Systems and methods for closing portions of body tissue

Information

  • Patent Grant
  • 11497507
  • Patent Number
    11,497,507
  • Date Filed
    Sunday, February 18, 2018
    7 years ago
  • Date Issued
    Tuesday, November 15, 2022
    2 years ago
Abstract
A system for closing a blood vessel includes a housing having a proximal end and a distal end and configured to be held in the hand of a user, an elongate body extending from the distal end of the housing, a distal housing having a proximal end coupled to a distal end of the elongate body and having a cavity including an opening on a side of the distal housing, a lumen passing through the elongate body and terminating at the cavity of the distal housing and configured to couple to a vacuum source, a sensor carried by the distal housing adjacent the cavity and configured for identifying a blood vessel, wherein the lumen is configured to maintain a vacuum within the cavity when a probe having a vessel closure module is inserted within the lumen and the vessel closure module is within the cavity.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The field of the invention generally relates to a system for closing or modifying tissue in the body of a subject. Such tissue may include one or more blood vessels, such as a hemorrhoidal artery. More particularly, the present invention relates to methods and apparatus to treat hemorrhoids without subjecting patients to pain, or with minimal pain.


Description of the Related Art

Currently, several medical conditions require that a section of tissue be closed or ligated at a portion internal to the body of a subject. The location of the tissue may be within a naturally occurring duct, cavity, organ, or vessel of the body, or may be within an opening created in a surgical procedure.


SUMMARY OF THE INVENTION

In one embodiment of the present disclosure, a system for closing a blood vessel includes a housing having a proximal end and a distal end and configured to be held in the hand of a user, an elongate body extending from the distal end of the housing and configured for insertion into the rectum of a subject, a distal housing having a proximal end coupled to a distal end of the elongate body, and having a cavity communicating with an opening on a side of the distal housing, a lumen extending through the elongate body and communicating with the cavity of the distal housing, the lumen configured to couple to a vacuum source, a sensor carried by the distal housing at or adjacent the cavity and configured for identifying a blood vessel, and wherein the lumen is configured to allow the insertion and removal of a probe having a distally-located vessel closure module, and wherein the lumen is configured to maintain a vacuum within the cavity when the probe is within the lumen with the vessel closure module within the cavity.


In another embodiment of the present disclosure, a method for closing a blood vessel includes the steps of providing a system for closing a blood vessel including a housing having a proximal end and a distal end and configured to be held in the hand of a user, an elongate body extending from the distal end of the housing and configured for insertion into the rectum of a subject, a distal housing having a proximal end coupled to a distal end of the elongate body, and having a cavity therein, the cavity communicating with an opening on a side of the distal housing, a lumen extending through the elongate body and communicating with the cavity of the distal housing, the lumen configured to couple to a vacuum source, a sensor carried by the distal housing at or adjacent the cavity and configured for identifying a blood vessel, and wherein the lumen is further configured to allow the insertion and removal of a probe having a distally-located vessel closure module, and wherein the lumen is configured to maintain a vacuum within the cavity when the probe is within the lumen with the vessel closure module within the cavity, placing the distal housing within a internal structure of a subject, identifying at least partially with the sensor a blood vessel to be closed, inserting a first probe having a first vessel closure module into the lumen such that the first vessel closure module is at least partially within the cavity, coupling a vacuum source to the lumen, such that at least a portion of the blood vessel is pulled into the cavity, and at least partially closing the blood vessel with the first vessel closure module.


In still another embodiment of the present disclosure, a system for closing a blood vessel includes a clip having a first jaw and a second jaw, the first and second jaws configured to be movable with respect to each other between a closed state and an open state, each of the first and second jaws including a proximal end and a distal end, and having an aperture carried thereon and a first guiding feature at or adjacent the proximal end, wherein the clip is biased in the closed state, an elongate body configured for insertion adjacent a blood vessel within a subject, first and second pins, each pin having a first end coupled to the body and a free second end, the second end of the first pin and the second end of the second pin separated by a distance d2, wherein the aperture of the first jaw of the clip is configured to be slidably carried by at least the second end of the first pin and the aperture of the second jaw of the clip is configured to be slidably carried by at least the second end of the second pin, such that the clip is held in its open state, second and third guiding features carried by the body, the second guiding feature configured to interface with the first guiding feature of the first jaw of the clip and the third guiding feature configured to interface with the first guiding feature of the second jaw of the clip, and a displacement element movably coupled to the body and configured to change the relative displacement between the clip and the first and second pins in a first direction, so as to cause the aperture of the first jaw to disassociate with the second end of the first pin and the aperture of the second jaw to disassociate with the second end of the second pin allowing the clip to move towards its closed state, wherein movement of the clip towards its closed state causes the first guiding features of the first and second jaws to interface with the second and third guiding features to move the clip in relation to the body in a second direction different from the first direction.


In yet another embodiment of the present disclosure, a system for closing a blood vessel includes a clip having a first jaw and a second jaw, the first and second jaws configured to be movable with respect to each other between a closed state and an open state, each of the first and second jaws including a proximal end and a distal end, and having an aperture carried thereon and a first guiding feature at or adjacent the proximal end, wherein the clip is biased in the closed state, an elongate body configured for insertion adjacent a blood vessel within a subject, first and second pins, each pin having a first end coupled to the body and a free second end, the second end of the first pin and the second end of the second pin separated by a distance d2, wherein the aperture of the first jaw of the clip is configured to be slidably carried by at least the second end of the first pin and the aperture of the second jaw of the clip is configured to be slidably carried by at least the second end of the second pin, such that the clip is held in its open state, second and third guiding features carried by the body, the second guiding feature configured to interface with the first guiding feature of the first jaw of the clip and the third guiding feature configured to interface with the first guiding feature of the second jaw of the clip, and a displacement element movably coupled to the body and configured to change the relative displacement between the clip and the first and second pins in a first direction, so as to cause the aperture of the first jaw to disassociate with the second end of the first pin and the aperture of the second jaw to disassociate with the second end of the second pin allowing the clip to move towards its closed state, wherein movement of the clip towards its closed state is at least temporarily controlled by the interface between the second and third guiding features with the first guiding features of the first and second jaws, such that a distance between the distal ends of the first and second jaws decreases at a faster rate than a distance between the proximal ends of the first and second jaws.


In still another embodiment of the present disclosure, a system for closing a blood vessel includes a housing having a proximal end and a distal end and configured to be held in the hand of a user, an elongate body extending from the distal end of the housing and configured for insertion adjacent a blood vessel within a subject, a distal housing having a proximal end coupled to a distal end of the elongate body, and having a cavity contained therein, the cavity including an opening on a side of the distal housing, a lumen passing through the elongate body and terminating at the cavity of the distal housing, the lumen configured to couple to a vacuum source, a sensor carried by the distal housing adjacent the cavity and configured for identifying a blood vessel, and wherein the lumen is configured to allow the insertion and removal of a probe having a vessel closure module carried at its distal end, and wherein the lumen is configured to maintain a vacuum within the cavity when the probe is within the lumen and the vessel closure module is within the cavity.


In yet another embodiment of the present disclosure, a method for closing a blood vessel includes providing a system including a housing having a proximal end and a distal end and configured to be held in the hand of a user, an elongate body extending from the distal end of the housing and configured for insertion adjacent a blood vessel within a subject, a distal housing having a proximal end coupled to a distal end of the elongate body, and having a cavity contained therein, the cavity including an opening on a side of the distal housing, a lumen passing through the elongate body and terminating at the cavity of the distal housing, the lumen configured to couple to a vacuum source, wherein the lumen is configured to allow the insertion and removal of a probe having a vessel closure module carried at its distal end, and wherein the lumen is configured to maintain a vacuum within the cavity when the probe is within the lumen and the vessel closure module is within the cavity, and a sensor carried by the distal housing adjacent the cavity and configured for identifying a blood vessel, placing the distal housing within an internal structure of a subject, identifying at least partially with the sensor a blood vessel to be closed, inserting a first probe having a first vessel closure module into the lumen such that the first vessel closure module is at least partially within the cavity, coupling a vacuum source to the lumen, such that at least a portion of the blood vessel is pulled into the cavity, and at least partially closing the blood vessel with the first vessel closure module.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a clip application system according to an embodiment of the disclosure.



FIG. 2 is a detail view of the interior of a distal housing of the clip application system.



FIG. 3A is a perspective view of a clip according to an embodiment of the disclosure.



FIG. 3B is a perspective view of the clip of FIG. 3A applied to tissue of a patient to close a hemorrhoidal artery.



FIG. 4 is a block diagram of a clip application system according to an embodiment of the disclosure.



FIG. 5 is a view of the distal end of the clip application system.



FIG. 6 is a sectional view of the clip application system of FIG. 5, taken along line 6-6.



FIG. 7 is a detail view of the clip application system of FIG. 6, within circular area 7.



FIG. 8 is a detail view of the clip application system of FIG. 6, within oval area 8.



FIG. 9 is an exploded view of a blocking member within a distal end of the distal housing of the clip application system.



FIG. 10A is a perspective view of a locking element of the clip application system in a first position according to an embodiment of the disclosure.



