The present application relates to systems and methods for minimizing energy cost in response to time-varying pricing scenarios. The systems and methods described herein may be used for demand response in building or HVAC systems such as those sold by Johnson Controls, Inc.
The rates that energy providers charge for energy often vary throughout the day. For example, energy providers may use a rate structure that assigns different energy rates to on-peak, partial-peak, and off-peak time periods.
Additionally, energy providers often charge a fee known as a demand charge. A demand charge is a fee corresponding to the peak power (i.e. the rate of energy use) at any given time during a billing period. In a variable pricing scenario that has an on-peak, partial-peak, and off-peak time period, a customer is typically charged a separate demand charge for maximum power use during each pricing period.
Energy providers can also offer customers the option to participate in a critical-peak pricing (CPP) program. In a CPP program, certain days throughout a billing period are designated as CPP days. On a CPP day, the on-peak time period is often divided in two or more sub-periods. CPP periods may also have separate demand charges for each sub-period. As an incentive to participate in the CPP program, customers are charged a lower energy rate on non-CPP days during the billing period.
Energy providers also often engage in real-time pricing (RTP). RTP energy rates change frequently and can vary quite drastically throughout the day. RTP periods may also have a separate demand charge for each RTP period. It is challenging and difficult for energy customers would like to minimize the cost that they pay for energy where pricing scenarios can be mixed.
Control actions can be taken to respond to variable pricing scenarios. One response is to turn off equipment. However, when the energy is used to drive a heating or cooling system for a building, the cost minimization problem is often subject to constraints. For example, it is desirable to maintain the building temperature within an acceptable range. Methods that are more proactive include storing energy in batteries or using ice storage to meet the future cooling loads. A problem with many of these techniques is the requirement for large, expensive, and non-standard equipment.
A method that does not require additional equipment is storing energy in the thermal mass of the building. This form of thermal energy storage risks leading to either uncomfortable building zone temperatures or demand charges that are not significantly reduced. One technique is to pre-cool the building to a minimum allowable temperature and to determine the temperature setpoint trajectory that will minimize power use while maintaining the temperature below a maximum allowable value. With this technique, the demand can be curtailed and the zone temperature can remain within temperature comfort bounds.
Traditional methods are less than optimal and are unable to handle RTP pricing scenarios with rapidly changing energy prices or CPP pricing scenarios having several regions of interest for both energy and demand charges. Furthermore, traditional methods may have difficulty accounting for varying disturbances to the system or changes to the system which are likely to necessitate re-developing or retraining the underlying model.
Energy cost minimization systems and methods are needed to address a plurality of variable pricing schemes including the rapidly changing energy cost structures of CPP and RTP. Additionally, a method is needed which handles the possibility of multiple demand charge regions and which handles varying disturbances and changes to the system without the need to re-train the model.
One implementation of the present disclosure is a method for minimizing energy cost in a building system. The method includes receiving an energy model for the building system, system state information, and a cost function, and using an optimization procedure to determine an optimal power usage. The energy model may describe energy characteristics of the building system, the system state information may describe a condition of the building system, and the energy cost function may use time-varying pricing information for a plurality of pricing periods to determine a total energy cost as a function of power usage. The optimal power usage determined by the optimization function may minimize the total energy cost for the building system.
In some embodiments, the method may further include receiving temperature constraints and using the system model and the system state information to formulate equality constraints. Equality constraints may describe energy characteristics of the building system and the optimization procedure may determine an optimal power usage subject to the equality constraints and the temperature constraints.
In some embodiments, the method may further include expressing the cost function as a linear equation by imposing demand charge constraints on the optimization procedure. The optimization procedure may determine an optimal power usage subject to the demand charge constraints. A masking procedure may be used to invalidate any demand charge constraint which applies to an inactive pricing period. A demand charge constraint applies to an inactive pricing period if the time-step to which the demand charge constraint applies does not occur during the pricing period to which the demand charge constraint applies.
In some embodiments, the plurality of pricing periods may include at least two of off-peak, partial-peak, peak, critical-peak, and real-time or may include at least one of critical-peak and real-time. In some embodiments, the time-varying pricing information may include demand charge information defining a cost per unit of power corresponding to a maximum power usage within a pricing period. The energy cost function may also include demand charge information and may be expressed as a linear equation. The time-varying pricing information may further include energy charge information defining a cost per unit of energy.
In some embodiments, the energy model may be an inner loop model or an outer loop model for a cascaded model predictive control system or may be a stochastic state space model with variable system parameters.
Another implementation of the present disclosure is a method for determining an energy cost for a building system. The method includes receiving time-varying pricing information for a plurality of pricing periods, receiving a time horizon, and using the time-varying pricing information and the time horizon to express a total cost of energy for the building system as a function of an estimated power usage within the time horizon. The time varying pricing information may include demand charge information defining a cost per unit of power corresponding to a maximum power usage within a pricing period.
In some embodiments, the method may further include expressing the cost function as a linear equation by imposing demand charge constraints on an optimization procedure and using a masking procedure to invalidate any demand charge constraint which applies to an inactive pricing period.
Yet another implementation of the present disclosure is a recursive method of minimizing energy cost in a building system including receiving an energy model for the building system and system state information, receiving an energy cost function and temperature constraints, using the energy model to formulate equality constraints describing energy characteristics of the building system, using the system state information to formulate demand charge constraints, using an optimization procedure to minimize the total energy cost while satisfying the equality constraints, the temperature constraints, and the demand charge constraints, updating the energy model and system state information, and repeating the ‘using’ and ‘updating’ steps recursively. The energy model may describe energy characteristics of the building system and the energy cost function may use time-varying pricing information for a plurality of pricing periods to determine a total energy cost. In some embodiments, the recursive method may further include using a masking procedure to invalidate any demand charge constraint which applies to an inactive pricing period.
Yet another implementation of the present disclosure is a control system to minimize energy cost in a building system including a controller configured to receive an energy model for a building system, system state information, temperature constraints, and time-varying pricing information for a plurality of pricing periods, use the energy model and system state information to formulate equality constraints and demand charge constraints, and determine a setpoint which minimizes an energy cost over a time horizon while satisfying the temperature constraints, the equality constraints, and the demand charge constraints.
Yet another implementation of the present disclosure is a cascaded control system to minimize energy cost in a building system including an outer controller configured to receive system state information and time-varying pricing information for a plurality of pricing periods including at least two of off-peak, partial-peak, peak, critical-peak, and real-time and to output a first quantity, and an inner controller configured to receive system state information and a setpoint and to output a second quantity. In some embodiments, the system state information may include building temperature information and building power usage information.
