Systems and methods for closed-loop heating and regeneration of sorbents

Information

  • Patent Grant
  • 11207633
  • Patent Number
    11,207,633
  • Date Filed
    Wednesday, April 19, 2017
    7 years ago
  • Date Issued
    Tuesday, December 28, 2021
    2 years ago
Abstract
Some embodiments of the present disclosure present closed-loop heating, temperature-swing adsorption regenerative scrubbing systems and methods. In some embodiments, such embodiments include providing a scrubbing system including a sorbent material, a plurality of dampers for controlling airflow over and/or through the sorbent according to an absorption mode, a closed-loop heating mode and a flushing mode, first controlling of the plurality of dampers so as to establish flowing an indoor airflow over and/or through the adsorbent during the adsorption mode, second controlling of the plurality of dampers so as to establish a closed loop airflow during the closed-loop heating mode, and third controlling of the plurality of dampers so as to establish a purging airflow during the flushing mode.
Description
FIELD OF THE DISCLOSURE

Embodiments of the present disclosure generally relate to scrubbing air and contaminant removal therefrom.


BACKGROUND

Indoor air quality (IAQ) is an important consideration for numerous human-occupied spaces including buildings, residential homes, vehicles and other closed spaces occupied by humans. In part, IAQ is affected by various gas contaminants, meaning molecular species that are found indoors at a concentration higher than in natural atmospheric air. Examples of such indoor gas contaminants include carbon dioxide (CO2), carbon monoxide, volatile organic compounds (VOCs) including aldehydes, radon, inorganic compound gases, and even ozone. It is desirable to remove some of these contaminants so as to achieve a better environment for the occupants of the space. One important method of cleaning molecular contaminants from indoor air is the use of scrubbers with regenerable sorbents. These are materials that under certain conditions or temperature, pressure and contaminant concentration capture contaminant molecules (adsorption), also referred to as the adsorbates or the adsorbate species; and in other conditions can release the adsorbates (desorption, outgassing, or regeneration which is used interchangeably herein), thus enabling extended use in a cyclical pattern or adsorption and regeneration, known as a swing adsorption cycle. The “swing” refers to the change in conditions that induced the transition from adsorption to desorption.


In a typical scrubbing application, adsorption is achieved in the scrubber by streaming incoming ambient air through one or more beds of permeable adsorbent material that are placed in the scrubber. After some time, the adsorbent begins to saturate and loses its adsorptive properties, at which point it undergoes regeneration.


In conventional temperature swing adsorption (TSA) and temperature/concentration swing adsorption (TCSA), regeneration is achieved by a combination of heating a sorbent material and flushing it with a purge gas. The heating of the sorbent induces desorption, also referred to as evaporation or outgassing of the adsorbates, further enabled by the flow of purge gas to maintain a low concentration of the contaminant species in the vicinity of the sorbent. Without the flow of gas, the desorption process is suppressed by increasing concentration of the contaminant in the ambient surrounding of the sorbent, which is why the constant flow of the purge gas is essential for effective regeneration.


In some embodiments, the heating of the sorbent may be achieved indirectly, by heating the incoming purge gas, as it may be more difficult to apply heat directly to the sorbent itself. In this scenario, the purge gas serves two functions: heating the sorbent and carrying away the contaminant molecules as they evaporate off of the sorbent.


This form of regeneration requires a substantial amount of energy to continually heat up large amounts of incoming purge gas. Additionally, long cool-down time may be necessary after regeneration before the sorbent can be put back to work as an effective adsorbing agent.


SUMMARY OF SOME OF THE EMBODIMENTS

In some embodiments, a close-loop heating, temperature-swing adsorption scrubbing system including a regenerative sorbent material, a fan, a heater, a first inlet having a controllable damper and configured to receive indoor air, a first outlet having a controllable damper and configured to return indoor air that has flowed over and/or through the sorbent, a second outlet having a controllable damper and configured to expel a purging airflow to an external environment, and at least one bypass conduit having a bypass damper and configured to establish a closed loop airflow between the fan, the heater and the sorbent, where the bypass damper is configured to control an airflow in the bypass conduit. The system also includes a controller configured to control the bypass damper, the fan, the heater, and the inlet and outlet dampers so as to allow the system to operate in an adsorption mode, where:

    • the first inlet damper is open, the bypass damper is closed, the first outlet damper is open, the second outlet damper is closed, the heater is off, and one or more adsorbates in the indoor air are absorbed by the sorbent;


      a closed-loop heating mode, where:
    • the first inlet damper is closed, the bypass damper is open, the first outlet damper is closed, the second outlet damper is closed, the heater is on, and trapped air within the closed loop is circulated by the fan over the heater to heat the air and then over and/or through the sorbent to heat the sorbent;


      and a flushing mode, where:
    • the first outlet damper is closed, the second outlet damper is at least partially open, the purging airflow is directed over the heated sorbent to push or otherwise direct adsorbates released from the sorbent caused by heating and exhausted out the second outlet.