FIG. 10B is a perspective view of the locking element in a second position.



FIG. 11 is a sectional view of the distal housing of the clip application system prior to actuating a clip.



FIG. 12 is a sectional view of the distal housing of the clip application system upon actuating a clip.



FIG. 13 is a cross-sectional view of the distal housing of the clip application system showing the location of the distal clip prior to actuating the distal clip.



FIG. 14 is an isolated view of the distal clip in relation to guiding features, according to an embodiment of the disclosure.



FIG. 15 is an elevation view of a system for closing a blood vessel according to an embodiment of the disclosure.



FIG. 16 is an elevation view of the system of FIG. 15 in use.



FIG. 17 is an elevation view of a system for closing a blood vessel according to an embodiment of the disclosure.



FIG. 18 is an elevation view of the system of FIG. 17 in use.



FIG. 19 is an elevation view of a system for closing a blood vessel according to an embodiment of the disclosure.



FIG. 20 is an elevation view of the system of FIG. 19 in use.



FIG. 21 is a flow chart of a method for closing a blood vessel according to an embodiment of the disclosure.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

The present invention relates to a system for closing or modifying tissue in the body of a subject. The system may be configured for applying one or more clips to tissue in the body of a subject. The system may alternatively be configured to incorporate other modes for closing the tissue of the patient, which do not include clips. The system may be configured to close a blood vessel, such as a hemorrhoidal artery, and may include one or more sensors for identifying the blood vessel. The one or more sensors may include ultrasound sensors configured to use Doppler sensing. The system may include the controlled application of a vacuum to pull tissue into a distal housing, so that one or more clips may be applied to the tissue.



FIG. 1 illustrates a clip application system 100 according to an embodiment of the disclosure. The clip application system 100 includes a housing 102 which is coupled to a distal housing 104 via a tubular shaft 106. The distal housing 104 has a distal end 108 and a proximal end 110, and the tubular shaft 106 has a distal end 112 and a proximal end 114. The housing 102 also has a distal end 116 and a proximal end 118. The distal end 112 of the tubular shaft 106 is coupled to the proximal end 110 of the distal housing 104 and the proximal end 114 of the tubular shaft 106 is coupled to the distal end 116 of the housing 102. The distal housing 104 is configured to be placed within a natural or artificial opening, duct, cavity, vessel, or organ of the body of a subject, for example, a patient. The distal housing 104 is in some embodiments configured to be inserted into the anus and rectum of a subject, for placement adjacent a blood vessel, such as a hemorrhoidal artery. The housing 102 is configured to be gripped by one or both hands of an operator or user. In some embodiments, the housing 102 may be gripped by a first hand of the user and a transverse extension 120 may be gripped by the second hand of the user, thus allowing controlled rotation of the housing 102, tubular shaft 106, and distal housing 104. In other embodiments, as described further herein, the tubular shaft 106 and distal housing 104 may be rotated in relation to the housing 102. Either way, the transverse extension 120 may comprise a transverse or partially transverse rod, and may be used as a visual indicator of the rotational orientation status of the distal housing 104 in relation to a particular portion of tissue. One or more depth markings 122 may be printed, cut, etched or otherwise placed on the tubular shaft 106, in order to serve as a visual depth indicator. The depth markings 122 may be used to determine or estimate the inserted depth of the distal housing 104 within the body of the subject.



FIG. 2 illustrates an underside 126 of the distal housing 104, which includes a cavity 124 configured to engage tissue via a vacuum pathway, which will be described later. For the application of vacuum, a tubing 128 (FIG. 1) extends from the housing 102 and is coupled to a connector 130, which in turn is configured to be coupled to a vacuum source. A vacuum button 132 is carried on the housing 102 and may be operated by the hand of the user (e.g., by the thumb) in order to selectively apply a vacuum. One or more clips 134a-d are carried by the distal housing 104, and are deliverable therefrom. Two ultrasound Doppler sensors 136, 138, carried within the cavity 124, are shown in FIG. 2, but any number of sensors may be used, including one, two, three, or more. In an alternative embodiment, the Doppler sensor 136, 138 may be replaced by other types of sensors, including infra-red, near infra-red, optical coherence tomography (OCT), or optical fiber imaging. A first Doppler sensor 136 is shown oriented toward the underside 126 of the distal housing 104. This Doppler sensor 136 may be used, for example, to locate an artery to close with one or more of the clips 134a-d. A second Doppler sensor 138 is shown oriented towards the interior of the cavity 124, and may be used to judge the effect of clip placement over a tissue mass that has been pulled into the cavity 124. The second Doppler sensor 138 may also be used to determine whether a blood vessel, such as an artery, has been successfully closed by the one or more clips 134a-d. Returning to FIG. 1, a trigger 140 is movably coupled to the housing 102 and is configured to deliver the one or more clips 134a-d. In some embodiments, the vacuum button 132 is coupled to the trigger 140. For example, the trigger 140 may be configured to not function when the vacuum button 132 is not depressed, and to function only when the vacuum button 132 is depressed. As another example, the vacuum button 132 may unlock a locking feature (of the trigger 140) when the vacuum button 132 is depressed.


A clip 134 is illustrated in a substantially closed state in FIG. 3A and in a partially closed state in FIG. 3B. The clip 134 comprises a base 142 having a proximal portion 144 and two opposing jaws 146, 148. In some embodiments, the clip 134 comprises a base 142 that comprises a metallic material configured to provide a biasing force. The metallic material may comprise a superelastic or shape-memory material such as a nickel titanium alloy (Nitinol). The base 142 includes ends 150 having locking features 152, which may comprise a bent or curved end, as shown, or in alternative embodiments, an otherwise enlarged end (ball, bead, cap, etc.). The locking features 152 are configured to snap within respective snap cavities 154. The locking feature 152 may permanently snap into the snap cavity 154 (i.e., not be removable) or may releasably snap into the snap cavity 154. Each jaw 146, 148 has a proximal end 156 and a distal end 158. The base 142 may be biased in a manner such that the clip 134 is in a normally substantially closed state or condition, as in FIG. 3A, such that when it is delivered over tissue, it is self-closing. The clip 134 is shown in FIG. 3B compressing tissue 160 so as to close the lumen 166 of a hemorrhoidal artery 162 at an occlusion region 164. In some embodiments, the distal ends 158 of the jaws 146, 148 include teeth 168a-c, which may be configured to engage each other when the clip is in a substantially closed state (FIG. 3A). For example, tooth 168c may be configured to fit within a gap 170 between teeth 168a and 168b. As seen in FIG. 3B, when the clip 134 is in the partially closed state or condition, the tooth 168c may not fully engage with the teeth 168a, 168b, but the teeth 168a-c may still serve to engage the tissue 160, for example, to steady or secure the clip 134 and maintain it in place. Arms 172 extending from the proximal portion 144 of the base 142 toward the ends 150 may at least partially be guided or encased within channels 174 in the jaws 146, 148. The proximal end 156 of each jaw 146, 148 may include guiding features 176, which will be described in more detail herein. Apertures 178, 180 in the jaws 146, 148 are also shown in FIGS. 3A and 3B, and will described in more detail herein. The apertures 178, 180 may comprise holes, grooves, slits, cavities, channels, or other features, substantially extending between a first side 182 and a second side 184 of each jaw 146, 148. The apertures 178, 180 may comprise holes which extend through the jaws 146, 148, as shown in FIGS. 3A and 3B, or may instead extend along an internal or external exterior of the jaws 146, 148. The jaws 146, 148 may be formed of a large number of different metallic or polymeric materials, including stainless steel, nitinol, nylon, ABS or polycarbonate. Apertures 180 and/or 178 may be configured to allow releasable engagement with a loading tool (not shown), which is configured to load one or more of the clips 134 in to the distal housing 104. The loading tool may be a hand-held device which is configured to releasably carry one or more of the clips 134.


Returning to FIG. 2, the clips 134a-d are shown within the cavity 124 of the distal housing 104 in a forced-open state. The clip application system 100 is configured to release the clips 134a-d (e.g., one at a time) over tissue so that they move toward their substantially closed state due to the bias in the base 142.


