The present disclosure relates to a system and method for automatic cognitive extraction of relevant information from a set of documents. The disclosure provides a method and a system for automated information extraction using various cognitive engines which are built using advance Artificial Intelligence (AI) techniques to extract various entities from diverse data sources e.g. scanned physical paper document, simple text document, pdf, excel, image, and the like. The method further includes multiple AI models sequentially interacting with each other.
In recent times data analytics has become an integral part of any organization and with continuous growth in data volumes, organizations are employing various methods for maintaining such data in different forms. Along with digital well-structured data, a huge portion of legacy data is stored even in physical paper format. Also, a large volume of data is maintained in digital form but in different kinds of unstructured format, such as word document, pdf, excel, image etc. To extract information from the paper format or the unstructured format in terms of important business entity and to make it part of business process, a significant manual effort is required. Such manual process is both time -consuming as well as error prone.
In order to extract the information from these documents, various methods have been proposed in the recent years which use AI models such as neural network, fuzzy logic to extract the information from these documents. However, these methods have certain limitations while handling complex information extractions. Such limitations may include, but not limited to, handling volume and different types of unstructured data, reducing error rate, increasing the efficiency of analysis, and working on continuous automated refining of the AI Models.
A US patent application U.S. Pat. No. 9,152,860B2 describes an automated system for character recognition. The reference discloses AI models for regional analyses of a document and determining, based on the analysis, whether or not a desired object (i.e. a character) is present in the analysed region. The system further involves continuous monitoring of business user feedback to improve the accuracy of the results and performing OCR on specific zones/regions of the document.
Further, U.S. Pat. No. 10,318,848B2 describes a method for image classification by AI models. The method involves multiple AI models (i.e. ensemble of AI models) for identifying objects in an image and further classifying the images in ticket analysis and resolution system.
Further, U.S. Pat. No. 9704054B1 describes a method of image classification. The method involves using an ensemble of AI models for object recognition in an image and further image classification.
However, all the above-mentioned algorithms fail to provide an efficient method for information extraction, which can function across a diverse variety of unstructured data in images and documents, provides scalability across different AI models and provides solution to allow user to tutor/train the system. Therefore, there exists a need for a method for information extraction which can efficiently function across different data sources, types, can learn continuously and dynamically adapt as per the user's requirements. Hence, an automated information extraction system has become an absolute necessity for every organization irrespective of business domain.
One or more shortcomings of prior art are overcome, and additional advantages are provided through present disclosure. Additional features are realized through techniques of the present disclosure. Other embodiments and aspects of the disclosure are described in detail herein and are considered a part of the present disclosure.
The present disclosure discusses a system for intelligent information extraction from multiple data sources e.g. scanned physical paper document, simple text document, pdf, excel, image etc. The system comprises of a framework with different artificial intelligence models which can be trained and tutored by a user and pre-defined data set. Further, these artificial intelligence models interact sequentially with each other, by providing/outputting results of one model to input of other model, thereby increasing accuracy of data extraction. The framework further comprises modules for updating versions of the artificial intelligence models based on user feedback, wherein the accuracy of the updated versions is compared with the accuracy of previous versions, and the version with better accuracy is automatically deployed. This is a continuous automated process with the feedback getting incorporated dynamically in the system.
In one aspect of the disclosure, a method for cognitive information extraction from multiple sources such as scanned physical paper document, simple text document, pdf, excel, image etc. wherein the method involves configuring an ensemble of artificial intelligence models, comprising a first intelligence model for image/document classification, a second intelligence model for object identification, and a third intelligence model for entity name recognition. These artificial intelligence models interact sequentially with each other, by providing results of one model to input of other model, thereby increasing accuracy of information extraction. The method also involves steps of collecting feedback from a user on the extracted information and updating the artificial intelligence models on the basis of user feedback and further, comparing output of the updated artificial intelligence model version to automatically determine version of the model to be deployed for future information extractions. In this manner, the system is continuously refining.
Foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to drawings and following detailed description.
In the following detailed description of embodiments of the present disclosure, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the disclosure. However, it will be obvious to one skilled in art that the embodiments of the disclosure may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the embodiments of the disclosure.
References in the present disclosure to “one embodiment” or “an embodiment” mean that a feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the disclosure. Appearances of phrase “in one embodiment” in various places in the present disclosure are not necessarily all referring to same embodiment.
