This invention relates to magnetic cards and devices and associated payment systems.
A card may include a dynamic magnetic communications device. Such a dynamic magnetic communications device may take the form of a magnetic encoder or a magnetic emulator. A magnetic encoder may change the information located on a magnetic medium such that a magnetic stripe reader may read changed magnetic information from the magnetic medium. A magnetic emulator may generate electromagnetic fields that directly communicate data to a magnetic stripe reader. Such a magnetic emulator may communicate data serially to a read-head of the magnetic stripe reader.
All, or substantially all, of the front as well as the back of a card may be a display (e.g., bi-stable, non bi-stable, LCD, LED, or electrochromic display). Electrodes of a display may be coupled to one or more capacitive touch sensors such that a display may be provided as a touch-screen display. Any type of touch-screen display may be utilized. Such touch-screen displays may be operable of determining multiple points of touch. Accordingly, a barcode may be displayed across all, or substantially all, of a surface of a card. In doing so, computer vision equipment such as barcode readers may be less susceptible to errors in reading a displayed barcode.
A card may include a number of output devices to output dynamic information. For example, a card may include one or more RFIDs or IC chips to communicate to one or more RFID readers or IC chip readers, respectively. A card may include devices to receive information. For example, an RFID and IC chip may both receive information and communicate information to an RFID and IC chip reader, respectively. A device for receiving wireless information signals may be provided. A light sensing device or sound sensing device may be utilized to receive information wirelessly. A card may include a central processor that communicates data through one or more output devices simultaneously (e.g., an RFID, IC chip, and a dynamic magnetic stripe communications device). The central processor may receive information from one or more input devices simultaneously (e.g., an RFID, IC chip, dynamic magnetic stripe devices, light sensing device, and a sound sensing device). A processor may be coupled to surface contacts such that the processor may perform the processing capabilities of, for example, an EMV chip. The processor may be laminated over and not exposed such that such a processor is not exposed on the surface of the card.
A card may be provided with a button in which the activation of the button causes a code to be communicated through a dynamic magnetic stripe communications device (e.g., the subsequent time a read-head detector on the card detects a read-head). The code may be indicative of, for example, a feature (e.g., a payment feature). The code may be received by the card via manual input (e.g., onto buttons of the card) or via a wireless transmission (e.g., via light, electromagnetic communications, sound, or other wireless signals). A code may be communicated from a webpage (e.g., via light and/or sound) to a card. A card may include a display such that a received code may be visually displayed to a user. In doing so, the user may be provided with a way to select, and use, the code via both an in-store setting (e.g., via a magnetic stripe reader) or an online setting (e.g., by reading the code from a display and entering the code into a text box on a checkout page of an online purchase transaction). A remote server, such as a payment authorization server, may receive the code and may process a payment differently based on the code received. For example, a code may be a security code to authorize a purchase transaction. A code may provide a payment feature such that a purchase may be made with points, debit, credit, installment payments, or deferred payments via a single payment account number (e.g., a credit card number) to identify a user and a payment feature code to select the type of payment a user desires to utilize.
A dynamic magnetic stripe communications device may include a magnetic emulator that comprises an inductor (e.g., a coil). Current may be provided through this coil to create an electromagnetic field operable to communicate with the read-head of a magnetic stripe reader. The drive circuit may fluctuate the amount of current travelling through the coil such that a track of magnetic stripe data may be communicated to a read-head of a magnetic stripe reader. A switch (e.g., a transistor) may be provided to enable or disable the flow of current according to, for example, a frequency/double-frequency (F2F) encoding algorithm. In doing so, bits of data may be communicated.
A card may include a touch transmitter that may activate a capacitive touch sensor on another device such that the other device believes a user physically touched the capacitive touch sensor with his/her finger. Accordingly, a touch transmitter may activate a capacitive touch screen, such as a capacitive touch screen located on a mobile telephonic device, tablet computing device, or a capacitive touch screen of a laptop or stationary computer. The touch transmitter may, accordingly, communicate information to a device (e.g., to a mobile telephonic device) by activating and deactivating a touch sensor (or sensors) on a capacitive touch screen in a particular manner. For example, a touch transmitter may communicate information serially by activating and deactivating a capacitive touch screen sensor with respect to time. A touch transmitter may, accordingly, communicate information via a capacitive touch sensor using F2F encoding, where a state transition occurs either at an activation or, for example, at an activation as well as a deactivation. In this manner, a card may communicate information directly to a mobile telephonic device with a capacitive touch screen, or any device with a capacitive touch screen, without requiring any physical connections or the use of proprietary communication protocols. A software program may run on the device having the touch screen that is operable to determine information provided by one or more touch transmitters from a device such as a battery-powered payment card. The software program may, for example, determine different bits of information by measuring the time between state transitions. For example, a particular time period between state transitions may be determined as one bit of information (e.g., a “0” or “1,” respectively). A another particular time period between state transitions may be determined as a different bit of information (e.g., a “1” or a “0,” respectively). A message provided from a touch transmitter may initially include a string of a particular length of a particular bit (e.g., four or five bits) such that the software program may lock onto, track, and determine the time duration of that particular bit such that future received bits may be properly determined. One particular time period associated with one bit of information may be approximately twice as long in duration as another particular time period associated with a different bit of information.
A card, or other device, may utilize one or more touch transmitters to communicate any type of information. For example, a card may utilize a touch transmitter to communicate a payment card number, and associated data (e.g., associated discretionary data such as payment codes and expiration date), such that a payment purchase may be completed. For example, a card may utilize a touch transmitter to communicate track 1, track 2, and/or track 3 magnetic stripe information to a device. A software program may be provided on the device receiving the magnetic stripe information that completes a purchase transaction based on the magnetic stripe data received from the touch screen. As per another example, a card may communicate information indicative of one or more user selections on the card such that user selections may be communicated to a capacitive touch screen (e.g., in addition to payment data and/or other data). As per yet another example, messages may be communicated to a device having a capacitive touch screen to provide the device with status on a communication. For example, a card may communicate a message to a device, via its capacitive touch screen, that a message is about to be sent or a message has completed transfer. The card may also communicate identification and password information such that the card may securely identify itself to a device.