In some embodiments, the outer controller of the cascaded control system may be configured to receive an energy model for the building system and temperature constraints, use the energy model and the system state information to formulate equality constraints, use the system state information to formulate demand charge constraints, and determine an optimal power usage which minimizes an energy cost over a time horizon while satisfying the temperature constraints, the equality constraints, and the demand charge constraints. The optimal power usage output by the outer controller may be the first quantity received by the inner controller. In other embodiments first quantity may be an amount of power to defer from a predicted power usage or the setpoint and the second quantity may be a temperature setpoint or a derivative of a temperature setpoint.
In some embodiments outer controller and the inner controller may have different sampling and control intervals. The sampling and control interval for the outer controller may be longer than the sampling and control interval for the inner controller and in some embodiments the inner controller and outer controller may be physically decoupled in location. In some embodiments, the time-varying pricing information may include energy charge information defining a cost per unit of energy or demand charge information defining a cost per unit of power corresponding to a maximum power usage within a pricing period.
Referring to
Referring now to
Referring now to
Referring now to
As stated above with reference to
The energy model may describe the energy transfer characteristics of the building. Energy transfer characteristics may include physical traits of the building which are relevant to one or more forms of energy transfer (e.g., thermal conductivity, electrical resistance, etc.). Additionally, the energy model may describe the energy storage characteristics of the building (e.g., thermal capacitance, electrical capacitance, etc.) as well as the objects contained within the building. The energy transfer and energy storage characteristics of the building system may be referred to as system parameters.
In some embodiments, step 402 may include receiving a pre-defined system model including all the information needed to accurately predict the building's response (e.g., all the system parameters). In other embodiments, step 402 may include developing the model (e.g., by empirically determining the system parameters).
Step 402 may include formulating a system of equations to express future system states and system outputs (e.g., future building temperature, future power usage, etc.) as a function of current system states (e.g., current building temperature, current power usage, etc.) and controllable system inputs (e.g., a power setpoint, a temperature setpoint, etc.). Step 402 may further include accounting for disturbances to the system (e.g., factors that may affect future system states and system outputs other than controllable inputs), developing a framework model using physical principles to describe the energy characteristics of the building system in terms of undefined system parameters, and obtaining system parameters for the framework model. Step 402 may be accomplished using process 500, described in greater detail in reference to
Still referring to
Still referring to
In some embodiments, step 406 may include receiving a pre-defined cost function including all of the information necessary to calculate a total energy cost. A pre-defined cost function may be received from memory (e.g., computer memory or other information storage device), specified by a user, or otherwise received from any other source or process.
In other embodiments, step 406 may include defining one or more terms in the cost function using a cost function definition process. Step 406 may include receiving time-varying pricing information for a plurality of pricing periods. Time-varying pricing information may include energy cost information (e.g., price per unit of energy) as well as demand charge information (e.g., price per unit of power) corresponding to a maximum power use within a pricing period. Step 406 may further include receiving a time horizon within which energy cost may be calculated and expressing the total cost of energy within the time horizon as a function of estimated power use. Predicted future power use may be used in combination with energy pricing information for such periods to estimate the cost future energy use. Step 406 may further include expressing the cost function as a liner equation by adding demand charge constraints to the optimization procedure and using a masking procedure to invalidate demand charge constraints for inactive pricing periods. Step 406 may be accomplished using a cost function definition process such as process 1300, described in greater detail in reference to
Still referring to
Referring now to
Still referring to
x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)+Du(k)
where x represents the states of the system, u represents the manipulated variables which function as inputs to the system, and y represents the outputs of the system. Time may be expressed in discrete intervals (e.g., time-steps) by moving from a time-step k to the next time-step k+1.
In the exemplary embodiment, the state space system may be characterized by matrices A, B, C, and D. These four matrices may contain the system parameters (e.g., energy characteristics of the building system) which allow predictions to be made regarding future system states. In some embodiments, the system parameters may be specified in advance, imported from a previously identified system, received from a separate process, specified by a user, or otherwise received or retrieved. In other embodiments, system matrices A, B, C, and D may be identified using a system identification process, described in greater detail in reference to
In further embodiments, the system parameters may be adaptively identified on a recursive basis to account for changes to the building system over time. A recursive system identification process is described in greater detail in reference to
x(k+1)=A(θ)x(k)+B(θ)u(k)
y(k)=C(θ)x(k)+D(θ)u(k)
where θ represents variable parameters in the system. A change to the physical geometry of the system (e.g., knocking down a wall) may result in a change to the system parameters. However, a change in disturbances to the system such as heat transfer through the exterior walls (e.g., a change in weather), heat generated from people in the building, or heat dissipated from electrical resistance within the building (e.g., a load change) may not result in a change to the system parameters because no physical change to the building itself has occurred.
Still referring to
In some embodiments, an observer-based design may be used to allow an estimation of the system states which may not be directly measurable. Additionally, such a design may account for measurement error in system states which have a noise distribution associated with their measurement (e.g., an exact value may not be accurately measurable). The stochastic state space representation for a system can be expressed as:
x(k+1)=A(θ)x(k)+B(θ)u(k)+w(k)
y(k)=C(θ)x(k)+D(θ)u(k)+v(k)
w(k)˜N(0,Q)v(k)˜N(0,R)
where w and v are disturbance and measurement noise variables. The solution to this state estimation problem may be given by the function:
{circumflex over (x)}(k+1|k)=A(θ){circumflex over (x)}(k|k−1)+B(θ)u(k)+K(θ)[y(k)−{circumflex over (y)}(k|k−1)]
{circumflex over (y)}(k|k−1)=C(θ){circumflex over (x)}(k|k−1)+D(θ)u(k),{circumflex over (x)}(0;θ)
where K is the Kalman gain and the hat notation {circumflex over (x)}, ŷ implies an estimate of the state and output respectively. The notation (k+1|k) means the value at time step k+1 given the information at time step k. Therefore the first equation reads “the estimate of the states at time step k+1 given the information up to time step k” and the second equation reads “the estimate of the output at time step k given the information up to time step k−1.” The estimate of the states and outputs are used throughout the cost minimization problem over the prediction and control horizons.
