Embodiments of the disclosure relate to low emission power generation. More particularly, embodiments of the disclosure relate to methods and apparatus for carbon dioxide capture for increased efficiency and reduced cost in low emission combined gas turbine systems.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present disclosure. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Many oil producing countries are experiencing strong domestic growth in power demand and have an interest in enhanced oil recovery (EOR) to improve oil recovery from their reservoirs. Two common EOR techniques include nitrogen (N2) injection for reservoir pressure maintenance and carbon dioxide (CO2) injection for miscible flooding for EOR. There is also a global concern regarding green house gas (GHG) emissions. This concern combined with the implementation of cap-and-trade policies in many countries makes reducing CO2 emissions a priority for those countries as well as for the companies that operate hydrocarbon production systems therein.
Some approaches to lower CO2 emissions include fuel de-carbonization or post-combustion capture using solvents, such as amines. However, both of these solutions are expensive and reduce power generation efficiency, resulting in lower power production, increased fuel demand and increased cost of electricity to meet domestic power demand. In particular, the presence of oxygen, SOX, and NOX components makes the use of amine solvent absorption very problematic. Another approach is an oxyfuel gas turbine in a combined cycle (e.g., where exhaust heat from the gas turbine Brayton cycle is captured to make steam and produce additional power in a Rankine cycle). However, there are no commercially available gas turbines that can operate in such a cycle and the power required to produce high purity oxygen significantly reduces the overall efficiency of the process.
Moreover, with the growing concern about global climate change and the impact of carbon dioxide emissions, emphasis has been placed on minimizing carbon dioxide emissions from power plants. Gas turbine power plants are efficient and have a lower cost compared to nuclear or coal power generation technologies. Capturing carbon dioxide from the exhaust of a gas turbine power plant is very expensive, however, because the concentration of carbon dioxide in the exhaust stack is low, a large volume of gas needs to be treated, and the pressure of the exhaust stream is low. These factors, among others, result in a high cost of carbon dioxide capture.
Accordingly, there is still a substantial need for a low emission, high efficiency power generation process with incorporated CO2 capture and recovery at a reduced cost.
In the low emission power generation systems described herein, exhaust gases from low emission gas turbines, which are vented in a typical natural gas combined cycle (NGCC) plant, are instead separated and recovered. The apparatus, systems, and methods of the invention combine and recycle the exhaust streams of two gas turbines to efficiently generate power while concentrating and recovering carbon dioxide.
In systems and methods of the present invention, two gas turbine systems, each comprising a compressor, a combustion chamber, and an expander, are fluidly linked to operate in tandem and the exhaust gases from each system are combined. The combined exhaust gases are then cooled, compressed, and recycled. A portion of the recycled exhaust stream is supplied to one of the combustion chambers to act as a diluent to control or otherwise moderate the temperature of the combustion and flue gas entering the succeeding expander. The other portion of the recycled exhaust stream is separated to capture CO2 in one stream and generate a separate product stream comprising nitrogen, oxygen, argon, or combinations thereof. A portion of the product stream from the CO2 separator is then similarly supplied to the other combustion chamber to act as a diluent, while the remainder of the product stream may be used to generate additional power or for another purpose either within the system or externally. By combining the exhaust gases in this manner, the combustion products from each gas turbine within the overall system are concentrated and CO2 can be captured and removed more easily, thereby leading to more efficient power generation.
The foregoing and other advantages of the present disclosure may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments in which:
In the following detailed description section, the specific embodiments of the present disclosure are described in connection with preferred embodiments. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present disclosure, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the disclosure is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
Various terms as used herein are defined below. To the extent a term used in a claim is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent.
As used herein, the term “natural gas” refers to a multi-component gas obtained from a crude oil well (associated gas) and/or from a subterranean gas-bearing formation (non-associated gas). The composition and pressure of natural gas can vary significantly. A typical natural gas stream contains methane (CH4) as a major component, i.e. greater than 50 mol % of the natural gas stream is methane. The natural gas stream can also contain ethane (C2H6), higher molecular weight hydrocarbons (e.g., C3-C20 hydrocarbons), one or more acid gases (e.g., hydrogen sulfide), or any combination thereof. The natural gas can also contain minor amounts of contaminants such as water, nitrogen, iron sulfide, wax, crude oil, or any combination thereof.
As used herein, the term “stoichiometric combustion” refers to a combustion reaction having a volume of reactants comprising a fuel and an oxidizer and a volume of products formed by combusting the reactants where the entire volume of the reactants is used to form the products. As used herein, the term “substantially stoichiometric” combustion refers to a combustion reaction having an equivalence ratio ranging from about 0.9:1 to about 1.1:1, or more preferably from about 0.95:1 to about 1.05:1. Use of the term “stoichiometric” herein is meant to encompass both stoichiometric and substantially stoichiometric conditions unless otherwise indicated.
As used herein, the term “stream” refers to a volume of fluids, although use of the term stream typically means a moving volume of fluids (e.g., having a velocity or mass flow rate). The term “stream,” however, does not require a velocity, mass flow rate, or a particular type of conduit for enclosing the stream.
Embodiments of the presently disclosed systems and processes may be used to produce low emission electric power and CO2 for enhanced oil recovery (EOR) or sequestration applications. According to embodiments disclosed herein, a mixture of compressed oxidant (typically air) and fuel is combusted in the combustion chambers of two separate but fluidly linked gas turbines and the exhaust gases from each are expanded to generate power. The exhaust gases are then combined, cooled, compressed, and separated to capture CO2 and generate a product stream comprising nitrogen. In EOR applications, the recovered CO2 is injected into or adjacent to producing oil wells, usually under supercritical conditions. The CO2 acts as both a pressurizing agent and, when dissolved into the underground crude oil, significantly reduces the oil's viscosity enabling the oil to flow more rapidly through the earth to a removal well. The product stream comprising nitrogen (and frequently oxygen and argon as well) may be used to generate additional power, and may also be used for a variety of purposes, including for pressure maintenance applications. In pressure maintenance applications, an inert gas such as nitrogen is compressed and injected into a hydrocarbon reservoir to maintain the original pressure in the reservoir, thus allowing for enhanced recovery of hydrocarbons. The result of the systems disclosed herein is the production of power and the concentration and capture of CO2 in a more economically efficient manner.
In one or more embodiments of the present invention, power generation systems are provided comprising a first compressor configured to receive and compress one or more oxidants to generate a compressed oxidant; a first combustion chamber configured to receive and combust a first portion of the compressed oxidant, at least one first fuel, and a first diluent to generate a first exhaust stream; and a first expander configured to receive the first exhaust stream and generate a first gaseous exhaust stream. The systems further comprise a second compressor configured to receive and compress a cooled recycle stream to generate a compressed recycle stream; a second combustion chamber configured to receive and combust a second portion of the compressed oxidant, at least one second fuel, and a second diluent to generate a second exhaust stream; and a second expander configured to receive the second exhaust stream and generate a second gaseous exhaust stream. The systems additionally comprise one or more heat recovery steam generators configured to receive and cool the first and second gaseous exhaust streams to generate steam and a combined exhaust stream; a recycle cooling unit configured to receive and cool the combined exhaust stream and generate a cooled recycle stream; and a separator configured to receive and separate a portion of the compressed recycle stream into a separator effluent stream and a separator product stream.
The one or more oxidants may comprise any oxygen-containing fluid, such as ambient air, oxygen-enriched air, substantially pure oxygen, or combinations thereof. In one or more embodiments of the invention, all or substantially all of the oxidant supplied to the combined system as a whole is compressed in and supplied by the first compressor. The compressed oxidant exiting the first compressor may then be split into two streams, such that a first portion of the compressed oxidant is directed to the first combustion chamber and a second portion of the compressed oxidant is directed to the second combustion chamber. The split may be equal or unequal, and may also be varied during operation to adapt to changes in the process.
The first and second fuels may be the same or different, and each fuel may comprise natural gas, associated gas, diesel, fuel oil, gasified coal, coke, naphtha, butane, propane, syngas, kerosene, aviation fuel, bio-fuel, oxygenated hydrocarbon feedstock, any other suitable hydrocarbon containing gases or liquids, hydrogen, or combinations thereof. Additionally, the fuels may comprise inert components including but not limited to N2 or CO2. In some embodiments, the first and/or the second fuels may be at least partially supplied by a hydrocarbon reservoir that is benefiting from enhanced oil recovery via injection of CO2 captured via the process described herein. In certain embodiments, the first and the second fuels comprise natural gas.
The combustion conditions in each of the first and second combustion chambers may be lean, stoichiometric or substantially stoichiometric, or rich. In one or more embodiments, the combustion conditions in the first and second combustion chambers are stoichiometric or substantially stoichiometric. The first and second diluents are supplied to the first and second combustion chambers to control or otherwise regulate the temperature of the combustion and flue gas to meet the material requirements of the succeeding expanders. The flow of the first and second diluents, however, may also be adjusted to help maintain stoichiometric conditions in the respective combustion chambers, moderating changes in composition, volumetric flow, or other variations in the oxidant and fuel streams. In one or more embodiments, the first diluent provided to the first combustion chamber comprises at least a portion of the separator product stream. In the same or other embodiments, the second diluent provided to the second combustion chamber comprises at least a portion of the compressed recycle stream.
In some embodiments, high pressure steam may also be employed as a coolant in one or both of the first and second combustion chambers. In such embodiments, the addition of steam would reduce power and size requirements in the system, but would require the addition of a water recycle loop or loops. Additionally, in further embodiments, the compressed oxidant feed to one or both of the combustion chambers may comprise argon. For example, the oxidant may comprise from about 0.1 to about 5.0 vol % argon, or from about 1.0 to about 4.5 vol % argon, or from about 2.0 to about 4.0 vol % argon, or from about 2.5 to about 3.5 vol % argon, or about 3.0 vol % argon.
The first and second compressors may each be a single compressor or may be two or more compressors operating in parallel or in series. Each compressor may comprise a single stage or multiple stages. In multiple stage compressors, interstage cooling may optionally be employed to allow for higher overall compression ratios and higher overall power output. When more than one compressor is used to compress a process stream, the compressors taken together are considered herein to be the “first compressor” or the “second compressor,” as appropriate. Each compressor may be of any type suitable for the process described herein. Such compressors include, but are not limited to, axial, centrifugal, reciprocating, or twin-screw compressors and combinations thereof. In one or more embodiments, the first and second compressors are axial compressors.