The card may receive information from a device having a capacitive touch screen such that bi-directional communications may occur with the device utilizing the capacitive touch screen. For example, a card may receive information via light pulses emitted from the capacitive touch display. More particularly, for example, a software program may be installed in a device (e.g., a mobile telephone) operable to emit messages, via light, to a card and receive messages, via touch, from the card. The bi-directional communication may happen in parallel (e.g., light pulses may be sent to the card simultaneously with touch pulses being received from the card). The bi-directional communications may happen sequentially (e.g., the card may communicate via touch and then, after the card communicates, the card may receive communication from the device via light and, after the device communicates, the card may communicate via touch). The device may communicate identification and password information via light pulses to a battery-powered card (or other device) such that the battery-powered device may securely identify the communicating device. In this manner, the devices may initiate a handshake in order to identify each other and initiate a secure communications channel between the two devices. At least one of the devices may communicate with a remote server (e.g., via a telephonic communications channel) to receive information about the device communicating with it such that received identification and password information may be identified by the remote server. The identification and password information for multiple devices may be, for example, stored locally on any one of the devices.
Bi-directional communication may, for example, allow for handshaking to occur between the two devices such that each device may be identified and setup a secure communication channel via light pulses and touch pulses. Additionally, for example, information indicative of receipt of message may be communicated via light and/or touch. Information may be communicated in other ways such as, for example, via sound or electromagnetic pulses. Synchronization signals may be communicated before and after a message. For example, a string of particular bits (e.g., “0”s) may appear before every message in order for a card, or other device, to lock onto the timing of the information being transmitted in the signal. For example, a zero may be transmitted via a “short” touch pulse and a one may be transmitted via a “long” touch pulse. In synchronizing the signal, the receiving device may train itself onto the duration of a “short” touch pulse versus a “long” touch pulse. A “short” touch pulse may be the time between activations of a capacitive sensor or the time between the activation and deactivation of a touch sensor.
A card may include one or more light sensors, touch transmitters, capacitive touch sensors, and/or light emitters. Accordingly, two instances of such a card may communicate bi-directionally via light as well as via capacitive touch.
A webpage, or other graphical user interface, may be displayed on a device (e.g., a mobile telephonic phone) and may interact with a card, both via communicating light information and receiving touch information, and this information may be communicated to a remote server. Such a remote server may be, for example, an authentication server utilized to complete a purchase or other transaction. In this manner, a user does not need, for example, to load his/her payment information into a website. Instead, for example, a user may gather a variety of items for purchase and may select to pay with a touch-communicating card. At this moment, the user may hold the card to the display of a device (e.g., a mobile telephonic phone or portable computer) and the payment information may be securely communicated, via the webserver, to a remote server for payment authorization.
A touch transmitter on a card may be, for example, mechanical or electronic in nature. For example, a mechanical switch may physically connect a conductive material having a particular capacitance to another conductive material having a different particular capacitance. In doing so, for example, the mechanical switch may determine whether a conductive area has a capacitance approximately that of a finger in order to communicate information to a capacitive touch screen. As per another example, a circuit may be provided that electrically provides a particular capacitance on a plate (e.g., a particular electrostatic field having a particular capacitance). In doing so, a microprocessor may electronically trigger one or more capacitive touch sensors on a capacitive touch screen of a device (e.g., a mobile telephonic device).
The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:
Architecture 150 may be utilized with any card. Architecture 150 may include processor 120. Processor 120 may have on-board memory for storing information (e.g., drive code). Any number of components may communicate to processor 120 and/or receive communications from processor 120. For example, one or more displays (e.g., display 140) may be coupled to processor 120. Persons skilled in the art will appreciate that components may be placed between particular components and processor 120. For example, a display driver circuit may be coupled between display 140 and processor 120. Memory 144 may be coupled to processor 120. Memory 144 may include data that is unique to a particular card. For example, memory 144 may store discretionary data codes associated with buttons of a card (e.g., card 100 of
Card 100 may include, for example, any number of touch transmitters 126 or light sensors 127. Touch transmitters 126 may be utilized, for example, to activate and deactivate a touch sensor on a capacitive, or other, touch screen. In doing so, a device having a touch screen may believe that a user is physically providing physical instructions to the device when a card is actually providing physical instructions to the device. Light sensors 127 may be utilized such that a display screen, or other light emitting device, may communicate information to light sensors 127 via light.
Any number of reader communication devices may be included in architecture 150. For example, IC chip 152 may be included to communicate information to an IC chip reader. IC chip 152 may be, for example, an EMV chip. As per another example, RFID 151 may be included to communicate information to an RFID reader. A magnetic stripe communications device may also be included to communicate information to a magnetic stripe reader. Such a magnetic stripe communications device may provide electromagnetic signals to a magnetic stripe reader. Different electromagnetic signals may be communicated to a magnetic stripe reader to provide different tracks of data. For example, electromagnetic field generators 170, 180, and 185 may be included to communicate separate tracks of information to a magnetic stripe reader. Such electromagnetic field generators may include a coil wrapped around one or more materials (e.g., a soft-magnetic material and a non-magnetic material). Each electromagnetic field generator may communicate information serially to a receiver of a magnetic stripe reader for a particular magnetic stripe track. Read-head detectors 171 and 172 may be utilized to sense the presence of a magnetic stripe reader (e.g., a read-head housing of a magnetic stripe reader). This sensed information may be communicated to processor 120 to cause processor 120 to communicate information serially from electromagnetic generators 170, 180, and 185 to magnetic stripe track receivers in a read-head housing of a magnetic stripe reader. Accordingly, a magnetic stripe communications device may change the information communicated to a magnetic stripe reader at any time. Processor 120 may, for example, communicate user-specific and card-specific information through RFID 151, IC chip 152, and electromagnetic generators 170, 180, and 185 to card readers coupled to remote information processing servers (e.g., purchase authorization servers). Driving circuitry 141 may be utilized by processor 120, for example, to control electromagnetic generators 170, 180, and 185.