Still referring to
In some embodiments, model predictive control (MPC) may be used to develop the framework energy model. MPC is a unifying control methodology that incorporates technologies of feedback control, optimization over a time horizon with constraints, system identification for model parameters, state estimation theory for handling disturbances, and a robust mathematical framework to enable a state of the art controller. An exemplary MPC controller 1700 and diagrams which may develop and use a framework energy model are described in greater detail in reference to
Still referring to
Referring now to
MPC controller 1700 may further include a processing circuit 1705 having a processor 1704 and memory 1706. Processor 1704 can be implemented as a general purpose processor, an application specific integrated circuit (ASIC), one or more field programmable gate arrays (FPGAs), a group of processing components, or other suitable electronic processing components. Memory 1706 may include one or more devices (e.g., RAM, ROM, Flash memory, hard disk storage, etc.) for storing data and/or computer code for completing and/or facilitating the various processes, layers, and modules described in the present disclosure. Memory 1706 may comprise volatile memory or non-volatile memory. Memory 1706 may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present disclosure. According to an exemplary embodiment, the memory 1706 is communicably connected to the processor 1704 and includes computer instructions for executing (e.g., by the processor 1704) one or more processes described herein.
Memory 1706 may include an optimization module 1722 for completing an optimization procedure, an identification module 1724 for performing system identification, a state estimation module 1726 to estimate system states based on the data received via the communications interface 1702, and a state prediction module 1728 to predict future system states.
Memory 1706 may further include system model information 1712 and cost function information 1714. System model information 1712 may be received via the communications interface 1702 and stored in memory 1706 or may be developed by MPC controller 1700 using identification module 1724, processor 1704, and data received via communications interface 1702. System model information 1712 may relate to one or more energy models of a building system and may be used by processor 1704 in one or more processes using state estimation module 1726, state prediction module 1728, or optimization module 1722. Similarly, cost function information 1714 may be received via the communications interface 1702 and stored in memory 1706, or it may be developed by the MPC controller 1700 using data received via the communications interface 1702. Cost function information 1714 may be used by 1704 processor in one or more processes using the system identification module 1724 or optimization module 1722.
In some embodiments, MPC controller 1700 may compensate for an unmeasured disturbance to the system. MPC controller 1700 may be referred to as an offset-free or zero-offset MPC controller. In classical controls, the integral mode in PID controller serves to remove the steady state error of a variable. Similarly, the state space model can be augmented with an integrating disturbance d, as shown in the following equation, to guarantee zero offset in the steady state:
The number of integrating disturbances to introduce may equal the number of measurements needed to achieve zero offset, independent from tuning the controller.
Referring now to
Cascaded MPC system 600 disclosed herein has several advantages over a single MPC controller. For example, system 600 may allow inner MPC controller 602 to operate at a shorter sampling and control interval to quickly reject disturbances while outer MPC controller 604 may operate at a longer sampling and control interval to maintain optimal power usage. In some embodiments, the sampling and control execution time of inner MPC controller 602 may be around thirty seconds whereas the sampling and control execution time of outer MPC controller 604 may be around fifteen minutes. The choice of fifteen minutes may be driven by a frequency of changes in energy pricing data (e.g., in the real-time pricing rate structure, energy prices may change as frequently as once per fifteen minutes). However, in other embodiments longer or shorter control times may be used.
The cascaded design advantageously permits the development of a less complex energy model than could be achieved with a single comprehensive energy model for the entire building system. Another advantage of the cascaded design is that inner controller 602 and outer controller 604 may be decoupled in location. For example, the outer controller 604 may be implemented off-site or “in the cloud” whereas the inner controller 602 may be run in an on-site building supervisory environment (e.g., a building controller local to a building). In some embodiments, outer controller 604 may receive input from multiple building systems and may interact with multiple inner controllers.
Still referring to
The specific input and output variables for both inner MPC controller 602 and outer MPC controller 604 are provided for exemplary purposes only and are not intended to limit the scope of invention further than express limitations included in the appended claims.
Referring now to
Still referring to
where w is the weight of a zone and Tmax and Tmin represent the minimum and maximum allowable temperatures for that zone. In this case, the variable representing the zone temperatures may be normalized (e.g., between 0 and 1). Zone temperature 714 may be measured directly, calculated from measured quantities (e.g., information representative of a measured temperature), or otherwise generated by the system. Information representative of a measured temperature may be the measured temperature itself or information from which a building temperature may be calculated.
Still referring to
Still referring to
In the exemplary embodiment, the derivative of the temperature setpoint 726 may be chosen as the output of the inner MPC controller 702 because the system 606 is expected to perform as a “negative 1” type system. In other words, a step change in the temperature setpoint 624 may cause a very small change in steady-state power usage. Therefore to prevent steady-state offset (or an offset the decays very slowly) the controller 702 may have two integrators. The first integrator may be implicit in the disturbance model of the MPC controller (e.g., included as an integrating disturbance) whereas the second integrator 630 may be explicitly located downstream of inner MPC controller 602, as shown in
Although the exemplary embodiment uses a derivative of temperature setpoint 726 as the output variable for the inner MPC controller 702, other embodiments may use different output variables or additional output variables.
Referring now to
Still referring to
Still referring to
In some embodiments, outer MPC controller 804 may further receive historical weather and power usage data. Historical weather and power usage data may be used to perform a feed-forward estimation of the building's probable power requirements. However, in other embodiments, this estimation may performed by a separate feed-forward module 640, as shown in
Referring now to
Referring specifically to
Referring now to
In the exemplary embodiment, {dot over (Q)}HVAC 934 may be modeled as the output of a PI controller. Thus, the rate of change in zone temperature may be given by the equation:
Cz{dot over (T)}z=Kq[Kp(Tsp−Tz)+KII]+{dot over (Q)}D
and the integral may be given by:
İ=Tsp−Tz
Additionally, because {dot over (Q)}HVAC 934 represents the power delivered to the system, additional equations may be introduced to compensate for the power lost in transportation. For example, in the case of a water cooled building, the energy balance may be maintained by heating water in the building which may be transported to a chiller/tower system where the heat may be expelled into to the atmosphere. In the exemplary embodiment, the transport process that converts the cooling power delivered to the building system to a power use at a cooling tower may be modeled by an over-damped second-order system with one (shorter) time constant τ1 representing the delay and a second time constant τ2 representing mass of cooling fluid.
