The invention relates generally to systems and methods for programming, tracking and recording data from electronic devices. More specifically, the present invention relates to systems and methods for programming, tracking and recording data from medical devices, and especially implantable medical devices (IMDs).
Medical devices, specifically IMDs, are commonly used today to treat patients suffering from various ailments, including by way of example, pain, incontinence, movement disorders such as epilepsy, Parkinson's disease, and spasticity. Additional IMD therapies appear promising to treat a variety of other medical conditions, including physiological, psychological, and emotional conditions. As the number of IMD therapies increases, so do the demands placed on these medical devices.
Known IMDs, such as, cardiac pacemakers, tachyarrhythmia control devices, drug delivery devices, and nerve stimulators, provide treatment therapy to various portions of the body. While the present invention may be used with various medical devices, by way of example and illustration, an implantable pulse generator (IPG) device will be discussed to illustrate the advantages of the invention. In the case of providing electrical stimulation to a patient, an IPG is implanted within the body. The IPG is coupled to one or more electrodes to deliver electrical stimulation to select portions of the patient's body. Neuromuscular stimulation (the electrical excitation of nerves and/or muscle to directly elicit the contraction of muscles) and neuromodulation stimulation (the electrical excitation of nerves, often afferent nerves, to indirectly affect the stability or performance of a physiological system) and brain stimulation (the stimulation of cerebral or other central nervous system tissue) can provide functional and/or therapeutic outcomes.
There exist both external and implantable devices for providing beneficial results in diverse therapeutic and functional restorations indications. The operation of these devices typically includes the use of an electrode placed either on the external surface of the skin, a vaginal or anal electrode, or a surgically implanted electrode. Implantable medical devices may be programmable and/or rechargeable, and the devices may log data, which are representative of the operating characteristics over a length of time. While existing systems and methods provide the capability of programming or recharging IMDs, many limitations and issues still remain.
Implantable devices have provided an improvement in the portability of neurological stimulation devices, but there remains the need for continued improvement in the programming and data management related to such devices. Medical devices are often controlled using microprocessors with resident operating system software. This operating system software may be further broken down into subgroups including system software and application software. The system software controls the operation of the medical device while the application software interacts with the system software to instruct the system software on what actions to take to control the medical device based upon the actual application of the medical device.
As the diverse therapeutic and functional uses of IMDs increase, and become more complex, system software having a versatile interface is needed to play an increasingly important role. This interface allows the system software to remain generally consistent based upon the particular medical device, and allows the application software to vary greatly depending upon the particular application. As long as the application software is written so it can interact with the interface, and in turn the system software, the particular medical device can be used in a wide variety of applications with only changes to application specific software. This allows a platform device to be manufactured in large, more cost effective quantities, with application specific customization occurring at a later time.
While handheld programmers are generally known in the art, there exist many gaps in the methods for programming and tracking specific system or patient data related to medical devices, especially those of the implanted type. Specifically, the art is lacking cohesive systems and methods for programming medical devices, logging medical device and patient data, recharging portable control devices and providing hard copies of information, such as patient or system information.
Filling the identified needs, the present invention provides systems and methods for programming medical devices, logging medical device and patient data, recharging portable control devices and providing hard copies of information, such as patient or system information.
Generally, the systems comprise a handheld device and a base station. The handheld device provides mobile data management and medical device communications capabilities. The base station provides a connectivity point for the handheld unit, thereby allowing recharge of the handheld unit, printing from the handheld unit, the base station, or the handheld unit while residing in the base station, or data entry or modification, among other functions.
Generally, the methods comprise the steps of detecting a medical device and obtaining and recording information from the medical device. Further, medical device parameters may be altered and information archived for future reference.
The systems and methods of the present invention fill the void in the prior art by providing a convenient means to program medical devices, to log data recorded by, and parameters of, medical devices and the ability to create a hard copy of information, such as recorded device or patient data or system parameters.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
System
Referring now to
Handheld Device
Referring to
In a representative embodiment, the housing 106 is formed from an impact resistant molded plastic and is adapted to fit comfortably into a user's hand. A desirable size for such adaptation may be 25 centimeters long by 8 centimeters wide by 5 centimeters thick; however, the dimensions may change depending upon how the handheld device 101 is used. The housing 106 may include sections having different widths. That is, the housing 106 may have a first section 126 comprising a narrower width for comfortable placement in a user's hand contrasted to a second section 128 comprising a wider width for accommodation of certain features, such as a screen 130 of desirable size. The housing 106 generally houses one or more printed circuit boards 124 carrying electrical components such as a microcontroller 108, nonvolatile memory 110, communications transceivers 112, and associated biasing circuitry. External connections 118 are provided through, or extending from, the housing 106 wherever desired to allow physical connection to other electronic devices. The external connection hardware 118 may include a removable media interface such as Compact Flash memory, a communications interface such as a Universal Serial Bus (USB) interface or conventional serial interface, like an RS-232 interface, or even device support tabs 138a used in docking the handheld device 101 to the base station 102. Additionally, user interface mechanisms may be accessible through the housing 106. For instance, a reset button 107 may be available by use of a special tool, such as a stylus 109. Also, it is contemplated that a power button 111 provides user access through the housing 106 to command system power.
The microcontroller 108 in the handheld device 101 is responsible for running system software, as well as application software. While these tasks may be divided amongst multiple controllers, a single controller 118 is desirable. Representative system software is Microsoft Corporation's Windows CE®. Additional system software features, such as peripheral interfaces, are optional and dependent on the software approach used. Associated with the microcontroller 108 is some sort of electronic memory 110. A desirable memory 110 includes nonvolatile random access memory. Nonvolatile memory provides insurance against loss of data in a situation where power is lost and facilitates an extremely low power or zero power inactive (sleep) state of the microcontroller 108. The nonvolatile memory element 110 is capable of storing patient records, arranged by visit or other desirable characteristics, so that a clinician using the handheld device 101 can quickly establish a historical perspective on patient treatment. The nonvolatile memory element 110 may also store all or part of operating system software, application software, or data for the general use of the microcontroller 108.
The device 101 also has a communications module 114 for communicating with the IPG 200 or other medical device. The communications module 114 may be a telemetry module, which is a protocol translator and radio frequency modem that accepts packets from the microcontroller 108 and converts it into wireless messages directed to the IPG 200. The telemetry module 114 is capable of communicating with individual medical devices 200 within its immediate range and desirably up to six feet away. The telemetry module 114 may implement a variety of communication protocols, such as those standard in the art, or custom communication protocols, which may be predetermined by the capabilities of the medical device 200 to which communications must be sent. The communications module 114 may be disabled while the handheld device 101 is docked on the base station 102.