Architecture 150 may also include, for example, touch transmitter 142 as well as light sensor 143. Architecture 150 may communicate information from touch transmitter 142 as well as receive information from light sensor 143. Processor 120 may communicate information through touch transmitter 142 and determine information received by light sensor 143. Processor 120 may store information on memory 144 to later be, for example, communicated via touch transmitter 142.
GUI 200 may also have communication area 280 surrounded by status area 270. Communication area 280 may be utilized, for example, to communicate data to/from a card or other device via light output and tactile input. Status area 270 may be utilized to communicate to a user of the status of the communication.
Accordingly, for example, GUI 200 may receive payment information from a card via a touch sensor located on a display providing GUI 200. GUI 200 may communicate information to a card via light (e.g., light pulses). Accordingly, for example, a secure communication may occur between a card and GUI 200. The information may be displayed in the text boxes (e.g., the text boxes may be auto filled either completely or partially). Alternatively, for example, no information may be shown. Status area 270 may, for example, provide a particular color of light (e.g., yellow) to indicate to the user that the process is underway. A different color of light may be displayed before the process begins (e.g., red). Yet a different color of light may be displayed after the process is completed (e.g., green).
The information may be communicated in encrypted form to GUI 200. GUI 200 may then, for example, decrypt the information or forward the encrypted message to a remote server for processing. In doing so, for example, GUI 200 may not be exposed to any unprotected sensitive information. Information communicated from the card to the GUI may include, for example, card number, card type, expiration date, security code, zip code, address, email address, shipping address, additional discretionary data, discretionary data indicative of user-selected payment codes, or any other type of information. A card may also, communicate, for example encryption keys as well as other data for device handshaking and secure communication protocols. A card may, for example, communicate an email address and a password via a touch transmitter generated by the card. In doing so, for example, a payment may be authorized based on an email address and a password. An amount may also be entered into a card, or other device, by a user and communicated to GUI 200 via touch-based communications from the card.
One or more light sensors or touch transmitters may be located on a card. For example, a touch transmitter may be located at opposite ends of a card. A user may touch a button (e.g., a download button) to start communicating data via the touch transmitter. The GUI may be able to determine whether, for example, one or more touch transmitters are located within communication area 280. If the card is not aligned, the user may be notified (e.g., by status area 270 performing a particular action, such as blinking or displaying particular text or color) until the card is properly aligned within communication area 280. Communication area 280 may communicate information, via light, back to the card, or other device, that the card is being realigned such that the card does not require a user to repress a particular button (e.g., a “download” button). In doing so, GUI 200 may communicate the status of the communication back to a card, or other device, held against communication area 280 via light.
Device 490 may include housing 491, button 495, and capacitive touch display screen 499. Device 410 may utilize a touch transmitter to, for example, communicate information to mobile telephonic device 490. Persons skilled in the art will appreciate that a mobile banking application may be utilized on mobile telephonic device 490. Device 410 may be utilized to properly identify a person securely in order to reduce fraud. Accordingly, device 410 may communicate identification information and security codes, such as time based or used based codes, to device 490 via display 499. Accordingly, such an identification may be required, for example, by a banking application in order to gain access to banking information, execute a financial trade (e.g., a stock or option trade), transfer money, or pay a bill via an electronic check.
Persons skilled in the art will appreciate that multiple touch transmitters may communicate data simultaneously in parallel to a touch screen. Similarly, for example, multiple light sensors may receive data simultaneously in parallel from a display screen. The information may be, for example, different or the same. By communicating the same information through different touch transmitters, a device may receive two messages and confirm receipt of a communication if the two messages are the same. Touch transmitters may be utilized, for example, by software on a device to determine the positioning of device 500 on an associated touch screen. Similarly, light sensors may be utilized, for example, to receive information indicative of the positioning of device 500 on an associated touch screen. The electronics of a card (e.g., a touch transmitter) may be provided on a single or multiple layer flexible printed circuit board and laminated via a hot-lamination or cold-lamination process. An injection process may be utilized where one or more liquids may be provided about an electronics package and hardened (e.g., via a light, temperature, pressure, and/or chemical process) to form a card. A card may be, for example, between approximately 30 and 33 thousandths of an inch thick.
Touch transmitter 1000 may include circuitry 1050 that may, for example, electrically change the capacitance of conductor 1020 on board 1010. Circuitry 1050 may include, for example, supply voltage 1051, diode 1052, transistor 1053, conductor 1057 (e.g., which may be conductor 1020), resistor 1054, resistor 1058, diode 1059, diode 1055, ground 1056, and input terminal 1060. A processor (not shown) may be coupled to terminal 1060. Accordingly, a processor may electrically control a touch transmitter such that the touch transmitter may electrically touch a capacitive touch screen without mechanically touching the capacitive touch screen.
A capacitive touch screen is provided and may be fabricated to include, for example, a set of conductors that interact with electric fields. A human finger may include a number of conductive electrolytes covered by a layer of skin (e.g., a lossy dielectric). A finger's capacitance may vary, for example, between approximately 50 pF and 250 pF. A finger's capacitance may be referred to as Cf while the capacitance of a set of one or more touch sensors without a finger present may be referred to as Cp or parasitic capacitance.