Such embodiments (and other embodiments) can include one and/or another of the following additional features, functionalities, structure, and/or clarifications, leading to still further embodiments of the present disclosure:

    • in the flushing mode, the damper for the first inlet is open and the purging airflow comprises indoor air;
    • a second inlet having a controllable damper and configured to receive air from an external air source, wherein in the flushing mode, the damper for the second inlet is open and the purging airflow comprises external air;
    • in the flushing mode, the bypass damper is at least partially open establishing a partial closed loop allowing a fraction Pe of the purging airflow to be exhausted from the second outlet, and a fraction of the Pr of the purging airflow to flow through the bypass conduit;
    • the flushing mode comprises plurality of flushing modes;
    • each flushing mode of the plurality of flushing modes is determined by changing at least one of: the amount each damper is open, the speed of the fan, and the duration that the heater is on;
    • the controller is further configured to control the bypass damper, the fan, the heater, and the inlet and outlet dampers so as to allow the system to operate additionally in a bleeding mode so as to maintain Pe below Pr, where Pe can be less than approximately 80%, less than approximately 50%, or less than approximately 20%,
    • and
    • the purging airflow is indoor air or outdoor air.


In some embodiments, a closed-loop heating, temperature-swing adsorption regenerative scrubbing method is provided and includes providing a scrubbing system including a sorbent material, a plurality of dampers for controlling airflow over and/or through the sorbent according to an absorption mode, a closed-loop heating mode and a flushing mode, first controlling of the plurality of dampers so as to establish flowing an indoor airflow over and/or through the sorbent during the adsorption mode, second controlling of the plurality of dampers so as to establish a closed loop airflow during the closed-loop heating mode, and third controlling of the plurality of dampers so as to establish a purging airflow during the flushing mode.


In some embodiments, an sorbent regeneration method for regenerating a sorbent in a temperature swing adsorption cycle and includes during a closed-loop heating phase, recirculating a closed volume of air over and/or through the sorbent while concurrently heating the recirculating air such that the temperature of the sorbent is gradually increased, the closed volume of air being recirculated for a predetermined duration or until an required sorbent regeneration temperature is reached, and during a purge phase, flowing air from an external air source over and/or through the heated sorbent and exhausting the air to the external environment thereafter, wherein at least one adsorbate species that has previously been adsorbed by the sorbent is removed.


Such embodiments (and other embodiments) can include one and/or another of the following additional features, functionalities, structure, and/or clarifications, leading to still further embodiments of the present disclosure:

    • the closed-loop heating phase and purge phase are repeated,
    • during the purge phase, a fraction Pr of the air flowing over and/or through the sorbent is recirculated in an immediate subsequent closed-loop phase and the complementary fraction Pe is exhausted, where Pe is less than approximately 80%, less than approximately 50%, or less than approximately 20%,
    • and
    • the external air source is indoor air or outdoor air.


These and other embodiments, objects and advantages will be even more understood by reference to the accompanying drawings and detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the invention. The drawings are intended to illustrate major features of the exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements, and are not drawn to scale.



FIG. 1A is an illustration of a scrubber configured with a closed loop system constructed and operative according to an embodiment of the present disclosure;



FIGS. 1B-1D are each a schematic illustration of an operating mode of a closed loop system according to an embodiment of the present disclosure; and



FIG. 2 is a schematic illustration of an operating mode of a closed loop system according to an embodiment of the present disclosure.





DETAILED DESCRIPTION OF SOME OF THE EMBODIMENTS

In the following description, various aspects of the present invention will be described with reference to different embodiments. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well-known features may be omitted or simplified in order not to obscure the present invention.


In some embodiments, a controllable closed loop for gas circulation creates a multi-step regeneration sequence that separates the heating of the sorbent from the flushing of the adsorbate. FIG. 1A shows a scrubber within a system for scrubbing gas contaminants from air using temperature swing adsorption with partial closed loop regeneration, thus configured. The scrubber may comprise an inlet for indoor air 210 with a corresponding damper 211, an inlet for purge gas 220 with a corresponding damper 221, an outlet for cleaned indoor air 230 with a corresponding damper 231, an outlet for purge gas (or exhaust) 240 with a corresponding damper 241, a sorbent section 250, a fan 260, and a heating coil for regeneration 270. According to some embodiments, the scrubber may be further configured with a closed loop bypass conduit 280 and a bypass damper 281. There may be further provided an electronic controller 290 that can modify the position of the bypass damper 281, as well as control the fan 260, the heater 270 and the other additional dampers. The electronic controller 290 may be positioned within the scrubber or external thereto and in communication therewith. The sorbent section 250 may comprise a sorbent material (also referred to as an “adsorbent material”). An exemplary sorbent material may be a solid support material supporting an amine-based compound, such as disclosed in applicant's PCT application PCT/US12/38343, which is incorporated herein by reference in its entirety. Other sorbent materials include, but are not limited to, granular adsorbent particles, clay-based adsorbents, carbon, activated carbon, zeolites, natural zeolite, activated charcoal, molecular sieves, silica, silica gel, porous silica, alumina, porous alumina, titanium oxide, carbon fibers, porous polymers, polymer fibers and metal organic frameworks.



FIG. 1B shows the scrubber operating in adsorption phase of a TSA cycle. This is achieved by opening damper 211 and 231, while the fan urges air to enter through inlet 210 and exit through outlet 230.