{umlaut over (P)}+(τ1+τ2){dot over (P)}+(τ1τ2)P=Pss
Pss=Ke[Kp(Tsp−Tz)+KII]
The additional values that have been introduced are defined as follows: P is the power used by the cooling equipment (e.g., at the cooling/chilling towers), PB is the power usage as measured by the building, Kq is coefficient that converts PID output to heating power, Ke is coefficient that converts PID output to a steady-state power usage by the central plant equipment, and τ1 and τ2 are the time constants of the power transport process.
Therefore, in an exemplary embodiment, the entire model needed by the inner MPC controller 602 can be represented by:
where {dot over (Q)}D 940 as well as any power usage by loads other than HVAC equipment may be incorporated into the power disturbance PDist, which may be added to the measured power output PB 612. Advantageously, modeling PDist in such a way may allow for offset free control in the presence of slowly changing disturbances.
In the exemplary embodiment, after converting to discrete time and substituting θ variables for the unknown system parameters, the complete inner loop framework energy model may be given by:
Although the discrete time model shows PDist as a constant, a Kalman gain (used in the state estimation process) may be used to optimally convert measurement errors to state estimation error, thereby causing PDist to change.
Referring now to
Referring now to
Second, in an exemplary embodiment, energy transfer equations describing the model shown in
To convert these equations to the framework energy model used by outer MPC controller 604, the heat transfers may be converted to powers that can be measured at the meter by assuming a constant of proportionality between the two. For example, {dot over (Q)}HVAC may be converted to PHVAC by multiplying by a coefficient of performance.
In the exemplary embodiment, inputs to the outer MPC controller 604 may be divided into controllable inputs, measured disturbances (e.g., uncontrollable but measurable inputs), and unmeasured disturbances (e.g., uncontrollable and unmeasured inputs). To make this division, the inputs may be reformulated to PC (e.g., the power required to keep the zone temperature constant) and PD (e.g., the deferred power). PD may be a controllable input because it may be possible to control the amount of power to defer. PC may be a measured disturbance because it may be possible to estimate the power required maintain a constant building temperature based the difference between outdoor air temperature and the temperature within the building. In some embodiments, estimation of PC (PL2 and the portion of PHVAC that comes from a constant setpoint) may be performed in a feed forward fashion as shown in
Advantageously, in the exemplary embodiment, PC may be a function of a state of the building system (e.g., PC=f(TOA−Tz,t)). This is a condition that many MPC implementations would not support. The alternative would be to perform feed forward estimation outside the MPC controller. However, this is suboptimal because the feed forward estimator would be unable predict how altering the setpoint 622 would affect Pc because it would have no information regarding the current or predicted zone temperature Tz 1014. For example, presently deferring power will result in the zone temperature 1014 becoming closer to the outside temperature 1048, thereby decreasing the rate of heat transfer 1042 through the walls of the building. By incorporating the load predictor into the MPC controller, this change can be predicted and Pc can be adjusted accordingly.
In the exemplary embodiment, the outer loop model can be simplified further by assuming that changes in the deep mass temperature 1052 (Td) occur at a rate that is much slower than the length of time power use can be deferred. With this assumption, the temperature of the deep mass 1052 may be considered a known input and the framework energy model used by outer MPC controller 604 may be expressed as:
Referring now to
In the exemplary embodiment, process 1100 may include receiving a framework energy model for the building system (step 1102), receiving training data including system input data and system output data (step 1104), filtering the training data to remove extraneous disturbances (step 1106), receiving a first error cost function based on the difference between the filtered output training data and a model-predicted filtered output (step 1108), and using a first optimization procedure to determine system parameters which minimize the first error cost function within a range of filtered training data (step 1110).
In some embodiments, process 1100 may further include receiving a second error cost function based on the difference between non-filtered output training data and a model-predicted non-filtered output (step 1112), and using a second optimization procedure to determine Kalman gain parameters which minimize the second error cost function within a range of non-filtered training data (step 1114).
Referring more particularly to
and the framework energy model used by the outer MPC controller can be expressed as:
In both models, terms representing the slowly moving disturbances may be removed as these disturbances may be subsequently accounted for using a Kalman gain, described in greater detail in reference to steps 1112 and 1114.
Still referring to
Still referring to
In the exemplary embodiment, the filter applied to the training data may be a fourth-order high-pass Bessel filter with a cutoff frequency of ωc of 1.75*10−3 rad/s. However, in other embodiments, other types of filters may be used, including band-pass filters, low-pass filters, or other types of high-pass filters with different cutoff frequencies. The type of filter may be driven by the frequency characteristics of the effects sought to be eliminated from the training data. For example, the cutoff frequency may chosen to eliminate the effects of slowly moving disturbances such as weather conditions or internal heat generation within the building while still capturing the dynamics of the system as they exist without external disturbances.
Still referring to
Exemplary first error cost functions may include:
l[y(k)−{circumflex over (y)}(k|k−1)]=l[e(k)]=e2(k)
which may be optimal for normally distributed errors, but sensitive to outliers:
which linearizes error cost l for errors e outside specified bounds, and:
for which the error cost l does not increase once the error e exceeds a threshold.
Still referring to
The first error cost function may be used to determine the cost of prediction error within a range of filtered training data. The range of filtered training data may comprise the entire set of training data or a subset thereof. The training data used by the first error cost function may be automatically specified, chosen by a user, or otherwise determined by any other method or process.
Still referring to
The second error cost function may use the same error cost algorithm as the first error cost function or it may use a different algorithm. However, unlike the first error cost function, the second error cost function may be based on the difference between the model-predicted output and the actual system output using the non-filtered training data.
Still referring to
Advantageously, determining the system parameters first allows for a more accurate prediction and reduces the possibility that the optimization procedure will settle on one of the local minima produced by estimating both the system parameters and the Kalman gain parameters simultaneously. Additionally, a separately determined Kalman gain may allow the MPC controller to predict future outputs, estimate system states, and optimally attribute measurement errors to either errors in the state estimate or to measurement noise.
Another advantage of process 1100 is the ability to estimate the current value of the load PC. Thus, in the exemplary embodiment, the framework energy model shown in the following equations is used to estimate the steady-state Kalman gain for the building system model used by the inner MPC controller:
with a parameterized Kalman gain of:
In the exemplary embodiment, the Kalman gain may be estimated for the outer MPC controller model using the following equations:
with a parameterized Kalman gain of:
The parameters in the A and B matrices may be held constant at the values identified by the first optimization procedure while K is determined by the second optimization procedure using the non-filtered training data.