A rectangular, square, circular, oval, or any shaped plate may be provided. For example, plate 1057 may be provided. The plate may be fabricated from a conductive material such as, for example, copper. The area of the plate may be, for example, constructed to be smaller than the area of a touch sensor on a touch screen or a particular set of touch sensors on a touch screen. Plate 1057 may initially be provided with an initial capacitance of approximately zero or close to zero (e.g., 5 pF or less). Transistor 1053 may be coupled to plate 1057. Transistor 1053 may be, for example, an NPN transistor. The capacitance of transistor 1053 from collector to emitter, CCE, may be approximately 5 pF or less. Initially, transistor 1053 may be OFF. Plate 1057 may be connected, for example, to the emitter of transistor 1053 and positioned to within the proximity of the touch sensor, or array of touch sensors, to be touched. The capacitance of plate 1057 may be, while transistor 1053 is OFF, low enough so plate 1057 does not activate any touch sensor. Persons skilled in the art will appreciate that a plate of a touch transmitter need not physically touch a touch sensor. Instead, for example, the plate of a touch transmitter may be located within the proximity of the touch sensor (e.g., separated from the touch sensor by a particular amount). For example, the plate may be approximately 5 to 30 thousandths of an inch from a touch sensor (e.g., approximately 12-16 thousandths of an inch). Transistor resistor 1058 and diode 1059 may be provided to, for example, isolate the capacitance of the rest of a card, or other device, circuitry from transistor 1053 while transistor 1053 is OFF. Additionally, transistor 1053 may be isolated from any other parasitic capacitance (e.g., supply voltages and ground terminals). Similarly, traces may be provided that are minimized in length in order to decrease parasitic capacitances around transistor 1053 and plate 1057.
A processor may apply a voltage across diode 1059 and resistor 1058 to turn transistor 1053 ON. Resistor 1058 may, for example, include a resistance of approximately 0.5 k-1.5 k (e.g., approximately 1 k).
The base of transistor 1053 may also be grounded to ground 1056 via diode 1055 and resistor 1054. Resistor 1054 may, for example, include a resistance of approximately 7.5 k-12.5K (e.g., approximately 10 k).
The collector and base of transistor 1053 may be isolated, for example, by forward biased signal diodes. For example, diode 1052 may be provided between supply voltage 1051 and transistor 1053. Diodes may be utilized to block capacitance and may be either forward or reversed biased. In isolating capacitance from transistor 1053, the capacitance of plate 1057 may be more accurately controlled.
Persons skilled in the art will appreciate that diode 1059 may be provided to the left of resistor 1058. Persons skilled in the art will also appreciate that circuitry 1050 may be provided without resistor 1054 and diode 1055 if the source control has low impedance when inactive. Components may be added to, removed from, or modified within circuitry 1050. For example, the emitter of transistor 1053 may be grounded through a diode (or other circuit component) so that a current path may exist through transistor 1053 when transistor 1053 is ON.
Process 1220 may include, for example, step 1221, in which an information message is repeatedly sent (e.g., via touch signals, light signals, or sound signals) from one device (e.g., a card) to another device (e.g., a mobile telephonic device). Step 1222 may occur in which a message is received indicative of a successful receipt of the message provided in step 1221. Accordingly, the message of 1221 may stop being sent in step 1223 and a new message may be sent repeatedly in step 1224 until the message is acknowledged as being received in step 1225.
Process 1230 may be provided and may include step 1231, in which identification information is communicated. Step 1232 may include receiving acknowledgment of receipt of identification information. Step 1233 may include receiving identification information from the other device. Step 1234 and 1235 may be utilized, for example, to exchange information regarding how future data in the communication may be encrypted.
Process 1320 may be provided and may include step 1321, in which a GUI receives touch signals. Step 1322 may be included in which the GUI receives one or more payment card numbers. This communication may be, for example, an insecure communication. The GUI may receive a time-based or use-based code and may process the card number with this code in step 1324. Persons skilled in the art will appreciate that additional information may be utilized to process a purchase such as, for example, an expiration date and/or a zip code. Step 1325 may be included in which the GUI displays indicia representative of the completed purchase.