The device 101 further includes a power supply 116, which provides the required electrical power for desired electronic circuit operation. In one embodiment, a primary power supply 116 may be a rechargeable lithium ion battery. Lithium ion batteries are capable of providing many hours of operation without having to be docked to recharge. For instance, it may be desirable to provide a power supply 115 capable of providing eight hours of use without the need for recharge. While the specific functionality of the device 101 during runtime will affect battery requirements, an acceptable power supply 116 may be a rechargeable lithium ion battery having a capacity of 2600 milliamp hours. The device 101 may also have a backup battery 116′ capable of maintaining program or data memory in the event of a deep discharge or replacement of the primary battery 116. If a rechargeable power supply 116 is used, proper recharging circuitry 122 may be included in the system 100. Such circuitry 122 may be contained within the handheld device 101, as shown, or may reside in the base station 102.
External connection hardware 118 is also provided on the handheld device 101, thereby providing additional input/output capability. Providing data input/output capability, the device may have at least one universal serial bus (USB) port and/or serial communications port, and other ports as needed to communicate with an externally located telemetry module 114 and the base station 102. Also, external connections 118 may be provided to allow the controller 108 of the handheld device 101 to control the base station 102 operation, for example printer operations, in addition to controlling the handheld device 101.
The device 101 further provides a user interface to the IPG 200, so that a clinician can change control parameters in and view data from the IPG 200. In this manner, a clinician may configure parameters in the individual IPG 200 that adjust application limits for a patient user interface to the IPG 200. A patient user interface provides a limited range of programmability for a medical device. For example, a simple patient user interface may be a device having a single button to turn an IMD on or off. In one embodiment, the clinician user interface is a pressure sensitive touch screen 130 incorporated into the handheld device 101. The device 101 may be controlled by use of the stylus 109 on the screen 130. The screen 130 may be a color display screen supporting a fixed or variable pixel resolution. A desirable pixel resolution may be at least 240×240. The embedded operating system software and screen 130 may support both vertical and horizontal viewing.
The handheld device 101 further may implement a system of checks, balances, and redundancies to qualify and prevent the use of unsafe combinations of settings.
Generally, two approaches may be desirable for implementation of the handheld device 101. The first approach entails modification and adaptation of an off-the-shelf personal digital assistant (PDA) or other portable computer. If adopted, the first approach may require further encasing the PDA in the housing 106 along with a communications module 114 or providing connectivity for such communications module 114 to the PDA. The second approach may encapsulate a customized printed circuit board 124 and component combination in a customized housing 106. This second approach provides mare design flexibility than the first approach and allows tighter control over system components. Whichever approach is desirable, the handheld device 101 may function as a single purpose device. That is, the handheld device 101 may serve only in the system 100, rather than provide general purpose computing functionality.
Base Station
Referring now to
The base station housing 132 is of any desirable shape. Adaptation may provide stability on a relatively horizontal surface, such as a desk, or on a relatively vertical surface, such as a wall. The housing 132 generally provides a protective cover for desirable electrical components. Desirable components may be those required to carry out functions such as data backup and restore for the handheld device 101, printing of reports or records for affixing hard copies of information to a patient's chart, power recharging of the handheld device 101, entry of patient data, and export and import of data.
The cradle 134 provides a docking point for the handheld device 101. While connectivity to the handheld device 101 could be provided generally anywhere proximate the base station 102, connectors 140 for power and communication to the handheld device 101 may be provided in the cradle 134.
A user input device 103 may be present in the form of a user interface 142, which allows user intervention and control of the base station 102 functionality. While depicted as discrete buttons 142 on the base station 102, user input may also be achieved through the use of any combination of a standard QWERTY computer keyboard, a computer mouse, or even a custom keyboard. If the microcontroller in the handheld device 101 provides, in addition to control of the handheld device 101, system control for the base station 102, a keyboard 143 may serve as the user input device 103 through the base station 102 to the handheld device 101 through the cradle 134. Furthermore, rather than provide a distinct user input device 103 on or connected to the base station 102, the handheld device 101, itself, may serve as the user input device 103. When the handheld device 101 is docked in the base station 102, the visual display 130 on the handheld device 101 may serve as the user input device 103 to access the base station 102 and any output device 104 connected thereto. As depicted in
The base station 102 also includes, or provides connectivity for, a data output device 104. The data output device 104 may comprise a printer 144 to provide hard copy documentation on paper 146 or other substrate suitable for placing into a patient's medical chart. A suitable printer 144 may be a four inch label printer, such as an OEM kiosk printer, that may be mounted on or in the base station 102. Rather than have the printer 144 mounted to the base station 102, a data output device 104 may be connectable to the base station 102. Connectivity of the base station 102 to external devices may be achieved in any desirable way, such as through the use of ports 145. Ports 145 that may be desirable are USB connections or a digital video connection if the output device 104 is a computer monitor 147. A computer monitor 147 may provide an enhanced visual display for the user. The specific technology of the output device 104 is not important; however, if a printer 144 is used, it may employ a thermal print element, inkjet or even impact/ribbon technology.
Data backup may be achieved through the use of computer readable electronic memory 136. The memory 136 may be of any desirable type, including by way of example nonvolatile random access memory, magnetic data storage, optical data storage, or media such as so called flash drives, or other memory types not yet invented.
Software
In addition to physical systems, the present invention contemplates methods of establishing a communication link with a medical device, retrieving medical device data, programming the medical device, logging medical device data or parameters, and archiving information. Additionally, prior to establishing a communication link with a medical device, the method may include the steps of determining whether any medical devices are within a scannable range and selecting a medical device with which to establish the communications link. Archiving information may include recording data on a variety of media, such as recording on computer readable media or printing on paper. Some or all of the steps can occur automatically by way of software, initiated by an, event such as inserting the handheld computer into the base station, or by human intervention in conjunction with the software. An embodiment 500 of a user interactive method is shown in
In a representative embodiment, the application software included on the handheld device provides the full range of the clinician experience—from initial patient engagement to documentation and retrieval of patient visits. Although the software may exist in any programming language adaptable to the specific microcontroller, C# (C sharp) is preferred due to its tendency towards rapid development, its C-like syntax, its object orientation, and the high degree of reliability of developed applications. The application software may run on top of the system software that is loaded into the handheld device 101.
The application software interfaces with a database 501. The database 501, which encodes patient names, visits, and other data, may be implemented using Microsoft® structured query language (SQL) mobile Edition having desirable data backup and restore features. Regardless of the type of database 501, a database interface may be installed on the handheld device 101 as part of the application software install. The database interface allows a user to access patient data from the database 501. Access to patient data may be achieved by entering patient-identifying information. Such data may consist only of patient contact information or may include complex historical patient data and time stamped medical device data. The database 501 containing comprehensive patient information may reside on the handheld device 101 directly. Alternatively, the database 501 may reside on the base station 102 or a hospital computer network. If the database 501 does not reside on the handheld device 101, a temporary data construct containing data fields similar to those in the database 501 is preferred, which allows storage of data for several, but not necessarily all, patients on the handheld device 101.
The database 501 may include several tables. One embodiment may implement two tables: a Patient Table 502, and Visit Table 503. The Patient Table 502 contains all patient information that is relatively constant. The purpose of the Visit Table 503 is to record and store relevant IPG data that would be collected over a series of visits. The user may then display trend or comparative data in graphical formats. Fields of data in the respective tables 502,503 may be hard coded, or reconfiguration of the tables 502,503 may be allowed.