In the exemplary embodiment, initial values for the system states may estimated by assuming that assumed that the system states are initially at a steady-state (e.g., x−1 is the same as x0). With this assumption the following algebraic equation may be solved to find the initial conditions for the states:
xk=Axk+Bukx0=(I−A)−1Bu0.
To solve this problem, it can be assumed that because the system states are at a steady-state and the temperature setpoint is constant, the zone temperature Tz is equal to the temperature setpoint. Additionally, the measured power may be assumed to be unchanging (e.g., {dot over (P)}Δ=0) and can be attributed to the heat disturbances. Finally, at the steady-state, powers PΔ and PC may be interchangeable; therefore, PΔ may be set to zero and PC may be set to the current power usage. In this way, the state of the integrator can also be initialized to zero. With these assumptions in place, the process 1100 may identify the Kalman gain parameters using a second optimization procedure (step 1114) while fixing the system parameters at the values determined by the first optimization procedure.
Referring now to
Another advantage of recursive identification is adaptability. For example, a recursive identification process may be able to compensate for slowly changing system parameters and may overcome the difficulty in modeling a changing physical world. In the exemplary embodiment, model inaccuracies may be anticipated and the model may be adjusted recursively through feedback and weighting functions. Initial parameter values and system state values may be determined by the batch processing method 1100 previously disclosed or otherwise received from any other source.
Still referring to
In the exemplary embodiment, step 1202 may include using an estimation process inspired by the extended Kalman filter (EKF). The following derivation adapts the EKF to a generalized case of a multiple-input multiple-output (MIMO) system for use in process 1200. For example, the model parameters θ may be estimated using the following EKF equations:
{circumflex over (θ)}(k+1)={circumflex over (θ)}(k)+L(k)[y(k)−{circumflex over (y)}(k|k−1)],
L(k)=θ(k)T(k)[(k)Pθ(k)T(k)+R]−1,
Pθ(k+1)=Pθ(k)+Qp+L(k)[(k)Pθ(k)T(k)+R]LT(k),
where the state update matrix is the identity matrix and Pθ(k) is the parameter estimation error covariance. To calculate the time varying equivalent to the measurement equation, C, for the EKF, the generic update equation for normal distributions may be used, as shown in the following equations:
{circumflex over (θ)}(k+1)={circumflex over (θ)}(k)+ΣθωΣωω−1[y(k)−{circumflex over (y)}(k|k−1)],
Pθ(k+1)=Pθ(k)+QP+ΣθωΣωω−1ΣθωT
Σθω=E{[θ(k)−{circumflex over (θ)}(k)][y(k)−{circumflex over (y)}(k|k−1)]T},
Σωω=E{[y(k)−{circumflex over (y)}(k|k−1)][y(k)−{circumflex over (y)}(k|k−1)]T}.
where Σθω and Σωω are the cross covariance between the parameter estimation error and the output estimation error and the covariance of the output estimation error, respectively. To calculate these to covariance matrices recursively and obtain the EKF equations shown above, the actual measurement may be approximated linearly as:
Using this linear approximation, the covariances Σσω and Σωω can be approximated as follows:
and used to update the parameter estimates in the EKF equations shown above.
In the exemplary embodiment, may be resolved by assuming that the state estimate is equal to the actual state for a given parameter value. While this may not be true due to noise in the system, it may asymptotically true in terms of the expected parameter values. Because the system state estimates are also functions of the model parameters, can then be written as,
and using the product rule, as:
In the exemplary embodiment, the derivatives of the matrices C and D may be determined by the model parameters, whereas the derivative of the state estimate η may be estimated recursively using in the following equation:
where,
ε(k)≡y(k)−{circumflex over (y)}(k|k−1)
Therefore, recursive system identification process 1200 may use the following restated equations to estimate updated values for the model parameters each time a new measurement is obtained (step 1202):
{circumflex over (y)}(k|k−1)=C({circumflex over (θ)}(k)){circumflex over (x)}(k|k−1)+D({circumflex over (θ)}(k))u(k)
ε(k)=y(k)−{circumflex over (y)}(k|k−1)
(k)=C({circumflex over (θ)}(k))η(k)+({circumflex over (θ)}(k);{circumflex over (x)},u;k)
L(k)=Pθ(k)T(k)[(k)Pθ(k)T(k)+R]−1
{circumflex over (θ)}(k+1)={circumflex over (θ)}(k)+L(k)ε(k)
Process 1200 may further include includes using the updated model parameters to estimate the system states (step 1206). An EKF could be developed to estimate both the system states and the model parameters simultaneously; however, this configuration may not converge if the noise properties of the system are unknown. Therefore, in an exemplary embodiment, system states may be estimated using a Kalman gain which is dependent on the model parameters according to the following difference equations:
{circumflex over (x)}(k+1|k)=A({circumflex over (θ)}(k)){circumflex over (x)}(k|k−1)+B({circumflex over (θ)}(k))u(k)+K({circumflex over (θ)}(k))ε(k),
Pθ(k+1)=Pθ(k)+Qp+L(k)[(k)Pθ(k)Pθ(k)T(k)+R]LT(k),
η(k+1)=A({circumflex over (θ)}(k))η(k)−K({circumflex over (θ)}(k))(k)+({circumflex over (θ)}(k);{circumflex over (x)},u;k)+κε({circumflex over (θ)}(k);ε;k)
which follow from the derivation above.
Still referring to
θε⊂d iff eig{A(θ)−K(θ)C(θ)}<1
Thus, to keep the difference equations stable, the parameter update equation may be replaced with:
Therefore, in some embodiments, the model parameters are not updated (step 1208) (e.g., the estimated value is not used and the parameters revert to their previous values) if the estimated values would result in instability.
Advantageously, process 1200 achieves improved robustness by considering the effect of outlying raw data. For example, for a squared error cost function, the gradient of the cost function (at a given sample) may be stated as −ε. Thus, process 1200 may be a modified descent process in which the EKF equations (e.g., the parameter update equations used in step 1202) are used to scale and modify the direction of the descent. For example, the gradient of the cost function may be stated as:
which when applied to the following cost function, becomes:
Thus, in process 1200 the parameter set may not be updated (step 1208) if the output estimation error is large (e.g., exceeds a threshold defined by cσ).
Referring now to
Still referring to
Energy charge information may include the cost of energy for some or all of the pricing periods. In an exemplary embodiment, the cost of energy is defined on a per-unit basis (e.g., $/Joule, $/kWh, etc.). However, in other embodiments, energy cost may be defined on a progressive or regressive basis, segmented into one or more fixed-cost ranges of energy use, or make use of any other cost structure.