Regeneration occurs in several steps. In some embodiments, a first step is shown in FIG. 1C. This step—which can be called “closed loop heating mode”—all the external dampers including 211, 221, 231 and 241 are closed, and the bypass damper 281 is open. The fan 260 is operating and the heating coil 270 is heated. The air inside the scrubber is recirculated in a closed loop, through the sorbent, while the heating coil 270 or other heating device may heat the circulating air. This means that a small volume of gas is heated and kept warm while most of the heat is utilized to warm the sorbent itself, rather than a constant stream of purge gas. In some embodiments, the purge gas comprises indoor air and/or outdoor air or fresh air.


As long as the external dampers are closed and air is recirculating, the evaporating adsorbate is not removed from the air volume and thus the concentration of adsorbate species in the circulating air increases, to the point that it hinders further evaporation. In other words, the sorbent temperature increases but much of the adsorbate remains on the surface of the sorbent.


In some embodiments, as seen in FIG. 1D, once a target temperature is reached, the system switches to an open mode, or a “flushing” mode, by opening the exhaust outlet damper 241 and the purge inlet 221 and closing the bypass damper 281 while the fan continues to operate. This causes incoming purge gas to flow through the sorbent and directly to an exhaust. During this phase, adsorbate continues to outgas while being carried away. If the purge gas is kept warm, the sorbent stays warm and outgassing continues while the adsorbate is depleted from the sorbent. Thus in some embodiments, the heating coil 270 is maintained hot during the first part of the flushing mode.


In some embodiments, during the open flushing mode the heater may be turned off. As a result, the fresh purge gas is not kept warm, the sorbent gradually cools. Initially the sorbent may continue outgassing its adsorbates; at some point, the outgassing subsides and eventually stops, whether because it is depleted or because the sorbent temperature has decreased.


In some embodiments, if the sorbent cools too quickly, the system can be programmed to switch back to closed loop heating mode and then again to flush mode, and do so multiple times until sufficient amount of adsorbate has been successfully removed from the sorbent. A temperature sensor (not shown) can be installed inside the scrubber to monitor the temperature. Its reading is provided to control circuit that controls the dampers, the fan and the heater, and the circuit is programmed to maintain the desirable duration and temperature of the various phases of the regeneration process.


In designing the closed loop regeneration there is a tradeoff between, on the one hand, maintaining the sorbent without using too much heating power—which requires less fresh purge gas and less exhaust—and on the other hand, removing the evaporated adsorbates from the vicinity of the sorbent so that they do not impede further evaporation or outgassing.


Some embodiments utilize hybrid regeneration to address this tradeoff by introducing partial closed loop circulation. As seen in FIG. 2, partial closed loop is implemented by partially or fully opening the inlet damper 221, the outlet damper 241, and also partially or fully opening the bypass damper 281. In partial-loop mode, while a stream of gas flows through the sorbent, part of the stream proceeds towards the outlet/exhaust 240, while the remainder is diverted back through the bypass 280, which means that it returns to the fan 260 and the sorbent 250, passing through the heating element 270 on the way.


The returning purge gas is also augmented by a certain amount of fresh purge gas, whereby the two are mixed, heated (if the heater is on) and then forced to flow through the sorbent. The amount of fresh purge gas naturally equals the amount of exhaust, to balance the net air volume of the scrubber.


In this hybrid or partial closed loop mode, the total airflow through the sorbent is a combination of fresh purge gas with recirculating gas returning through the closed-loop bypass 280. The ratio of exhaust to return air (namely recirculated air), which is determined by the partial or complete opening of dampers along each of the two possible paths, can be modified by controlling the mechanical position of the dampers. In some embodiments, variably controlled dampers are configured and controlled by the electronic control circuits so achieve the desired operating conditions at different stages of the regenerating procedure.


The total airflow comprises a certain percentage Pe of exhaust and a complementary percentage Pr of recirculation, where (by definition) Pe+Pr=100%. It is noted that Pe also represents the percentage of fresh incoming purge gas. As explained above, these percentages can be changed by modifying the positioning of the exhaust damper 241, the inlet damper 221, and/or the bypass damper 281.


When Pe is small compared with Pr, the load on the heating element is small since most of the circulating air has already been heated. However, the rate of dilution of the circulating air is also lower and there could be greater buildup of adsorbate concentration in the circulating air.


In contrast, higher Pe relative to Pr keeps the purge gas more diluted, namely lower adsorbate concentration, but typically requires more heat to maintain its temperature or, alternatively, causes a gradual cool down of the sorbent. A low exhaust ratio, namely low Pe mode, may be referred to as a “bleeding” mode, implying that a small fraction of the recirculating air is “bleeding out” to the exhaust, whereas the majority is recirculated. In some embodiments, a bleeding mode comprises less than 10% exhaust, which implies more than 90% recirculated. In other embodiments, a bleeding mode comprises less than 50% exhaust. In other embodiments, a bleeding mode comprises less than 20% exhaust. In other conditions, the exhaust percentage can be much higher. In some embodiments exhaust exceeds 50%. In some embodiments, exhaust exceeds 80%. In some embodiments, the bleeding mode is enabled by configuring the dampers so as to maintain Pe substantially below Pr.


In some embodiments, regeneration in a closed-loop enabled scrubber comprises a sequence of steps or stages, each characterized by the operational mode of the various dampers, the heater and the fan. In one embodiment, an optimal regeneration sequence may comprise five steps, as follows, in a non-limiting example.