The clip application system 100 is illustrated in FIG. 4 with the connector 130 coupled to a control unit 200 comprising a vacuum source 202 and a Doppler console 204. Though in alternative embodiments, the vacuum source 202 and Doppler console 204 may be separate, in FIG. 4, they are shown integrated into the single control unit 200. In alternative embodiments, the vacuum source 202 may simply comprise a lockable, medium or large bore syringe, a vacuum bottle, or a hospital or clinic vacuum line. The vacuum source 202 may include a vacuum pump which can be coupled to the connector 130. The connector 130 includes an electrical connector 206 to the Doppler console 204, shown connector via one or more conductors 208. Turning to FIGS. 5-7, the electrical connector 206 is electrically coupled to the Doppler sensors 136, 138 via one or more cables 210 which extend through the interior of the clip application system 100. The Doppler console 204 supplies voltage via battery or wall outlet-based electricity to power the Doppler sensors 136, 138, and in turn receives signals from the Doppler sensors 136, 138. The Doppler console 204 (FIG. 4) may include a control panel 212 for operating the Doppler console 204 and the Doppler sensors 136, 138. The Doppler console 204 may include multiple channels, for example a first channel configured to connect with the signals related to Doppler sensor 136 and a second channel configured to connect with the signals related to Doppler sensor 138. A switch 214 on the control panel 212 is used to switch between the first channel and the second channel. In some embodiments, the switch 214 is an automatic switch or relay, that activates and selects the Doppler sensor 138 automatically whenever the vacuum or suction is applied (e.g., by depression of the vacuum button 132). The word “vacuum” used herein is not intended to mean a theoretically complete vacuum (where no molecules are present), but rather a generally negative pressure. Any of the controls on the control panel may be hard wired mechanical switches, or touch sensitive, or even voice-controlled. A loudspeaker 216 is configured to allow a user to listen to audio feedback which is proportional to returned Doppler signals. The double-ended arrows in FIG. 7 represent the bi-directional travel of ultrasound signals. A display 218 may also be configured to indicate information related to the operation of the Doppler console 204. A separate display may be used to monitor the condition of the vacuum source 202, or the display 218 itself may be configured to include this information.



FIG. 8 illustrates a detailed sectional view of the housing 102 and its components. Grips 220 on the exterior of the housing 102 are configured to allow the housing 102 to be gripped easily by the user's hand. In one gripping style, the user's palm is wrapped around an upper portion 222 of the housing, and one to three fingers are engaged with the grips 220. The user is now able to maintain the position of the housing 102, while having access to the vacuum button 132 with the thumb and to the trigger 140 with the index finger and/or other finger. With the connector 206 (FIG. 4) coupled to the vacuum source 202, and with the vacuum button 132 in a non-depressed state, as shown in FIG. 8, air surrounding the housing 102 is continuously aspirated into an opening 228 in the vacuum button 132 and into a vacuum channel 224 via pathway 226 (dashed line). Thus, no significant vacuum is applied to the cavity 124 of the distal housing 104. In use, the clip application system 100 may be inserted in this condition by the user into a duct, tract, etc. in the body of the subject and manipulated such that the cavity 124 of the distal housing 104 is placed in a desired location, for example, adjacent an artery. The switch 214 of the Doppler console 204 (FIG. 4) may be operated to assure that a particular Doppler sensor (e.g., Doppler sensor 136) is selected to sense the location of an artery which is desired for closure/occlusion. Then the desired location including target tissue is identified, the user may manipulate the housing using the transverse extension 120 and/or the depth markings 122 to rotate and or longitudinally displace the distal housing 104 so that the cavity 124 is adjacent the target tissue.


When the user desires to apply vacuum to force the target tissue into the cavity 124 of the distal housing 104, the user depresses the vacuum button 132 in direction A, causing a perimeter seal 230 coupled to the vacuum button 132 to seal onto the surface 232 of the housing 102. The perimeter seal 230 may comprise an o-ring, a gasket, or any other type of seal that effectively closes the external access of the opening 228. With the vacuum button 132 depressed and the perimeter seal 230 engaging the surface 232 of the housing 102, a vacuum is now applied to the cavity 124 of the distal housing 104, as shown in pathway 234 (dotted line) via the lumen 236 of the tubular shaft 106. Also, when the vacuum button 132 is depressed in direction A, a connecting element 238, secured to the vacuum button 132, is also displaced in direction A. One or more o-ring seals 240, or other seals, seal around the connecting element 238 to prevent unwanted internal leak paths. The connecting element 238 is secured to a locking member 242 which is thus also moved in the direction A. The outside of the locking member 242 is shown in FIGS. 10A and 10B, and includes an indentation 244 into which is fit a spring member 246. The spring member 246 extends within the indentation 244, and engages the housing 102 at its extreme end 297. The spring member 246 has a slight curve in its unstressed configuration (FIG. 10A), and will selectively bow (FIG. 10B) when a force F is placed on the locking member 242 (via the vacuum button 132 and the connecting element 238). Thus, the spring member 246 will cause the locking member 242 to return to the position of FIG. 10A when finger pressure is released from the vacuum button. When the vacuum button 132 is not depressed, an abutment 248 of the locking member 242 blocks longitudinal displacement of a first rack 250. The trigger 140 is attached in a cam relationship to the first rack 250 with a pin 252 of the first rack 250 engaging a slot 254 of the trigger 140. Pivot pin 256 rotatably couples the trigger 140 to the housing 102. Thus, when the abutment 248 of the locking member 242 blocks the longitudinal displacement of the first rack 250, the first rack 250 in turn blocks movement of the trigger 140. Thus, the trigger 140 is incapable of delivering any clips 134a-d unless a vacuum is applied to the cavity 124 of the distal housing 104 (via the depression of the vacuum button 132). This helps prevent any clips 134a-d being delivered when tissue is not pulled within the cavity 124 of the housing 104, thus increasing safety of the procedure.


When the user depresses the vacuum button 132 and thereby moves the abutment 248 of the locking member 242 to a position below the first rack 250, the longitudinal displacement of the first rack 250 is no longer blocked, as a relief 258 in the locking member 242 is now positioned adjacent the first rack 250. Thus, the user is now capable of depressing the trigger 140 in direction B (in relation to the pivot pin 256) to deliver one or more clips 134a-d, as will be described later. A spring 260 is contained in a recess 262 in the trigger 140, and has a first arm 264 which engages the trigger 140 and a second arm 266 which engages a surface 268 of the housing 102. Thus, when the user releases the depressed trigger 140, the trigger moves in a direction opposite of direction B, and returns to its original position. Referring to both FIG. 7 and FIG. 8, a proximal inner pushing tube 270 abuts a distal inner pushing tube 272 at an abutment location 274 within the tubular shaft 106, such that distal longitudinal movement (to the left in FIG. 8) of the proximal inner pushing tube 270 will push the distal inner pushing tube 272 in a distal direction within the tubular shaft 106. The proximal end 276 of the tubular shaft 106 is sealed within the housing 102 by a first o-ring 278, and an outer diameter surface 280 of the tubular shaft 106 is sealed with the housing 102 by a second o-ring 282, thus maintaining any vacuum applied within the tubular shaft 106 without leakage. The tubular shaft 106 is additionally bonded (adhesive, epoxy, welding, etc.) to the housing 102 so that the housing 102 and the tubular shaft 106 turn in unison. A distal cap 284 may be attached to the housing 102 in order to secure the tubular shaft 106 and its internal components together, and to allow them to be rotated (by virtue of the transverse extension 120) in relation to the housing 102. One of the distal cap 284 or the housing 102 may have a circumferentially extending male or female feature which is configured to engage with a female or male feature on the other of the distal cap 284 or the housing 102. For example, the distal cap 284 may include a circumferentially extending slot or groove and the housing 102 may include a pin that is configured to slide within the circumferentially extending groove. In some embodiments, the circumferentially extending groove extends less than a full rotation. For example, the groove may extend between about 180° and 355°, or between about 270° and about 355°, or between about 330° and about 355°. This final example allows almost a complete rotation of the distal housing 104 in relation to the housing 102. The proximal inner pushing tube 270 is coupled to a spring-loaded dual pawl 286 having a pin 288, a first pawl 290, and a second pawl 292. The spring-loaded dual pawl 286 may be constructed from a superelastic material (Nitinol, nickel titanium alloy). The pin 288 is inserted through a transverse hole 294 in the proximal inner pushing tube 270 so that the two pawls 290, 292 longitudinally displace in unison with the proximal inner pushing tube 270.


With the vacuum button 132 depressed and the desired tissue sucked into the cavity 124 of the distal housing 104 (which may be confirmed via the Doppler sensor 138), the user depresses the trigger 140 causing the first rack 250 to be moved distally. Movement of the first rack 250 in this distal direction causes engagement with the end of the first pawl 290 thus moving the first pawl 290 distally and, via engagement of the pin 288 in the transverse hole 294, also causing the proximal inner pushing tube 270 to be moved distally. A second rack 296 is rigidly secured to the housing 102 with first and second pins 298. As the first rack 250, the first pawl 290, and the proximal inner pushing tube 270 move distally, the second pawl 292 repeatedly slips (ratchets) over the second rack 296. The exterior surface 300 of the proximal inner pushing tube 270 is dynamically sealed to the housing 102 by an o-ring 302. As depicted in FIG. 8, the housing 102 is a clamshell design with two halves, and may include multiple gaskets 299 (or alternatively, adhesive, epoxy, or vacuum grease lines) to maintain vacuums within channels such as vacuum channel 224. The proximal inner pushing tube 270 thus pushes the distal inner pushing tube 272 distally within the tubular shaft 106. As shown in FIG. 7, the distal inner pushing tube 272 is bonded or molded to a frame 304. Alternatively, the contours and features of the frame 304 may be integral to the distal inner pushing tube 272. Still alternatively, the contours and features of the frame 304 may be separate from the distal inner pushing tube 272, and may be, for example, carried within the distal housing 104. A distal surface 306 on the distal inner pushing tube 272 abuts a proximal side 184 of the proximal clip 134d. As the distal inner pushing tube 272 moves distally in relation to the distal housing 104, the distal surface 306 pushes the proximal clip 134d which thus pushes the other clips 134c, 134b, 134a in a stack distally. Referring also to FIG. 9, a spring-loaded block 308 having a spring wire 310 extending therefrom is telescopically displaceable within a distal portion 312 of the distal housing 104. Initially, the spring wire 310 produces a biasing force f (FIG. 7) against the interior 314 of the distal portion 312 of the distal housing 104 which forces the proximal surface 316 of the spring-loaded block 308 against a distal side 182 of the distal clip 134a. This thus forces the apertures 178 (FIG. 3A) in the jaws 146, 148 of the entire stack of clips 134a-d to remain on pins 318, 320 (FIGS. 11-13) which extend from the housing 102. The proximal ends 322 of each pin 318, 320 are secured to the housing 102, while the distal ends 324 are free.