Process 1330 may be provided and may include step 1331, in which a GUI may receive touch signals. The GUI may receive a payment card number in step 1332, a time-based or use-based code in step 1333, and a payment option in step 1334. For example, a payment option may be to pay for a purchase using points instead of the user's credit line. As per another example, a payment option may be to pay for a purchase in a particular number of installments. Data may be processed and the GUI may display indicia indicative of a completed purchase in step 1335. Persons skilled in the art will appreciate that a completed purchase may include the display of an electronic receipt and information may be communicated to the card (e.g., via light) so the card may include an updated credit balance, point balance, or any other information update.
Persons skilled in the art will also appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways then those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.
This application claims the benefit of U.S. Provisional Pat. App. No. 61/345,649, titled “SYSTEMS AND METHODS FOR CARDS AND DEVICES OPERABLE TO COMMUNICATE TO TOUCH SENSITIVE DISPLAYS,” filed May 18, 2010 and U.S. Provisional Pat. App. No. 61/345,659, titled “SYSTEMS AND METHODS FOR CARDS AND DEVICES OPERABLE TO COMMUNICATE VIA LIGHT PULSING,” filed May 18, 2010, all of which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4353064 | Stamm | Oct 1982 | A |
4394654 | Hofmann-Cerfontaine | Jul 1983 | A |
4614861 | Pavlov et al. | Sep 1986 | A |
4667087 | Quintana | May 1987 | A |
4701601 | Francini et al. | Oct 1987 | A |
4720860 | Weiss | Jan 1988 | A |
4786791 | Hodama | Nov 1988 | A |
4791283 | Burkhardt | Dec 1988 | A |
4797542 | Hara | Jan 1989 | A |
5038251 | Sugiyama et al. | Aug 1991 | A |
5168520 | Weiss | Dec 1992 | A |
5237614 | Weiss | Aug 1993 | A |
5276311 | Hennige | Jan 1994 | A |
5291068 | Rammel et al. | Mar 1994 | A |
5347580 | Molva et al. | Sep 1994 | A |
5361062 | Weiss et al. | Nov 1994 | A |
5412199 | Finkelstein et al. | May 1995 | A |
5416280 | McDermott et al. | May 1995 | A |
5434398 | Goldberg | Jul 1995 | A |
5434405 | Finkelstein et al. | Jul 1995 | A |
5478994 | Rahman | Dec 1995 | A |
5479512 | Weiss | Dec 1995 | A |
5484997 | Haynes | Jan 1996 | A |
5485519 | Weiss | Jan 1996 | A |
5585787 | Wallerstein | Dec 1996 | A |
5591949 | Bernstein | Jan 1997 | A |
5608203 | Finkelstein et al. | Mar 1997 | A |
5623552 | Lane | Apr 1997 | A |
5657388 | Weiss | Aug 1997 | A |
5834747 | Cooper | Nov 1998 | A |
5834756 | Gutman et al. | Nov 1998 | A |
5856661 | Finkelstein et al. | Jan 1999 | A |
5864623 | Messina et al. | Jan 1999 | A |
5907142 | Kelsey | May 1999 | A |
5907350 | Nemirofsky | May 1999 | A |
5913203 | Wong et al. | Jun 1999 | A |
5937394 | Wong et al. | Aug 1999 | A |
5955021 | Tiffany, III | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
6005691 | Grot et al. | Dec 1999 | A |
6025054 | Tiffany, III | Feb 2000 | A |
6045043 | Bashan et al. | Apr 2000 | A |
6076163 | Hoffstein et al. | Jun 2000 | A |
6085320 | Kaliski | Jul 2000 | A |
6095416 | Grant et al. | Aug 2000 | A |
6118205 | Wood et al. | Sep 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6145079 | Mitty et al. | Nov 2000 | A |
6157920 | Jakobsson et al. | Dec 2000 | A |
6161181 | Haynes, III et al. | Dec 2000 | A |
6163313 | Aroyan et al. | Dec 2000 | A |
6176430 | Finkelstein et al. | Jan 2001 | B1 |
6182894 | Hackett et al. | Feb 2001 | B1 |
6189098 | Kaliski | Feb 2001 | B1 |
6199052 | Mitty et al. | Mar 2001 | B1 |
6206293 | Gutman et al. | Mar 2001 | B1 |
6240184 | Huynh et al. | May 2001 | B1 |
6241153 | Tiffany, III | Jun 2001 | B1 |
6256873 | Tiffany, III | Jul 2001 | B1 |
6269163 | Rivest et al. | Jul 2001 | B1 |
6286022 | Kaliski et al. | Sep 2001 | B1 |
6308890 | Cooper | Oct 2001 | B1 |
6313724 | Osterweil | Nov 2001 | B1 |
6389442 | Yin et al. | May 2002 | B1 |
6393447 | Jakobsson et al. | May 2002 | B1 |
6411715 | Liskov et al. | Jun 2002 | B1 |
6431439 | Suer et al. | Aug 2002 | B1 |
6446052 | Juels | Sep 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6592044 | Wong et al. | Jul 2003 | B1 |
6607127 | Wong | Aug 2003 | B2 |
6609654 | Anderson et al. | Aug 2003 | B1 |
6631849 | Blossom | Oct 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6681988 | Stack et al. | Jan 2004 | B2 |
6705520 | Pitroda et al. | Mar 2004 | B1 |
6755341 | Wong et al. | Jun 2004 | B1 |
6764005 | Cooper | Jul 2004 | B2 |
6769618 | Finkelstein | Aug 2004 | B1 |
6805288 | Routhenstein et al. | Oct 2004 | B2 |
6811082 | Wong | Nov 2004 | B2 |
6813354 | Jakobsson et al. | Nov 2004 | B1 |
6817532 | Finkelstein | Nov 2004 | B2 |
6820804 | Segal et al. | Nov 2004 | B2 |
6873974 | Schutzer | Mar 2005 | B1 |
6902116 | Finkelstein | Jun 2005 | B2 |
6970070 | Juels et al. | Nov 2005 | B2 |
6980969 | Tuchler et al. | Dec 2005 | B1 |
6985583 | Brainard et al. | Jan 2006 | B1 |
6991155 | Burchette, Jr. | Jan 2006 | B2 |
7013030 | Wong et al. | Mar 2006 | B2 |
7035443 | Wong | Apr 2006 | B2 |
7039223 | Wong | May 2006 | B2 |