Step 1: Closed-loop heating for 20 minutes, wherein the sorbent approaches a target temperature of 60° C.


Step 2: Bleeding 10% of circulation, heater still on to maintain temperature of 60° C.


Step 3: Bleeding 20% of circulation, heater still on (more dilution required as evaporation rate declines, making evaporation more sensitive to ambient adsorbate concentration).


Step 4: Bleeding 30% of circulation, heater off, slow cool down begins while still outgassing.


Step 5: Open loop purge, bypass damper closed, accelerating cool down while extracting remaining amount of adsorbate.


Another control parameter in regeneration is the total flow, which is controlled by the fan and can be modified by use of a variable speed fan. More flow generally uses more energy but flushes the sorbent more effectively and cools down faster. Flow can be described in terms of absolute rate e.g. CFM or liters per second, or in terms of % (i.e. ratio) of maximum fan speed.


Overall, a regeneration sequence comprises a series of steps or phases, each step may be characterized by:


a) Duration


b) Damper settings, e.g. in terms of % opening relative to fully opened position for each damper


c) Heater setting (typically on/off or a thermostat feedback based on the gas temperature).


d) In case of variable speed fan, the fan speed can be one of the settings of each phase Exemplary regeneration sequences are shown in Tables 1 and 2.


Table 1 shows an exemplary regeneration sequence:













TABLE 1





Step
Duration
Fan speed
Exhaust (%)
Heater







Preheat (closed)
10 min
100%
 0%
Max


Bleed 1 (partial)
15 min
 60%
 20%
Set point 60° C.


Bleed 2 (partial)
10 min
 60%
 40%
Set point 60° C.


Purge (open)
 5 min
 80%
100%
Off


Cool down (open)
 5 min
100%
100%
Off










Table 2 shows another exemplary regeneration sequence:













TABLE 2





Step
Duration
Fan speed
Exhaust (%)
Heater







Preheat (closed)
 5 min
100%
 0%
Set point 60° C.


Bleed (partial)
20 min
100%
10%
Set point 60° C.


Purge (open)
10 min
100%
20%
Off









While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be an example and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto; inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure. Some embodiments may be distinguishable from the prior art for specifically lacking one or more features/elements/functionality (i.e., claims directed to such embodiments may include negative limitations).


In addition, various inventive concepts may be embodied as one or more methods, of which an example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.


