The present disclosure generally relates to systems, devices, and methods for communicating between medical devices, and more particularly, to systems, devices, and methods for communicating between medical devices using conducted communication.
Active implantable medical devices are routinely implanted with a patient's body. Such implantable medical devices are often used to provide therapy, diagnostics or both. In some cases, it can be desirable to communicate with such implantable medical devices via the skin, such as via a programmer or the like located outside of the body. Such communication can be though conducted communication, which conducts electrical current through the patient's body tissue from one device to the other. In the programmer example, the programmer may be electrically connected to the patient's body through electrode skin patches or the like. Such communication may facilitate the programmer in programing and/or re-programing the implantable medical device, reading data collected by the implantable medical device, and/or collecting or exchanging any other suitable information. In some instances, two or more implantable medical devices may be implanted with a patient. In such cases, it can be desirable to establish communication between the two or more implanted medical devices using conducted communication. Such communication may facility the implanted medical devices in sharing data, distribution of control and/or delivery of therapy, and/or in performing other desired functions. These are just some example uses of conducted communication in the body.
The present disclosure generally relates to systems, devices, and methods for communicating between medical devices, and more particularly, to systems, devices, and methods for communicating between medical devices using conducted communication.
In one embodiment, a method for communicating with implantable medical devices may comprise sensing, by a first medical device, a noise signal delivered into a patient's body by a second medical device and delivering, by the first medical device, a cancelling signal into the patient's body. In some additional embodiments, the method may further comprise, while delivering the cancelling signal into the patient's body, delivering a conducted communication signal into the patient's body for reception by a second medical device.
Additionally, or alternatively, in any of the above embodiments, the cancelling signal may be an inverse signal of the noise signal.
Additionally, or alternatively, in any of the above embodiments, the cancelling signal may at least partially reduce the amplitude of the noise signal received by the second medical device.
Additionally, or alternatively, any of the above embodiments may further comprise receiving, by the first medical device, a selection of a predetermined cancelling signal and delivering the selected predetermined cancelling signal into the patient's body.
Additionally, or alternatively, any of the above embodiments may further comprise receiving, by the first medical device, an amplitude selection for the cancelling signal and delivering the cancelling signal into the body of the patient with the selected amplitude.
Additionally, or alternatively, any of the above embodiments, may further comprise delivering, by the first medical device, the cancelling signal into the patient's body only while delivering the conducted communication signal into the patient's body.
Additionally, or alternatively, in any of the above embodiments, the noise signal may be a signal delivered into the patient's body by a third medical device.
Additionally, or alternatively, any of the above embodiments, may further comprise delivering the cancelling signal into the patient's body only during predefined communication windows.
In another embodiment, a medical device may comprise one or more electrodes and a controller connected to the one or more electrodes. In some embodiments, the controller may be configured to cause the medical device to generate an inverse signal and deliver the inverse signal into a patient's body via the one or more electrodes.
Additionally, or alternatively, in any of the above embodiments, the controller may be further configured to cause the medical device to generate a conducted communication signal and deliver the conducted communication signal into the patient's body.
Additionally, or alternatively, in any of the above embodiments, the controller may be further configured cause the medical device to deliver the conducted communication signal and the inverse signal into the patient's body simultaneously.
Additionally, or alternatively, in any of the above embodiments, the controller may be further configured to cause the medical device to deliver the inverse signal into the patient's body only while delivering the conducted communication signal into the patient's body.
Additionally, or alternatively, in any of the above embodiments, the controller may be further configured to cause the medical device to sense a signal from the patient's body via the one or more electrodes, and generate the inverse signal as an inverse signal to the sensed signal.
Additionally, or alternatively, in any of the above embodiments, the controller may be further configured to receive a selection of an inverse signal and wherein the controller may be further configured to cause the medical device to generate the inverse signal based on the received selection.
Additionally, or alternatively, in any of the above embodiments, the selection may comprise a selection of an inverse signal that is stored within a memory of the medical device.
Additionally, or alternatively, in any of the above embodiments, the controller may be further configured to cause the medical device to deliver the inverse signal into the patient's body only during predefined communication windows.
In yet another embodiment, a method of communicating with an implantable medical device may comprise switching, by a first medical device connected to a second medical device, a switch unit to block a signal from being delivered into a patient's body via one or more electrodes of the second medical device and delivering, by the first medical device and via the one or more electrodes of the second medical device, a conducted communication signal into the patient's body.
Additionally, or alternatively, any of the above embodiments may further comprise switching, by the first medical device, the switch unit to block the signal from being delivered into the patient's body via the one or more electrodes only while delivering the conducted communication signal to the patient's body.
Additionally, or alternatively, any of the above embodiments may further comprise switching, by the first medical device, the switch unit to direct the blocked signal back to the second medical device without passing through the patient's body.
Additionally, or alternatively, any of the above embodiments may further comprise directing the blocked signal back to the second medical device through a resistive network other than the patient's body.
The above summary is not intended to describe each embodiment or every implementation of the present disclosure. Advantages and attainments, together with a more complete understanding of the disclosure, will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.