Demand charge information may include a cost corresponding to the peak power usage during one or more of the pricing periods (e.g., the maximum power used at any given time within a pricing period or combination of periods). The demand charge may be imposed for some or all of the pricing periods and pricing periods may overlap (e.g., an “anytime” period would overlap with any other period or periods). In an exemplary embodiment, the demand charge information may define the cost of power on a per-unit basis (e.g., $/W, $/kW, etc.). However, in other embodiments, the demand charge may be imposed on a progressive or regressive basis, segmented into one or more fixed-cost ranges of maximum power use, or make use of any other cost structure.
In the exemplary embodiment, pricing periods may include two or more different periods chosen from the group consisting of: off-peak, partial-peak, on-peak, critical-peak, and real-time. However, in other embodiments, more or fewer pricing periods may be used. In some embodiments, the critical-peak pricing period may be subdivided into several sub-periods having different energy charges, different demand charges, or both, as shown in
A pricing period may be a time interval during which certain energy charges and/or power demand charges apply. For example, during the off-peak period energy may cost $w per kWh and the demand charge may be $y per kW, whereas during the peak period energy may cost $x per kWh and the demand charge may be $z per kW. Different pricing periods may have (1) the same energy charge but a different demand charge, (2) a different energy charge but the same demand charge, (3) a different energy charge and a different demand charge, or (4) the same energy charge and the same demand charge (e.g., a customer may be charged a separate demand charge for each pricing period despite both periods having the same rates).
Two or more pricing periods may overlap and gaps may exist during which no pricing period is active. A pricing period may become inactive at a specified time and reactivate at a later time while still qualifying as the same pricing period (e.g., the on-peak period may recur every day from 9:00 A.M. until 9:00 P.M. as shown in
Still referring to
Still referring to
subject to the constraints:
Tmin i<Tz,i<Tmax i∀i
However, only the first term of this function is linear. The second term of the cost function includes a “max” operation which selects the maximum power usage at any given time during the relevant pricing period.
Still referring to
subject to constraints:
(Pi−Pj)k≦PR
for all i samples within a time horizon and for all j demand charge regions (e.g., pricing periods), where PR represents the maximum power in the region from previous time steps in the billing cycle. For example, the value of PR may initially be zero at the beginning of a billing cycle and may increase due to constraints on the zone temperature Tz.
Still referring to
In the exemplary embodiment, step 1310 (e.g., the masking procedure) may be included as part of process 1300 because step 1310 completes the linearization of the demand charge term by masking invalid constraints. However, in other embodiments, the step 1310 may be implemented as part of the optimization procedure 1500, as part of another process, or as an entirely separate process. In further embodiments, step 1310 may be combined with step 1308 (imposition of the demand charge constraints) so that only valid demand charge constraints are initially imposed. In such embodiments, the term “valid demand charge constraints” may be redundant because all demand charge constraints may be valid.
Referring now to
Process 1500 may include receiving an energy model of the building system, system state information, temperature constraints, and an energy cost function including demand charge constraints (step 1502). The energy model for the building system may be received as a pre-defined model or may be defined or derived using a model development process such as process 500, described in reference to
The energy model of the building system (e.g., the system model) may be a representation of the used by the optimization procedure to predict future system states. For the outer loop MPC controller, the system model may be used to predict the value of the zone temperature Tz in response to changes to the power setpoint Psp or changes to the amount of power to defer PD. A state space representation of the outer MPC controller system model may be expressed as:
For the inner loop MPC controller, the system model may be used to predict the amount of power used by the building PB in response to changes in the temperature setpoint Tsp. A state space representation of the inner MPC controller system model may be expressed as:
In some embodiments, the system model may have static system parameters. In other embodiments, the system model may contain variable system parameters which may be altered by the optimization procedure to adapt the model to a changing system. The system model may be fully developed with identified parameters, or the system parameters may need to be identified using a system identification process. If system identification is required, the system parameters θ1−θ5 (and possibly the Kalman gain parameters θ6−θ15) may be identified using a system identification process 1100 and received by optimization process 1500 as part of the system model.
System state information may include a current estimation of some or all or the relevant system states. In the state space system models shown above, current system states are represented by the variables having a time step equal to k (e.g., Tz(k), Ts(k), etc.). Initial system states may be estimated, measured, chosen arbitrarily, calculated, received from another process, from a previous iteration of the optimization procedure, specified by a user, or received from any other source. For example, in an exemplary embodiment of the outer MPC controller system model, the system state information may include an estimation of the zone temperature Tz, the shallow mass temperature Ts, and the unmeasured disturbance power PD2 Because PD2 is a slowly changing disturbance, it can be estimated once as its value does not change during the prediction horizon.
Temperature constraints may be limitations on the building zone temperature 7; or any other system state. The temperature constraints may include a minimum allowable temperature, a maximum allowable temperature, or both, depending on the application of the control system. Temperature constraints may be received automatically, specified by a user, imported from another process, retrieved from a data base, or otherwise received from any other source. An energy cost function may include information relating to energy prices (e.g., energy charge information, demand charge information, pricing period information, etc.) and may include demand charge constraints as described in reference to
Still referring to
Still referring to
In some embodiments, process 1500 may be performed once to determine an optimal power usage within a time horizon. Given a long enough time horizon and a perfectly accurate model, a single use of process 1500 may be satisfactory. However, over time, the system model may lose accuracy due to the difficulty in modeling a changing physical world.