When the distal clip 134a is forced off of the distal ends 324 of the pins 318, 320 by the forward displacement of the distal surface 306 of the distal inner pushing tube 272, the distal side 182 of the distal clip 134a pushes against the proximal surface 316 of the spring-loaded block 308, thus forcing it forward into the interior 314 of the distal portion 312 of the distal housing 104 against the biasing force of the spring wire 310. Thus, the clips 134a-d and the spring-loaded block 308 are moved from the position illustrated in FIG. 11 to the position illustrated in FIG. 12. The distal clip 134a in FIG. 12 is able to exit the cavity 124 of the distal housing 104. Additionally, a pair of pins 326, 328 extend from the housing 102. The proximal ends 330 of each pin 326, 328 are secured to the housing 102, while the distal ends 332 are free. As shown in FIG. 13, the pins 326, 328 are not configured to pass through any aperture in the jaws 146, 148, but instead are configured to protect the teeth 168a-c of the jaws (FIG. 3B) and/or to protect tissue from being lacerated or punctured by the teeth 168a-c when the tissue is drawn into the cavity 124 of the distal housing 104 (e.g., by vacuum). In some embodiments, a pin 326, 328 may have a diameter or transverse dimension d which is greater than or approximately equal to a profile thickness p of the tooth (or other feature). In some embodiments, the distal ends 332 of the pins 326, 328 are at the same longitudinal extension (location) as the distal ends 324 of the pins 318, 320. Thus, when a clip 134 is pushed off of the pins 318, 320, the clip 134 is also longitudinally cleared from the pins 326, 328, allowing the clip to move from the cavity 124 of the distal housing 104, as clip 134a does in FIG. 12, in generally perpendicular direction D.


The clip 134a is pushed longitudinally (direction C in FIG. 12), causing it to clear the ends 324, 332 of the pins 318, 320, 326, 328 and then move in the generally perpendicular direction D. This is demonstrated by FIG. 13, which shows the clip 134a immediately prior to being pushed off of the ends 324, 332 of the pins 318, 320, 326, 328, and FIG. 14, which shows the clip 134a immediately after it has been pushed off of the ends 324, 332 of the pins 318, 320, 326, 328, and as it is being guided by guiding features 334, 336 of the frame 304. In FIG. 14, only the clip 134a and the frame 304 are depicted, in order to better demonstrate their dynamic relationship. In FIG. 13, prior to the release of the clip 134a, the pins 318, 320 hold the jaws 146, 148 such that the guiding features 176 are deeply engaged with the guiding features 334, 336 of the frame 304. When the clip 134a is released, as in FIG. 14, the base 142 begins to close, which brings the distal ends 158 of the jaws 146, 148 toward each other (arrows X1, X2). The guiding features 334, 336 momentarily maintain a separation between the proximal ends 156 of the jaws 146, 148, even as the clip 134a begins to move or eject (arrow y) in relation to the frame 304 (and in relation to the distal housing 104). Thus, the jaw 146 rotates in one direction (arrow Z1) in relation to the longitudinal axis 340 and the jaw 148 rotates in a substantially opposite direction (arrow Z2) in relation to the longitudinal axis 340. The rotational movement of each jaw 146, 148 causes a proximal tip 342 of each jaw 146, 148 to contact a bottom surface points 344a-b with normal force vectors (N1, N2). The summation of normal force vectors N1 and N2 has a net direction substantially equivalent to the direction of arrow y, thus ejecting the clip 134a away from the frame 304, and hence, away from the distal housing 104. Because the guiding features 334, 336 initially maintain a separation between the proximal ends 156 of the jaws 146, 148 while the distal ends 158 are closing, the clip 134a is able to more reliably embrace or encircle the target tissue that is within the cavity 124 of the distal housing 104, as the clip 134a begins it ejection. This better ensures sufficient closure of the tissue and of any blood vessel that is within the tissue mass. Any of the guiding features 176, 334, 336 of the jaws 146, 148 or frame 304 may have a curvilinear shape so that, for example, the motion of the clip is not abrupt and/or does not have too much friction or other resistance. In some embodiments, any of the guiding features 176, 334, 336 may include a recess and or a protrusion.


Returning now to FIG. 8, once the clip 134a is applied by depressing trigger 140, the user then releases the trigger 140, which returns back to its initial position via the biasing of the spring 260. As the spring 260 forces the trigger 140 back to its initial, biased, position, the engagement of the pin 252 of the first rack 250 and the slot 254 of the trigger 140 causes the first rack 250 to move proximally (in a negative longitudinal direction). Because the proximal inner pushing tube 270 and the spring-loaded dual pawl 286 cannot move backwards (proximally) in relation to the second rack 296, instead, the first pawl 290 ratchets over the teeth (one or more tooth) of the first rack 250. The user may now repeat the steps described either deliver the next clip 134b into the same tissue mass, or to release the vacuum button 132 and move the distal housing 104 to a different location, then repeating the application of a vacuum, and the delivery of the next clip 134b. The ratcheting of the spring-loaded dual pawl 286 with the first rack 250 and the second rack 296 allows multiple clips to be applied in succession. The blocking of the most distal clip 134 at the ends 324, 332 of the pins 318, 320, 326, 328 by the action of the spring-loaded block 308 having a spring wire 310 assures that only one clip 134 is delivered at a time. In some embodiments, pin 318 and pin 320 are substantially parallel to each other, so that the clips 134 maintain a particular angular orientation between the two jaws 146, 148 the entire time that the clips 134 are slid along or over the pins 318, 320. In other embodiments, pin 318 and pin 320 diverge, in other words, the distance between them increases towards their distal ends 324. Thus, the clips 134 are caused to become more and more open as they are pushed distally along the pins 318, 320. In other embodiments, pin 318 and pin 320 converge, in other words, the distance between them decreases towards their distal ends 324. Thus, the clips 134 are caused to become less and less open as they are pushed distally along the pins 318, 320. Any of these configurations may be used for different purposes, such as to make more space in the outer portion of the distal housing 104 in its proximal end, to make more space in the inner portion of the distal housing in its proximal end, or to actively actuate the clip 134 (either increasing or decreasing its angle), which may be done to assure that it is not stuck in any one position.


In some embodiments, the pins 318, 320 are configured to hold only one clip 134. In other embodiments, the pins 318, 320 are configured to hold two or more clips, for example two to ten clips, or four clips, as depicted herein. Each pin 318, 320 may have a free portion length L and each clip 134 may have a thickness t (from side 182 to side 184). Thickness t may in some cases be the maximum thickness of the clip 134. In some embodiments, free portion length L is greater than thickness t, so as to fit at least one clip. In some embodiments, free portion length L is at least twice thickness t, so as to fit at least two clips. In some embodiments, free portion length L is at least three times thickness t, so as to fit at least three clips. In some embodiments, free portion length L is at least four times thickness t, so as to fit at least four clips. In some embodiments, free portion length L is at least five times thickness t, so as to fit at least five clips.


Many of the elements of the clip application system 100, including the housing 102 and distal housing 104, may comprise a number of polymeric materials, which may be formed from a variety of materials including polycarbonate or acrylonitrile butadiene styrene (ABS). The components of the housing 102 and distal housing 104 may be injection molded, blow molded, rotational molded, or may be machined, such as by CNC machining. Other components of the clip application system 100 may be formed from stainless steel, such as 300 series, or more specifically, 302 or 304 stainless steel. O-rings or seals may comprise Buna-N, EPDM, EPR, silicone, or other elastomers and thermoplastic elastomers.