Referring again to
The primary screen 506 is displayed to a user after user authentication has occurred. The primary screen 506 may group a predetermined number of the most commonly used functions in the system onto a single screen 506. The primary screen 506 provides access to existing patient selection 518, new patient data entry 520 and editing of database records 522. Access to various administrative functions may also be provided via the primary screen. 506. To switch between main application screens 504, the tab control 514 is used.
The advanced programming screen 508 provides a user interface to the data and parameters 524 contained in the medical device 200. Examples of medical device data 524 may be an indication of remaining battery charge in the medical device 200, recharge time, and stimulation time. While programmable parameters 524 for various medical devices 200 will differ, representative parameters 524 for an IPG are pulse amplitude, pulse duration and pulse frequency and sequence timing. Additionally, the device interface screen 508 may allow the selection or alteration of limits for any user (patient) adjustable parameters. Furthermore, a set of predetermined parameters or collections of parameters based on common electrophysiological behavior may be preloaded to minimize the effort on the part of the user. Also, after recognizing programmed parameters, the handheld device 101 may recommend parameters to the user.
The patient history screen 510, allows access to existing patient data 526 drawn from the database 501 and entry of new patient visit information, including textual diary data. Once the patient data 526 has been configured, the patient may automatically be identified during his or her next session and relevant historical data may be made available during subsequent patient visits. Rather than automatic identification, the device 101 may be programmed with the proper communications information or a clinician may query a range of medical device identifiers. During a session with a patient, the software may notify the clinician if communications 204 is interrupted or another medical device 200 intrudes on the session. To avoid the potential for incorrectly or incompletely communicating with medical devices, the communications protocol between the handheld device and any medical device may include the identification of which medical device is being addressed by way of, for example, a unique electronic signature or device serial number.
A tools screen 512 is provided to enable modification of system parameters such as accessibility passwords and date and time functions. Also, the tools screen 512 may provide access to the database 501 as well as base station 102 functionality such as printing. Further, the tools screen 512 may provide medical device query capability, thus allowing the device 101 to scan a predetermined area for responsive medical devices 200.
A customizable screen, or plurality of customizable screens, may also be desired, the functionality of which can be tailored to a specific user's operating procedures or tailored applications. Alternatively, the customizable screen may be a screen that is available only when the handheld device 101 is docked in a base station 102.
Some functionality may be desirable no matter which screen is displayed. That is, the application software may monitor the occurrence of hardware faults and also monitor battery level. When predetermined events occur, the handheld device 101 may emit a warning, such as a visual or audio warning, when a hardware fault occurs or if the battery charge for either the telemetry module 114 or handheld device 101 is at a predetermined level. Also, an extensive help menu system may be incorporated. The help menu may be accessible from any displayed screen, perhaps as a separate tab control 514.
Although the handheld device 101 application software provides the ability to download patient data from a database 501, a clinician may have the option of using the handheld device 101 without having patient data available. That is, if all patient data is erased off the handheld device 101 or otherwise not entered, the device 101 may still function as a user interface to the medical device 200. This may require the user to enter at least a default set of patient data, such as patient last name or medical device code.
System Use
The system 100 may be constructed for safe operation within an operating room and desirably does not interfere with any hospital electronic equipment. While it is generally expected that only the handheld device 101 will be used in the operating room, a base station 102 may also be located in an operating room. When the handheld device 101 is used in an operating room or other location where sterility is of utmost importance, the device 101 can be sterilized, or a sterile device cover may be provided to enclose or shield the device 101.
A clinician can use the handheld device 101 in an operating room to turn on an IPG 200 and adjust stimulus parameters in the IPG 200. The clinician simply enters predetermined patient data to be associated with the IPG 200 that is in the process of being programmed. The clinician who is using the handheld device 101 may be the surgeon who has placed the IPG 200, a physician's assistant, a nurse, or other clinician authorized to do so. It is to be appreciated that the handheld device 101, through a wireless range, may be used outside of the sterile field.
In addition to use in an operating room, a clinician may use the system 100 in an office setting when a patient returns for follow-up visits. The handheld device 101 allows a clinician to interrogate the IPG 200 for compliance data such as recharge history and current stimulus parameter settings. The clinician may make adjustments to the stimulus parameters as necessary based on the feedback from the patient. The clinician may also schedule upcoming appointments in the handheld device 101 and recall any details of past appointments.