Referring now to
Still referring to
The energy cost function may express a total cost of energy as a function of actual or estimated power use within a time horizon. In some embodiments, the energy cost function may be received as a completely defined function. In other embodiments, the energy cost function may be defined using a definition process such as process 1300, described in detail in reference to
Still referring to
Still referring to
Still referring to
Still referring to
Still referring to
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
Number | Name | Date | Kind |
---|---|---|---|
4061185 | Faiczak | Dec 1977 | A |
4349869 | Prett et al. | Sep 1982 | A |
4616308 | Morshedi et al. | Oct 1986 | A |
5289362 | Liebl | Feb 1994 | A |
5301101 | MacArthur et al. | Apr 1994 | A |
5347446 | Iino et al. | Sep 1994 | A |
5351184 | Lu et al. | Sep 1994 | A |
5408406 | Mathur et al. | Apr 1995 | A |
5442544 | Jelinek | Aug 1995 | A |
5519605 | Cawlfield | May 1996 | A |
5572420 | Lu | Nov 1996 | A |
5924486 | Ehlers | Jul 1999 | A |
6055483 | Lu | Apr 2000 | A |
6122555 | Lu | Sep 2000 | A |
6141595 | Gloudeman | Oct 2000 | A |
6167389 | Davis | Dec 2000 | A |
6278899 | Piche et al. | Aug 2001 | B1 |
6347254 | Lu | Feb 2002 | B1 |
6385510 | Hoog | May 2002 | B1 |
6459939 | Hugo | Oct 2002 | B1 |
6574581 | Bohrer | Jun 2003 | B1 |
6577962 | Afshari | Jun 2003 | B1 |
6785592 | Smith | Aug 2004 | B1 |
6807510 | Backstrom et al. | Oct 2004 | B1 |
6934931 | Plumer et al. | Aug 2005 | B2 |
6976366 | Starling | Dec 2005 | B2 |
7039475 | Sayyarrodsari et al. | May 2006 | B2 |
7050863 | Mehta et al. | May 2006 | B2 |
7050866 | Martin et al. | May 2006 | B2 |
7152023 | Das | Dec 2006 | B2 |
7165399 | Stewart | Jan 2007 | B2 |
7188779 | Alles | Mar 2007 | B2 |
7197485 | Fuller | Mar 2007 | B2 |
7203554 | Fuller | Apr 2007 | B2 |
7266416 | Gallestey et al. | Sep 2007 | B2 |
7272454 | Wojsznis et al. | Sep 2007 | B2 |
7274975 | Miller | Sep 2007 | B2 |
7275374 | Stewart et al. | Oct 2007 | B2 |
7328074 | Das et al. | Feb 2008 | B2 |
7328577 | Stewart et al. | Feb 2008 | B2 |
7376471 | Das et al. | May 2008 | B2 |
7376472 | Wojsznis et al. | May 2008 | B2 |
7389773 | Stewart et al. | Jun 2008 | B2 |
7400933 | Rawlings et al. | Jul 2008 | B2 |
7418372 | Nishira et al. | Aug 2008 | B2 |
7454253 | Fan | Nov 2008 | B2 |
7496413 | Fan et al. | Feb 2009 | B2 |
7577483 | Fan et al. | Aug 2009 | B2 |
7591135 | Stewart | Sep 2009 | B2 |
7599897 | Hartman et al. | Oct 2009 | B2 |
7610108 | Boe et al. | Oct 2009 | B2 |
7650195 | Fan et al. | Jan 2010 | B2 |
7676283 | Liepold et al. | Mar 2010 | B2 |
7826909 | Attarwala | Nov 2010 | B2 |
7844352 | Vouzis et al. | Nov 2010 | B2 |
7848900 | Steinberg | Dec 2010 | B2 |
7856281 | Thiele et al. | Dec 2010 | B2 |
7878178 | Stewart et al. | Feb 2011 | B2 |
7894943 | Sloup | Feb 2011 | B2 |
7908117 | Steinberg | Mar 2011 | B2 |
7930045 | Cheng | Apr 2011 | B2 |
7945352 | Koc | May 2011 | B2 |
7949416 | Fuller | May 2011 | B2 |
7987145 | Baramov | Jul 2011 | B2 |
7996140 | Stewart et al. | Aug 2011 | B2 |
8005575 | Kirchhof | Aug 2011 | B2 |
8019701 | Sayyar-Rodsari et al. | Sep 2011 | B2 |
8032235 | Sayyar-Rodsari | Oct 2011 | B2 |
8036758 | Lu et al. | Oct 2011 | B2 |
8046089 | Renfro et al. | Oct 2011 | B2 |
8060290 | Stewart et al. | Nov 2011 | B2 |
8073659 | Gugaliya et al. | Dec 2011 | B2 |
8078291 | Pekar et al. | Dec 2011 | B2 |
8105029 | Egedal et al. | Jan 2012 | B2 |
8109255 | Stewart et al. | Feb 2012 | B2 |
8121818 | Gorinevsky | Feb 2012 | B2 |
8126575 | Attarwala | Feb 2012 | B2 |
8145329 | Pekar et al. | Mar 2012 | B2 |
8145361 | Forbes, Jr. | Mar 2012 | B2 |
8180493 | Laskow | May 2012 | B1 |
8185217 | Thiele | May 2012 | B2 |
8200346 | Thiele | Jun 2012 | B2 |
8335596 | Raman et al. | Dec 2012 | B2 |
8417391 | Rombouts | Apr 2013 | B1 |
8443071 | Lu | May 2013 | B2 |
8548638 | Roscoe et al. | Oct 2013 | B2 |
8600561 | Modi et al. | Dec 2013 | B1 |
8720791 | Slingsby | May 2014 | B2 |
8768527 | Tomita et al. | Jul 2014 | B2 |
8825219 | Gheerardyn et al. | Sep 2014 | B2 |
8862280 | Dyess | Oct 2014 | B1 |
8886361 | Harmon et al. | Nov 2014 | B1 |
8903560 | Miller | Dec 2014 | B2 |
9235657 | Wenzel | Jan 2016 | B1 |
20030009401 | Ellis | Jan 2003 | A1 |
20040095237 | Chen | May 2004 | A1 |
20040117330 | Ehlers | Jun 2004 | A1 |
20040215529 | Foster | Oct 2004 | A1 |
20050027494 | Erdogmus et al. | Feb 2005 | A1 |
20050096797 | Matsubara | May 2005 | A1 |
20050143865 | Gardner | Jun 2005 | A1 |
20050194456 | Tessier | Sep 2005 | A1 |
20050203761 | Barr | Sep 2005 | A1 |
20060161450 | Carey | Jul 2006 | A1 |
20060259199 | Gjerde | Nov 2006 | A1 |
20060276938 | Miller | Dec 2006 | A1 |
20070203860 | Golden | Aug 2007 | A1 |
20070213880 | Ehlers | Sep 2007 | A1 |
20070276547 | Miller | Nov 2007 | A1 |