The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.
This disclosure describes systems, devices, and methods for communicating between medical devices. Some medical device systems of the present disclosure may communicate using conducted communication techniques, which may include delivering electrical communication signals into a body of a patient for conduction through the patient's body. This signal may be received by another medical device, thereby establishing a communication link between the devices.
As depicted in
Electrodes 114 may include one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, electrodes 114 may be generally disposed on either end of LCP 100 and may be in electrical communication with one or more of modules 102, 104, 106, 108, and 110. In embodiments where electrodes 114 are secured directly to housing 120, an insulative material may electrically isolate the electrodes 114 from adjacent electrodes, housing 120, and/or other parts of LCP 100. In some instances, some or all of electrodes 114 may be spaced from housing 120 and connected to housing 120 and/or other components of LCP 100 through connecting wires. In such instances, the electrodes 114 may be placed on a tail (not shown) that extends out away from the housing 120. As shown in
Electrodes 114 and/or 114′ may assume any of a variety of sizes and/or shapes, and may be spaced at any of a variety of spacings. For example, electrodes 114 may have an outer diameter of two to twenty millimeters (mm). In other embodiments, electrodes 114 and/or 114′ may have a diameter of two, three, five, seven millimeters (mm), or any other suitable diameter, dimension and/or shape. Example lengths for electrodes 114 and/or 114′ may include, for example, one, three, five, ten millimeters (mm), or any other suitable length. As used herein, the length is a dimension of electrodes 114 and/or 114′ that extends away from the outer surface of the housing 120. In some instances, at least some of electrodes 114 and/or 114′ may be spaced from one another by a distance of twenty, thirty, forty, fifty millimeters (mm), or any other suitable spacing. The electrodes 114 and/or 114′ of a single device may have different sizes with respect to each other, and the spacing and/or lengths of the electrodes on the device may or may not be uniform.
In the embodiment shown, communication module 102 may be electrically coupled to electrodes 114 and/or 114′ and may be configured to deliver communication pulses to tissues of the patient for communicating with other devices such as sensors, programmers, other medical devices, and/or the like. Communication signals, as used herein, may be any modulated signal that conveys information to another device, either by itself or in conjunction with one or more other modulated signals. In some embodiments, communication signals may be limited to sub-threshold signals that do not result in capture of the heart yet still convey information. The communication signals may be delivered to another device that is located either external or internal to the patient's body. In some instances, the communication may take the form of distinct communication pulses separated by various amounts of time. In some of these cases, the timing between successive pulses may convey information. Communication module 102 may additionally be configured to sense for communication signals delivered by other devices, which may be located external or internal to the patient's body.
Communication module 102 may communicate to help accomplish one or more desired functions. Some example functions include delivering sensed data, using communicated data for determining occurrences of events such as arrhythmias, coordinating delivery of electrical stimulation therapy, and/or other functions. In some cases, LCP 100 may use communication signals to communicate raw information, processed information, messages and/or commands, and/or other data. Raw information may include information such as sensed electrical signals (e.g. a sensed ECG), signals gathered from coupled sensors, and the like. In some embodiments, the processed information may include signals that have been filtered using one or more signal processing techniques. Processed information may also include parameters and/or events that are determined by the LCP 100 and/or another device, such as a determined heart rate, timing of determined heartbeats, timing of other determined events, determinations of threshold crossings, expirations of monitored time periods, activity level parameters, blood-oxygen parameters, blood pressure parameters, heart sound parameters, and the like. Messages and/or commands may include instructions or the like directing another device to take action, notifications of imminent actions of the sending device, requests for reading from the receiving device, requests for writing data to the receiving device, information messages, and/or other messages commands.
In at least some embodiments, communication module 102 (or LCP 100) may further include switching circuitry to selectively connect one or more of electrodes 114 and/or 114′ to communication module 102 in order to select which electrodes 114 and/or 114′ that communication module 102 delivers communication pulses. It is contemplated that communication module 102 may be communicating with other devices via conducted signals, radio frequency (RF) signals, optical signals, acoustic signals, inductive coupling, and/or any other suitable communication methodology. Where communication module 102 generates electrical communication signals, communication module 102 may include one or more capacitor elements and/or other charge storage devices to aid in generating and delivering communication signals. In the embodiment shown, communication module 102 may use energy stored in energy storage module 112 to generate the communication signals. In at least some examples, communication module 102 may include a switching circuit that is connected to energy storage module 112 and, with the switching circuitry, may connect energy storage module 112 to one or more of electrodes 114/114′ to generate the communication signals.