To ensure reliable and robust operation, the system, at least while certain software is active, may be a single purpose device. Although not a required feature, the system may have the ability to connect to a hospital computer network or directly interface to other devices such as an external disk drive 148, as shown in
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
This application is a continuation of U.S. patent application Ser. No. 14/198,130, filed Mar. 5, 2014 (now U.S. Pat. No. 9,216,294 issued Dec. 22, 2015), which is a continuation of U.S. patent application Ser. No. 12/829,187, filed Jul. 1, 2010 (now U.S. Pat. No. 8,706,252 issued Apr. 22, 2014), which is a continuation of U.S. patent application Ser. No. 11/541,890, filed Oct. 2, 2006 (now U.S. Pat. No. 7,761,167 issued Jul. 20, 2010), which is a continuation-in-part of U.S. patent application Ser. No. 11/150,418, filed Jun. 10, 2005 (now U.S. Pat. No. 7,239,918 issued Jul. 3, 2007). U.S. patent application Ser. No. 11/541,890, filed Oct. 2, 2006 is also a continuation-in-part of U.S. patent application Ser. No. 11/150,535, filed Jun. 10, 2005 (now U.S. Pat. No. 7,813,809 issued on Oct. 12, 2010). U.S. patent application Ser. No. 11/541,890, filed Oct. 2, 2006 is also a continuation-in-part of U.S. patent application Ser. No. 11/517,056, filed Sep. 7, 2006 (published as United States Patent Application Publication No. 20070060955 published on Mar. 15, 2007). All of these applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3421511 | Schwartz et al. | Jan 1969 | A |
3654933 | Hagfors | Apr 1972 | A |
3727616 | Lenzkes | Apr 1973 | A |
3774618 | Avery | Nov 1973 | A |
3870051 | Brindley | Mar 1975 | A |
3902501 | Citron et al. | Sep 1975 | A |
3926198 | Kolenik | Dec 1975 | A |
3939841 | Dohring et al. | Feb 1976 | A |
3939843 | Smyth | Feb 1976 | A |
3941136 | Bucalo | Mar 1976 | A |
3943932 | Woo | Mar 1976 | A |
3943938 | Wexler | Mar 1976 | A |
4014346 | Brownlee et al. | Mar 1977 | A |
4232679 | Schulman | Nov 1980 | A |
4254775 | Langer | Mar 1981 | A |
4257423 | McDonald | Mar 1981 | A |
4262678 | Stokes | Apr 1981 | A |
4398545 | Wilson | Aug 1983 | A |
4406288 | Horwinski et al. | Sep 1983 | A |
4407303 | Akerstom | Oct 1983 | A |
4512351 | Pohndorf | Apr 1985 | A |
4519404 | Fleischhacker | May 1985 | A |
4569351 | Tang | Feb 1986 | A |
4573481 | Bullara | Mar 1986 | A |
4585005 | Lue et al. | Apr 1986 | A |
4585013 | Harris | Apr 1986 | A |
4590689 | Rosenberg | May 1986 | A |
4590946 | Loeb | May 1986 | A |
4592360 | Lesnick | Jun 1986 | A |
4602624 | Naples et al. | Jul 1986 | A |
4607639 | Tanagho et al. | Aug 1986 | A |
4628942 | Sweeney et al. | Dec 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4658515 | Oatman | Apr 1987 | A |
4703755 | Tanagho et al. | Nov 1987 | A |
4716888 | Wesner | Jan 1988 | A |
4721118 | Harris | Jan 1988 | A |
4739764 | Lue et al. | Apr 1988 | A |
4750499 | Hoffer | Jun 1988 | A |
4771779 | Tanagho et al. | Sep 1988 | A |
4793353 | Borkan | Dec 1988 | A |
4835372 | Gombrich | May 1989 | A |
4920979 | Bullara | May 1990 | A |
4926875 | Rabinovitz et al. | May 1990 | A |
4934368 | Lynch | Jun 1990 | A |
4940065 | Tanagho et al. | Jul 1990 | A |
4989617 | Memberg et al. | Feb 1991 | A |
5095905 | Klepinski | Mar 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5154172 | Terry, Jr. et al. | Oct 1992 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
D337820 | Hooper et al. | Jul 1993 | S |
5235980 | Varrichio et al. | Aug 1993 | A |
5257634 | Kroll | Nov 1993 | A |
5265608 | Lee et al. | Nov 1993 | A |
5282845 | Bush et al. | Feb 1994 | A |
5289821 | Swartz | Mar 1994 | A |
5300107 | Stokes et al. | Apr 1994 | A |
5324322 | Grill, Jr. et al. | Jun 1994 | A |
5330515 | Rutecki et al. | Jul 1994 | A |
5335664 | Nigashima | Aug 1994 | A |
5344439 | Otten | Sep 1994 | A |
5350413 | Miller | Sep 1994 | A |
5369257 | Gibbon | Nov 1994 | A |
5370671 | Maurer et al. | Dec 1994 | A |
5397338 | Grey et al. | Mar 1995 | A |
5400784 | Durand et al. | Mar 1995 | A |
5411537 | Munshi et al. | May 1995 | A |
5449378 | Schouenborg | Sep 1995 | A |
5454840 | Krakovsky et al. | Oct 1995 | A |
5461256 | Yamada | Oct 1995 | A |
5476500 | Fain et al. | Dec 1995 | A |
5480416 | Garcia et al. | Jan 1996 | A |
5486202 | Bradshaw | Jan 1996 | A |
5487756 | Kallesoe et al. | Jan 1996 | A |
5493690 | Shimazaki | Feb 1996 | A |
5505201 | Grill, Jr. et al. | Apr 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5562717 | Tippey et al. | Oct 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5607461 | Lathrop | Mar 1997 | A |
5634462 | Tyler et al. | Jun 1997 | A |
5645586 | Meltzer | Jul 1997 | A |
5669161 | Huang | Sep 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5683447 | Bush et al. | Nov 1997 | A |
5690693 | Wang et al. | Nov 1997 | A |
5702431 | Wang et al. | Dec 1997 | A |
5713939 | Nedungadi et al. | Feb 1998 | A |
5716384 | Snell | Feb 1998 | A |
5722482 | Buckley | Mar 1998 | A |
5722999 | Snell | Mar 1998 | A |
5733322 | Starkebaum | Mar 1998 | A |
5741313 | Davis et al. | Apr 1998 | A |
5741319 | Woloszko et al. | Apr 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5752977 | Grevious et al. | May 1998 | A |
5755767 | Doan et al. | May 1998 | A |
5759199 | Snell | Jun 1998 | A |
5792206 | Bevan | Aug 1998 | A |
5807397 | Barreras | Sep 1998 | A |
5824027 | Hoffer et al. | Oct 1998 | A |
5843141 | Bischoff et al. | Dec 1998 | A |
5857968 | Benja-Athon | Jan 1999 | A |
5861015 | Benja-Athon | Jan 1999 | A |
5861016 | Swing | Jan 1999 | A |
5899933 | Bhadra et al. | May 1999 | A |
5919220 | Stieglitz et al. | Jul 1999 | A |
5922015 | Schaldach | Jul 1999 | A |
5938596 | Woloszko et al. | Aug 1999 | A |
5948006 | Mann | Sep 1999 | A |
5957951 | Cazaux et al. | Sep 1999 | A |
5984854 | Ishikawa et al. | Nov 1999 | A |