All of the embodiments described herein may be replaced by similar devices that incorporate cauterization, ligation, or staples, among other modalities, in conjunction with, or instead of the clips 134. A system for closure of a blood vessel 400 is illustrated in FIGS. 15-16 according to an embodiment of the disclosure. A housing 408 is coupled to a tubular shaft 410, which is coupled to a distal housing 406. The distal housing 406 includes a cavity 412 having an opening 414 at the side of the distal housing 406. A lumen 416 (e.g., channel) extends between a proximal opening 418 and the opening 414 in the distal housing 406. The lumen 416 is configured for accommodating placement of one or more probes 402, each having a shaft 420 with a vessel closure module 404 at its distal end. In FIG. 15, the vessel closure module 404 comprises a looped wire configured for cauterizing a mass of tissue, including a blood vessel. Other cautery elements may replace the looped wire in other embodiments, such as a pair of opposing jaws. These may include monopolar or bipolar driven elements. The probe 402 may be controlled via a control module 422, which includes an operational switch 424 (e.g., “cautery off/cautery on” via a toggle, slide, or other modality) and a display 426. As with the other embodiments presented herein, a vacuum source 428 is configured to be coupled to the cavity 412 of the distal housing 406, in this case, via the lumen 416. An extension tube 430 couples the vacuum source 428 to the lumen 416 via a connector 432. A vacuum is applied by a vacuum button 434 which is operable by the hand of a user. The distal housing 406 may be rotated along with the tubular shaft 410 by rotating a distal cap 436 and transverse extension 438. In embodiments that incorporate one or more Doppler sensors, a Doppler console 440 (which may be similar to Doppler console 204) is coupled to the Doppler sensor(s) via the connector 432. A spring-loaded lever 442 may be carried by the housing 408, to aid in the advancement of the probe 402, for example, by the repetitive, longitudinally-directed frictional engagement of the shaft 420. For example, each time the lever 442 is depressed, the shaft 420 is frictionally engaged and the shaft 420 is advanced distally a particular finite longitudinal distance in relation to the housing 408 and tubular shaft 410. The release of the lever 442, because it undoes the frictional engagement with the shaft 420, does not move the shaft 420 longitudinally. The connector 432 includes a seal 444 which may be configured in several different manners. First, the seal 444 may be a permanent seal, such as a duckbill valve or spring-activated valve, so that the proximal opening 418 is closed (sealed) when no probes 402 are within the lumen 416, and so that the proximal opening 418 seals around the diameter of the shaft 420 when the probe 402 is within the lumen. Alternatively, the seal 444 may be configured to seal only when the probe 402 is within the lumen, and may comprise an o-ring, a Touhy-Borst or a spring-loaded valve. An introducer may be used to more easily insert the vessel closure module 404 of the probe 402 into the lumen 416.



FIG. 16 shows the probe 402 inserted into the lumen 416, and with the closure module 404 advanced so that it is within the cavity 412 of the distal housing 406. In use, the user applies a vacuum to the cavity 412 by pressing the vacuum button 434. The target tissue is pulled into the cavity 412 and the vessel closure module 404 is activated. For example, the tissue is cauterized, to close the blood vessel within the tissue (e.g., hemorrhoidal artery, etc.). If more than one vessel closure module 404 needs to be applied to the tissue (or to more than one portion of the tissue), then the probe 402 may be removed from the lumen 416, and another probe 402 may be advanced through the lumen 416, with the treatment steps repeated. This may be repeated with any number of different probes 402, including probes of more than one modality (cautery, clip, staple, ligator, etc.). The housing 408/tubular shaft 410/distal housing 406 thus together can, in some cases, maintain a particular position adjacent to target tissue, while a number of different probes 402 can quickly and easily be advanced, applied, and removed in succession, to fully treat the target tissue. The speed of the procedure can thus be increased, because the distal housing 406 does not have to be readvanced or repositioned. Additionally, the sizes of the tubular shaft 410 and distal housing 406 can be reduced, for easier passage through body tracts or cavities, as they only need to accommodate a single probe 402 or vessel closure module 404 at a time, and not fit multiple probes or modules.


The system for closure of a blood vessel 400 is depicted as a cautery device, but in alternative embodiments the vessel closure module 404 may instead comprise a clamp, or clip that is deliverable from the distal housing 406, or a suture, ligation structure, or staple.


A system for closure of a blood vessel 500 is illustrated in FIGS. 17-18 according to an embodiment of the disclosure. A housing 508 is coupled to a tubular shaft 510, which is coupled to a distal housing 506. The distal housing 506 includes a cavity 512 having an opening 514 at the side of the distal housing 506. A lumen 516 (e.g., channel) extends between a proximal opening 518 and the opening 514 in the distal housing 506. The lumen 516 is configured for accommodating placement of one or more probes 502, each having a shaft 520 with a vessel closure module 504 at its distal end. In FIG. 17, the vessel closure module 504 comprises a ligation band for ligating a mass of tissue, including a blood vessel. Other ligation elements may replace the ligation band in other embodiments, such as string, wire, filament, fiber, or other tieable structures. The probe 502 may be controlled via a control module 522, which includes a switch 524 and/or a slide 525 and a display 526. The switch 524 may be configured to automatically cause a loop 527 of the ligation band (vessel closure module 504) to close, for example in a slip knot or noose-like manner. The slide 525 may also cause the loop 527 to close, but in a manual manner (by being slid by one or more fingers of the user's hand). As with the other embodiments presented herein, a vacuum source 528 is configured to be coupled to the cavity 512 of the distal housing 506, in this case, via the lumen 516. An extension tube 530 couples the vacuum source 528 to the lumen 516 via a connector 532. A vacuum is applied by a vacuum button 534 which is operable by the hand of a user. The distal housing 506 may be rotated along with the tubular shaft 510 by rotating a distal cap 536 and transverse extension 538. In embodiments that incorporate one or more Doppler sensors, a Doppler console 540 (which may be similar to Doppler console 204) is coupled to the Doppler sensor(s) via the connector 532. A spring-loaded lever 542 may be carried by the housing 508, to aid in the advancement of the probe 502, for example, by the repetitive, longitudinally-directed frictional engagement of the shaft 520. For example, each time the lever 542 is depressed, the shaft 520 is frictionally engaged and the shaft 520 is advanced distally a particular finite longitudinal distance in relation to the housing 508 and tubular shaft 510. The release of the lever 542, because it undoes the frictional engagement with the shaft 520, does not move the shaft 520 longitudinally. The connector 532 includes a seal 544 which may be configured in several different manners. First, the seal 544 may be a permanent seal, such as a duckbill valve or spring-activated valve, so that the proximal opening 518 is closed (sealed) when no probes 502 are within the lumen 516, and so that the proximal opening 518 seals around the diameter of the shaft 520 when the probe 502 is within the lumen. Alternatively, the seal 544 may be configured to seal only when the probe 502 is within the lumen, and may comprise an o-ring, a Touhy-Borst or a spring-loaded valve. An introducer may be used to more easily insert the vessel closure module 504 of the probe 508 into the lumen 516.



FIG. 18 shows the probe 502 inserted into the lumen 516, and with the closure module 504 advanced so that it is within the cavity 512 of the distal housing 506. In use, the user applies a vacuum to the cavity 512 by pressing the vacuum button 534. The target tissue is pulled into the cavity 512 and the vessel closure module 504 is activated. For example, the tissue is ligated, to close the blood vessel within the tissue (e.g., hemorrhoidal artery, etc.). If more than one vessel closure module 504 needs to be applied to the tissue (or to more than one portion of the tissue), then the probe 502 may be removed from the lumen 516, and another probe 502 may be advanced through the lumen 516, with the treatment steps repeated. This may be repeated with any number of different probes 502, including probes of more than one modality (cautery, clip, staple, ligator, etc.). The housing 508/tubular shaft 510/distal housing 506 thus together can, in some cases, maintain a particular position adjacent to target tissue, while a number of different probes 502 can quickly and easily be advanced, applied, and removed in succession, to fully treat the target tissue. The speed of the procedure can thus be increased, because the distal housing 506 does not have to be readvanced or repositioned. Additionally, the sizes of the tubular shaft 510 and distal housing 506 can be reduced, for easier passage through body tracts or cavities, as they only need to accommodate a single probe 502 or vessel closure module 504 at a time, and not fit multiple probes or modules.