Combustion of the oxidant and fuel in each of the first and second combustion chambers generates a first exhaust stream and a second exhaust stream, respectively. The first and second exhaust streams comprise products of combustion, and their individual compositions will vary depending upon the composition of the fuel and the oxidant used in each combustion chamber. In one or more embodiments, the first and second exhaust streams may each comprise vaporized water, CO2, carbon monoxide (CO), oxygen (O2), nitrogen (N2), argon (Ar), nitrogen oxides (NOX), sulfur oxides (SOX), hydrogen sulfide (H2S), or combinations thereof.
The first exhaust stream may be expanded in the first expander to form a first gaseous exhaust stream, and the second exhaust stream may be expanded in the second expander to form a second gaseous exhaust stream. The first and second expanders may each be a single expander or may be two or more expanders operating in parallel or in series. Each expander may comprise a single stage or multiple stages. When more than one expander is used to expand an exhaust stream, the expanders taken together are considered herein to be the “first expander” or the “second expander,” as appropriate. Each expander may be any type of expander suitable for the process described herein, including but not limited to axial or centrifugal expanders or combinations thereof. Expansion of the first and second exhaust streams generates power, which may be used to drive one or more compressors or electric generators. In one or more embodiments of the invention, the first expander is coupled to the first compressor via a common shaft or other mechanical, electrical, or other power coupling, such that the first compressor is at least partially driven by the first expander. In the same or other embodiments, the second expander is coupled to the second compressor via a common shaft or other mechanical, electrical, or other power coupling, such that the second compressor is at least partially driven by the second expander. In other embodiments, the first or the second compressors, or both, may be mechanically coupled to an electric motor with or without a speed increasing or decreasing device such as a gear box. When taken together, the first compressor, first combustion chamber, and first expander may be characterized as a Brayton cycle. Similarly, the second compressor, second combustion chamber, and second expander may also be characterized as a Brayton cycle.
After expansion, the first and second gaseous exhaust streams may in some embodiments be cooled in a heat recovery steam generator (HRSG). Although reference is made herein to a single HRSG, in practice two or more HRSGs may be used. Alternatively, any device designed to cool or recover heat from the first and second gaseous exhaust streams, such as for example one or more heat exchangers, regenerators, cooling units, or the like may be used in place of the HRSG. The HRSG may be configured to receive the first and second exhaust streams and utilize the residual heat in the streams to generate steam. The steam generated by the HRSG may be used for a variety of purposes, such as to drive a steam turbine generator in a Rankine cycle or for water desalination.
In one or more embodiments of the present invention, the first and second gaseous exhaust streams are fed to the HRSG separately and combined within the HRSG to form a combined exhaust stream. In other embodiments, the first and second gaseous exhaust streams may be combined upstream or downstream of the HRSG. When the streams are combined downstream, each of the first and second gaseous exhaust streams may be cooled in a separate HRSG and then combined to form the combined exhaust stream.
In one or more embodiments of the present invention, the combined exhaust stream may be sent to one or more cooling units configured to reduce the temperature of the combined exhaust stream and generate a cooled recycle stream. The cooling unit may be any type of apparatus suitable for lowering the temperature of the exhaust gases, such as for example a direct contact cooler (DCC), trim cooler, mechanical refrigeration unit, or combinations thereof. In some embodiments, the cooling unit is a DCC. The cooling unit can also be configured to remove a portion of condensed water from the cooled recycle stream via a water dropout stream. In some embodiments, the water dropout stream may optionally be routed to a HRSG to provide a water source for the generation of additional steam.
In some embodiments, the cooled recycle stream exiting the cooling unit may be sent to the second compressor and compressed to generate a compressed recycle stream. Cooling and compressing the exhaust gases helps to address issues related to the large volume of gas that must be treated and the low pressure of the exhaust streams that ordinarily lead to a high cost of CO2 capture, thus making CO2 capture and recovery in the present systems more efficient and more cost effective.
Upon exiting the second compressor, the compressed recycle stream may be split, and a first portion of the compressed recycle stream may be provided to the second combustion chamber for use as a diluent, as described previously. In such cases, the second portion of the compressed recycle stream not directed to the second combustion chamber may be fed to one or more separators, in which CO2 and other greenhouse gases are separated from the compressed recycle stream. Although not described in detail herein, it will be recognized by those skilled in the art that intermediate heating, cooling, or other process operations may be required between the second compressor and the separator, so that the recycle stream enters the separator at conditions optimized for the particular separation process employed. In one or more embodiments, for example, a cooling unit may be used to cool the compressed recycle stream before it enters the separator.
The CO2 separation process employed in the one or more separators may be any suitable process designed to separate the compressed recycle gases and result in a separator effluent stream comprising CO2 and a separator product stream comprising nitrogen. In some embodiments, the product stream may also comprise oxygen, argon, or both. Separating the components of the compressed recycle stream allows different components in the exhaust to be handled in different ways. Ideally, the separation process would segregate all of the greenhouse gases in the exhaust, such as CO2, CO, NOX, SOX, etc. in the effluent stream, leaving the remainder of the exhaust components such as nitrogen, oxygen, and argon in the product stream. In practice, however, the separation process may not withdraw all of the greenhouse gases from the product stream, and some non-greenhouse gases may remain in the effluent stream.
Any suitable separation process designed to achieve the desired result may be used. In one or more embodiments, the separation process is an oxygen-insensitive process. Examples of suitable separation processes include, but are not limited to, hot potassium carbonate (“hot pot”) separation processes, amine separation, molecular sieve separation, membrane separation, adsorptive kinetic separation, controlled freeze zone separation, and combinations thereof. In some embodiments, the separator uses a hot pot separation process. In one or more embodiments of the invention, the separation process may be operated at elevated pressure (i.e., higher than ambient) and configured to keep the product stream pressurized. Maintaining pressure on the process in this manner allows for smaller separation equipment, provides for improved separation effectiveness, and allows for increased energy extraction from the product stream. In some embodiments, the CO2 separation process is selected and configured to maximize either the outlet pressure or the outlet temperature, or both, of the product stream.
The separator effluent stream may be used for a variety of applications. For example, the effluent stream may be injected into a hydrocarbon reservoir for enhanced oil recovery (EOR) or may be directed to a reservoir for carbon sequestration or storage. The separator effluent stream may also be sold, vented, or flared.
In one or more embodiments, the separator product stream comprises nitrogen and also optionally comprises oxygen or argon (or both). The separator product stream may be split, and a first portion of the product stream may be provided to the first combustion chamber for use as a diluent, as described previously. In such cases, the second portion of the separator product stream not directed to the first combustion chamber may be directed to a third expander. In one or more embodiments, the third expander may be configured to receive the separator product stream and output the same gases at approximately ambient pressure. As will be appreciated by those skilled in the art, the third expander generates power, and the power generated may be used to drive one or more compressors or electric generators in any configuration, either within the described system or externally.
In one or more embodiments, the product stream may pass through one or more additional heat recovery steam generators (HRSGs) after expansion. The one or more HRSGs may be configured to utilize the residual heat in the stream to generate steam. The steam generated by the one or more HRSGs may be used for a variety of purposes, such as to drive a steam turbine generator in a Rankine cycle or for water desalination. Further, if any residual heat remains in the product stream exiting the one or more HRSGs, the system may further comprise one or more heat exchangers configured to transfer that heat to a non-steam working fluid. In such embodiments, the non-steam working fluid may optionally be used to drive an expander in a Rankine cycle.
The separator product stream may be used, wholly or in part, for a variety of applications. For example, the product stream may be injected into a hydrocarbon reservoir for pressure maintenance. The product stream may also be sold or vented. In one or more embodiments when pressure maintenance is not a viable option (or when only a portion of the product stream is required for pressure maintenance), the product stream may be cooled, by expansion or another method, and used to provide refrigeration in the systems described herein. For example, the cooled product stream may be used to provide refrigeration to reduce the suction temperature of one or more compressors within the system, or to chill water for use in one or more cooling units within the system.
In other embodiments when all or part of the product stream is not used for pressure maintenance, the product stream may instead be heated so that additional power may be generated for use elsewhere in the system or for sale. Some methods of heating the product stream include cross-exchanging the product stream with another process stream in a heat exchanger or using a supplementary combustor to supply additional heat to the product stream. It will be appreciated that the use of an additional combustor will require additional fuel. If a carbon-containing fuel is used in the combustor, additional CO2 will be generated that will be unrecoverable from the product stream. Therefore, in some embodiments, the fuel used in the combustor may be a non-carbon fuel source, such as hydrogen. The oxidant required by the supplementary combustor may be supplied via a separate oxidant stream, or there may be sufficient oxidant in the product stream such that an additional supply of oxidant is unnecessary. Other possible methods for heating the separator product stream include using a heating coil in the HRSG to heat the product stream, using catalysis to combust any CO present in the product stream, or heating the stream as a consequence of using the product stream for cooling (i.e., as the product stream provides cooling to other streams or apparatus, the stream itself is heated).
Referring now to the figures,
The system 100 can also include a first combustion chamber 110 configured to combust a first fuel stream 112 mixed with a first portion of compressed oxidant 114. In one or more embodiments, the first fuel stream 112 can include any suitable hydrocarbon gas or liquid, such as natural gas, methane, naphtha, butane, propane, syngas, diesel, kerosene, aviation fuel, coal derived fuel, bio-fuel, oxygenated hydrocarbon feedstock, or combinations thereof. The first fuel stream 112 may also comprise hydrogen. The first portion of compressed oxidant 114 supplied to the first combustion chamber 110 can be derived from the first compressor 118 fluidly coupled to the first combustion chamber 110 and adapted to compress a feed oxidant 120. While the discussion herein assumes that the feed oxidant 120 is ambient air, the oxidant may comprise any suitable gas containing oxygen, such as air, oxygen-rich air, substantially pure oxygen, or combinations thereof. In one or more embodiments, the first compressor 118, the first combustion chamber 110, and the first expander 106, taken together, can be characterized as a Brayton cycle. In one embodiment, the system is operated by mixing ambient air with a portion of recycle gas and compressing the mixture in a main air compressor (MAC). The high pressure mixture of air and recycle gas is mixed and combusted with fuel gas and additional high pressure recycle gas in a gas turbine combustor to produce high pressure products of combustion that are delivered to the gas turbine expander. A portion of the high pressure recycle gas may optionally be extracted from recycle gas compressor at various location and pressure levels and used to cool some parts of a gas turbine expander. The gas turbine expander exhaust is measured to determine the content of one or more components, e.g., oxygen, carbon dioxide, UBH, etc. by one or more sensors and the result of this measurement is used to adjust the position of a metering valve to control the mixture of ambient air and the portion of recycle gas at the inlet of the MAC. As a result, the oxygen content of the stream may be actively controlled to affect the desired stoichiometry of the combustion.