6004662 | Buckley | Dec 1999 | A |
6016451 | Sanchez-Rodarte | Jan 2000 | A |
6026328 | Peckham et al. | Feb 2000 | A |
6055456 | Gerber | Apr 2000 | A |
6055457 | Bonner | Apr 2000 | A |
6061596 | Richmond et al. | May 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6092531 | Chen et al. | Jul 2000 | A |
6125645 | Horn | Oct 2000 | A |
6126611 | Bourgeois et al. | Oct 2000 | A |
6164284 | Schulman | Dec 2000 | A |
6166518 | Echarri et al. | Dec 2000 | A |
6169925 | Villaseca et al. | Jan 2001 | B1 |
6181965 | Loeb et al. | Jan 2001 | B1 |
6181973 | Ceron et al. | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6212431 | Hahn et al. | Apr 2001 | B1 |
6216038 | Hartlaub et al. | Apr 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6240317 | Villaseca et al. | May 2001 | B1 |
6249703 | Stanton | Jun 2001 | B1 |
6257906 | Price et al. | Jul 2001 | B1 |
6266557 | Roe et al. | Jul 2001 | B1 |
6275737 | Mann | Aug 2001 | B1 |
6292703 | Meier et al. | Sep 2001 | B1 |
6308101 | Faltys et al. | Oct 2001 | B1 |
6308105 | Duysens et al. | Oct 2001 | B1 |
6314183 | Pehrsson et al. | Nov 2001 | B1 |
6319208 | Abita et al. | Nov 2001 | B1 |
6319599 | Buckley | Nov 2001 | B1 |
6321124 | Cigaina | Nov 2001 | B1 |
6338347 | Chung | Jan 2002 | B1 |
6345202 | Richmond et al. | Feb 2002 | B2 |
6360750 | Gerber et al. | Mar 2002 | B1 |
6381496 | Meadows et al. | Apr 2002 | B1 |
6409675 | Turcott | Jun 2002 | B1 |
6432037 | Eini et al. | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6442433 | Linberg | Aug 2002 | B1 |
6445955 | Michelson et al. | Sep 2002 | B1 |
6449512 | Boveja et al. | Sep 2002 | B1 |
6450172 | Hartlaub et al. | Sep 2002 | B1 |
6453198 | Torgerson et al. | Sep 2002 | B1 |
6456866 | Tyler et al. | Sep 2002 | B1 |
6459882 | Palermo et al. | Oct 2002 | B1 |
6464672 | Buckley | Oct 2002 | B1 |
6482154 | Haubrich et al. | Nov 2002 | B1 |
6493587 | Eckmiller et al. | Dec 2002 | B1 |
6493881 | Picotte | Dec 2002 | B1 |
6505074 | Boveja et al. | Jan 2003 | B2 |
6505077 | Kast et al. | Jan 2003 | B1 |
6510347 | Borkan | Jan 2003 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6535766 | Thompson et al. | Mar 2003 | B1 |
6542776 | Gordon et al. | Apr 2003 | B1 |
6553263 | Meadows et al. | Apr 2003 | B1 |
6574510 | Von Arx et al. | Jun 2003 | B2 |
6591137 | Fischell et al. | Jul 2003 | B1 |
6597954 | Pless et al. | Jul 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6607500 | DaSilva et al. | Aug 2003 | B2 |
6613953 | Altura | Sep 2003 | B1 |
6622037 | Kasano | Sep 2003 | B2 |
6622048 | Mann et al. | Sep 2003 | B1 |
6641533 | Causey et al. | Nov 2003 | B2 |
6643552 | Edell et al. | Nov 2003 | B2 |
6650943 | Whitehurst et al. | Nov 2003 | B1 |
6652449 | Gross et al. | Nov 2003 | B1 |
6658300 | Govari et al. | Dec 2003 | B2 |
6660265 | Chen | Dec 2003 | B1 |
6672895 | Scheiner | Jan 2004 | B2 |
6684109 | Osypka | Jan 2004 | B1 |
6687543 | Isaac | Feb 2004 | B1 |
6701188 | Stroebel et al. | Mar 2004 | B2 |
6721602 | Engmark et al. | Apr 2004 | B2 |
6735474 | Loeb et al. | May 2004 | B1 |
6735475 | Whitehurst et al. | May 2004 | B1 |
6754538 | Linberg | Jun 2004 | B2 |
6775715 | Spitaels | Aug 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6832100 | Hsieh | Dec 2004 | B2 |
6836684 | Rijkhoff et al. | Dec 2004 | B1 |
6836685 | Fitz | Dec 2004 | B1 |
6845271 | Fang et al. | Jan 2005 | B2 |
6855410 | Buckley | Feb 2005 | B2 |
6856506 | Doherty | Feb 2005 | B2 |
6859364 | Yuasa et al. | Feb 2005 | B2 |
6862480 | Cohen et al. | Mar 2005 | B2 |
6868288 | Thompson | Mar 2005 | B2 |
6870732 | Huang et al. | Mar 2005 | B2 |
6891353 | Tsukamoto | May 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6904324 | Bishay | Jun 2005 | B2 |
6907293 | Grill et al. | Jun 2005 | B2 |
6907295 | Gross et al. | Jun 2005 | B2 |
6920359 | Meadows et al. | Jul 2005 | B2 |
6925330 | Kleine | Aug 2005 | B2 |
6928320 | King | Aug 2005 | B2 |
6937894 | Isaac et al. | Aug 2005 | B1 |
6941171 | Mann et al. | Sep 2005 | B2 |
6963780 | Ruben et al. | Nov 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6985773 | Von Arx et al. | Jan 2006 | B2 |
6990376 | Tanagho | Jan 2006 | B2 |
6993393 | Von Arx et al. | Jan 2006 | B2 |
7082035 | Kim | Jan 2006 | B2 |
6999819 | Swoyer et al. | Feb 2006 | B2 |
7016492 | Pan et al. | Mar 2006 | B2 |
7031768 | Anderson et al. | Apr 2006 | B2 |
7047078 | Boggs, II et al. | May 2006 | B2 |
7078359 | Stepanian et al. | Jul 2006 | B2 |
7101607 | Mollendorf et al. | Sep 2006 | B2 |
7103923 | Picotte | Sep 2006 | B2 |
7118801 | Ristic-Lehmann et al. | Oct 2006 | B2 |
7120499 | Thrope et al. | Oct 2006 | B2 |
7136695 | Pless | Nov 2006 | B2 |
7167756 | Torgerson et al. | Jan 2007 | B1 |
7177690 | Woods et al. | Feb 2007 | B2 |
7177698 | Klosterman | Feb 2007 | B2 |
7187968 | Wolf et al. | Mar 2007 | B2 |
7187983 | Dahlberg et al. | Mar 2007 | B2 |
7191012 | Boveja et al. | Mar 2007 | B2 |
7198603 | Penner et al. | Apr 2007 | B2 |
7225032 | Schmeling et al. | May 2007 | B2 |
7239918 | Strother et al. | Jul 2007 | B2 |
7254448 | Almendinger et al. | Aug 2007 | B2 |
7269457 | Shafer et al. | Sep 2007 | B2 |
7270435 | Lin | Sep 2007 | B2 |
7280872 | Mosesov et al. | Oct 2007 | B1 |
7283867 | Strother | Oct 2007 | B2 |
7317947 | Wahlstrand et al. | Jan 2008 | B2 |
7328068 | Spinelli et al. | Feb 2008 | B2 |
7342793 | Ristic-Lehmann et al. | Mar 2008 | B2 |
7343202 | Mrva et al. | Mar 2008 | B2 |
7369897 | Boveja et al. | May 2008 | B2 |
7376467 | Thrope et al. | May 2008 | B2 |
7437193 | Parramon et al. | Oct 2008 | B2 |
7443057 | Nunally | Oct 2008 | B2 |
7475245 | Healy et al. | Jan 2009 | B1 |
7499758 | Cates et al. | Mar 2009 | B2 |
7565198 | Bennett et al. | Jul 2009 | B2 |
7583500 | Ligtenberg et al. | Sep 2009 | B2 |
7761167 | Bennett et al. | Jul 2010 | B2 |
7782192 | Jeckelmann et al. | Aug 2010 | B2 |
7831205 | Jack et al. | Nov 2010 | B2 |
7862513 | Eigler et al. | Jan 2011 | B2 |
7863862 | Idzik et al. | Jan 2011 | B2 |