Any and all references to publications or other documents, including but not limited to, patents, patent applications, articles, webpages, books, etc., presented anywhere in the present application, are herein incorporated by reference in their entirety. Moreover, all definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of” “only one of” or “exactly one of” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims
  • 1. A close-loop heating, temperature-swing adsorption scrubbing system comprising: a regenerative sorbent material;a fan;a heater;a first inlet having a controllable damper and configured to receive indoor air;a first outlet having a controllable damper and configured to return indoor air that has flowed over and/or through the sorbent,a second outlet having a controllable damper and configured to expel a purging airflow to an external environment;at least one bypass conduit having a bypass damper and configured to establish a closed loop airflow between the fan, the heater and the sorbent, wherein the bypass damper is configured to control an airflow in the bypass conduit;a controller configured to control the bypass damper, the fan, the heater, and the first inlet and first and second outlet dampers so as to allow the system to operate in: an adsorption mode, wherein: the first inlet damper is open, the bypass damper is closed, first outlet damper is open, the second outlet damper is closed, the heater is off, and one or more adsorbates in the indoor air are absorbed by the sorbent;a closed-loop heating mode, wherein: the first inlet damper is closed, the bypass damper is open, the first outlet damper is closed, the second outlet damper is closed, the heater is on, and trapped air within the closed loop is circulated by the fan over the heater to heat the air and then over and/or through the sorbent to heat the sorbent; anda flushing mode, wherein: the first outlet damper is closed, the second outlet damper is at least partially open, the purging airflow is directed over the heated sorbent to push or otherwise direct adsorbates released from the sorbent caused by heating and exhausted out the second outlet.
  • 2. The system of claim 1, wherein in the flushing mode, the first inlet damper is open and the purging airflow comprises indoor air.
  • 3. The system of claim 1, further comprising a second inlet having a controllable second inlet damper and configured to receive air from an external air source, wherein in the flushing mode, the second inlet damper is open and the purging airflow comprises external air.
  • 4. The system of claim 1, wherein in the flushing mode, the bypass damper is at least partially open establishing a partial closed loop allowing a fraction Pe of the purging airflow to be exhausted from the second outlet, and a fraction Pr of the purging airflow to flow through the bypass conduit.
  • 5. The system of claim 1, wherein the flushing mode comprises a plurality of flushing modes.
  • 6. The system of claim 5, wherein each flushing mode of the plurality of flushing modes is determined by changing at least one of: the amount each damper is open, the speed of the fan, and the duration that the heater is on.
  • 7. The system of claim 4, wherein the controller is further configured to control the bypass damper, the fan, the heater, and the first inlet damper and first and second outlet dampers so as to allow the system to operate additionally in a bleeding mode so as to maintain Pe below Pr.
  • 8. The system of claim 4, wherein Pe is less than 80%.
  • 9. The system of claim 4, wherein Pe is less than 50%.
  • 10. The system of claim 4, wherein Pe is less than 20%.
  • 11. The system of claim 1, wherein the purging airflow is indoor air or outdoor air.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a 35 U.S.C. § 371 national stage entry of PCT/US2017/028444, filed Apr. 19, 2017, titled “Systems and Methods for Closed-Loop Heating and Regeneration of Sorbents”, which claims priority to U.S. Provisional Patent Application No. 62/324,349, entitled “Partial Closed Loop Regeneration,” filed Apr. 19, 2016, which is incorporated by reference herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/028444 4/19/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2017/184780 10/26/2017 WO A
US Referenced Citations (250)
Number Name Date Kind
1522480 Allen Jan 1925 A
1836301 Bechthold Dec 1931 A
2633928 Chamberlain Apr 1953 A
3042497 Johnson et al. Jul 1962 A
3107641 Haynes Oct 1963 A
3344050 Mayland et al. Sep 1967 A
3511595 Fuchs May 1970 A
3594983 Yearout Jul 1971 A
3619130 Ventriglio et al. Nov 1971 A
3702049 Morris, Jr. Nov 1972 A
3751848 Ahlstrand Aug 1973 A