A first exhaust stream 116 is generated as a product of combustion of the first fuel stream 112 and the first portion of compressed oxidant 114 and directed to the inlet of the first expander 106. In at least one embodiment, the first fuel stream 112 can be primarily natural gas, thereby generating a first exhaust stream 116 including volumetric portions of vaporized water, CO2, CO, oxygen, nitrogen, argon, nitrogen oxides (NOX), and sulfur oxides (SOX). In some embodiments, a small portion of unburned first fuel 112 or other compounds may also be present in the first exhaust 116 due to combustion equilibrium limitations. As the first exhaust stream 116 expands through the first expander 106, it generates mechanical power to drive the first compressor 118 or other facilities, and also produces a first gaseous exhaust stream 122.
The power generation system 100 may also have a second compressor 180 coupled to a second expander 170 through a common shaft 188 or other mechanical, electrical, or other power coupling, thereby allowing a portion of the mechanical energy generated by the second expander 170 to drive the second compressor 180. The second expander 170 may generate power for other uses as well, such as to power another compressor, an electric generator, or the like. The second compressor 180 and second expander 170 may form the compressor and expander ends, respectively, of a standard gas turbine. In other embodiments, however, the second compressor 180 and second expander 170 can be individualized components in a system.
The system 100 can also include a second combustion chamber 150 configured to combust a second fuel stream 152 mixed with a second portion of compressed oxidant 114. In one or more embodiments, the second fuel stream 152 can include any suitable hydrocarbon gas or liquid, such as natural gas, methane, naphtha, butane, propane, syngas, diesel, kerosene, aviation fuel, coal derived fuel, bio-fuel, oxygenated hydrocarbon feedstock, or combinations thereof. The second fuel stream 152 may also comprise hydrogen. The second portion of compressed oxidant 114 supplied to the second combustion chamber 150 can be derived from the first compressor 118 fluidly coupled to the second combustion chamber 150. In one or more embodiments, the second compressor 180, the second combustion chamber 150, and the second expander 170, taken together, can be characterized as a Brayton cycle.
A second exhaust stream 156 is generated as a product of combustion of the second fuel stream 152 and the second portion of compressed oxidant 114 and directed to the inlet of the second expander 170. In at least one embodiment, the second fuel stream 152 can be primarily natural gas, thereby generating a second exhaust stream 156 including volumetric portions of vaporized water, CO2, CO, oxygen, nitrogen, argon, nitrogen oxides (NOX), and sulfur oxides (SOX). In some embodiments, a small portion of unburned second fuel 152 or other compounds may also be present in the second exhaust 156 due to combustion equilibrium limitations. As the second exhaust stream 156 expands through the second expander 170, it generates mechanical power to drive the second compressor 180 or other facilities, and also produces a second gaseous exhaust stream 172.
From the first expander 106 and the second expander 170, the first and second gaseous exhaust streams 122 and 172, respectively, are directed to a heat recovery steam generator (HRSG) 126 configured to use the residual heat in the gaseous exhaust streams 122 and 172 to generate steam 130 and combined exhaust stream 132. The steam 130 generated by the HRSG 126 may have a variety of uses, such as for example to generate additional power by driving a steam turbine generator in a Rankine cycle or for water desalination.
The combined exhaust 132 can be sent to at least one cooling unit 134 configured to reduce the temperature of the combined exhaust 132 and generate a cooled recycle stream 140. In one or more embodiments, the cooling unit 134 is considered herein to be a direct contact cooler (DCC), but may be any suitable cooling device such as a direct contact cooler, trim cooler, a mechanical refrigeration unit, or combinations thereof. The cooling unit 134 can also be configured to remove a portion of condensed water via a water dropout stream 136.
In one or more embodiments, the cooled recycle stream 140 can be directed to the second compressor 180 fluidly coupled to the cooling unit 134. The second compressor 180 can be configured to increase the pressure of the cooled recycle stream 140, thereby generating a compressed recycle stream 182. Upon exiting the second compressor 180, the compressed recycle stream 182 may be split, such that a portion of the compressed recycle stream 182 is directed to the second combustion chamber 150, where it may serve as a diluent to regulate combustion conditions within the second combustion chamber 150.
In one or more embodiments, the remaining portion of compressed recycle stream 182 not directed to the second combustion chamber is directed to a separator 162. The separator 162 may employ any of a variety of separation processes designed to separate the compressed recycle stream 182 into a separator effluent stream 166 comprising CO2 and a separator product stream 164 generally comprising nitrogen and, in some cases, oxygen and/or argon. For example, the separator 162 may be designed to separate the compressed recycle stream 182 using a chemical separation process, such as hot potassium carbonate (“hot pot”) separation, amine separation, or separation using a molecular sieve. Other separation processes include physical separation using membranes, or processes such as adsorptive kinetic separation or controlled freeze zone separation. In some embodiments, combinations of the foregoing separation methods may be used. In one or more embodiments, the CO2 separation process may be configured to maximize the temperature or the pressure of the product stream 164. The separator effluent stream 166 may be used for a variety of downstream applications, such as injection into a hydrocarbon reservoir for enhanced oil recovery (EOR), carbon sequestration, storage, or sale. The effluent stream 166 may also be vented or flared.
In one or more embodiments, a portion of the product stream 164 exiting the separator 162 may be diverted and directed to the first combustion chamber 110 in recycle product stream 184. In this manner, recycle product stream 184 may serve as a diluent to regulate combustion conditions within the first combustion chamber 110. The remainder of product stream 164 may then be used to generate additional power. For example, product stream 164 may be directed to a third expander 190. The power generated by the third expander 190 may be used for a variety of purposes, such as to at least partially drive one or more additional compressors (not shown) or to drive an electric generator. In some embodiments, when the product stream is injected into a reservoir for pressure maintenance, the third expander 190 may be used to drive a pipeline or injection compressor.
In one or more embodiments, the expanded product stream 192 exiting the third expander 190 may be directed to a heat recovery steam generator (not shown) for additional power generation. The product stream 192, like the effluent stream 166, may also be used for a variety of other applications, including pressure maintenance, storage, or venting.
Referring now to
Referring now to