In the present disclosure, word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or implementation of present subject matter described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
The present disclosure may take form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects that may all generally be referred to herein as a ‘system’ or a ‘module’. Further, the present disclosure may take form of a computer program product embodied in a storage device having computer readable program code embodied in a medium.
While the disclosure is susceptible to various modifications and alternative forms, specific embodiment thereof has been shown by way of example in drawings and will be described in detail below. It should be understood, however that it is not intended to limit the disclosure to the forms disclosed, but on contrary, the disclosure is to cover all modifications, equivalents, and alternative falling within scope of the disclosure.
Terms such as “comprises”, “comprising”, or any other variations thereof, are intended to cover a non-exclusive inclusion, such that a setup, device or method that comprises a list of components or steps does not include only those components or steps but may include other components or steps not expressly listed or inherent to such setup or device or method. In other words, one or more elements in a system or apparatus proceeded by “comprises . . . a” does not, without more constraints, preclude existence of other elements or additional elements in the system or apparatus.
In following detailed description of the embodiments of the disclosure, reference is made to drawings that form a part hereof, and in which are shown by way of illustration specific embodiments in which the disclosure may be practiced. These embodiments are described in enough detail to enable those skilled in the art to practice the disclosure, and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the present disclosure. The following description is, therefore, not to be taken in a limiting sense.
The present disclosure relates in general to a system and method of cognitive information extraction from a set of documents. More specifically, systems and methods disclosed herein are directed to a cognitive information mining framework, which extracts information from a diverse set of unstructured data in images and documents with combination of AI and other methods of data extraction.
As shown in
In the present implementation, the system (100) includes one or more processors. The processor may be implemented as one or more microprocessors, microcomputers, microcontrollers, digital signal processors, central processing units, state machines, logic circuitries, and/or any devices that manipulate signals based on operational instructions. Among other capabilities, the at least one processor is configured to fetch and execute computer-readable instructions stored in the memory. The system further includes I/O interfaces, memory and modules.
The I/O interfaces may include a variety of software and hardware interfaces, for example, a web interface, a graphical user interface, and the like. The I/O interface may allow the system to interact with a user directly or through user devices. Further, the I/O interface may enable the system (100) to communicate with other user devices or computing devices, such as web servers. The I/O interface can facilitate multiple communications within a wide variety of networks and protocol types, including wired networks, for example, LAN, cable, etc., and wireless networks, such as WLAN, cellular, or satellite. The I/O interface may include one or more ports for connecting number of devices to one another or to another server.
The memory may be coupled to the processor. The memory can include any computer-readable medium known in the art including, for example, volatile memory, such as static random access memory (SRAM) and dynamic random access memory (DRAM), and/or non-volatile memory, such as read only memory (ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes.
Further, the system (100) includes modules. The modules include routines, programs, objects, components, data structures, etc., which perform tasks or implement particular abstract data types. In one implementation, module includes a display module and other modules. The other modules may include programs or coded instructions that supplement applications and functions of the system (100).
As described above, the modules, amongst other things, include routines, programs, objects, components, and data structures, which perform particular tasks or implement particular abstract data types. The modules may also be implemented as, signal processor(s), state machine(s), logic circuitries, and/or any other device or component that manipulate signals based on operational instructions. Further, the modules can be implemented by one or more hardware components, by computer-readable instructions executed by a processing unit, or by a combination thereof.
Furthermore, one or more computer-readable storage media may be utilized in implementing some of the embodiments consistent with the present disclosure. A computer-readable storage medium refers to any type of physical memory on which information or data readable by a processor may be stored. Thus, the computer-readable storage medium may store instructions for execution by one or more processors, including instructions for causing the processor(s) to perform steps or stages consistent with the embodiments described herein. The term “computer-readable medium” should be understood to include tangible items and exclude carrier waves and transient signals, i.e., non-transitory. Examples include Random Access Memory (RAM), Read-Only Memory (ROM), volatile memory, non-volatile memory, hard drives, Compact Disc (CD) ROMs, Digital Video Disc (DVDs), flash drives, disks, and any other known physical storage media.
Number | Date | Country | Kind |
---|---|---|---|
202021046217 | Oct 2020 | IN | national |