3751878 Collins Aug 1973 A
3795090 Barnebey Mar 1974 A
3808773 Reyhing et al. May 1974 A
3885927 Sherman et al. May 1975 A
3885928 Wu May 1975 A
4182743 Rainer et al. Jan 1980 A
4228197 Means Oct 1980 A
4249915 Sirkar et al. Feb 1981 A
4292059 Kovach Sep 1981 A
4322394 Mezey et al. Mar 1982 A
4325921 Aiken et al. Apr 1982 A
4409006 Mattia Oct 1983 A
4433981 Slaugh et al. Feb 1984 A
4451435 Hölter et al. May 1984 A
4472178 Kumar et al. Sep 1984 A
4530817 Hölter et al. Jul 1985 A
4551304 Holter et al. Nov 1985 A
4559066 Hunter et al. Dec 1985 A
4711645 Kumar et al. Dec 1987 A
4810266 Zinnen et al. Mar 1989 A
4816043 Harrison Mar 1989 A
4863494 Hayes Sep 1989 A
4892719 Gesser Jan 1990 A
4917862 Kraw et al. Apr 1990 A
4976749 Adamski et al. Dec 1990 A
4987952 Beal et al. Jan 1991 A
5046319 Jones Sep 1991 A
5087597 Leal et al. Feb 1992 A
5109916 Thompson May 1992 A
5137548 Grenier et al. Aug 1992 A
5149343 Sowinski Sep 1992 A
5186903 Cornwell Feb 1993 A
5194158 Matson Mar 1993 A
5221520 Cornwell Jun 1993 A
5231063 Fukumoto et al. Jul 1993 A
5281254 Birbara et al. Jan 1994 A
5290345 Osendorf et al. Mar 1994 A
5292280 Janu et al. Mar 1994 A
5322473 Hofstra et al. Jun 1994 A
5352274 Blakley Oct 1994 A
5376614 Birbara et al. Dec 1994 A
5389120 Sewell et al. Feb 1995 A
5407465 Schaub et al. Apr 1995 A
5443625 Schaffhausen Aug 1995 A
5464369 Federspiel Nov 1995 A
5471852 Meckler Dec 1995 A
5492683 Birbara et al. Feb 1996 A
5584916 Yamashita et al. Dec 1996 A
5614000 Kalbassi et al. Mar 1997 A
5646304 Acharya et al. Jul 1997 A
5672196 Acharya et al. Sep 1997 A
5675979 Shah Oct 1997 A
5702505 Izumi et al. Dec 1997 A
5707005 Kettler et al. Jan 1998 A
5827355 Wilson Oct 1998 A
5869323 Horn Feb 1999 A
5876488 Birbara et al. Mar 1999 A
5904896 High May 1999 A
5948355 Fujishima et al. Sep 1999 A
5964927 Graham et al. Oct 1999 A
5984198 Bennett et al. Nov 1999 A
6024781 Bülow et al. Feb 2000 A
6027550 Vickery Feb 2000 A
6102793 Hansen Aug 2000 A
6113674 Graham et al. Sep 2000 A
6120581 Markovs et al. Sep 2000 A
6123617 Johnson Sep 2000 A
6187596 Dallas et al. Feb 2001 B1
6254763 Izumi et al. Jul 2001 B1
6280691 Homeyer et al. Aug 2001 B1
6364938 Birbara et al. Apr 2002 B1
6375722 Henderson et al. Apr 2002 B1
6402809 Monereau et al. Jun 2002 B1
6428608 Shah et al. Aug 2002 B1
6432367 Munk Aug 2002 B1
6432376 Choudhary et al. Aug 2002 B1
6533847 Seguin et al. Mar 2003 B2
6547854 Gray et al. Apr 2003 B1
6605132 Fielding Aug 2003 B2
6623550 Dipak et al. Sep 2003 B2
6711470 Hartenstein et al. Mar 2004 B1
6726558 Meirav Apr 2004 B1
6773477 Lindsay Aug 2004 B2
6796896 Laiti Sep 2004 B2
6797246 Hopkins Sep 2004 B2
6866701 Meirav Mar 2005 B2
6908497 Sirwardane Jun 2005 B1
6916239 Siddaramanna et al. Jul 2005 B2
6916360 Seguin et al. Jul 2005 B2
6930193 Yaghi et al. Aug 2005 B2
6964692 Gittleman et al. Nov 2005 B2
6974496 Wegeng et al. Dec 2005 B2
7288136 Gray et al. Oct 2007 B1
7407533 Steins Aug 2008 B2
7407633 Potember et al. Aug 2008 B2
7449053 Hallam Nov 2008 B2
7472554 Vosburgh Jan 2009 B2
7645323 Massenbauer-Strafe et al. Jan 2010 B2
7662746 Yaghi et al. Feb 2010 B2
7666077 Thelen Feb 2010 B1
7802443 Wetzel Sep 2010 B2
7846237 Wright et al. Dec 2010 B2
7891573 Finkam et al. Feb 2011 B2
8157892 Meirav Apr 2012 B2
8210914 McMahan et al. Jul 2012 B2
8317890 Raether et al. Nov 2012 B2
8398753 Sergi et al. Mar 2013 B2
8491710 Meirav Jul 2013 B2
8690999 Meirav et al. Apr 2014 B2
8734571 Golden et al. May 2014 B2
9316410 Meirav et al. Apr 2016 B2
9328936 Meirav et al. May 2016 B2
9399187 Meirav et al. Jul 2016 B2
9566545 Meirav et al. Feb 2017 B2
9802148 Meirav et al. Oct 2017 B2
9919257 Meirav et al. Mar 2018 B2
9939163 Meirav et al. Apr 2018 B2
9950290 Meirav et al. Apr 2018 B2
9976760 Meirav et al. May 2018 B2
9987584 Meirav et al. Jun 2018 B2
10046266 Meirav et al. Aug 2018 B2
10086324 Meirav Oct 2018 B2
10281168 Meirav et al. May 2019 B2
10525401 Meirav et al. Jan 2020 B2
10675582 Meirav et al. Jun 2020 B2
10730003 Meirav Aug 2020 B2
10765990 Meirav et al. Sep 2020 B2
10792608 Meirav et al. Oct 2020 B2
10850224 Meirav et al. Dec 2020 B2
10913026 Meirav et al. Feb 2021 B2
20010021363 Poles et al. Sep 2001 A1
20010054415 Hanai et al. Dec 2001 A1
20020056373 Fielding May 2002 A1
20020078828 Kishkovich et al. Jun 2002 A1
20020083833 Nalette et al. Jul 2002 A1
20020147109 Branover et al. Oct 2002 A1
20020183201 Barnwell et al. Dec 2002 A1
20020193064 Michalakos et al. Dec 2002 A1
20030037672 Sircar Feb 2003 A1
20030041733 Sequin et al. Mar 2003 A1
20030097086 Gura May 2003 A1
20030188745 Deas et al. Oct 2003 A1
20040005252 Siess Jan 2004 A1
20040020361 Pellegrin Feb 2004 A1
20040069144 Wegeng et al. Apr 2004 A1
20040118287 Jaffe et al. Jun 2004 A1