While the present disclosure may be susceptible to various modifications and alternative forms, the exemplary embodiments discussed above have been shown only by way of example. Any features or configurations of any embodiment described herein may be combined with any other embodiment or with multiple other embodiments (to the extent feasible) and all such combinations are intended to be within the scope of the present invention. Additionally, it should be understood that the disclosure is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present disclosure includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
This application is the National Stage entry under 35 U.S.C. 371 of PCT/US2012/027780, that published as WO 2012/128928 and was filed on 5 Mar. 2012 which claims the benefit of U.S. Provisional Application Nos. 61/542,039, filed on 30 Sep. 2011; U.S. Provisional Application 61/466,384 filed Mar. 22, 2011; U.S. Provisional Application 61/542,030 filed Sep. 30, 2011; U.S. Provisional Application 61/466,385 filed Mar. 22, 2011; U.S. Provisional Application 61/542,031 filed Sep. 30, 2011; U.S. Provisional Application 61/466,381 filed Mar. 22, 2011; and U.S. Provisional Application 61/542,035 filed Sep. 30, 2011, each of which is incorporated by reference, in its entirety, for all purposes. This application contains subject matter related to U.S. Provisional Application 61/542,037 filed Sep. 30, 2011 (PCT/US2012/027776, that published as WO 2012/128927 and was filed on 5 Mar. 2012); U.S. Provisional Application 61/542,041 filed Sep. 30, 2011 (PCT/US2012/027781, that published as WO 2012/128929 and was filed on 5 Mar. 2012); and U.S. Provisional Application 61/542,036 filed Sep. 30, 2011 (PCT/US2012/027774, that published as WO 2012/128926 and was filed on 5 Mar. 2012).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/027780 | 3/5/2012 | WO | 00 | 11/25/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/128928 | 9/27/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2488911 | Hepburn et al. | Nov 1949 | A |
2884758 | Oberle | May 1959 | A |
3561895 | Michelson | Feb 1971 | A |
3631672 | Gentile et al. | Jan 1972 | A |
3643430 | Emory et al. | Feb 1972 | A |
3705492 | Vickers | Dec 1972 | A |
3841382 | Gravis, III et al. | Oct 1974 | A |
3949548 | Lockwood | Apr 1976 | A |
4018046 | Hurley | Apr 1977 | A |
4043395 | Every et al. | Aug 1977 | A |
4050239 | Kappler et al. | Sep 1977 | A |
4066214 | Johnson | Jan 1978 | A |
4077206 | Ayyagari | Mar 1978 | A |
4085578 | Kydd | Apr 1978 | A |
4092095 | Straitz, III | May 1978 | A |
4101294 | Kimura | Jul 1978 | A |
4112676 | DeCorso | Sep 1978 | A |
4117671 | Neal et al. | Oct 1978 | A |
4160640 | Maev et al. | Jul 1979 | A |
4165609 | Rudolph | Aug 1979 | A |
4171349 | Cucuiat et al. | Oct 1979 | A |
4204401 | Earnest | May 1980 | A |
4222240 | Castellano | Sep 1980 | A |
4224991 | Sowa et al. | Sep 1980 | A |
4236378 | Vogt | Dec 1980 | A |
4253301 | Vogt | Mar 1981 | A |
4271664 | Earnest | Jun 1981 | A |
4344486 | Parrish | Aug 1982 | A |
4345426 | Egnell et al. | Aug 1982 | A |
4352269 | Dineen | Oct 1982 | A |
4380895 | Adkins | Apr 1983 | A |
4399652 | Cole et al. | Aug 1983 | A |
4414334 | Hitzman | Nov 1983 | A |
4434613 | Stahl | Mar 1984 | A |
4435153 | Hashimoto et al. | Mar 1984 | A |
4442665 | Fick et al. | Apr 1984 | A |
4445842 | Syska | May 1984 | A |
4479484 | Davis | Oct 1984 | A |
4480985 | Davis | Nov 1984 | A |
4488865 | Davis | Dec 1984 | A |
4498288 | Vogt | Feb 1985 | A |
4498289 | Osgerby | Feb 1985 | A |
4528811 | Stahl | Jul 1985 | A |
4543784 | Kirker | Oct 1985 | A |
4548034 | Maguire | Oct 1985 | A |
4561245 | Ball | Dec 1985 | A |
4569310 | Davis | Feb 1986 | A |
4577462 | Robertson | Mar 1986 | A |
4602614 | Percival et al. | Jul 1986 | A |
4606721 | Livingston | Aug 1986 | A |
4613299 | Backheim | Sep 1986 | A |
4637792 | Davis | Jan 1987 | A |
4651712 | Davis | Mar 1987 | A |
4653278 | Vinson et al. | Mar 1987 | A |
4681678 | Leaseburge et al. | Jul 1987 | A |
4684465 | Leaseburge et al. | Aug 1987 | A |
4753666 | Pastor et al. | Jun 1988 | A |
4762543 | Pantermuehl et al. | Aug 1988 | A |
4817387 | Lashbrook | Apr 1989 | A |
4858428 | Paul | Aug 1989 | A |
4895710 | Hartmann et al. | Jan 1990 | A |
4898001 | Kuroda et al. | Feb 1990 | A |
4946597 | Sury | Aug 1990 | A |
4976100 | Lee | Dec 1990 | A |
5014785 | Puri et al. | May 1991 | A |
5044932 | Martin et al. | Sep 1991 | A |
5073105 | Martin et al. | Dec 1991 | A |
5084438 | Matsubara et al. | Jan 1992 | A |
5085274 | Puri et al. | Feb 1992 | A |
5098282 | Schwartz et al. | Mar 1992 | A |
5123248 | Monty et al. | Jun 1992 | A |
5135387 | Martin et al. | Aug 1992 | A |
5141049 | Larsen et al. | Aug 1992 | A |
5142866 | Yanagihara et al. | Sep 1992 | A |
5147111 | Montgomery | Sep 1992 | A |
5154596 | Schwartz et al. | Oct 1992 | A |
5183232 | Gale | Feb 1993 | A |
5195884 | Schwartz et al. | Mar 1993 | A |
5197289 | Glevicky et al. | Mar 1993 | A |
5238395 | Schwartz et al. | Aug 1993 | A |
5255506 | Wilkes et al. | Oct 1993 | A |
5265410 | Hisatome | Nov 1993 | A |
5271905 | Owen et al. | Dec 1993 | A |
5275552 | Schwartz et al. | Jan 1994 | A |
5295350 | Child et al. | Mar 1994 | A |
5304362 | Madsen | Apr 1994 | A |
5325660 | Taniguchi et al. | Jul 1994 | A |
5332036 | Shirley et al. | Jul 1994 | A |
5344307 | Schwartz et al. | Sep 1994 | A |
5345756 | Jahnke et al. | Sep 1994 | A |
5355668 | Weil et al. | Oct 1994 | A |
5359847 | Pillsbury et al. | Nov 1994 | A |
5361586 | McWhirter et al. | Nov 1994 | A |
5388395 | Scharpf et al. | Feb 1995 | A |
5394688 | Amos | Mar 1995 | A |
5402847 | Wilson et al. | Apr 1995 | A |
5444971 | Holenberger | Aug 1995 | A |
5457951 | Johnson et al. | Oct 1995 | A |
5458481 | Surbey et al. | Oct 1995 | A |
5468270 | Borszynski | Nov 1995 | A |
5490378 | Berger et al. | Feb 1996 | A |
5542840 | Surbey et al. | Aug 1996 | A |
5566756 | Chaback et al. | Oct 1996 | A |
5572862 | Mowill | Nov 1996 | A |
5581998 | Craig | Dec 1996 | A |
5584182 | Althaus et al. | Dec 1996 | A |
5590518 | Janes | Jan 1997 | A |
5628182 | Mowill | May 1997 | A |
5634329 | Andersson et al. | Jun 1997 | A |
5638675 | Zysman et al. | Jun 1997 | A |
5640840 | Briesch | Jun 1997 | A |
5657631 | Androsov | Aug 1997 | A |
5680764 | Viteri | Oct 1997 | A |
5685158 | Lenahan et al. | Nov 1997 | A |
5709077 | Beichel | Jan 1998 | A |
5713206 | McWhirter et al. | Feb 1998 | A |
5715673 | Beichel | Feb 1998 | A |
5724805 | Golomb et al. | Mar 1998 | A |
5725054 | Shayegi et al. | Mar 1998 | A |
5740786 | Gartner | Apr 1998 | A |
5743079 | Walsh et al. | Apr 1998 | A |
5765363 | Mowill | Jun 1998 | A |
5771867 | Amstutz et al. | Jun 1998 | A |
5771868 | Khair | Jun 1998 | A |
5819540 | Massarani | Oct 1998 | A |
5832712 | Ronning et al. | Nov 1998 | A |
5836164 | Tsukahara et al. | Nov 1998 | A |
5839283 | Dobbeling | Nov 1998 | A |
5850732 | Willis et al. | Dec 1998 | A |
5894720 | Willis et al. | Apr 1999 | A |
5901547 | Smith et al. | May 1999 | A |
5924275 | Cohen et al. | Jul 1999 | A |
5930990 | Zachary et al. | Aug 1999 | A |
5937634 | Etheridge et al. | Aug 1999 | A |
5950417 | Robertson, Jr. et al. | Sep 1999 | A |
5956937 | Beichel | Sep 1999 | A |
5968349 | Duyvesteyn et al. | Oct 1999 | A |
5974780 | Santos | Nov 1999 | A |
5992388 | Seger | Nov 1999 | A |
6016658 | Willis et al. | Jan 2000 | A |
6032465 | Regnier | Mar 2000 | A |
6035641 | Lokhandwala | Mar 2000 | A |
6055803 | Mastronarde | May 2000 | A |
6062026 | Woollenweber et al. | May 2000 | A |
6079974 | Thompson | Jun 2000 | A |
6082093 | Greenwood et al. | Jul 2000 | A |
6089855 | Becker et al. | Jul 2000 | A |
6094916 | Puri et al. | Aug 2000 | A |
6101983 | Anand et al. | Aug 2000 | A |
6148602 | Demetri | Nov 2000 | A |
6170264 | Viteri et al. | Jan 2001 | B1 |
6183241 | Bohn et al. | Feb 2001 | B1 |
6201029 | Waycuilis | Mar 2001 | B1 |
6202400 | Utamura et al. | Mar 2001 | B1 |
6202442 | Brugerolle | Mar 2001 | B1 |
6202574 | Liljedahl et al. | Mar 2001 | B1 |