A system for closure of a blood vessel 600 is illustrated in FIGS. 19-20 according to an embodiment of the disclosure. A housing 608 is coupled to a tubular shaft 610, which is coupled to a distal housing 606. The distal housing 606 includes a cavity 612 having an opening 614 at the side of the distal housing 606. A lumen 616 (e.g., channel) extends between a proximal opening 618 and the opening 614 in the distal housing 606. The lumen 616 is configured for accommodating placement of one or more probes 602, each having a shaft 620 with a vessel closure module 604 at its distal end. In FIG. 19, the vessel closure module 604 comprises a clamp for closing a mass of tissue, including a blood vessel. The probe 602 may be controlled via a control module 622, which includes a switch 624 and/or a handle 629 having a trigger 625, and a display 626. The switch 624 may be configured to automatically cause a pair of jaws 627a, 627b of the clamp (vessel closure module 604) to close. The switch 624 may be operated by the user to apply a current to the jaws 627a, 627b, in order to cauterize the tissue. Alternatively, or in conjunction, the switch 624 may cause the jaws 627a, 627b to automatically close. The user may in some cases cause the clamp to close first, and then, while the clamp is closed, apply the current (cauterize). In other cases, the user may apply the current and then close the clamp while the current is being applied. Alternatively, the switch 624 may be used to detach the clamp from the probe 602, if the clamp is a detachable/implantable clip. As with the other embodiments presented herein, a vacuum source 628 is configured to be coupled to the cavity 612 of the distal housing 606, in this case, via the lumen 616. An extension tube 630 couples the vacuum source 628 to the lumen 616 via a connector 632. A vacuum is applied by a vacuum button 634 which is operable by the hand of a user. The distal housing 606 may be rotated along with the tubular shaft 610 by rotating a distal cap 636 and transverse extension 638. In embodiments that incorporate one or more Doppler sensors, a Doppler console 640 (which may be similar to Doppler console 204) is coupled to the Doppler sensor(s) via the connector 632. A spring-loaded lever 642 may be carried by the housing 608, to aid in the advancement of the probe 602, for example, by the repetitive, longitudinally-directed frictional engagement of the shaft 620. For example, each time the lever 642 is depressed, the shaft 620 is frictionally engaged and the shaft 620 is advanced distally a particular finite longitudinal distance in relation to the housing 608 and tubular shaft 610. The release of the lever 642, because it undoes the frictional engagement with the shaft 620, does not move the shaft 620 longitudinally. The connector 632 includes a seal 644 which may be configured in several different manners. First, the seal 644 may be a permanent seal, such as a duckbill valve or spring-activated valve, so that the proximal opening 618 is closed (sealed) when no probes 602 are within the lumen 616, and so that the proximal opening 618 seals around the diameter of the shaft 620 when the probe 602 is within the lumen. Alternatively, the seal 644 may be configured to seal only when the probe 602 is within the lumen, and may comprise an o-ring, a Touhy-Borst or a spring-loaded valve. An introducer may be used to more easily insert the vessel closure module 604 of the probe 602 into the lumen 616.



FIG. 20 shows the probe 602 inserted into the lumen 616, and with the closure module 604 advanced so that it is within the cavity 612 of the distal housing 606. In use, the user applies a vacuum to the cavity 612 by pressing the vacuum button 634. The target tissue is pulled into the cavity 612 and the vessel closure module 604 is activated. For example, the tissue is clamped, to close the blood vessel within the tissue (e.g., hemorrhoidal artery, etc.). If more than one vessel closure module 604 needs to be applied to the tissue (or to more than one portion of the tissue), then the probe 602 may be removed from the lumen 616, and another probe 602 may be advanced through the lumen 616, with the treatment steps repeated. This may be repeated with any number of different probes 602, including probes of more than one modality (cautery, clip, staple, ligator, etc.). The housing 608/tubular shaft 610/distal housing 606 thus together can, in some cases, maintain a particular position adjacent to target tissue, while a number of different probes 602 can quickly and easily be advanced, applied, and removed in succession, to fully treat the target tissue. The speed of the procedure can thus be increased, because the distal housing 606 does not have to be readvanced or repositioned. Additionally, the sizes of the tubular shaft 610 and distal housing 606 can be reduced, for easier passage through body tracts or cavities, as they only need to accommodate a single probe 602 or vessel closure module 604 at a time, and not fit multiple probes or modules.



FIG. 21 illustrates a method for closing a blood vessel. The method may include closing a hemorrhoidal artery in a subject, for example, by placement of a device within a natural lumen or cavity of the subject, adjacent the hemorrhoidal artery. In step 700, a system is provided which is configured for placement adjacent a blood vessel. The system may comprise the system for closure of a blood vessel 400 of FIGS. 15 and 16, or the system for closure of a blood vessel 500 of FIGS. 17 and 18, or the system for closure of a blood vessel 600 of FIGS. 19 and 20, or another system having similar characteristics or parallel indications. In some embodiments, the system may include a housing having a proximal end and a distal end and configured to be held in the hand of a user. The system further includes an elongate body extending from the distal end of the housing and configured for insertion adjacent a blood vessel within a subject. In some embodiments, the elongate body is configured for insertion within a natural lumen or cavity of the subject. In some embodiments, the elongate body is configured for insertion into the anus of the subject. In some embodiments, the elongate body is configured for insertion into the rectum of the subject. The system further includes a distal housing having a proximal end coupled to the distal end of the elongate body, and having a cavity contained therein. The cavity may include an opening on a side of the distal housing. The system further includes a lumen passing through the elongate body and terminating at the cavity of the distal housing. The lumen is configured to couple to a vacuum source and is configured to allow the insertion and removal of a probe having a vessel closure module carried at its distal end. The lumen is configured to maintain a vacuum within the cavity when the probe is within the lumen and the vessel closure module is within the cavity. The system further includes a sensor carried by the distal housing adjacent the cavity and configured for identifying a blood vessel. The sensor may include one or more of: a Doppler sensor, an infra-red sensor, a near infra-red sensor, an optical coherence tomography (OCT) sensor, and may or may not include one or more optical fibers.


In step 702, the distal housing of the system is placed within an internal structure of a subject to be treated. The distal housing of the system may be placed in a natural lumen or cavity, which may or may not include the anus and/or the rectum. In step 704 a blood vessel is identified at least partially by use of the sensor. For example, the sensor is operated while the user moves the distal housing until the sensor detects the blood vessel at a location adjacent the distal housing. The distal housing may be moved by the user by the manipulation of the housing and/or the elongate body. Either may be pushed distally, pulled proximally, or rotated in a generally clockwise manner or a generally counter-clockwise manner, or a combination of any of the above. In step 706, a first probe having a first vessel closure module is inserted at least partially inserted into the cavity. This may be done after the blood vessel is identified, but in some cases, the first probe may actually be inserted into the cavity prior to the identification of the blood vessel or even prior to the placing of the distal housing within the internal structure of the subject.


In step 708, the lumen is coupled to a vacuum source, which may include a syringe, a vacuum pump, a vacuum chamber, or other device for applying a vacuum. The coupling of the vacuum source allows a vacuum (negative pressure) to be applied at the cavity, thus allowing tissue of the subject to be pulled into the cavity to facilitate treatment of the tissue. The tissue may for example include the blood vessel which is intended for closure. In step 710, the blood vessel is at least partially closed by operation of the first vessel closure module of the first probe. In some embodiments, the first vessel closure module may comprise a cautery device, and may comprise a wire loop or two opposing jaws (e.g., clamp). The first vessel closure module may at least partially close the blood vessel via cautery. In some embodiments, the first vessel closure module may comprise a ligation tie or other ligator. In some embodiments, the first vessel closure module may comprise a clamp. In some embodiments, the first vessel closure module may comprise a clip. Though the blood vessel may be completely closed by the first vessel closure module, it may also be desired to remove the first vessel closure module and replace it with another (i.e., second) vessel closure module, either a vessel closure module similar to the first vessel closure module, or a vessel closure module having a different structure or modality. In some cases, the second vessel closure module may be carried by the first probe that was used in conjunction with the first vessel closure module. For example, the first vessel closure module may be removed from the first probe and the second vessel closure module may be attached to the first probe. In other cases, a second probe having a second vessel closure module may be used to replace the first probe having the first vessel closure module.


In step 712, the first probe is removed from the lumen. In some cases, for example, cases wherein the treatment of the blood vessel has been completed, the procedure may be ended after step 712. In other cases, further treatment may be desired, and thus step 706 is repeated, but now with a second probe having a second vessel closure module (or the first probe which has had its first vessel closure module replaced or augmented by the second vessel closure module). One or more of the other steps may be repeated with the second probe/vessel closure module combination. A number of different probes and/or vessel closure modules may be inserted (step 706), operated (step 710), and removed (step 712). Up to 5, 10, 20, or more different probes may be used in any procedure. The stability and location maintenance of the housing 408, 508, 608, the tubular shaft 410, 510, 610 and the distal housing 406, 506, 606 allow for rapid removal and replacement of probes 402, 502, 602. The coupling of the vacuum source (step 708) may be maintained throughout, or may continually be applied. A combination of different modalities of vessel closure modules may be used, or different geometries or sizes of vessel closure modules or probes may be used. In some cases, the user may start with a small vessel closure module progress, probe-by-probe to larger and larger vessel closure modules, or start with a low energy vessel closure module and progress to high energy vessel closure modules. On other cases, the user may begin with a large or high energy vessel closure module that performs the majority of the closure procedure, and then replace the vessel closure module with one or more smaller or lower energy vessel closure modules to “touch up” or to finish the procedure. In some cases, multiple probes having the same type of vessel closure module may be used, for example, a new vessel closure module to replace a worn out or exhausted vessel closure module.


The sensor allows correct or desired placement of the distal housing, and the sensor and/or the supporting structure of the housing, elongate body, and distal housing allows this placement to be maintained once it is achieved. Thus, a user does not need to continually insert the distal housing or rotate the distal housing to find the target anatomy. Simple insertion and removal of multiple probes can be quickly and accurately performed, thus allowing for a rapid and efficient procedure. At any time, a slight adjustment to the location of the distal housing may be performed by operating the sensor and determining the desired location of the distal housing in relation to the blood vessel.


The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.


While embodiments have been shown and described, various modifications may be made without departing from the scope of the inventive concepts disclosed herein.

