiments, the method includes providing a sample including amyloid fibril related species. In some embodiments, the method includes treating the sample with a reagent including a fluorescent protein. In some embodiments, the method includes binding the fluorescent protein to amyloid fibril related species. In some embodiments, the method includes detecting a signal from fluorescent protein bound to the treated sample utilizing, e.g, confocal microscopy, fluorescent microscopy, fluorescent spectroscopy, absorption spectroscopy, ELISA, mass spectroscopy, radioactive detection, etc., or combinations thereof. In some embodiments, the method includes quantifying amyloid fibril related species in said treated sample via quantification of fluorescent protein.
In some embodiments, the fluorescent protein is a cnidarian fluorescent beta-barrel protein. In some embodiments, the treated sample has a concentration of fluorescent protein above about 1 fM. In some embodiments, the treated sample has a concentration of fluorescent protein above about 1 nM. In some embodiments, the treated sample has a concentration of fluorescent protein above about 10 nM. In some embodiments, the amyloid fibril related species include Aβ, IAPP, amylin, PAPf39, SEMI, α-synuclein, tau, insulin, Huntingtin, PrPSc, Medin, Apolipoprotein AI, Atrial natriuretic factor, β-2 microglobulin, transthyretin, gelsolin, lysozyme, keratoepithelin, calcitonin, prolactin, serum amyloid A, immunoglobulin light chain AL, or combinations and/or variants thereof. In some embodiments, the sample includes blood, blood plasma, urine, seminal fluid, seminal plasma, cerebrospinal fluid, lymphatic fluid, intraocular fluid, synovial fluid, serous fluid, endolymph, perilymph, peritoneal fluid, pleural fluid, pancreatic tissue, brain tissue, liver tissue, heart tissue, thyroid tissue, corneal tissue, a biopharmaceutical, a therapeutic drug, or combinations thereof.
Some embodiments of the disclosed subject matter are directed to a method of inhibiting amyloid fibril formation including providing a reagent including a fluorescent protein to an environment including amyloid monomers. In some embodiments, the method includes binding the fluorescent protein to amyloid oligomers during a lag phase or an elongation phase of amyloid fibril formation.
In some embodiments, the environment includes blood, blood plasma, urine, seminal fluid, seminal plasma, cerebrospinal fluid, lymphatic fluid, intraocular fluid, synovial fluid, serous fluid, endolymph, perilymph, peritoneal fluid, pleural fluid, or combinations thereof. In some embodiments, the reagent is provided during the lag phase. In some embodiments, the treated sample has a concentration of fluorescent protein above about 1.5 μM. In some embodiments, the treated sample has a concentration of fluorescent protein above about 10 μM.
The drawings show embodiments of the disclosed subject matter for the purpose of illustrating the invention. However, it should be understood that the present application is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
Referring now to
Still referring to
At 106, fluorescent protein from the reagent is bound to the amyloid fibril related species. Without wishing to be bound by any theory of how the fluorescent protein from the reagent is bound to the amyloid fibril related species, and as shown in
Referring now to
Methods consistent with the present disclosure advantageously detect the presence of amyloid fibril related species in vitro, in situ, ex vivo and in vivo via the binding and detection of fluorescent proteins to them. The presence of amyloid fibril related species has been associated with the presence and/or progression of amyloid diseases. As shown in
Although the disclosed subject matter has been described and illustrated with respect to embodiments thereof, it should be understood by those skilled in the art that features of the disclosed embodiments can be combined, rearranged, etc., to produce additional embodiments within the scope of the invention, and that various other changes, omissions, and additions may be made therein and thereto, without parting from the spirit and scope of the present invention.
This application is a national stage patent application filing of International Patent Application No. PCT/US2018/014770, filed Jan. 23, 2018, which claims the benefit of U.S. Provisional Application Nos. 62/449,238, filed Jan. 23, 2017, and 62/619,948, filed Jan. 22, 2018, which are incorporated by reference as if disclosed herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/014770 | 1/23/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/136910 | 7/26/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6399314 | Krishnamurthy | Jun 2002 | B1 |
8679768 | Kim et al. | Mar 2014 | B2 |
20040224365 | Glabe et al. | Nov 2004 | A1 |
20070093415 | Martin | Apr 2007 | A1 |
20100129847 | Navarrete Santos et al. | May 2010 | A1 |
20130135580 | Hartung et al. | May 2013 | A1 |
20150125396 | Feuerstein et al. | May 2015 | A1 |
20160077110 | Jara | Mar 2016 | A1 |
Entry |
---|
Xu et al. Sequence-independent recognition of the amyloid structural motif by GFP protein family. Proceedings of the National Academy of Sciences Sep. 2020, 117 (36) 22122-22127; DOI: 10.1073/pnas.2001457117. |
International Search Report and The Written Opinion, International Application No. PCT/US2018/014770 dated Jan. 23, 2018, mailed May 15, 2018. |
Takahashi, T. , Ohta, K. and Mihara, H. (2010), Rational design of amyloid β peptide-binding proteins: Pseudo-Aβ β-sheet surface presented in green fluorescent protein binds tightly and preferentially to structured Aβ. Proteins, 78: 336-347. |
Number | Date | Country | |
---|---|---|---|
20190383835 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62449238 | Jan 2017 | US | |
62619948 | Jan 2018 | US |