6209325 | Alkabie | Apr 2001 | B1 |
6216459 | Daudel et al. | Apr 2001 | B1 |
6216549 | Davis et al. | Apr 2001 | B1 |
6230103 | DeCorso et al. | May 2001 | B1 |
6237339 | Åsen et al. | May 2001 | B1 |
6247315 | Marin et al. | Jun 2001 | B1 |
6247316 | Viteri | Jun 2001 | B1 |
6248794 | Gieskes | Jun 2001 | B1 |
6253555 | Willis | Jul 2001 | B1 |
6256976 | Kataoka et al. | Jul 2001 | B1 |
6256994 | Dillon, IV | Jul 2001 | B1 |
6263659 | Dillon, IV et al. | Jul 2001 | B1 |
6266954 | McCallum et al. | Jul 2001 | B1 |
6269882 | Wellington et al. | Aug 2001 | B1 |
6276171 | Brugerolle | Aug 2001 | B1 |
6282901 | Marin et al. | Sep 2001 | B1 |
6283087 | Isaksen | Sep 2001 | B1 |
6289666 | Ginter | Sep 2001 | B1 |
6289677 | Prociw et al. | Sep 2001 | B1 |
6298652 | Mittricker et al. | Oct 2001 | B1 |
6298654 | Vermes et al. | Oct 2001 | B1 |
6298664 | Åsen et al. | Oct 2001 | B1 |
6301888 | Gray, Jr. | Oct 2001 | B1 |
6301889 | Gladden et al. | Oct 2001 | B1 |
6305929 | Chung et al. | Oct 2001 | B1 |
6314721 | Mathews et al. | Nov 2001 | B1 |
6324867 | Fanning et al. | Dec 2001 | B1 |
6332313 | Willis et al. | Dec 2001 | B1 |
6345493 | Smith et al. | Feb 2002 | B1 |
6360528 | Brausch et al. | Mar 2002 | B1 |
6363709 | Kataoka et al. | Apr 2002 | B2 |
6367258 | Wen et al. | Apr 2002 | B1 |
6370870 | Kamijo et al. | Apr 2002 | B1 |
6374591 | Johnson et al. | Apr 2002 | B1 |
6374594 | Kraft et al. | Apr 2002 | B1 |
6383461 | Lang | May 2002 | B1 |
6389814 | Viteri et al. | May 2002 | B2 |
6405536 | Ho et al. | Jun 2002 | B1 |
6412278 | Matthews | Jul 2002 | B1 |
6412302 | Foglietta | Jul 2002 | B1 |
6412559 | Gunter et al. | Jul 2002 | B1 |
6418725 | Maeda et al. | Jul 2002 | B1 |
6429020 | Thornton et al. | Aug 2002 | B1 |
6449954 | Bachmann | Sep 2002 | B2 |
6450256 | Mones | Sep 2002 | B2 |
6461147 | Sonju et al. | Oct 2002 | B1 |
6467270 | Mulloy et al. | Oct 2002 | B2 |
6470682 | Gray, Jr. | Oct 2002 | B2 |
6477859 | Wong et al. | Nov 2002 | B2 |
6484503 | Raz | Nov 2002 | B1 |
6484507 | Pradt | Nov 2002 | B1 |
6487863 | Chen et al. | Dec 2002 | B1 |
6490858 | Barrett et al. | Dec 2002 | B2 |
6499990 | Zink et al. | Dec 2002 | B1 |
6502383 | Janardan et al. | Jan 2003 | B1 |
6505567 | Liljedahl et al. | Jan 2003 | B1 |
6505683 | Minkkinen et al. | Jan 2003 | B2 |
6508209 | Collier, Jr. | Jan 2003 | B1 |
6523349 | Viteri | Feb 2003 | B2 |
6532745 | Neary | Mar 2003 | B1 |
6539716 | Finger et al. | Apr 2003 | B2 |
6584775 | Schneider et al. | Jul 2003 | B1 |
6598398 | Viteri et al. | Jul 2003 | B2 |
6598399 | Liebig | Jul 2003 | B2 |
6598402 | Kataoka et al. | Jul 2003 | B2 |
6606861 | Snyder | Aug 2003 | B2 |
6612291 | Sakamoto | Sep 2003 | B2 |
6615576 | Sheoran et al. | Sep 2003 | B2 |
6615589 | Allam et al. | Sep 2003 | B2 |
6622470 | Viteri et al. | Sep 2003 | B2 |
6622645 | Havlena | Sep 2003 | B2 |
6637183 | Viteri et al. | Oct 2003 | B2 |
6640548 | Brushwood et al. | Nov 2003 | B2 |
6644041 | Eyermann | Nov 2003 | B1 |
6655150 | Åsen et al. | Dec 2003 | B1 |
6668541 | Rice et al. | Dec 2003 | B2 |
6672863 | Doebbeling et al. | Jan 2004 | B2 |
6675579 | Yang | Jan 2004 | B1 |
6684643 | Frutschi | Feb 2004 | B2 |
6694735 | Sumser et al. | Feb 2004 | B2 |
6698412 | Dalla Betta | Mar 2004 | B2 |
6702570 | Shah et al. | Mar 2004 | B2 |
6722436 | Krill | Apr 2004 | B2 |
6725665 | Tuschy et al. | Apr 2004 | B2 |
6731501 | Cheng | May 2004 | B1 |
6732531 | Dickey | May 2004 | B2 |
6742506 | Grandin | Jun 2004 | B1 |
6743829 | Fischer-Calderon et al. | Jun 2004 | B2 |
6745573 | Marin et al. | Jun 2004 | B2 |
6745624 | Porter et al. | Jun 2004 | B2 |
6748004 | Jepson | Jun 2004 | B2 |
6752620 | Heier et al. | Jun 2004 | B2 |
6767527 | Åsen et al. | Jul 2004 | B1 |
6772583 | Bland | Aug 2004 | B2 |
6790030 | Fischer et al. | Sep 2004 | B2 |
6805483 | Garry et al. | Oct 2004 | B2 |
6810673 | Snyder | Nov 2004 | B2 |
6813889 | Inoue et al. | Nov 2004 | B2 |
6817187 | Yu | Nov 2004 | B2 |
6820428 | Wylie | Nov 2004 | B2 |
6821501 | Matzakos et al. | Nov 2004 | B2 |
6823852 | Collier, Jr. | Nov 2004 | B2 |
6824710 | Viteri et al. | Nov 2004 | B2 |
6826912 | Levy et al. | Dec 2004 | B2 |
6826913 | Wright | Dec 2004 | B2 |
6838071 | Olsvik et al. | Jan 2005 | B1 |
6851413 | Tamol, Sr. | Feb 2005 | B1 |
6868677 | Viteri et al. | Mar 2005 | B2 |
6886334 | Shirakawa | May 2005 | B2 |
6887069 | Thornton et al. | May 2005 | B1 |
6899859 | Olsvik | May 2005 | B1 |
6901760 | Dittmann et al. | Jun 2005 | B2 |
6904815 | Widmer | Jun 2005 | B2 |
6907737 | Mittricker et al. | Jun 2005 | B2 |
6910335 | Viteri et al. | Jun 2005 | B2 |
6923915 | Alford et al. | Aug 2005 | B2 |
6939130 | Abbasi et al. | Sep 2005 | B2 |
6945029 | Viteri | Sep 2005 | B2 |
6945052 | Frutschi et al. | Sep 2005 | B2 |
6945087 | Porter et al. | Sep 2005 | B2 |
6945089 | Barie et al. | Sep 2005 | B2 |
6946419 | Kaefer | Sep 2005 | B2 |
6969123 | Vinegar et al. | Nov 2005 | B2 |
6971242 | Boardman | Dec 2005 | B2 |
6981358 | Bellucci et al. | Jan 2006 | B2 |
6988549 | Babcock | Jan 2006 | B1 |
6993901 | Shirakawa | Feb 2006 | B2 |
6993916 | Johnson et al. | Feb 2006 | B2 |
6994491 | Kittle | Feb 2006 | B2 |
7007487 | Belokon et al. | Mar 2006 | B2 |
7010921 | Intile et al. | Mar 2006 | B2 |
7011154 | Maher et al. | Mar 2006 | B2 |
7015271 | Bice et al. | Mar 2006 | B2 |
7032388 | Healy | Apr 2006 | B2 |
7040400 | de Rouffignac et al. | May 2006 | B2 |
7043898 | Rago | May 2006 | B2 |
7043920 | Viteri et al. | May 2006 | B2 |
7045553 | Hershkowitz | May 2006 | B2 |
7053128 | Hershkowitz | May 2006 | B2 |
7056482 | Hakka et al. | Jun 2006 | B2 |
7059152 | Oakey et al. | Jun 2006 | B2 |
7065953 | Kopko | Jun 2006 | B1 |
7065972 | Zupanc et al. | Jun 2006 | B2 |
7074033 | Neary | Jul 2006 | B2 |
7077199 | Vinegar et al. | Jul 2006 | B2 |
7089743 | Frutschi et al. | Aug 2006 | B2 |
7096942 | de Rouffignac et al. | Aug 2006 | B1 |
7097925 | Keefer | Aug 2006 | B2 |
7104319 | Vinegar et al. | Sep 2006 | B2 |
7104784 | Hasegawa et al. | Sep 2006 | B1 |
7124589 | Neary | Oct 2006 | B2 |
7137256 | Stuttaford et al. | Nov 2006 | B1 |
7137623 | Mockry et al. | Nov 2006 | B2 |
7143572 | Ooka et al. | Dec 2006 | B2 |
7143606 | Tranier | Dec 2006 | B2 |
7146969 | Weirich | Dec 2006 | B2 |
7147461 | Neary | Dec 2006 | B2 |
7148261 | Hershkowitz et al. | Dec 2006 | B2 |
7152409 | Yee et al. | Dec 2006 | B2 |
7162875 | Fletcher et al. | Jan 2007 | B2 |
7168265 | Briscoe et al. | Jan 2007 | B2 |
7168488 | Olsvik et al. | Jan 2007 | B2 |
7183328 | Hershkowitz et al. | Feb 2007 | B2 |
7185497 | Dudebout et al. | Mar 2007 | B2 |
7194869 | McQuiggan et al. | Mar 2007 | B2 |
7197880 | Thornton et al. | Apr 2007 | B2 |
7217303 | Hershkowitz et al. | May 2007 | B2 |
7225623 | Koshoffer | Jun 2007 | B2 |
7237385 | Carrea | Jul 2007 | B2 |
7284362 | Marin et al. | Oct 2007 | B2 |
7299619 | Briesch et al. | Nov 2007 | B2 |
7299868 | Zapadinski | Nov 2007 | B2 |
7302801 | Chen | Dec 2007 | B2 |
7305817 | Blodgett et al. | Dec 2007 | B2 |
7305831 | Carrea et al. | Dec 2007 | B2 |
7313916 | Pellizzari | Jan 2008 | B2 |
7318317 | Carrea | Jan 2008 | B2 |
7343742 | Wimmer et al. | Mar 2008 | B2 |
7353655 | Bolis et al. | Apr 2008 | B2 |
7357857 | Hart et al. | Apr 2008 | B2 |
7363756 | Carrea et al. | Apr 2008 | B2 |
7363764 | Griffin et al. | Apr 2008 | B2 |
7381393 | Lynn | Jun 2008 | B2 |
7401577 | Saucedo et al. | Jul 2008 | B2 |
7410525 | Liu et al. | Aug 2008 | B1 |
7416137 | Hagen et al. | Aug 2008 | B2 |
7434384 | Lord et al. | Oct 2008 | B2 |
7438744 | Beaumont | Oct 2008 | B2 |
7467942 | Carroni et al. | Dec 2008 | B2 |
7468173 | Hughes et al. | Dec 2008 | B2 |
7472550 | Lear, Jr. et al. | Jan 2009 | B2 |
7481048 | Harmon et al. | Jan 2009 | B2 |
7481275 | Olsvik et al. | Jan 2009 | B2 |
7482500 | Johann et al. | Jan 2009 | B2 |