Claims
  • 1. A system for closing a blood vessel, comprising: a distal housing configured for insertion into the rectum of a subject, and having a cavity therein, the cavity communicating with an opening on a side of the distal housing;a lumen communicating with the cavity of the distal housing, the lumen configured to couple to a vacuum source;a first sensor carried by the distal housing at or adjacent the cavity and configured for identifying a blood vessel;a vessel closure probe having a longitudinal axis and comprising a distal end operable within the cavity and coupled to a proximal control, the distal end comprising a cauterizer comprising two opposing elongate jaws, the jaws having an open configuration and a closed configuration, wherein in the open configuration at least a distal portion of a first one of the jaws is separated from a distal portion of a second of the jaws and wherein in the closed configuration the distal portions of the jaws meet each other along the longitudinal axis with the jaws co-extending substantially longitudinally, and wherein the jaws are configured to be moved via the proximal control from the open configuration toward the closed configuration over tissue containing the blood vessel; andan internal seal configured to seal a proximal entrance to the cavity around the vessel closure probe, proximal to the two opposing jaws, to allow a vacuum to be applied by the vacuum source to the cavity with the two opposing jaws inside the cavity.
  • 2. The system of claim 1, wherein the two opposing jaws are bipolar driven.
  • 3. The system of claim 1, wherein the first sensor comprises a Doppler sensor.
  • 4. The system of claim 1, wherein the first sensor comprises an infra-red sensor.
  • 5. The system of claim 1, wherein the first sensor comprises a near infra-red sensor.
  • 6. The system of claim 1, wherein the first sensor comprises an optical coherence tomography sensor.
  • 7. The system of claim 1, wherein the first sensor comprises one or more optical fibers.
  • 8. The system of claim 1, wherein the vessel closure probe is configured to be removed from the cavity.
  • 9. The system of claim 1, further comprising a switch configured to apply current to the two opposing jaws.
  • 10. The system of claim 1, further comprising a proximal handle including a first portion and a second portion movable in relation to the first portion to close the two opposing jaws on the tissue containing the blood vessel within the cavity.
  • 11. The system of claim 1, wherein the distal housing is configured to be rotatable by a user while it is within the rectum of the subject.
  • 12. The system of claim 1, further comprising a transversely extending projection configured for rotating the distal housing within the rectum of the subject.
  • 13. The system of claim 1, wherein the first sensor is carried within the cavity.
  • 14. The system of claim 13, further comprising a second sensor carried by the distal housing at or adjacent the cavity and configured for identifying the blood vessel.
  • 15. The system of claim 14, wherein the first sensor and the second sensor are aimed in different directions.
  • 16. A method for closing a blood vessel comprising: providing a system for closing a blood vessel comprising: a distal housing configured for insertion into the rectum of a subject, and having a cavity therein, the cavity communicating with an opening on a side of the distal housing;a lumen communicating with the cavity of the distal housing, the lumen configured to couple to a vacuum source;a first sensor carried by the distal housing at or adjacent the cavity and configured for identifying a blood vessel;a vessel closure probe having a longitudinal axis and comprising a distal end operable within the cavity and coupled to a proximal control, the distal end comprising a cauterizer comprising two opposing elongate jaws, the jaws having an open configuration and a closed configuration, wherein in the open configuration at least a distal portion of a first one of the jaws is separated from a distal portion of a second one of the jaws and wherein in the closed configuration the distal portions of the jaws meet each other along the longitudinal axis with the jaws co-extending substantially longitudinally, and wherein the jaws are configured to be moved via the proximal control from the open configuration toward the closed configuration over tissue containing the blood vessel; andan internal seal configured to seal a proximal entrance to the cavity around the vessel closure probe, proximal to the two opposing jaws, to allow a vacuum to be applied by the vacuum source to the cavity with the two opposing jaws inside the cavity;placing the distal housing within an internal structure of a subject;identifying at least partially with the sensor a blood vessel to be closed;coupling a vacuum source to the lumen such that a portion of the blood vessel is pulled into the cavity; andat least partially closing the blood vessel with the vessel closure probe by causing the two opposing jaws to close on tissue containing the blood vessel and causing cauterization to occur.
  • 17. The method of claim 16, wherein at least partially identifying the blood vessel comprises delivering ultrasound signals.
  • 18. The method of claim 16, further comprising rotating the distal housing within the internal structure of the subject.
  • 19. The method of claim 16, wherein the two opposing jaws are bipolar driven, and wherein the cauterization is caused by applying current to the two opposing jaws.
  • 20. The method of claim 16, further comprising removing the vessel closure probe from the cavity.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 62/460,837, filed on Feb. 19, 2017, which is herein incorporated by reference in its entirety for all purposes. Priority is claimed pursuant to 35 U.S.C. § 119.