20050133196 Gagnon et al. Jun 2005 A1
20050147530 Kang et al. Jul 2005 A1
20050191219 Uslenghi et al. Sep 2005 A1
20050262869 Tongu et al. Dec 2005 A1
20050284291 Alizadeh-Khiavi et al. Dec 2005 A1
20050288512 Butters et al. Dec 2005 A1
20060032241 Gontcharov et al. Feb 2006 A1
20060054023 Raetz et al. Mar 2006 A1
20060079172 Fleming et al. Apr 2006 A1
20060112708 Reaves Jun 2006 A1
20060148642 Ryu et al. Jul 2006 A1
20060225569 Schmidt et al. Oct 2006 A1
20060236867 Neary Oct 2006 A1
20060249019 Roychoudhury et al. Nov 2006 A1
20080119356 Ryu et al. Mar 2008 A1
20080078289 Sergi et al. Apr 2008 A1
20080127821 Noack et al. Jun 2008 A1
20080135060 Kuo et al. Jun 2008 A1
20080173035 Thayer et al. Jul 2008 A1
20080182506 Jackson et al. Jul 2008 A1
20080210768 You Sep 2008 A1
20080216653 Paton-Ash et al. Sep 2008 A1
20080293976 Olah et al. Nov 2008 A1
20090000621 Haggblom et al. Jan 2009 A1
20090044704 Shen et al. Feb 2009 A1
20090071062 Hedman Mar 2009 A1
20090120288 Lackner et al. May 2009 A1
20090188985 Scharing et al. Jul 2009 A1
20090214902 Pelman Aug 2009 A1
20090220388 Monzyk et al. Sep 2009 A1
20090260372 Skinner et al. Oct 2009 A1
20100076605 Harrod et al. Mar 2010 A1
20100154636 Liu et al. Jun 2010 A1
20100224565 Dunne et al. Sep 2010 A1
20100254868 Obee et al. Oct 2010 A1
20100262298 Johnson et al. Oct 2010 A1
20100275775 Griffiths et al. Nov 2010 A1
20100278711 Find Nov 2010 A1
20110064607 Hedman Mar 2011 A1
20110079143 Marotta et al. Apr 2011 A1
20110085933 Mazyek et al. Apr 2011 A1
20110146494 Desai et al. Jun 2011 A1
20110179948 Choi et al. Jul 2011 A1
20110189075 Wright et al. Aug 2011 A1
20110192172 Delacruz Aug 2011 A1
20110206572 McKenna et al. Aug 2011 A1
20110250121 Schmidt Oct 2011 A1
20110262327 Dillon et al. Oct 2011 A1
20110269919 Min et al. Nov 2011 A1
20110277490 Meirav Nov 2011 A1
20110296872 Eisenberger Dec 2011 A1
20120004092 Raatschen et al. Jan 2012 A1
20120012005 Burke Jan 2012 A1
20120052786 Clawsey Mar 2012 A1
20120076711 Gebald et al. Mar 2012 A1
20120129267 Daly May 2012 A1
20120137876 Miller Jun 2012 A1
20120148858 Wu Jun 2012 A1
20120152116 Barclay et al. Jun 2012 A1
20120168113 Karamanos Jul 2012 A1
20120216676 Addiego et al. Aug 2012 A1
20120222500 Riess et al. Sep 2012 A1
20120271460 Rognili Oct 2012 A1
20120272966 Ando et al. Nov 2012 A1
20120311926 Mittelmark Dec 2012 A1
20120321511 Lorcheim Dec 2012 A1
20130052113 Molins et al. Feb 2013 A1
20130291732 Meirav Nov 2013 A1
20130331021 Rodell Dec 2013 A1
20140013956 Ericson et al. Jan 2014 A1
20140242708 Lundgren Aug 2014 A1
20140298996 Meirav et al. Oct 2014 A1
20150078964 Meirav et al. Mar 2015 A1
20150258488 Meirav Sep 2015 A1
20150297771 Law et al. Oct 2015 A1
20160228811 Meirav et al. Aug 2016 A1
20160271556 Okano Sep 2016 A1
20160363333 Meirav et al. Dec 2016 A1
20170227241 Claesson et al. Aug 2017 A1
20180147526 Meirav et al. May 2018 A1
20180187907 Meirav et al. Jul 2018 A1
20180236396 Meirav et al. Aug 2018 A1
20180264396 Meirav et al. Sep 2018 A1
20180339261 Meirav et al. Nov 2018 A1
20180339262 Perl-Olshvang et al. Nov 2018 A1
20190186762 Meirav et al. Jun 2019 A1
20190247782 Meirav et al. Aug 2019 A1
20190262761 Meirav Aug 2019 A1
20190299154 Meirav et al. Oct 2019 A1
20190344211 Meirav et al. Nov 2019 A1
20190346161 Meirav et al. Nov 2019 A1
20200139294 Meirav et al. May 2020 A1
20200166235 Marra et al. May 2020 A1
Foreign Referenced Citations (72)
Number Date Country
2 640 152 Apr 2010 CA
2141873 Sep 1993 CN
2612444 Apr 2004 CN
2729562 Sep 2005 CN
1872388 Dec 2006 CN
101001767 Jul 2007 CN
101072620 Nov 2007 CN
200993448 Dec 2007 CN
101199913 Jun 2008 CN
101444693 Jun 2009 CN
101500704 Aug 2009 CN
101564634 Oct 2009 CN
201363833 Dec 2009 CN
201618493 Nov 2010 CN
102233217 Nov 2011 CN
202032686 Nov 2011 CN
202270445 Jun 2012 CN
103119376 May 2013 CN
102006048716 Feb 2008 DE
0 475 493 Mar 1992 EP
2 465 596 Jun 2012 EP
2 387 791 Oct 2012 ES
56-158126 Dec 1981 JP
59-225232 Dec 1984 JP
60-194243 Oct 1985 JP
02-092373 Apr 1990 JP
03-207936 Sep 1991 JP
05-161843 Jun 1993 JP
06-031132 Feb 1994 JP
08-114335 May 1996 JP
09-085043 Mar 1997 JP
2000-202232 Jul 2000 JP
2000-291978 Oct 2000 JP
2001-170435 Jun 2001 JP
2001-232127 Aug 2001 JP
3207936 Sep 2001 JP
2004-150778 May 2004 JP
2005-090941 Apr 2005 JP
2006-275487 Oct 2006 JP
2009-150623 Jul 2009 JP
2009-202137 Sep 2009 JP
2010-149086 Jul 2010 JP
2015-148227 Aug 2015 JP
WO 8805693 Aug 1988 WO
WO 0208160 Jan 2002 WO
WO 0212796 Feb 2002 WO
WO 2006016345 Feb 2006 WO
WO 2007128584 Nov 2007 WO
WO 2008155543 Dec 2008 WO
WO 2009126607 Oct 2009 WO
WO 2010091831 Aug 2010 WO
WO 2010124388 Nov 2010 WO
WO 2011114168 Sep 2011 WO
WO 2011146478 Nov 2011 WO