7485761 | Schindler et al. | Feb 2009 | B2 |
7488857 | Johann et al. | Feb 2009 | B2 |
7490472 | Lynghjem et al. | Feb 2009 | B2 |
7491250 | Hershkowitz et al. | Feb 2009 | B2 |
7492054 | Catlin | Feb 2009 | B2 |
7493769 | Jangili | Feb 2009 | B2 |
7498009 | Leach et al. | Mar 2009 | B2 |
7503178 | Bucker et al. | Mar 2009 | B2 |
7503948 | Hershkowitz et al. | Mar 2009 | B2 |
7506501 | Anderson et al. | Mar 2009 | B2 |
7513099 | Nuding et al. | Apr 2009 | B2 |
7513100 | Motter et al. | Apr 2009 | B2 |
7516626 | Brox et al. | Apr 2009 | B2 |
7520134 | Durbin et al. | Apr 2009 | B2 |
7523603 | Hagen et al. | Apr 2009 | B2 |
7536252 | Hibshman, II et al. | May 2009 | B1 |
7536873 | Nohlen | May 2009 | B2 |
7540150 | Schmid et al. | Jun 2009 | B2 |
7559977 | Fleischer et al. | Jul 2009 | B2 |
7562519 | Harris et al. | Jul 2009 | B1 |
7562529 | Kuspert et al. | Jul 2009 | B2 |
7566394 | Koseoglu | Jul 2009 | B2 |
7574856 | Mak | Aug 2009 | B2 |
7591866 | Bose | Sep 2009 | B2 |
7594386 | Narayanan et al. | Sep 2009 | B2 |
7610752 | Dalla Betta et al. | Nov 2009 | B2 |
7610759 | Yoshida et al. | Nov 2009 | B2 |
7611681 | Kaefer | Nov 2009 | B2 |
7614352 | Anthony et al. | Nov 2009 | B2 |
7618606 | Fan et al. | Nov 2009 | B2 |
7631493 | Shirakawa et al. | Dec 2009 | B2 |
7634915 | Hoffmann et al. | Dec 2009 | B2 |
7635408 | Mak et al. | Dec 2009 | B2 |
7637093 | Rao | Dec 2009 | B2 |
7644573 | Smith et al. | Jan 2010 | B2 |
7650744 | Varatharajan et al. | Jan 2010 | B2 |
7654320 | Payton | Feb 2010 | B2 |
7654330 | Zubrin et al. | Feb 2010 | B2 |
7655071 | De Vreede | Feb 2010 | B2 |
7670135 | Zink et al. | Mar 2010 | B1 |
7673454 | Saito et al. | Mar 2010 | B2 |
7673685 | Huntley Shaw et al. | Mar 2010 | B2 |
7674443 | Davis | Mar 2010 | B1 |
7677309 | Shaw et al. | Mar 2010 | B2 |
7681394 | Haugen | Mar 2010 | B2 |
7682597 | Blumenfeld et al. | Mar 2010 | B2 |
7690204 | Drnevich et al. | Apr 2010 | B2 |
7691788 | Tan et al. | Apr 2010 | B2 |
7695703 | Sobolevskiy et al. | Apr 2010 | B2 |
7717173 | Grott | May 2010 | B2 |
7721543 | Massey et al. | May 2010 | B2 |
7726114 | Evulet | Jun 2010 | B2 |
7734408 | Shiraki | Jun 2010 | B2 |
7739864 | Finkenrath et al. | Jun 2010 | B2 |
7749311 | Saito et al. | Jul 2010 | B2 |
7752848 | Balan et al. | Jul 2010 | B2 |
7752850 | Laster et al. | Jul 2010 | B2 |
7753039 | Harima et al. | Jul 2010 | B2 |
7753972 | Zubrin et al. | Jul 2010 | B2 |
7762084 | Martis et al. | Jul 2010 | B2 |
7763163 | Koseoglu | Jul 2010 | B2 |
7763227 | Wang | Jul 2010 | B2 |
7765810 | Pfefferle | Aug 2010 | B2 |
7788897 | Campbell et al. | Sep 2010 | B2 |
7789159 | Bader | Sep 2010 | B1 |
7789658 | Towler et al. | Sep 2010 | B2 |
7789944 | Saito et al. | Sep 2010 | B2 |
7793494 | Wirth et al. | Sep 2010 | B2 |
7802434 | Varatharajan et al. | Sep 2010 | B2 |
7815873 | Sankaranarayanan et al. | Oct 2010 | B2 |
7815892 | Hershkowitz et al. | Oct 2010 | B2 |
7819951 | White et al. | Oct 2010 | B2 |
7824179 | Hasegawa et al. | Nov 2010 | B2 |
7827778 | Finkenrath et al. | Nov 2010 | B2 |
7827794 | Pronske et al. | Nov 2010 | B1 |
7841186 | So et al. | Nov 2010 | B2 |
7845406 | Nitschke | Dec 2010 | B2 |
7846401 | Hershkowitz et al. | Dec 2010 | B2 |
7861511 | Chillar et al. | Jan 2011 | B2 |
7874140 | Fan et al. | Jan 2011 | B2 |
7874350 | Pfefferle | Jan 2011 | B2 |
7875402 | Hershkowitz et al. | Jan 2011 | B2 |
7882692 | Pronske et al. | Feb 2011 | B2 |
7886522 | Kammel | Feb 2011 | B2 |
7895822 | Hoffmann et al. | Mar 2011 | B2 |
7896105 | Dupriest | Mar 2011 | B2 |
7906304 | Kohr | Mar 2011 | B2 |
7909898 | White et al. | Mar 2011 | B2 |
7914749 | Carstens et al. | Mar 2011 | B2 |
7914764 | Hershkowitz et al. | Mar 2011 | B2 |
7918906 | Zubrin et al. | Apr 2011 | B2 |
7921633 | Rising | Apr 2011 | B2 |
7922871 | Price et al. | Apr 2011 | B2 |
7926292 | Rabovitser et al. | Apr 2011 | B2 |
7931712 | Zubrin et al. | Apr 2011 | B2 |
7931731 | Van Heeringen et al. | Apr 2011 | B2 |
7931888 | Drnevich et al. | Apr 2011 | B2 |
7934926 | Kornbluth et al. | May 2011 | B2 |
7942003 | Baudoin et al. | May 2011 | B2 |
7942008 | Joshi et al. | May 2011 | B2 |
7943097 | Golden et al. | May 2011 | B2 |
7955403 | Ariyapadi et al. | Jun 2011 | B2 |
7966822 | Myers et al. | Jun 2011 | B2 |
7976803 | Hooper et al. | Jul 2011 | B2 |
7980312 | Hill et al. | Jul 2011 | B1 |
7985399 | Drnevich et al. | Jul 2011 | B2 |
7988750 | Lee et al. | Aug 2011 | B2 |
8001789 | Vega et al. | Aug 2011 | B2 |
8029273 | Paschereit et al. | Oct 2011 | B2 |
8036813 | Tonetti et al. | Oct 2011 | B2 |
8038416 | Ono et al. | Oct 2011 | B2 |
8038746 | Clark | Oct 2011 | B2 |
8038773 | Ochs et al. | Oct 2011 | B2 |
8046986 | Chillar et al. | Nov 2011 | B2 |
8047007 | Zubrin et al. | Nov 2011 | B2 |
8051638 | Aljabari et al. | Nov 2011 | B2 |
8061120 | Hwang | Nov 2011 | B2 |
8062617 | Stakhev et al. | Nov 2011 | B2 |
8065870 | Jobson et al. | Nov 2011 | B2 |
8065874 | Fong et al. | Nov 2011 | B2 |
8074439 | Foret | Dec 2011 | B2 |
8080225 | Dickinson et al. | Dec 2011 | B2 |
8083474 | Hashimoto et al. | Dec 2011 | B2 |
8097230 | Mesters et al. | Jan 2012 | B2 |
8101146 | Fedeyko et al. | Jan 2012 | B2 |
8105559 | Melville et al. | Jan 2012 | B2 |
8110012 | Chiu et al. | Feb 2012 | B2 |
8117825 | Griffin et al. | Feb 2012 | B2 |
8117846 | Wilbraham | Feb 2012 | B2 |
8127558 | Bland et al. | Mar 2012 | B2 |
8127936 | Liu et al. | Mar 2012 | B2 |
8127937 | Liu et al. | Mar 2012 | B2 |
8133298 | Lanyi et al. | Mar 2012 | B2 |
8166766 | Draper | May 2012 | B2 |
8167960 | Gil | May 2012 | B2 |
8176982 | Gil et al. | May 2012 | B2 |
8191360 | Fong et al. | Jun 2012 | B2 |
8191361 | Fong et al. | Jun 2012 | B2 |
8196387 | Shah et al. | Jun 2012 | B2 |
8196413 | Mak | Jun 2012 | B2 |
8201402 | Fong et al. | Jun 2012 | B2 |
8205455 | Popovic | Jun 2012 | B2 |
8206669 | Schaffer et al. | Jun 2012 | B2 |
8209192 | Gil et al. | Jun 2012 | B2 |
8215105 | Fong et al. | Jul 2012 | B2 |
8220247 | Wijmans et al. | Jul 2012 | B2 |
8220248 | Wijmans et al. | Jul 2012 | B2 |
8220268 | Callas | Jul 2012 | B2 |
8225600 | Theis | Jul 2012 | B2 |
8226912 | Kloosterman et al. | Jul 2012 | B2 |
8240142 | Fong et al. | Aug 2012 | B2 |
8240153 | Childers et al. | Aug 2012 | B2 |
8245492 | Draper | Aug 2012 | B2 |
8245493 | Minto | Aug 2012 | B2 |
8247462 | Boshoff et al. | Aug 2012 | B2 |
8257476 | White et al. | Sep 2012 | B2 |
8261823 | Hill et al. | Sep 2012 | B1 |
8262343 | Hagen | Sep 2012 | B2 |
8266883 | Dion Ouellet et al. | Sep 2012 | B2 |
8266913 | Snook et al. | Sep 2012 | B2 |
8268044 | Wright et al. | Sep 2012 | B2 |
8281596 | Rohrssen et al. | Oct 2012 | B1 |
8316665 | Mak | Nov 2012 | B2 |
8316784 | D'Agostini | Nov 2012 | B2 |
8337613 | Zauderer | Dec 2012 | B2 |
8347600 | Wichmann et al. | Jan 2013 | B2 |
8348551 | Baker et al. | Jan 2013 | B2 |
8371100 | Draper | Feb 2013 | B2 |
8372251 | Goller et al. | Feb 2013 | B2 |
8377184 | Fujikawa et al. | Feb 2013 | B2 |
8377401 | Darde et al. | Feb 2013 | B2 |
8388919 | Hooper et al. | Mar 2013 | B2 |
8397482 | Kraemer et al. | Mar 2013 | B2 |
8398757 | Iijima et al. | Mar 2013 | B2 |
8409307 | Drnevich et al. | Apr 2013 | B2 |
8414694 | Iijima et al. | Apr 2013 | B2 |
8424282 | Vollmer et al. | Apr 2013 | B2 |
8424601 | Betzer-Zilevitch | Apr 2013 | B2 |
8436489 | Stahlkopf et al. | May 2013 | B2 |
8453461 | Draper | Jun 2013 | B2 |
8453462 | Wichmann et al. | Jun 2013 | B2 |
8453583 | Malavasi et al. | Jun 2013 | B2 |
8454350 | Berry et al. | Jun 2013 | B2 |
8475160 | Campbell et al. | Jul 2013 | B2 |
8539749 | Wichmann et al. | Sep 2013 | B1 |
8555796 | D'Agostini | Oct 2013 | B2 |
8567200 | Brook et al. | Oct 2013 | B2 |
8616294 | Zubrin et al. | Dec 2013 | B2 |
8627643 | Chillar et al. | Jan 2014 | B2 |