8138869 | Lauder et al. | Mar 2012 | B1 |
8160716 | KenKnight et al. | Apr 2012 | B2 |
8265907 | Nanikashvilli et al. | Sep 2012 | B2 |
8358513 | Kim | Jan 2013 | B2 |
8483758 | Huang | Jul 2013 | B2 |
8498716 | Chen et al. | Jul 2013 | B2 |
8514042 | Lauder et al. | Aug 2013 | B2 |
8564944 | Whitt, III et al. | Oct 2013 | B2 |
8570725 | Whitt, III et al. | Oct 2013 | B2 |
8576031 | Lauder et al. | Nov 2013 | B2 |
8624695 | Cretella, Jr. et al. | Jan 2014 | B2 |
8706252 | Bennett et al. | Apr 2014 | B2 |
20010022719 | Armitage et al. | Sep 2001 | A1 |
20020002326 | Causey, III | Jan 2002 | A1 |
20020019652 | Da Silva et al. | Feb 2002 | A1 |
20020055779 | Andrews | May 2002 | A1 |
20020077572 | Fang et al. | Jun 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020164474 | Buckley | Nov 2002 | A1 |
20030018365 | Loeb | Jan 2003 | A1 |
20030028226 | Thompson | Feb 2003 | A1 |
20030065368 | Van Der Hoeven | Apr 2003 | A1 |
20030074030 | Leyde et al. | Apr 2003 | A1 |
20030074033 | Pless et al. | Apr 2003 | A1 |
20030078633 | Firlik et al. | Apr 2003 | A1 |
20030100930 | Cohen et al. | May 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030114898 | Von Arx et al. | Jun 2003 | A1 |
20030114905 | Kuzma | Jun 2003 | A1 |
20030120259 | Mickley | Jun 2003 | A1 |
20030144711 | Pless et al. | Jul 2003 | A1 |
20030149459 | Von Arx | Aug 2003 | A1 |
20030171789 | Malek | Sep 2003 | A1 |
20030220673 | Snell | Nov 2003 | A1 |
20030235029 | Doherty et al. | Dec 2003 | A1 |
20040004464 | Tsukamoto et al. | Jan 2004 | A1 |
20040030360 | Eini et al. | Feb 2004 | A1 |
20040059392 | Parramon et al. | Mar 2004 | A1 |
20040088024 | Firlik et al. | May 2004 | A1 |
20040093093 | Andrews | May 2004 | A1 |
20040098068 | Carbunaru et al. | May 2004 | A1 |
20040147886 | Bonni | Jul 2004 | A1 |
20040150963 | Holmberg et al. | Aug 2004 | A1 |
20040209061 | Farnworth | Oct 2004 | A1 |
20050021108 | Klosterman et al. | Jan 2005 | A1 |
20050221108 | Klosterman et al. | Jan 2005 | A1 |
20050038491 | Haack | Feb 2005 | A1 |
20050055063 | Loeb et al. | Mar 2005 | A1 |
20050080463 | Stahmann et al. | Apr 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050149146 | Boveja et al. | Jul 2005 | A1 |
20050175799 | Farnworth | Aug 2005 | A1 |
20050192526 | Biggs et al. | Sep 2005 | A1 |
20050245995 | Diebold | Nov 2005 | A1 |
20050277844 | Strother et al. | Dec 2005 | A1 |
20050277999 | Strother et al. | Dec 2005 | A1 |
20050278000 | Strother et al. | Dec 2005 | A1 |
20060004421 | Bennett et al. | Jan 2006 | A1 |
20060025829 | Armstrong et al. | Feb 2006 | A1 |
20060033720 | Robbins et al. | Feb 2006 | A1 |
20060035054 | Stepanian et al. | Feb 2006 | A1 |
20060100673 | Koinzer et al. | May 2006 | A1 |
20060122660 | Boveja et al. | Jun 2006 | A1 |
20060173507 | Mrva | Aug 2006 | A1 |
20060184208 | Boggs, II et al. | Aug 2006 | A1 |
20060271112 | Martinson et al. | Nov 2006 | A1 |
20070060955 | Strother | Mar 2007 | A1 |
20070060967 | Strother et al. | Mar 2007 | A1 |
20070010041 | Bonde | May 2007 | A1 |
20070100411 | Bonde | May 2007 | A1 |
20070123952 | Strother et al. | May 2007 | A1 |
20070239224 | Bennett et al. | Oct 2007 | A1 |
20070270921 | Strother et al. | Nov 2007 | A1 |
20080071322 | Mrva et al. | Mar 2008 | A1 |
20080097564 | Lathrop | Apr 2008 | A1 |
20080132969 | Bennett et al. | Jun 2008 | A1 |
20090048644 | Stahmann | Feb 2009 | A1 |
20110093046 | Ellingson | Apr 2011 | A1 |
20110306859 | Saldivar et al. | Dec 2011 | A1 |
20120166680 | Masoud et al. | Jun 2012 | A1 |
20120215285 | Tahmasian et al. | Aug 2012 | A1 |
20130066400 | Perryman et al. | Mar 2013 | A1 |
20130123881 | Aghassian | May 2013 | A1 |
20130241745 | Colvin, Jr. et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2121219 | Oct 1995 | CA |
1720606 | Aug 2011 | EP |
WO200019939 | Apr 2000 | WO |
WO2001083029 | Nov 2001 | WO |
WO2003092227 | Nov 2003 | WO |
2005079295 | Sep 2005 | WO |
WO2006055547 | May 2006 | WO |
WO2009058984 | May 2009 | WO |
WO2013066362 | Aug 2012 | WO |
WO2012108935 | May 2013 | WO |
Entry |
---|
Advanced Bionics Corporation, “Patient System Handbook,” 2004, 90 pp. |
Advanced Bionics Corporation, “Physician Implant Manual,” 2004, 22 pp. |
2004 Advanced Bionics Corporation Summary of Safety and Effectiveness, pp. 1-18. |
Advanced Neuromodulation Systems, Inc., “ANS Medical—Determining Chronic Pain Causes and Treatments,” retrieved from internet http://www.ansmedical.com/medicalprofessional/physician/rechargeablejpgsystems.cfm, 2005, 3 pp. |
Cyberonics, Physician's Manual: Models 100 and 101 NeuroCybemetic Prosthesis System, NCP Pulse Generator, Aug. 2002, pp. 1-92. |
Bemelmans et al., “Neuromodulation by Implant for Treating Lower Urinary Tract Symptoms and Dysfunction,” Eur. Urol., vol. 36(2), Aug. 1999, pp. Aug. 81-91. |
Bower et al., “A Urodynamic Study of Surface Neuromodulation versus Sham in Detrusor Instability and Sensory Urgency,” J. Urology, vol. 160, Dec. 1998, pp. 2133-2136. |
Brindley et al., “Sacral Anterior Root Stimulators for Bladder Control in Paraplegia,” Paraplegia, vol. 20(6), 1982, pp. 365-381. |
Caldwell, “Multielectrode Electrical Stimulation of Nerve” Development of Orthotic Systems using Functional Electrical Stimulation and Myoelectric Control, Final Report Project #19-P-58391-F-01, University of Lublinana, Faculty of Electrical Engineering, Lubjiana, Yugoslavia, Dec. 1971, 11 pp. |
Corbett, “High-Density Liquid Crystal Polymer Cochlear Electrodes,” Advanced Cochlear Systems, Inc., retrieved from the internet http://crisp.cit.nih.gov/crisp/CRISPLIB.getdoc?textkey=6657260&p grant_ num=5R44D, Sep. 2006, 2 pp. |
Craggs et al., “Neuromodulation of the Lower Urinary Tract,” Experimental Physiology, vol. 84, 1999, pp. 149-160. (Note: Applicant points out in accordance with MPEP 609.04(a) that the 1999 year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date of Dec. 17, 2015, so that the particular month of publication is not in issue.). |