7044394 | Brown | May 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7083094 | Cooper | Aug 2006 | B2 |
7100049 | Gasparini et al. | Aug 2006 | B2 |
7100821 | Rasti | Sep 2006 | B2 |
7111172 | Duane et al. | Sep 2006 | B1 |
7114652 | Moullette et al. | Oct 2006 | B2 |
7136514 | Wong | Nov 2006 | B1 |
7140550 | Ramachandran | Nov 2006 | B2 |
7163153 | Blossom | Jan 2007 | B2 |
7195154 | Routhenstein | Mar 2007 | B2 |
7197639 | Juels et al. | Mar 2007 | B1 |
7219368 | Juels et al. | May 2007 | B2 |
7225537 | Reed | Jun 2007 | B2 |
7225994 | Finkelstein | Jun 2007 | B2 |
7246752 | Brown | Jul 2007 | B2 |
7298243 | Juels et al. | Nov 2007 | B2 |
7306144 | Moore | Dec 2007 | B2 |
7334732 | Cooper | Feb 2008 | B2 |
7337326 | Palmer et al. | Feb 2008 | B2 |
7346775 | Gasparini et al. | Mar 2008 | B2 |
7356696 | Jakobsson et al. | Apr 2008 | B1 |
7357319 | Lin et al. | Apr 2008 | B1 |
7359507 | Kaliski | Apr 2008 | B2 |
7360688 | Harris | Apr 2008 | B1 |
7363494 | Brainard et al. | Apr 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7398253 | Pinnell | Jul 2008 | B1 |
7404087 | Teunen | Jul 2008 | B2 |
7424570 | D'Albore et al. | Sep 2008 | B2 |
7427033 | Roskind | Sep 2008 | B1 |
7454349 | Teunen et al. | Nov 2008 | B2 |
7461250 | Duane et al. | Dec 2008 | B1 |
7461399 | Juels et al. | Dec 2008 | B2 |
7472093 | Juels | Dec 2008 | B2 |
7472829 | Brown | Jan 2009 | B2 |
7494055 | Fernandes et al. | Feb 2009 | B2 |
7502467 | Brainard et al. | Mar 2009 | B2 |
7502933 | Jakobsson et al. | Mar 2009 | B2 |
7503485 | Routhenstein | Mar 2009 | B1 |
7516492 | Nisbet et al. | Apr 2009 | B1 |
7523301 | Nisbet et al. | Apr 2009 | B2 |
7530495 | Cooper | May 2009 | B2 |
7532104 | Juels | May 2009 | B2 |
7543739 | Brown et al. | Jun 2009 | B2 |
7559464 | Routhenstein | Jul 2009 | B2 |
7562221 | Nystrom et al. | Jul 2009 | B2 |
7562222 | Gasparini et al. | Jul 2009 | B2 |
7580898 | Brown et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7591426 | Osterweil et al. | Sep 2009 | B2 |
7591427 | Osterweil | Sep 2009 | B2 |
7602904 | Juels et al. | Oct 2009 | B2 |
7627879 | Koplar | Dec 2009 | B2 |
7631804 | Brown | Dec 2009 | B2 |
7639537 | Sepe et al. | Dec 2009 | B2 |
7641124 | Brown et al. | Jan 2010 | B2 |
7660902 | Graham et al. | Feb 2010 | B2 |
7784687 | Mullen et al. | Aug 2010 | B2 |
7793851 | Mullen | Sep 2010 | B2 |
7828207 | Cooper | Nov 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7931195 | Mullen | Apr 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
8000979 | Blom | Aug 2011 | B2 |
8011577 | Mullen et al. | Sep 2011 | B2 |
8020775 | Mullen et al. | Sep 2011 | B2 |
8066191 | Cloutier et al. | Nov 2011 | B1 |
8074877 | Mullen et al. | Dec 2011 | B2 |
8100333 | Reynolds et al. | Jan 2012 | B2 |
8172148 | Cloutier et al. | May 2012 | B1 |
8282007 | Cloutier et al. | Oct 2012 | B1 |
8286876 | Mullen et al. | Oct 2012 | B2 |
8302872 | Mullen | Nov 2012 | B2 |
8348172 | Cloutier et al. | Jan 2013 | B1 |
8382000 | Mullen et al. | Feb 2013 | B2 |
8393545 | Mullen et al. | Mar 2013 | B1 |
8393546 | Yen et al. | Mar 2013 | B1 |
8413892 | Mullen et al. | Apr 2013 | B2 |
8424773 | Mullen et al. | Apr 2013 | B2 |
8459548 | Mullen et al. | Jun 2013 | B2 |
8485437 | Mullen et al. | Jul 2013 | B2 |
8511574 | Yen et al. | Aug 2013 | B1 |
8517276 | Mullen et al. | Aug 2013 | B2 |
8523059 | Mullen et al. | Sep 2013 | B1 |
8573503 | Cloutier et al. | Nov 2013 | B1 |
8579203 | Lambeth et al. | Nov 2013 | B1 |
8590796 | Cloutier et al. | Nov 2013 | B1 |
8602312 | Cloutier et al. | Dec 2013 | B2 |
8608083 | Mullen et al. | Dec 2013 | B2 |
8622309 | Mullen et al. | Jan 2014 | B1 |
8668143 | Mullen et al. | Mar 2014 | B2 |
8727219 | Mullen | May 2014 | B1 |
8733638 | Mullen et al. | May 2014 | B2 |
8746579 | Cloutier et al. | Jun 2014 | B1 |
8757483 | Mullen et al. | Jun 2014 | B1 |
8757499 | Cloutier et al. | Jun 2014 | B2 |
8814050 | Mullen et al. | Aug 2014 | B1 |
8875999 | Mullen et al. | Nov 2014 | B2 |
8881989 | Mullen et al. | Nov 2014 | B2 |
8973824 | Mullen et al. | Mar 2015 | B2 |
9004368 | Mullen et al. | Apr 2015 | B2 |
9010630 | Mullen et al. | Apr 2015 | B2 |
9064255 | Mullen et al. | Jun 2015 | B1 |
9292843 | Mullen et al. | Mar 2016 | B1 |
9306666 | Zhang et al. | Apr 2016 | B1 |
9329619 | Cloutier | May 2016 | B1 |
9361569 | Mullen et al. | Jun 2016 | B2 |
9373069 | Cloutier et al. | Jun 2016 | B2 |
9384438 | Mullen et al. | Jul 2016 | B2 |
9639796 | Mullen et al. | May 2017 | B2 |
9652436 | Yen et al. | May 2017 | B1 |
9684861 | Mullen et al. | Jun 2017 | B2 |
9697454 | Mullen et al. | Jul 2017 | B2 |
9704088 | Mullen et al. | Jul 2017 | B2 |
9704089 | Mullen et al. | Jul 2017 | B2 |
9727813 | Mullen et al. | Aug 2017 | B2 |
9805297 | Mullen et al. | Oct 2017 | B2 |
9852368 | Yen et al. | Dec 2017 | B1 |
9928456 | Cloutier et al. | Mar 2018 | B1 |
9953255 | Yen et al. | Apr 2018 | B1 |
10032100 | Mullen et al. | Jul 2018 | B2 |
10095974 | Mullen et al. | Oct 2018 | B1 |
10169692 | Mullen et al. | Jan 2019 | B2 |