20010000049 | Kataoka et al. | Mar 2001 | A1 |
20010029732 | Bachmann | Oct 2001 | A1 |
20010045090 | Gray, Jr. | Nov 2001 | A1 |
20020043063 | Kataoka et al. | Apr 2002 | A1 |
20020053207 | Finger et al. | May 2002 | A1 |
20020069648 | Levy et al. | Jun 2002 | A1 |
20020187449 | Doebbeling et al. | Dec 2002 | A1 |
20030005698 | Keller | Jan 2003 | A1 |
20030131582 | Anderson et al. | Jul 2003 | A1 |
20030134241 | Marin et al. | Jul 2003 | A1 |
20030221409 | McGowan | Dec 2003 | A1 |
20040006994 | Walsh et al. | Jan 2004 | A1 |
20040068981 | Siefker et al. | Apr 2004 | A1 |
20040166034 | Kaefer | Aug 2004 | A1 |
20040170559 | Hershkowitz et al. | Sep 2004 | A1 |
20040223408 | Mathys et al. | Nov 2004 | A1 |
20040238654 | Hagen et al. | Dec 2004 | A1 |
20050028529 | Bartlett et al. | Feb 2005 | A1 |
20050144961 | Colibaba-Evulet et al. | Jul 2005 | A1 |
20050197267 | Zaki et al. | Sep 2005 | A1 |
20050229585 | Webster | Oct 2005 | A1 |
20050236602 | Viteri et al. | Oct 2005 | A1 |
20060112675 | Anderson et al. | Jun 2006 | A1 |
20060112696 | Lynghjem | Jun 2006 | A1 |
20060158961 | Ruscheweyh et al. | Jul 2006 | A1 |
20060183009 | Berlowitz et al. | Aug 2006 | A1 |
20060196812 | Beetge et al. | Sep 2006 | A1 |
20060201131 | McQuiggan | Sep 2006 | A1 |
20060248888 | Geskes | Nov 2006 | A1 |
20060272331 | Bucker | Dec 2006 | A1 |
20070000242 | Harmon et al. | Jan 2007 | A1 |
20070006592 | Balan et al. | Jan 2007 | A1 |
20070044475 | Leser et al. | Mar 2007 | A1 |
20070044479 | Brandt et al. | Mar 2007 | A1 |
20070089425 | Motter et al. | Apr 2007 | A1 |
20070107430 | Schmid et al. | May 2007 | A1 |
20070144747 | Steinberg | Jun 2007 | A1 |
20070215350 | Kresnyak | Sep 2007 | A1 |
20070231233 | Bose | Oct 2007 | A1 |
20070234702 | Hagen et al. | Oct 2007 | A1 |
20070245736 | Barnicki | Oct 2007 | A1 |
20070249738 | Haynes et al. | Oct 2007 | A1 |
20070272201 | Amano et al. | Nov 2007 | A1 |
20080000229 | Kuspert et al. | Jan 2008 | A1 |
20080006561 | Moran et al. | Jan 2008 | A1 |
20080010967 | Griffin et al. | Jan 2008 | A1 |
20080034727 | Sutikno | Feb 2008 | A1 |
20080038598 | Berlowitz et al. | Feb 2008 | A1 |
20080047280 | Dubar | Feb 2008 | A1 |
20080066443 | Frutschi et al. | Mar 2008 | A1 |
20080115478 | Sullivan | May 2008 | A1 |
20080118310 | Graham | May 2008 | A1 |
20080127632 | Finkenrath et al. | Jun 2008 | A1 |
20080155984 | Liu et al. | Jul 2008 | A1 |
20080178611 | Ding | Jul 2008 | A1 |
20080202123 | Sullivan et al. | Aug 2008 | A1 |
20080223038 | Lutz et al. | Sep 2008 | A1 |
20080250795 | Katdare et al. | Oct 2008 | A1 |
20080251234 | Wilson et al. | Oct 2008 | A1 |
20080290719 | Kaminsky et al. | Nov 2008 | A1 |
20080309087 | Evulet et al. | Dec 2008 | A1 |
20090000762 | Wilson et al. | Jan 2009 | A1 |
20090025390 | Christensen et al. | Jan 2009 | A1 |
20090038247 | Taylor et al. | Feb 2009 | A1 |
20090056342 | Kirzhner | Mar 2009 | A1 |
20090064653 | Hagen et al. | Mar 2009 | A1 |
20090071166 | Hagen et al. | Mar 2009 | A1 |
20090107141 | Chillar et al. | Apr 2009 | A1 |
20090117024 | Weedon et al. | May 2009 | A1 |
20090120087 | Sumser et al. | May 2009 | A1 |
20090157230 | Hibshman, II et al. | Jun 2009 | A1 |
20090193809 | Schroder et al. | Aug 2009 | A1 |
20090205334 | Aljabari et al. | Aug 2009 | A1 |
20090218821 | Elkady et al. | Sep 2009 | A1 |
20090223227 | Lipinski et al. | Sep 2009 | A1 |
20090229263 | Ouellet et al. | Sep 2009 | A1 |
20090235637 | Foret | Sep 2009 | A1 |
20090241506 | Nilsson | Oct 2009 | A1 |
20090255242 | Paterson et al. | Oct 2009 | A1 |
20090262599 | Kohrs et al. | Oct 2009 | A1 |
20090284013 | Anand et al. | Nov 2009 | A1 |
20090289227 | Rising | Nov 2009 | A1 |
20090301054 | Simpson et al. | Dec 2009 | A1 |
20090301099 | Nigro | Dec 2009 | A1 |
20100003123 | Smith | Jan 2010 | A1 |
20100018218 | Riley et al. | Jan 2010 | A1 |
20100058732 | Kaufmann et al. | Mar 2010 | A1 |
20100115960 | Brautsch et al. | May 2010 | A1 |
20100126176 | Kim | May 2010 | A1 |
20100126906 | Sury | May 2010 | A1 |
20100162703 | Li et al. | Jul 2010 | A1 |
20100170253 | Berry et al. | Jul 2010 | A1 |
20100180565 | Draper | Jul 2010 | A1 |
20100300102 | Bathina et al. | Dec 2010 | A1 |
20100310439 | Brok et al. | Dec 2010 | A1 |
20100322759 | Tanioka | Dec 2010 | A1 |
20100326084 | Anderson et al. | Dec 2010 | A1 |
20110000221 | Minta et al. | Jan 2011 | A1 |
20110000671 | Hershkowitz et al. | Jan 2011 | A1 |
20110036082 | Collinot | Feb 2011 | A1 |
20110048002 | Taylor et al. | Mar 2011 | A1 |
20110048010 | Balcezak et al. | Mar 2011 | A1 |
20110072779 | Elkady et al. | Mar 2011 | A1 |
20110088379 | Nanda | Apr 2011 | A1 |
20110110759 | Sanchez et al. | May 2011 | A1 |
20110126512 | Anderson | Jun 2011 | A1 |
20110138766 | Elkady et al. | Jun 2011 | A1 |
20110162353 | Vanvolsem et al. | Jul 2011 | A1 |
20110205837 | Gentgen | Aug 2011 | A1 |
20110226010 | Baxter | Sep 2011 | A1 |
20110227346 | Klenven | Sep 2011 | A1 |
20110232545 | Clements | Sep 2011 | A1 |
20110239653 | Valeev et al. | Oct 2011 | A1 |
20110265447 | Cunningham | Nov 2011 | A1 |
20110300493 | Mittricker et al. | Dec 2011 | A1 |
20120023954 | Wichmann | Feb 2012 | A1 |
20120023955 | Draper | Feb 2012 | A1 |
20120023956 | Popovic | Feb 2012 | A1 |
20120023957 | Draper et al. | Feb 2012 | A1 |
20120023958 | Snook et al. | Feb 2012 | A1 |
20120023960 | Minto | Feb 2012 | A1 |
20120023962 | Wichmann et al. | Feb 2012 | A1 |
20120023963 | Wichmann et al. | Feb 2012 | A1 |
20120023966 | Ouellet et al. | Feb 2012 | A1 |
20120031581 | Chillar et al. | Feb 2012 | A1 |
20120032810 | Chillar et al. | Feb 2012 | A1 |
20120085100 | Hughes et al. | Apr 2012 | A1 |
20120096870 | Wichmann et al. | Apr 2012 | A1 |
20120119512 | Draper | May 2012 | A1 |
20120131925 | Mittricker et al. | May 2012 | A1 |
20120144837 | Rasmussen et al. | Jun 2012 | A1 |
20120185144 | Draper | Jul 2012 | A1 |
20120192565 | Tretyakov et al. | Aug 2012 | A1 |
20120247105 | Nelson et al. | Oct 2012 | A1 |
20120260660 | Kraemer et al. | Oct 2012 | A1 |
20130086916 | Oelfke et al. | Apr 2013 | A1 |
20130086917 | Slobodyanskiy et al. | Apr 2013 | A1 |
20130091853 | Denton et al. | Apr 2013 | A1 |
20130091854 | Gupta et al. | Apr 2013 | A1 |
20130104562 | Oelfke et al. | May 2013 | A1 |
20130104563 | Oelfke et al. | May 2013 | A1 |
20130125554 | Mittricker et al. | May 2013 | A1 |
20130125555 | Mittricker et al. | May 2013 | A1 |
20130232980 | Chen et al. | Sep 2013 | A1 |
20130269310 | Wichmann et al. | Oct 2013 | A1 |
20130269311 | Wichmann et al. | Oct 2013 | A1 |
20130269355 | Wichmann et al. | Oct 2013 | A1 |
20130269356 | Butkiewicz et al. | Oct 2013 | A1 |
20130269357 | Wichmann et al. | Oct 2013 | A1 |
20130269358 | Wichmann et al. | Oct 2013 | A1 |
20130269360 | Wichmann et al. | Oct 2013 | A1 |
20130269361 | Wichmann et al. | Oct 2013 | A1 |
20130269362 | Wichmann et al. | Oct 2013 | A1 |
20130283808 | Kolvick | Oct 2013 | A1 |
20140000271 | Mittricker et al. | Jan 2014 | A1 |
20140000273 | Mittricker et al. | Jan 2014 | A1 |
20140007590 | Huntington et al. | Jan 2014 | A1 |
20140013766 | Mittricker et al. | Jan 2014 | A1 |
20140020398 | Mittricker et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2231749 | Sep 1998 | CA |
2550675 | Jul 2005 | CA |
2645450 | Sep 2007 | CA |
2614669 | Dec 2008 | CA |
0453059 | Jun 1994 | EP |
0770771 | May 1997 | EP |
0654639 | Sep 1998 | EP |
0776269 | Jun 1957 | GB |
1408174 | Oct 1975 | GB |
2117053 | Oct 1983 | GB |
2397349 | Jul 2004 | GB |
WO9521683 | Aug 1995 | WO |
WO9707329 | Feb 1997 | WO |
WO9906674 | Feb 1999 | WO |
WO9963210 | Dec 1999 | WO |
WO2005064232 | Jul 2005 | WO |
WO2006107209 | Oct 2006 | WO |
WO2007068682 | Jun 2007 | WO |
WO2008074980 | Jun 2008 | WO |
WO2008142009 | Nov 2008 | WO |
WO2008155242 | Dec 2008 | WO |
WO2009120779 | Oct 2009 | WO |