20080010521 | Goodrum | Jan 2008 | A1 |
20080083234 | Krebs | Apr 2008 | A1 |
20090001180 | Siddaramanna | Jan 2009 | A1 |
20090171862 | Harrod | Jul 2009 | A1 |
20090216382 | Ng | Aug 2009 | A1 |
20100106334 | Grohman | Apr 2010 | A1 |
20100138363 | Batterberry | Jun 2010 | A1 |
20100141046 | Paik | Jun 2010 | A1 |
20100204845 | Ohuchi | Aug 2010 | A1 |
20100235004 | Thind | Sep 2010 | A1 |
20100244571 | Spitaels | Sep 2010 | A1 |
20100269854 | Barbieri et al. | Oct 2010 | A1 |
20100286937 | Hedley | Nov 2010 | A1 |
20100289643 | Trundle | Nov 2010 | A1 |
20100324962 | Nesler | Dec 2010 | A1 |
20100332373 | Crabtree | Dec 2010 | A1 |
20110022193 | Panaitescu | Jan 2011 | A1 |
20110046792 | Imes | Feb 2011 | A1 |
20110060424 | Havlena | Mar 2011 | A1 |
20110106327 | Zhou et al. | May 2011 | A1 |
20110106328 | Zhou | May 2011 | A1 |
20110125293 | Havlena | May 2011 | A1 |
20110153090 | Besore | Jun 2011 | A1 |
20110160913 | Parker | Jun 2011 | A1 |
20110178977 | Drees | Jul 2011 | A1 |
20110184564 | Amundson | Jul 2011 | A1 |
20110184565 | Peterson | Jul 2011 | A1 |
20110202185 | Imes | Aug 2011 | A1 |
20110202193 | Craig | Aug 2011 | A1 |
20110218691 | O'Callaghan | Sep 2011 | A1 |
20110231320 | Irving | Sep 2011 | A1 |
20110238224 | Schnell | Sep 2011 | A1 |
20110257789 | Stewart et al. | Oct 2011 | A1 |
20110257911 | Drees | Oct 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110301723 | Pekar et al. | Dec 2011 | A1 |
20120016524 | Spicer | Jan 2012 | A1 |
20120053740 | Venkatakrishnan | Mar 2012 | A1 |
20120053741 | Beyerle | Mar 2012 | A1 |
20120053745 | Ng | Mar 2012 | A1 |
20120059351 | Nordh | Mar 2012 | A1 |
20120060505 | Fuller et al. | Mar 2012 | A1 |
20120065805 | Montalvo | Mar 2012 | A1 |
20120084063 | Drees | Apr 2012 | A1 |
20120109394 | Takagi et al. | May 2012 | A1 |
20120109620 | Gaikwad et al. | May 2012 | A1 |
20120116546 | Sayyar-Rodsari | May 2012 | A1 |
20120130924 | James | May 2012 | A1 |
20120150707 | Campbell | Jun 2012 | A1 |
20120197458 | Walter | Aug 2012 | A1 |
20120209442 | Ree | Aug 2012 | A1 |
20120232701 | Carty | Sep 2012 | A1 |
20120259469 | Ward | Oct 2012 | A1 |
20120278221 | Fuller | Nov 2012 | A1 |
20120296799 | Playfair et al. | Nov 2012 | A1 |
20120310416 | Tepper | Dec 2012 | A1 |
20120316695 | Chen | Dec 2012 | A1 |
20120330465 | O'Neill et al. | Dec 2012 | A1 |
20120330671 | Fan | Dec 2012 | A1 |
20130013119 | Mansfield | Jan 2013 | A1 |
20130013121 | Henze | Jan 2013 | A1 |
20130013124 | Park | Jan 2013 | A1 |
20130024029 | Tran | Jan 2013 | A1 |
20130060391 | Deshpande | Mar 2013 | A1 |
20130066571 | Chamarti | Mar 2013 | A1 |
20130085614 | Wenzel | Apr 2013 | A1 |
20130090777 | Lu | Apr 2013 | A1 |
20130110299 | Meyerhofer | May 2013 | A1 |
20130123996 | Matos | May 2013 | A1 |
20130190940 | Sloop | Jul 2013 | A1 |
20130231792 | Ji | Sep 2013 | A1 |
20130245847 | Steven et al. | Sep 2013 | A1 |
20130268126 | Iwami | Oct 2013 | A1 |
20130308674 | Kramer | Nov 2013 | A1 |
20130311793 | Chang | Nov 2013 | A1 |
20130325377 | Drees | Dec 2013 | A1 |
20130340450 | Ashrafzadeh | Dec 2013 | A1 |
20140067132 | Macek | Mar 2014 | A1 |
20140094979 | Mansfield | Apr 2014 | A1 |
20140128997 | Holub | May 2014 | A1 |
20140148953 | Nwankpa | May 2014 | A1 |
20140203092 | Broniak | Jul 2014 | A1 |
20140222396 | Wen | Aug 2014 | A1 |
20140229016 | Shiflet | Aug 2014 | A1 |
20140229026 | Cabrini | Aug 2014 | A1 |
20140316973 | Steven | Oct 2014 | A1 |
20150105918 | Lee | Apr 2015 | A1 |
20150142179 | Ito | May 2015 | A1 |
20150192317 | Asmus | Jul 2015 | A1 |
20150276253 | Montalvo | Oct 2015 | A1 |
20160195866 | Turney | Jul 2016 | A1 |
Entry |
---|
Rap,.org “Time-Varying and Dynamic Rate Design” published by www.raponline.org on Jul. 2012, entire document. |
Rap.org “Time-Varying and Dynamic Rate Design” published by www.raponline.org on Jul. 2012, entire document. |
Non-Final Office Action on U.S. Appl. No. 13/802,279 dated Jun. 29, 2015, 11 pages. |
Non-Final Office Action on U.S. Appl. No. 13/802,233 dated Apr. 10, 2015, 15 pages. |
Wan et al., The Unscented Kalman Filter for Nonlinear Estimation, IEEE 2000, pp. 153-158. |
Goyal et al, Occupancy-Based Zone-Climate Control for Energy-Efficient Buildings: Complexity vs. Performance, Department of Mechanical and Aerospace Engineering, University of Florida, Aug. 3, 2012, 31 pages. |
Qin et al., A survey of industrial model predictive control technology, Control Engineering Practices II, 2003, pp. 733-764. |
Rawlings, James B., Tutorial Overview of Model Predictive Control, IEEE Control Systems Magazine, Jun. 2000, pp. 38-52. |
Notice of Allowance on U.S. Appl. No. 13/802,233 dated Sep. 10, 2015, 9 pages. |
Notice of Allowance received in U.S. Appl. No. 13/802,279 dated Feb. 3, 2016, 5 pages. |
Qin et al., A Survey of Industrial Model Predictive Control Technology, 2002, 32 pages. |