10176419 | Cloutier et al. | Jan 2019 | B1 |
10181097 | Mullen et al. | Jan 2019 | B1 |
10198687 | Mullen et al. | Feb 2019 | B2 |
10223631 | Mullen et al. | Mar 2019 | B2 |
10255545 | Mullen et al. | Apr 2019 | B2 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010047335 | Arndt et al. | Nov 2001 | A1 |
20020050983 | Liu et al. | May 2002 | A1 |
20020059114 | Cockrill et al. | May 2002 | A1 |
20020082989 | Fife et al. | Jun 2002 | A1 |
20020096570 | Wong et al. | Jul 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20030034388 | Routhenstein et al. | Feb 2003 | A1 |
20030052168 | Wong | Mar 2003 | A1 |
20030057278 | Wong | Mar 2003 | A1 |
20030116635 | Taban | Jun 2003 | A1 |
20030152253 | Wong | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030173409 | Vogt et al. | Sep 2003 | A1 |
20030179909 | Wong et al. | Sep 2003 | A1 |
20030179910 | Wong | Sep 2003 | A1 |
20030226899 | Finkelstein | Dec 2003 | A1 |
20040035942 | Silverman | Feb 2004 | A1 |
20040133787 | Doughty | Jul 2004 | A1 |
20040162732 | Rahim et al. | Aug 2004 | A1 |
20040172535 | Jakobsson | Sep 2004 | A1 |
20040177045 | Brown | Sep 2004 | A1 |
20050033688 | Peart et al. | Feb 2005 | A1 |
20050043997 | Sahota et al. | Feb 2005 | A1 |
20050080747 | Anderson et al. | Apr 2005 | A1 |
20050086160 | Wong et al. | Apr 2005 | A1 |
20050086177 | Anderson et al. | Apr 2005 | A1 |
20050116026 | Burger et al. | Jun 2005 | A1 |
20050119940 | Concilio et al. | Jun 2005 | A1 |
20050154643 | Doan et al. | Jul 2005 | A1 |
20050203765 | Maritzen | Sep 2005 | A1 |
20050228959 | D'Albore et al. | Oct 2005 | A1 |
20060000900 | Fernandes et al. | Jan 2006 | A1 |
20060037073 | Juels et al. | Feb 2006 | A1 |
20060041759 | Kaliski et al. | Feb 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060091223 | Zellner | May 2006 | A1 |
20060161435 | Atef et al. | Jul 2006 | A1 |
20060163353 | Moulette et al. | Jul 2006 | A1 |
20060174104 | Crichton et al. | Aug 2006 | A1 |
20060196931 | Holtmanns et al. | Sep 2006 | A1 |
20060256961 | Brainard et al. | Nov 2006 | A1 |
20060289632 | Walker et al. | Dec 2006 | A1 |
20070034700 | Poidomani et al. | Feb 2007 | A1 |
20070040683 | Oliver et al. | Feb 2007 | A1 |
20070062852 | Zachut | Mar 2007 | A1 |
20070114274 | Gibbs et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070152070 | D'Albore | Jul 2007 | A1 |
20070152072 | Frallicciardi et al. | Jul 2007 | A1 |
20070153487 | Frallicciardi et al. | Jul 2007 | A1 |
20070174614 | Duane et al. | Jul 2007 | A1 |
20070241183 | Brown et al. | Oct 2007 | A1 |
20070241201 | Brown et al. | Oct 2007 | A1 |
20070256123 | Duane et al. | Nov 2007 | A1 |
20070192249 | Biffle et al. | Dec 2007 | A1 |
20070291753 | Romano | Dec 2007 | A1 |
20080005510 | Sepe et al. | Jan 2008 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080008322 | Fontana et al. | Jan 2008 | A1 |
20080010675 | Massascusa et al. | Jan 2008 | A1 |
20080016351 | Fontana et al. | Jan 2008 | A1 |
20080019507 | Fontana et al. | Jan 2008 | A1 |
20080028447 | O'Malley et al. | Jan 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080040271 | Hammad et al. | Feb 2008 | A1 |
20080040276 | Hammad et al. | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080058016 | Di Maggio et al. | Mar 2008 | A1 |
20080059379 | Ramaci et al. | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080096326 | Reed | Apr 2008 | A1 |
20080126398 | Cimino | May 2008 | A1 |
20080128515 | Di Iorio | Jun 2008 | A1 |
20080148394 | Poidomani et al. | Jun 2008 | A1 |
20080201264 | Brown et al. | Aug 2008 | A1 |
20080209550 | Di Iorio | Aug 2008 | A1 |
20080288699 | Chichierchia | Nov 2008 | A1 |
20080294930 | Varone et al. | Nov 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080302877 | Musella et al. | Dec 2008 | A1 |
20090013122 | Sepe et al. | Jan 2009 | A1 |
20090036147 | Romano | Feb 2009 | A1 |
20090039149 | Top | Feb 2009 | A1 |
20090046522 | Sepe et al. | Feb 2009 | A1 |
20090108064 | Fernandes et al. | Apr 2009 | A1 |
20090150295 | Hatch et al. | Jun 2009 | A1 |
20090152365 | Li et al. | Jun 2009 | A1 |
20090159663 | Mullen et al. | Jun 2009 | A1 |
20090159667 | Mullen et al. | Jun 2009 | A1 |
20090159668 | Mullen et al. | Jun 2009 | A1 |
20090159669 | Mullen et al. | Jun 2009 | A1 |
20090159670 | Mullen et al. | Jun 2009 | A1 |
20090159671 | Mullen et al. | Jun 2009 | A1 |
20090159672 | Mullen et al. | Jun 2009 | A1 |
20090159673 | Mullen et al. | Jun 2009 | A1 |
20090159680 | Mullen et al. | Jun 2009 | A1 |
20090159681 | Mullen et al. | Jun 2009 | A1 |
20090159682 | Mullen et al. | Jun 2009 | A1 |
20090159688 | Mullen et al. | Jun 2009 | A1 |
20090159689 | Mullen et al. | Jun 2009 | A1 |
20090159690 | Mullen et al. | Jun 2009 | A1 |
20090159696 | Mullen | Jun 2009 | A1 |
20090159697 | Mullen et al. | Jun 2009 | A1 |
20090159698 | Mullen et al. | Jun 2009 | A1 |
20090159699 | Mullen et al. | Jun 2009 | A1 |
20090159700 | Mullen et al. | Jun 2009 | A1 |
20090159701 | Mullen et al. | Jun 2009 | A1 |
20090159702 | Mullen | Jun 2009 | A1 |