Craggs, M., et al., “Aberrant reflexes and function of the pelvic organs following spinal cord injury in man”, Autonomic Neuroscience: Basic & Clinical, 126-127 (Mar. 2006), 355-370 pp. (Note: Applicant points out in accordance with MPEP 609.04(a) that the 2006 year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date of Dec. 17, 2015, so that the particular month of publication is not in issue.). |
Crampon et al., “Nerve Cuff Electrode with Shape Memory Alloy Armature: Design and Fabrication”, Bio-Medical Materials and Engineering vol. 12 Jan. 2002 397-410. |
Crampon et al., “New Easy to Install Nerve Cuff Electrode Using Shape Memory Alloy Armature”, Artificial Organs, 23(5):392-395, May 1999. |
Cyberonics, “Physician's Manual: NeuroCybernetic Prosthesis System, NCP Programming Wand, Model 201,” Cyberonics, Mar. 2002, pp. 1-18. |
Cyberonics, “Welcome to VNS Therapy.com for Patients and Families,” VNS Therapy website, http://www. vnstherapy .com/Epilepsylhcp/forsurgeons/implantedcomponents.aspx, 2005, 4 pp. |
Dalmose et al., “Conditional Stimulation of the Dorsal Penile/Clitoral Nerve may Increase Cystometric Capacity in Patients with Spinal Cord Injury,” Neurourol Urodyn, vol. 22(2), 2003, pp. 130-137 (Note: Applicant points out in accordance with MPEP 609.04(a) that the 2003 year of publication is sufficiently earlier than the effective U.S. filed and any foreign priority date of Dec. 17, 2015, so that the particular month of publication is not in issue.). |
Edell, David J., PhD, Boston Healthcare Research Device, Feb. 15, 2006. |
Fossberg et al. “Maximal Electrical Stimulation in the Treatment of Unstable Detrusor and Urge Incontinence,” Eur Urol, vol. 18, 1990, pp. 120-123 (Note: Applicant points out in accordance with MPEP 609.04(a) that the 1990 year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date of Dec. 17, 2015, so that the particular month of publication is not in issue.). |
Genesis, “Genesis Neurostimulation System Programmer User's Guide,” Advanced Neuromodulation Systems, Inc., Oct. 2001, 70 pp. |
Grill et al., “Quantification of recruitment properties of multiple contact cuff electrodes,” IEEE Transactions on Rehabilitation Engineering, vol. 4(2), Jun. 1996, pp. 49-62. |
Grill, “Selective Activation of the Nervous System for Motor System Neural Prosthesis” Chapter 6 in Intelligent Systems and Technologies in Rehabilitation Engineering, H-N.L. Teodorescu, L. C. Jain, Eds., CRC Press, May 1, 2001, pp. 211-241. |
Grill, et al., “Emerging clinical applications of electrical stimulation: opportunities for restoration of function”, Journal of Rehabilitation Research and Development, vol. 38(6), Nov./Dec. 2001, 27 pp. |
Gustafson et al., “A Catheter Based Method to Activate Urethral Sensory Nerve Fibers”, J Urol., vol. 170(1), Jul. 2003, pp. 126-129. |
Gustafson, K., et al. “A Urethral Afferent Mediated Excitatory Bladder Reflex Exists in Humans”, Neurosci Lett Apr. 2004: 360(1-2):9-12. |
Jezernik et al., “Detection and inhibition of hyper-reflexia-like bladder contractions in the cat by sacral nerve root recording and electrical stimulation,” Neurourology and Urodynamics, vol. 20(2), Jan. 2001, pp. 215-230. |
Jezernik et al., “Electrical Stimulation for the Treatment of Bladder Dysfunction: Current Status and Future Possibilities,” Neurol. Res., vol. 24, Jul. 2002, pp. 413-430. |
Jiang et al., “Prolonged Increase in Micturition Threshold Volume by Anogenital Afferent Stimulation in the Rat,” British Journal of Urology, vol. 82(3), Mar. 1998, pp. 398-403. |
Jiang et al., “Prolonged enhancement of the micturition reflex in the cat by repetitive stimulation of bladder afferents,” Journal of Physiology, vol. 517.2, Jun. 1999, pp. 599-605. |
Juenemann et al., “Clinical Significance of Sacral and Pudendal Nerve Anatomy,” J. Urol., vol. 139(1), Jan. 1988, pp. 74-80. |
Lee et al., “Self-Controlled dorsal penile nerve stimulation to inhibit bladder hyperreflexia in incomplete spinal injury: A case report,” Arch Phys Med Rehabil., vol. 83, Feb. 2002, pp. 273-277. |
Loeb et al., “Cuff Electrodes for Chronic Stimulation and Recording of Peripheral Nerve Activity”, Journal of Neuroscience Methods, vol. 64 Issue 1, Jan. 1996, 9 pp. |
Madersbacher, “Urinary Urge and Reflex Incontinence,” Urologe A., vol. 30(4), Jul. 1991, pp. 215-222 (Abstract only, article in German). |
Mazieres et al., “Bladder Parasympathetic Response to Electrical Stimulation of Urethral Afferents in the Cat,” Neurol Urodynam., vol. 16(5), 1997, 1 pp. (Note: Applicant points out in accordance with MPEP 609.04(a) that the 1997 year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date of Dec. 17, 2015, so that the particular month of publication is not in issue.). |
Mazieres et al., “The C Fibre Reflex of the Cat Urinary Bladder,” J. Physiol., vol. 513 (pt 2), Dec. 1998, pp. 531-541. |
McNeal et al., “Selective activation of muscles using peripheral nerve electrodes,” Med. and Biol. Eng. and Comp., vol. 23, May 1985, pp. 249-253. |
Midgley, “Vacuum-Formed Films for Fit and Function, High-Performance Films can Replace Injection-Molded Plastics When Space is at a Premium,” Machine Design, www.machinedesign.texterity.com, Oct. 2004, 2 pp. |
Modern Plastics Worldwide, Notables: 10 Waves of the Future by Modern Plastics Editorial Staff, Sample Molding in Progress: Sep. 1, 2005, 2 pp. |
Nakamura et al., “Bladder Inhibition by Penile Electrical Stimulation”, Br J Urol, vol. 56, Aug. 1984, pp. 413-415. |
Naples et al., “A Spiral Nerve Cuff Electrode for Peripheral Nerve Stimulation”, IEEE Transactions on Biomedical Engineering, vol. 35(11), Nov. 1988, 12 pp. |
NeuroControl Corp., The NeuroControl StiM System, “World's First Miniturized Multi-Channel Programmable Neuromuscular Stimulator” brochure, 2 pp. |
Nissenkorn et al., “Lower Uniary Tract,” Biocontrol Medical, BJU International, Feb. 2005, pp. 1253-1258. |