US Referenced Citations (260)
Number Name Date Kind
3856017 Perisse et al. Dec 1974 A
4090517 Takenaka May 1978 A
4142529 Latenser et al. Mar 1979 A
4227535 Conner Oct 1980 A
4257419 Goltner et al. Mar 1981 A
4493319 Polk et al. Jan 1985 A
4513746 Aranyi et al. Apr 1985 A
4548201 Yoon Oct 1985 A
4566620 Green et al. Jan 1986 A
4621635 Ali Nov 1986 A
4638806 Bartlett Jan 1987 A
4696302 Clark et al. Sep 1987 A
4735194 Stiegmann Apr 1988 A
4794927 Yoon Jan 1989 A
4834067 Block May 1989 A
4860746 Yoon Aug 1989 A
4898169 Norman et al. Feb 1990 A
D308723 Bellofatto et al. Jun 1990 S
4932397 McFaul, Sr. Jun 1990 A
4936842 D'Amelio et al. Jun 1990 A
5122149 Broome Jun 1992 A
5156315 Green et al. Oct 1992 A
5158563 Cosman Oct 1992 A
5178627 Hudock Jan 1993 A
5192266 Wilk Mar 1993 A
5203863 Bidoia Apr 1993 A
5263926 Wilk Nov 1993 A
5269789 Chin et al. Dec 1993 A
5312361 Zadini et al. May 1994 A
5320630 Ahmed Jun 1994 A
5356416 Chu et al. Oct 1994 A
5395030 Kuramoto et al. Mar 1995 A
5423834 Ahmed Jun 1995 A
5437664 Cohen et al. Aug 1995 A
5462559 Ahmed Oct 1995 A
5464412 Budding Nov 1995 A
5570692 Morinaga Nov 1996 A
5578047 Taylor Nov 1996 A
5624453 Ahmed Apr 1997 A
5651788 Fleischer et al. Jul 1997 A
5676637 Lee Oct 1997 A
5690692 Fleming Nov 1997 A
5741273 O'Regan Apr 1998 A
5746694 Wilk et al. May 1998 A
5788715 Watson, Jr. et al. Aug 1998 A
5830222 Makower Nov 1998 A
5853416 Tolkoff Dec 1998 A
5879347 Saadat Mar 1999 A
5891134 Goble et al. Apr 1999 A
5913865 Fortier et al. Jun 1999 A
5921983 Shannon, Jr. Jul 1999 A
5924423 Majlessi Jul 1999 A
5976158 Adams et al. Nov 1999 A
5980537 Ouchi Nov 1999 A
6007551 Peifer et al. Dec 1999 A
6024742 Tu et al. Feb 2000 A
RE36629 Zaslavsky et al. Mar 2000 E
6033397 Laufer et al. Mar 2000 A
6042591 Mears Mar 2000 A
6050993 Tu et al. Apr 2000 A
6051003 Chu et al. Apr 2000 A
6059797 Mears May 2000 A
6066145 Wurster May 2000 A
6077257 Edwards et al. Jun 2000 A
6135997 Laufer et al. Oct 2000 A
6136009 Mears Oct 2000 A
6139527 Laufer et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6179832 Jones et al. Jan 2001 B1
6206842 Tu et al. Mar 2001 B1
6206843 Iger et al. Mar 2001 B1
6235040 Chu et al. May 2001 B1
6258087 Edwards et al. Jul 2001 B1
6263248 Farley et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6315782 Chu et al. Nov 2001 B1
6325798 Edwards et al. Dec 2001 B1
6346105 Tu et al. Feb 2002 B1
6355031 Edwards et al. Mar 2002 B1
6358248 Mulier et al. Mar 2002 B1
6401719 Farley et al. Jun 2002 B1
6405732 Edwards et al. Jun 2002 B1
6409737 Fortier et al. Jun 2002 B1
6419673 Edwards et al. Jul 2002 B1
6419683 Burgard Jul 2002 B1
6423058 Edwards et al. Jul 2002 B1
6436108 Mears Aug 2002 B1
6464708 Higuma et al. Oct 2002 B1
6482184 Christensen et al. Nov 2002 B1
6506157 Teigman et al. Jan 2003 B1
6547798 Yoon et al. Apr 2003 B1
6626922 Hart et al. Sep 2003 B1
6632233 Burgard Oct 2003 B1
6645201 Utley et al. Nov 2003 B1
6682526 Jones et al. Jan 2004 B1
6685713 Ahmed Feb 2004 B1
6688312 Yeretsian Feb 2004 B2
6695764 Silverman et al. Feb 2004 B2
6699243 West et al. Mar 2004 B2
6706057 Bidoia et al. Mar 2004 B1
6730101 Peifer et al. May 2004 B1
6743197 Edwards Jun 2004 B1
6827715 Francischelli et al. Dec 2004 B2
6923756 Sudakov et al. Aug 2005 B2
6936005 Poff et al. Aug 2005 B2
6936055 Ken et al. Aug 2005 B1
6969388 Goldman et al. Nov 2005 B2
6974466 Ahmed et al. Dec 2005 B2
7037314 Armstrong May 2006 B2
7097644 Long Aug 2006 B2
7118528 Piskun Oct 2006 B1
7137981 Long Nov 2006 B2
7160294 Croft Jan 2007 B2
7179257 West et al. Feb 2007 B2
7189247 Zirps et al. Mar 2007 B1
7214231 Tolkoff May 2007 B2
7270670 Yencho Sep 2007 B1
7364579 Mulier et al. Apr 2008 B2
7422587 Bek et al. Sep 2008 B2
7452329 Bastia et al. Nov 2008 B2
7488333 Ghareeb Feb 2009 B2
7507238 Edwards et al. Mar 2009 B2
7608073 Heinrich et al. Oct 2009 B2
7641652 Coe et al. Jan 2010 B2
7695432 Scheyer Apr 2010 B2
7717312 Beetel May 2010 B2
7722627 Andreen May 2010 B2
7789848 Gannoe et al. Sep 2010 B2
7789876 Zikorus et al. Sep 2010 B2
7794460 Mulier et al. Sep 2010 B2
7824408 Mirizzi et al. Nov 2010 B2
7846149 Jankowski Dec 2010 B2
7896895 Boudreaux et al. Mar 2011 B2
7905891 Self Mar 2011 B2
7972354 Prestezog et al. Jul 2011 B2
7977658 Stuba et al. Jul 2011 B2
3066009 Blurton et al. Nov 2011 A1
8083738 Mirizzi et al. Dec 2011 B2
8097002 Delaney Jan 2012 B2
8097003 Hoffman et al. Jan 2012 B2
8100822 Piskun Jan 2012 B2
8131380 Cao et al. Mar 2012 B2
8211101 Croft Jul 2012 B2
8287535 de la Mora Levy et al. Oct 2012 B2
8290582 Lin et al. Oct 2012 B2
8292904 Popovic et al. Oct 2012 B2
8303605 Bastia Nov 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8343026 Gardiner et al. Jan 2013 B2
8357157 Mirizzi et al. Jan 2013 B2
8394012 Szinicz Mar 2013 B2
8412318 Edwards et al. Apr 2013 B2
8430808 Piskun Apr 2013 B2
8491607 Horppuu et al. Jul 2013 B1
8496578 Surti Jul 2013 B2
8506477 Waller et al. Aug 2013 B2
8545433 Brandeis Oct 2013 B2
8579892 Hoey et al. Nov 2013 B2
8591525 Ikeda Nov 2013 B2
8632458 Piskun et al. Jan 2014 B2
8647352 Noda et al. Feb 2014 B2
8672829 Kaleta et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8686040 Ehrenpreis Apr 2014 B2
8696660 West et al. Apr 2014 B2
8715166 Piskun May 2014 B2
8715276 Thompson et al. May 2014 B2
8728074 West et al. May 2014 B2
8734826 Barak May 2014 B2
8747300 Frassica et al. Jun 2014 B2
8758340 Ford et al. Jun 2014 B2
8790686 Carroll Jul 2014 B2
8801650 Gannoe et al. Aug 2014 B2
8932306 McGown Jan 2015 B1
8968275 Piskun et al. Mar 2015 B2
8968353 Prestezog et al. Mar 2015 B2
9011317 Piskun et al. Apr 2015 B2
9011486 Raabe et al. Apr 2015 B2
9017361 Karabey et al. Apr 2015 B2
9039601 Piskun May 2015 B2
9078736 Matsuo Jul 2015 B2
9179966 Newton et al. Nov 2015 B2
9192291 Wenchell Nov 2015 B2
9232947 Brenner et al. Jan 2016 B2
9310956 Shikhman et al. Apr 2016 B2
9393014 Milliman Jul 2016 B2
20020013581 Edwards et al. Jan 2002 A1
20020062130 Jugenheimer et al. May 2002 A1
20020072738 Edwards et al. Jun 2002 A1
20020072757 Ahmed et al. Jun 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020107515 Edwards et al. Aug 2002 A1
20020147447 Long Oct 2002 A1
20020177847 Long Nov 2002 A1
20030069592 Adams et al. Apr 2003 A1
20030144653 Francischelli et al. Jul 2003 A1
20030144715 Gomez Jul 2003 A1
20030181900 Long Sep 2003 A1
20030229359 Fortier Dec 2003 A1
20040010216 Zhu et al. Jan 2004 A1
20040138527 Bonner et al. Jul 2004 A1
20050143756 Jankowski Jun 2005 A1
20050187546 Bek et al. Aug 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20060004384 Andreen Jan 2006 A1
20060020231 Naraikin et al. Jan 2006 A1
20060025766 Heinrich et al. Feb 2006 A1
20060030849 Mirizzi et al. Feb 2006 A1
20060036190 Naraikin et al. Feb 2006 A1
20060036191 Naraykin et al. Feb 2006 A1
20060036192 Naraikin et al. Feb 2006 A1
20060036193 Naraikin et al. Feb 2006 A1
20060049231 Leiboff et al. Mar 2006 A1
20060064124 Zhu et al. Mar 2006 A1
20060089660 Saeed et al. Apr 2006 A1
20060167473 Scheyer Jul 2006 A1
20060189979 Esch et al. Aug 2006 A1
20060259041 Hoffman et al. Nov 2006 A1
20060259042 Ali Hassanien Nov 2006 A1
20060264706 Piskun Nov 2006 A1
20070213661 Gobel Sep 2007 A1
20070213747 Monassevitch et al. Sep 2007 A1
20070225734 Bell et al. Sep 2007 A1
20070260163 Blurton et al. Nov 2007 A1
20080058786 Boyden et al. Mar 2008 A1
20080188875 Yeretsian Aug 2008 A1
20080281204 Salfi et al. Nov 2008 A1
20080281267 Meheir Nov 2008 A1
20090069806 De La Mora Levy et al. Mar 2009 A1
20090105728 Noda et al. Apr 2009 A1
20090143794 Conlon Jun 2009 A1
20090149846 Hoey et al. Jun 2009 A1
20100099944 Shalon et al. Apr 2010 A1
20100130857 Szinicz May 2010 A1
20100152529 Shalon et al. Jun 2010 A1
20100262133 Hoey et al. Oct 2010 A1
20100331862 Monassevitch et al. Dec 2010 A1
20110083264 Gunderson Apr 2011 A1
20110092766 Monassevitch et al. Apr 2011 A1
20110137428 Terliuc Jun 2011 A1
20110160748 Catanese, III et al. Jun 2011 A1
20110282344 Whayne Nov 2011 A1
20120004546 Neuberger et al. Jan 2012 A1
20120059394 Brenner et al. Mar 2012 A1
20120130403 Brenner et al. May 2012 A1
20120226334 Gardiner et al. Sep 2012 A1
20140107483 Utley et al. Apr 2014 A1
20140264081 Walker Sep 2014 A1
20150126990 Sharma et al. May 2015 A1
20160074039 Beetel Mar 2016 A1
20160338719 Allen, IV Nov 2016 A1
20160375274 Barthe Dec 2016 A1
20190125454 Stokes et al. May 2019 A1
20190125455 Shelton, IV et al. May 2019 A1
20190125456 Shelton, IV et al. May 2019 A1
20190125457 Parihar et al. May 2019 A1
20190125458 Shelton, IV et al. May 2019 A1
20190125459 Shelton, IV et al. May 2019 A1
Foreign Referenced Citations (19)
Number Date Country
1628622 Jun 2005 CN
2865738 Jul 2007 CN
201029911 Mar 2008 CN
103126654 Jun 2013 CN
104856649 Aug 2015 CN
9205453 Jun 1992 DE
0136949 Apr 1985 EP
2506390 Jun 1996 JP
2510074 Jun 1996 JP
2004105678 Apr 2004 JP
3902290 Apr 2007 JP
4171177 Oct 2008 JP
WO0003642 Jan 2000 WO
WO2001091646 Dec 2001 WO
WO2004064624 Aug 2004 WO
WO2007019321 Feb 2007 WO
WO2007093198 Aug 2007 WO
WO2008081436 Jul 2008 WO
WO2016118041 Jul 2016 WO
Non-Patent Literature Citations (4)
Entry
PCT International Search Report and Written Opinion for PCT/US2018/018586, Applicant: Orpheus Ventures, LLC, Forms PCT/ISA/220, 210, and 237 dated May 25, 2018 (13 pages).
Machine translation (English) CN 103126654 A (21 pages).
Machine translation (English) CN 104856649 A (14 pages).
Extended European Search Report dated Dec. 11, 2019, in EP App. No. 18754988.6 filed Feb. 19, 2018 (7 pages).
Related Publications (1)
Number Date Country
20180235636 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
62460837 Feb 2017 US