20090159703 | Mullen et al. | Jun 2009 | A1 |
20090159704 | Mullen et al. | Jun 2009 | A1 |
20090159705 | Mullen et al. | Jun 2009 | A1 |
20090159706 | Mullen et al. | Jun 2009 | A1 |
20090159707 | Mullen et al. | Jun 2009 | A1 |
20090159708 | Mullen et al. | Jun 2009 | A1 |
20090159709 | Mullen | Jun 2009 | A1 |
20090159710 | Mullen et al. | Jun 2009 | A1 |
20090159711 | Mullen et al. | Jun 2009 | A1 |
20090159712 | Mullen et al. | Jun 2009 | A1 |
20090159713 | Mullen et al. | Jun 2009 | A1 |
20090160617 | Mullen et al. | Jun 2009 | A1 |
20090242648 | Di Sirio et al. | Oct 2009 | A1 |
20090244858 | Di Sirio et al. | Oct 2009 | A1 |
20090253460 | Varone et al. | Oct 2009 | A1 |
20090255996 | Brown et al. | Oct 2009 | A1 |
20090273442 | Ozoloins | Nov 2009 | A1 |
20090290704 | Cimino | Nov 2009 | A1 |
20090303885 | Longo | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20100045627 | Kennedy | Feb 2010 | A1 |
20100066701 | Ningrat | Mar 2010 | A1 |
20100108771 | Wong et al. | May 2010 | A1 |
20100302144 | Burtner | Dec 2010 | A1 |
20110028184 | Cooper | Feb 2011 | A1 |
20110272465 | Mullen et al. | Nov 2011 | A1 |
20110272466 | Mullen et al. | Nov 2011 | A1 |
20110272467 | Mullen et al. | Nov 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272472 | Mullen | Nov 2011 | A1 |
20110272473 | Mullen et al. | Nov 2011 | A1 |
20110272474 | Mullen et al. | Nov 2011 | A1 |
20110272475 | Mullen et al. | Nov 2011 | A1 |
20110272476 | Mullen et al. | Nov 2011 | A1 |
20110272477 | Mullen et al. | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110272479 | Mullen | Nov 2011 | A1 |
20110272480 | Mullen et al. | Nov 2011 | A1 |
20110272481 | Mullen et al. | Nov 2011 | A1 |
20110272482 | Mullen et al. | Nov 2011 | A1 |
20110272483 | Mullen et al. | Nov 2011 | A1 |
20110272484 | Mullen et al. | Nov 2011 | A1 |
20110276380 | Mullen et al. | Nov 2011 | A1 |
20110276381 | Mullen et al. | Nov 2011 | A1 |
20110276416 | Mullen et al. | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110276436 | Mullen et al. | Nov 2011 | A1 |
20110276437 | Mullen et al. | Nov 2011 | A1 |
20110278364 | Mullen et al. | Nov 2011 | A1 |
20110282753 | Mullen et al. | Nov 2011 | A1 |
20110298721 | Eldridge | Dec 2011 | A1 |
20120037709 | Cloutier et al. | Feb 2012 | A1 |
20120286037 | Mullen et al. | Nov 2012 | A1 |
20120318871 | Mullen et al. | Dec 2012 | A1 |
20120326013 | Cloutier et al. | Dec 2012 | A1 |
20130020396 | Mullen et al. | Jan 2013 | A1 |
20130194192 | Andolina | Aug 2013 | A1 |
20130282573 | Mullen et al. | Oct 2013 | A1 |
20130282575 | Mullen et al. | Oct 2013 | A1 |
20140054384 | Cloutier et al. | Feb 2014 | A1 |
20150186766 | Mullen et al. | Jul 2015 | A1 |
20160162713 | Cloutier et al. | Jun 2016 | A1 |
20160180209 | Mullen et al. | Jun 2016 | A1 |
20160239735 | Mullen et al. | Aug 2016 | A1 |
20160283837 | Mullen et al. | Sep 2016 | A1 |
20160307085 | Mullen et al. | Oct 2016 | A1 |
20160335529 | Mullen et al. | Nov 2016 | A1 |
20160342876 | Mullen et al. | Nov 2016 | A1 |
20160342877 | Mullen et al. | Nov 2016 | A1 |
20160342878 | Mullen et al. | Nov 2016 | A1 |
20160342879 | Mullen et al. | Nov 2016 | A1 |
20160342880 | Mullen et al. | Nov 2016 | A1 |
20170300796 | Mullen et al. | Oct 2017 | A1 |
20180053079 | Cloutier et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
05210770 | Aug 1993 | JP |
H06-150078 | May 1994 | JP |
2010-044730 | Feb 2010 | JP |
WO9852735 | Nov 1998 | WO |
WO0247019 | Jun 2002 | WO |
WO06066322 | Jun 2006 | WO |
WO06080929 | Aug 2006 | WO |
WO06105092 | Oct 2006 | WO |
WO06116772 | Nov 2006 | WO |
WO08064403 | Jun 2008 | WO |
PCTUS1125047 | Feb 2011 | WO |
PCTUS1137041 | May 2011 | WO |
PCTUS1145991 | Jul 2011 | WO |
PCTUS1326746 | Feb 2012 | WO |
PCTUS1231919 | Apr 2012 | WO |
PCTUS1231921 | Apr 2012 | WO |
PCTUS1237237 | May 2012 | WO |
Entry |
---|
Wiley, John. Dictionary of Communications Technology: Terms, Definitions and Abbreviations. 1998 [retrieved on Sep. 14, 2012]. Retrieved from the Internet: <URL: http://www.credoreference.com/entry/wileycommtech/isolation >. |
USPTO, International Search Report, dated Sep. 9, 2011. |
U.S. Appl. No. 60/594,300, filed Jun. 19, 2008, Poidomani et al. |
U.S. Appl. No. 60/675,388, filed Feb. 15, 2007, Poidomani et al. |
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996. |
A Day in the Life of a Flux Reversal. http://www.phrack/org/issues.html?issue=37&id=6#article. As viewed on Apr. 12, 2010. |
Dynamic Virtual Credit Card Numbers. http://homes.cerias.purdue.edu/˜jtli/paper/fc07.pdf. As viewed on Apr. 12, 2010. |
English translation of JP 05210770 A. |
Partial European Search Report dated Jun. 25, 2015 in European Patent Application No. 11784196. |
English abstract of JP H06-150078. |
English abstract of JP 2010-044730. |
Office Action dated Mar. 16, 2015 in Japanese Patent App. No. 2013-511340. |
Number | Date | Country | |
---|---|---|---|
20110284632 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
61345649 | May 2010 | US | |
61345659 | May 2010 | US |