WO 2012071475 May 2012 WO
WO 2012100149 Jul 2012 WO
WO 2012120173 Sep 2012 WO
WO 2012134415 Oct 2012 WO
WO 2012145303 Oct 2012 WO
WO 2012152930 Nov 2012 WO
WO 2012158911 Nov 2012 WO
WO 2013012622 Jan 2013 WO
WO 2013074973 May 2013 WO
WO 2013106573 Jul 2013 WO
WO 2014015138 Jan 2014 WO
WO 2014047632 Mar 2014 WO
WO 2014078708 May 2014 WO
WO 2014153333 Sep 2014 WO
WO 2014176319 Oct 2014 WO
WO 2015042150 Mar 2015 WO
WO 2015123454 Aug 2015 WO
WO 2017019628 Feb 2017 WO
Non-Patent Literature Citations (22)
Entry
Ashrae. ANSI/Ashrae Standard 62.1-2013 Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA; 2013, 58 pages.
Bennett, D. et al. (Oct. 2011) Indoor Environmental Quality and Heating, Ventilating, and Air Conditioning Survey of Small and Medium Size Commercial Buildings: Field Study. California Energy Commission. CEC-500-2011-043, 233 pages.
Gesser, H.D., “The Reduction of Indoor Formaldehyde Gas and that Emanating from Urea Formaldehyde Foam Insulation,” Environmental International, 10:305-308 (1984).
Goeppert, A. et al., “Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent,” J. Am. Chem. Soc., 133:20164-20167 (2011).
Gray, M.L. et al., “Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide,” International Journal of Greenhouse Gas Control, 2:3-8 (2008).
Hodgson, A.T. and Levin, H. (Apr. 21, 2003) Volatile Organic Compounds in Indoor Air: A Review of Concentrations Measured in North America Since 1990. Report LBNL-51715, Berkeley, California: Environmental Energy Technologies Division, E.O. Lawrence Berkeley National Laboratory; 31 pages.
Hotchi, T. et al. (Jan. 2006) “Indoor Air Quahty Impacts of a Peak Load Shedding Strategy for a Large Retail Building” Report LBNL-59293. Berkeley, California: Environmental Energy Technologies Division, E.O. Lawrence Berkeley National Laboratory; 17 pages.
Jones, C.W., “CO2 Capture from Dilute Gases as a Component of Modern Global Carbon Management,” Annu. Rev. Chem. Biomol. Eng., 2:31-52 (2011).
Kang, D-H. et al. (Jun. 14, 2007) “Measurements of VOCs emission rate from building materials during bakeout with passive sampling methods” Clima 2007 WellBeing Indoors, REHVA World Congress, Jun. 10-14, 2007, Helsinki, Finland. O. Seppänen and J. Säteri (Eds.) FINVAC [online]. Retrieved from: http://www.inive.org/members_area/medias/pdf/Inive%5Cclima2007%5CA12%5CA12C1334.pdf, 6 pages.
Ma, C. et al., “Removal of low-concentration formaldehyde in air by adsorption on activated carbon modified by hexamethylene diamine,” Carbon, 49:2873-2875 (2011).
Nuckols, M. L. et al., Technical Manual: Design Guidelines for Carbon Dioxide Scrubbers. Naval Coastal Systems Center, NCSC Tech Man 4110, Revision A, Jul. 1985, 10 pages.
Offerman, F.J. et al. (1991) “A Pilot Study to Measure Indoor Concentrations and Emmission Rates of Polycyclic Aromatic Hydrocarbons” Indoor Air, 4:497-512.
Serna-Guerrero, R. et al., “Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies,” Adsorption, 16:567-575 (2010).
Sidheswaran, M.A. et al., “Energy efficient indoor VOC air cleaning with activated carbon filter (ACF) filters,” Building and Environment, 47:357-367 (2012).
United States Environmental Protection Agency, “Carbon Adsorption for Control of VOC Emissions: Theory and Full Scale System Performance”, EPA-450/3-88-012, Jun. 1988, 84 pages.
United States Environmental Protection Agency, “EPA Ventilation and Air Quality in Offices, Fact Sheet” Air and Radiation (6609J), 402-F-94-003, Revised Jul. 1990, 4 pages.
Wu, X. et al. (2011) “Volatile Organic Compounds in Small- and Medium-Sized Commercial Buildings in California. Suporting Information” Environ Sci Technol, 45(20):S1-S29 [online]. Retrieved from: https://pubs.acs.org/doi/suppl/10.1021/es202132u/suppl_file/es202132u_si_001.pdf.
Zorflex® ACC, 100% Activated Woven Carbon Cloth. Calgon Carbon Corporation, 2008, www.calgoncarbon.com, 2 pages.
Zorflex® ACC, 100% Activated Woven Carbon Cloth, Calgon Carbon Corporation, 2011, www.calgoncarbon.com, 2 pages.
International Preliminary Examination Report on Patentability dated Oct. 23, 2018, for International Patent Application No. PCT/US2017/028444, by Enverid Systems, Inc., 9 pages.
International Search Report and Written Opinion, dated Jul. 18, 2017, for PCT/US2017/28444, by Enverid Systems, Inc., 10 pages.
Pickenpaugh, Joseph G., Capt (Mar. 2013) Assessment of Potential Carbon Dioxide-Based Demand Control Ventilation System Performance in Single Zone Systems. Thesis, Air Force Institute of Technology. https://apps.dtic.mil/dtic/tr/fulltext/u2/a576145.pdf; 105 pages.
Related Publications (1)
Number Date Country
20190143258 A1 May 2019 US
Provisional Applications (1)
Number Date Country
62324349 Apr 2016 US