WO2009121008 | Oct 2009 | WO |
WO2010044958 | Apr 2010 | WO |
WO2010066048 | Jul 2010 | WO |
WO2010141777 | Dec 2010 | WO |
WO2011003606 | Jan 2011 | WO |
WO2011028322 | Mar 2011 | WO |
WO2012003076 | Jan 2012 | WO |
WO2012003077 | Jan 2012 | WO |
WO2012003078 | Jan 2012 | WO |
WO2012003079 | Jan 2012 | WO |
WO2012003080 | Jan 2012 | WO |
WO2012003489 | Jan 2012 | WO |
WO2012018458 | Feb 2012 | WO |
WO2012018459 | Feb 2012 | WO |
WO2012128928 | Sep 2012 | WO |
WO2012128929 | Sep 2012 | WO |
WO2012170114 | Dec 2012 | WO |
WO2013147632 | Oct 2013 | WO |
WO2013147633 | Oct 2013 | WO |
WO2013155214 | Oct 2013 | WO |
WO2013163045 | Oct 2013 | WO |
Entry |
---|
Ahmed, S. et al. (1998) “Catalytic Partial Oxidation Reforming of Hydrocarbon Fuels,” 1998 Fuel Cell Seminar, Nov. 16-19, 1998, 7 pgs. |
Air Separation Technology Ion Transport Membrane—Air Products 2008. |
Air Separation Technology Ion Transport Membrane—Air Products 2011. |
Anderson, R. E. (2006) “Durability and Reliability Demonstration of a Near-Zero-Emission Gas-Fired Power Plant,” California Energy Comm., CEC 500-2006-074, 80 pgs. |
Baxter, E. et al. (2003) “Fabricate and Test an Advanced Non-Polluting Turbine Drive Gas Generator,” U. S. Dept. of Energy, Nat'l Energy Tech. Lab., DE-FC26-00NT 40804, 51 pgs. |
Bolland, O. et al. (1998) “Removal of CO2 From Gas Turbine Power Plants Evaluation of Pre- and Postcombustion Methods,” SINTEF Group, 1998, www.energy.sintef.no/publ/xergi/98/3/art-8engelsk.htm, 11 pgs. |
BP Press Release (2006) “BP and Edison Mission Group Plan Major Hydrogen Power Project for California,” Feb. 10, 2006, www.bp.com/hydrogenpower, 2 pgs. |
Bryngelsson, M. et al. (2005) “Feasibility Study of CO2 Removal From Pressurized Flue Gas in a Fully Fired Combined Cycle—The Sargas Project,” KTH—Royal Institute Of Technology, Dept. of Chemical Engineering And Technology, 9 pgs. |
Clark, Hal (2002) “Development of a Unique Gas Generator for a Non-Polluting Power Plant,” California Energy Commission Feasibility Analysis, P500-02-011F, Mar. 2002, 42 pgs. |
Ditaranto, et al. , (2006), “Combustion Instabilities in Sudden Expansion Oxy-Fuel Flames,” ScienceDirect, Combustion And Flame, v. 146, Jun. 30, 2006, 15 pgs. |
Foy, Kirsten et al. (2005) “Comparison of Ion Transport Membranes”—Fourth Annual Conference on Carbon Capture and Sequestration, DOE/NETL; May 2005, 11 pages. |
Cho, J. H. et al. (2005) “Marrying LNG and Power Generation,” Energy Markets; Oct./Nov. 2005; 10, 8; ABI/INFORM Trade & Industry, p. 28;. |
Ciulia, Vincent. About.com. Auto Repair. How the Engine Works. 2001-2003. |
Corti, A. et al. (1988) “Athabasca Mineable Oil Sands: The RTR/Gulf Extraction Process Theoretical Model of Bitumen Detachment,” 4th UNITAR/UNDP Int'l Conf. on Heavy Crude and Tar Sands Proceedings, v.5, paper No. 81, Edmonton, AB, Canada, Aug. 7-12, 1988, pp. 41-44. |
Cryogenics. Science Clarified. 2012. http://www.scienceclarified.com/Co-Di/Cryogenics.html. |
Defrate, L. A. et al. (1959) “Optimum Design of Ejector Using Digital Computers” Chem. Eng. Prog. Symp. Ser., 55 ( 21) pp. 46. |
Elwell, L. C. et al. (2005) “Technical Overview of Carbon Dioxide Capture Technologies for Coal-Fired Power Plants,” MPR Associates, Inc., Jun. 22, 2005, 15 pgs. |
Eriksson, Sara. Licentiate Thesis 2005, p. 22. KTH—“Development of Methane Oxidation Catalysts for Different Gas Turbine Combustor Concepts.” The Royal Institute of Technology, Department of Chemical Engineering and Technology, Chemical Technology, Stockholm Sweden. |
Ertesvag, I. S. et al. (2005) “Energy Analysis of a Gas-Turbine Combined-Cycle Power Plant With Precombustion CO2 Capture,” Elsivier, 2004, pp. 5-39. |
Evulet, Andrei T. et al. “Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture” ASME J. Engineering for Gas Turbines and Power, vol. 131, May 2009. |
Evulet, Andrei T. et al. “On the Performance and Operability of GE's Dry Low Nox Combustors utilizing Exhaust Gas Recirculation for Post-Combustion Carbon Capture” Energy Procedia I 2009, 3809-3816. |
http://www.turbineinletcooling.org/resources/papers/CTIC—WetCompression—Shepherd—ASMETurboExpo2011.pdf , Shepherd, IGTI 2011—CTIC Wet Compression, Jun. 8, 2011. |
Luby, P. et al. (2003) “Zero Carbon Power Generation: IGCC as the Premium Option,” Powergen International, 19 pgs. |
MacAdam, S. et al. (2008) “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” Clean Energy Systems, Inc. 6 pgs. |
Morehead, H. (2007) “Siemens Global Gasification and IGCC Update,” Siemens, Coal-Gen, Aug. 3, 2007, 17 pgs. |
Nanda, R. et al. (2007) “Utilizing Air Based Technologies as Heat Source for LNG Vaporization,” presented at the 86th Annual convention of the Gas Processors of America (GPA 2007), Mar. 11-14, 2007, San Antonio, TX. |
Reeves, S. R. (2001) “Geological Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project,” SPE 71749,10 pgs. |
Reeves, S. R. (2003) “Enhanced Coalbed Methane Recovery,” SPE 101466-DL, 8 pgs. |
Richards, G. A. et al. (2001) “Advanced Steam Generators,” National Energy Technology Laboratory, 7 pgs. |
Rosetta, M. J. et al. (2006) “Integrating Ambient Air Vaporization Technology with Waste Heat Recovery—A Fresh Approach to LNG Vaporization,” presented at the 85th annual convention of the Gas Processors of America (GPA 2006), Grapevine, Texas, Mar. 5-8, 2006. |
Snarheim, D. et al. (2006) “Control Design for a Gas Turbine Cycle With CO2 Capture Capabilities,” Modeling, Identification and Control, vol. 00, 10 pgs. |
Ulfsnes, R. E. et al. (2003) “Investigation of Physical Properties for CO2/H2O Mixtures for use in Semi-Closed O2/CO2 Gas Turbine Cycle With CO2-Capture,” Department of Energy and Process Eng., Norwegian Univ. of Science and Technology, 9 pgs. |
vanHemert, P. et al. (2006) “Adsorption of Carbon Dioxide and a Hydrogen-Carbon Dioxide Mixture,” Intn'l Coalbed Methane Symposium (Tuscaloosa, AL) Paper 0615, 9 pgs. |
Zhu, J. et al. (2002) “Recovery of Coalbed Methane by Gas Injection,” SPE 75255, 15 pgs. |
U.S. Appl. No. 13/596,684, filed Aug. 28, 2012, Slobodyanskiy et al. |
U.S. Appl. No. 14/066,579, filed Oct. 29, 2013, Huntington et al. |
U.S. Appl. No. 14/066,551, filed Oct. 29, 2013, Minto. |
U.S. Appl. No. 14/144,511, filed Dec. 30, 2013, Thatcher et al. |
U.S. Appl. No. 14/067,557, filed Oct. 30, 2013, Lucas John Stoia et al. |
PCT/RU2013/000162, Feb. 28, 2013, General Electric Company. |
U.S. Appl. No. 14/067,679, filed Oct. 30, 2013, Elizabeth Angelyn Fadde et al. |
U.S. Appl. No. 14/067,714, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al. |
U.S. Appl. No. 14/067,726, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al. |
U.S. Appl. No. 14/067,731, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al. |
U.S. Appl. No. 14/067,739, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al. |
U.S. Appl. No. 14/067,797, filed Oct. 31, 2013, Anthony Wayne Krull et al. |
U.S. Appl. No. 14/066,488, filed Oct. 29, 2013, Pramod K. Biyani et al. |
U.S. Appl. No. 14/135,055, filed Dec. 19, 2013, Pramod K. Biyani et al. |
U.S. Appl. No. 14/067,844, filed Oct. 30, 2013, John Farrior Woodall et al. |
PCT/US13/036020, Apr. 10, 2013, General Electric Company/ExxonMobil Upstream Company. |
U.S. Appl. No. 14/067,486, filed Oct. 30, 2013, Huntington et al. |
U.S. Appl. No. 14/067,537, filed Oct. 30, 2013, Huntington et al. |
U.S. Appl. No. 14/067,552, filed Oct. 30, 2013, Huntington et al. |
U.S. Appl. No. 14/067,563, filed Oct. 30, 2013, Huntington et al. |
Number | Date | Country | |
---|---|---|---|
20140083109 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61466381 | Mar 2011 | US | |
61466384 | Mar 2011 | US | |
61466385 | Mar 2011 | US | |
61542039 | Sep 2011 | US | |
61542035 | Sep 2011 | US | |
61542030 | Sep 2011 | US | |
61542031 | Sep 2011 | US |