Advanced Neuromodulation System, Inc. (ANS) Summary of Safety and Effectiveness Data, Nov. 21, 2001 pp. 1-18. |
Advanced Neuromodulation Systems, Inc., ANS Genesis Neurostimulation System Programmer User's Guide Oct. 2001. |
Oliver et al., “Measuring the Sensations of Urge and Bladder Filling During Cystometry in Urge Incontinence and the Effects of Neuromodulation,” Neurourol Urodyn, vol. 22, Feb. 2003, 10 pp. |
Previnaire et al., “Short-Term Effect of Pudendal Nerve Electrical Stimulation on Detrusor Hyperreflexia in Spinal Cord Injury Patients: Importance of Current Strength,” Paraplegia, vol. 34, 1996, pp. 95-99. |
Riley, “A survey of Wafer Level Hermetic Cavity Chip Scale Packages for RF Applications,” www.flipchips.com, Tutorial 31, Jun. 2003, 8 pp. |
Riley, “Wafer-Level Hermetic Cavity Packaging, originally published in Advanced Packaging Magazine, Potential Cost, Handling, and Performance Advantages” www.flipchips.com, May 2004, 9 pp. |
Romero et al., “Neural Morphological Effects of Long-Term Implantation of the Self-Sizing Spiral Cuff Nerve Electrode”, Medical & Biological Engineering & Computing, vol. 39, Jan. 2001 pp. 90-100. |
Schmidt, “Applications of Neurostimulation in Urology”, Neurourology and Urodynamics, vol. 7, 1988, pp. 585-592. |
Spinelli et al., “A New Minimally Invasive Procedure for Pudendal Nerve Stimulation to Treat Neurogenic Bladder: Description of the Method and Preliminary Data,” Neurourol and Urodyn., vol. 24, Jun. 2005, pp. 305-309. |
Starbuck et al., “An Implantable Electrode System for Nerve Stimulation,” Proc 19th Ann. Conf. on Eng. in Med. and Biol., vol. 8(38), Nov. 1966, 3 pp. |
Sundin et al., “Detrusor Inhibition Induced from Mechanical Stimulation of the Anal Region and from Electrical Stimulation of Pudendal Nerve Afferents: An Experimental Study in Cats,” Investigative Urology, vol. 5, Mar. 1974, pp. 374-378. |
Sweeney, et al., “A Nerve Cuff Technique for Selective Excitation of Peripheral Nerve Trunk Regions”, IEEE Transactions on Biomedical Engineering, vol. 37(7), Jul. 1990, 10 pp. |
Talaat, “Afferent Impulses in the Nerves Supplying the Urinary Bladder,” Journal of Physiology, vol. 89, 1937, pp. 1-13. |
Tanagho et al. “Electrical Stimulation in the Clinical Management of the Neurogenic Bladder,” J. Urol., vol. 140, Dec. 1988, pp. 1331-1339. |
Tyler et al., “Chronic Response of the Rat Sciatic Nerve to the Flat Interface Nerve Electrode,” Annals of Biomedical Engineering, vol. 31, Jun. 2003, pp. 633-642. |
Veraart et al., “Selective control of muscle activation with a multipolar nerve cuff electrode,” IEEE Trans. Biomed. Engineering, vol. 40(7), Jul. 1993, pp. 640-653. |
Vodovnik et al., “Myo-electric control of paralyzed muscles,” IEEE Transactions on Biomedical Engineering, vol. 12(3-4), Jul./Oct. 1965, pp. 169-172. |
Vodusek et al. “Detrusor Inhibition Induced by Stimulation of Pudendal Nerve Afferents,” Neuroul and Urodyn., vol. 5, 1986, pp. 381-389. |
Wallace, “Liquid-Crystal Polymer Meets the Challenges of RF Power Packaging; The plastic air-cavity packages are hermetically sealed using a proprietary process,” Medical Devicelink, www.devicelink.com, MPMN, May 2004, 2 pp. |
Wheeler, et al., “Management of Incontinent SCI patients with Penile Stimulation: Preliminary Results,” J. Am. Paraplegia Soc., vol. 17(2), Apr. 1994, pp. 55-59. |
Rijkhoff et al., “Urinary Bladder Control by Electrical Stimulation: Review of Electrical Stimulation Techniques in Spinal Cord Injury”, Neurourol Urodyn, vol. 16(1), 1997, pp. 39-53. |
“World's First Miniaturized Multi-Channel Programmable Neuromuscular Stimulator,” NeuroControl Corp., The NeuroControl StiM System, brochure, www.neurocontrol.com, 2 pp. |
Yang et al., “Peripheral Distribution of the Human Dorsal Nerve of the Penis”, J. Urol., vol. 159(6), Jun. 1998, pp. 1912-1917, discussion 1916. |
Foster-Miller, “Project Examples, Packaging for Implantable Electronics,” Foster-Miller Inc., retrieved from the internet at www.foster-miller.com, on Feb. 15, 2006, 2 pp. |
McNeal et al., “Selective Stimulation,” in Annual Reports of Progress, Rehabilitation Engineering Center, Ranchio Los Amigos Hospital, Downey, CA, Nov. 1974, pp. 24-25. |
Wheeler, et al., “Bladder inhibition by penile nerve stimulation in spinal cord injury patients”, The Journal of Urology, 147(1), Jan. 1992, pp. 100-103. |
Aspen Aerogels, Inc., “A Breakthrough in Advanced Materials,” retrieved from the internet http://web.archive.org/web/20031128223307/http://www.aerogel.com, 2003 (1 pg) (Note: Applicant points out in accordance with MPEP 609.04(a) that the 2003 year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date of Dec. 17, 2015, so that the particular month of publication is not in issue.). |
Prosecution History from U.S. Appl. No. 11/150,418, dated Aug. 10, 2005 through Feb. 1, 2007, 36 pp. |
Prosecution History from U.S. Appl. No. 11/149,654, dated Mar. 26, 2007 through Mar. 16, 2009, 76 pp. |
Prosecution History from U.S. Appl. No. 11/150,535, dated Feb. 23, 2007 through Aug. 26, 2010, 167 pp. |
Prosecution History from U.S. Appl. No. 11/517,056, May 13, 2009 through Sep. 7, 2010, 55 pp. |
Prosecution History from U.S. Appl. No. 11/541,890, dated May 5, 2010 through Aug. 28, 2008, 54 pp. |
Prosecution History from U.S. Appl. No. 12/829,187, dated Jul. 1, 2010 through Nov. 26, 2013, 54 pp. |
Prosecution History from U.S. Appl. No. 14/198,130, dated Mar. 25, 2014 through Aug. 17, 2015, 63 pp. |
Number | Date | Country | |
---|---|---|---|
20160129270 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14198130 | Mar 2014 | US |
Child | 14972431 | US | |
Parent | 12829187 | Jul 2010 | US |
Child | 14198130 | US | |
Parent | 11541890 | Oct 2006 | US |
Child | 12829187 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11150418 | Jun 2005 | US |
Child | 11541890 | US | |
Parent | 11150535 | Jun 2005 | US |
Child | 11150418 | US | |
Parent | 11517056 | Sep 2006 | US |
Child | 11150535 | US |