As shown in
LCP 100 may further include an electrical sensing module 106 and mechanical sensing module 108. Electrical sensing module 106 may be configured to sense intrinsic cardiac electrical signals conducted from electrodes 114 and/or 114′ to electrical sensing module 106. For example, electrical sensing module 106 may be electrically connected to one or more electrodes 114 and/or 114′ and electrical sensing module 106 may be configured to receive cardiac electrical signals conducted through electrodes 114 and/or 114′ via a sensor amplifier or the like. In some embodiments, the cardiac electrical signals may represent local information from the chamber in which LCP 100 is implanted. For instance, if LCP 100 is implanted within a ventricle of the heart, cardiac electrical signals sensed by LCP 100 through electrodes 114 and/or 114′ may represent ventricular cardiac electrical signals. Mechanical sensing module 108 may include, or be electrically connected to, various sensors, such as accelerometers, blood pressure sensors, heart sound sensors, piezoelectric sensors, blood-oxygen sensors, and/or other sensors which measure one or more physiological parameters of the heart and/or patient. Mechanical sensing module 108, when present, may gather signals from the sensors indicative of the various physiological parameters. Both electrical sensing module 106 and mechanical sensing module 108 may be connected to processing module 110 and may provide signals representative of the sensed cardiac electrical signals and/or physiological signals to processing module 110. Although described with respect to
Processing module 110 may be configured to direct the operation of LCP 100. For example, processing module 110 may be configured to receive cardiac electrical signals from electrical sensing module 106 and/or physiological signals from mechanical sensing module 108. Based on the received signals, processing module 110 may determine, for example, occurrences and types of arrhythmias. Processing module 110 may further receive information from communication module 102. In some embodiments, processing module 110 may additionally use such received information to determine occurrences and types of arrhythmias. In still some additional embodiments, LCP 100 may use the received information instead of the signals received from electrical sensing module 106 and/or mechanical sensing module 108—for instance if the received information is deemed to be more accurate than the signals received from electrical sensing module 106 and/or mechanical sensing module 108 or if electrical sensing module 106 and/or mechanical sensing module 108 have been disabled or omitted from LCP 100.
After determining an occurrence of an arrhythmia, processing module 110 may control pulse generator module 104 to generate electrical stimulation pulses in accordance with one or more electrical stimulation therapies to treat the determined arrhythmia. For example, processing module 110 may control pulse generator module 104 to generate pacing pulses with varying parameters and in different sequences to effectuate one or more electrical stimulation therapies. As one example, in controlling pulse generator module 104 to deliver bradycardia pacing therapy, processing module 110 may control pulse generator module 104 to deliver pacing pulses designed to capture the heart of the patient at a regular interval to help prevent the heart of a patient from falling below a predetermined threshold. In some cases, the rate of pacing may be increased with an increased activity level of the patient (e.g. rate adaptive pacing). For instance, processing module 110 may monitor one or more physiological parameters of the patient which may indicate a need for an increased heart rate (e.g. due to increased metabolic demand). Processing module 110 may then increase the rate at which pulse generator 104 generates electrical stimulation pulses.
For ATP therapy, processing module 110 may control pulse generator module 104 to deliver pacing pulses at a rate faster than an intrinsic heart rate of a patient in attempt to force the heart to beat in response to the delivered pacing pulses rather than in response to intrinsic cardiac electrical signals. Once the heart is following the pacing pulses, processing module 110 may control pulse generator module 104 to reduce the rate of delivered pacing pulses down to a safer level. In CRT, processing module 110 may control pulse generator module 104 to deliver pacing pulses in coordination with another device to cause the heart to contract more efficiently. In cases where pulse generator module 104 is capable of generating defibrillation and/or cardioversion pulses for defibrillation/cardioversion therapy, processing module 110 may control pulse generator module 104 to generate such defibrillation and/or cardioversion pulses. In some cases, processing module 110 may control pulse generator module 104 to generate electrical stimulation pulses to provide electrical stimulation therapies different than those examples described above.
Aside from controlling pulse generator module 104 to generate different types of electrical stimulation pulses and in different sequences, in some embodiments, processing module 110 may also control pulse generator module 104 to generate the various electrical stimulation pulses with varying pulse parameters. For example, each electrical stimulation pulse may have a pulse width and a pulse amplitude. Processing module 110 may control pulse generator module 104 to generate the various electrical stimulation pulses with specific pulse widths and pulse amplitudes. For example, processing module 110 may cause pulse generator module 104 to adjust the pulse width and/or the pulse amplitude of electrical stimulation pulses if the electrical stimulation pulses are not effectively capturing the heart. Such control of the specific parameters of the various electrical stimulation pulses may help LCP 100 provide more effective delivery of electrical stimulation therapy.
In some embodiments, processing module 110 may further control communication module 102 to send information to other devices. For example, processing module 110 may control communication module 102 to generate one or more communication signals for communicating with other devices of a system of devices. For instance, processing module 110 may control communication module 102 to generate communication signals in particular pulse sequences, where the specific sequences convey different information. Communication module 102 may also receive communication signals for potential action by processing module 110.
In further embodiments, processing module 110 may control switching circuitry by which communication module 102 and pulse generator module 104 deliver communication signals and/or electrical stimulation pulses to tissue of the patient. As described above, both communication module 102 and pulse generator module 104 may include circuitry for connecting one or more electrodes 114 and/114′ to communication module 102 and/or pulse generator module 104 so those modules may deliver the communication signals and electrical stimulation pulses to tissue of the patient. The specific combination of one or more electrodes by which communication module 102 and/or pulse generator module 104 deliver communication signals and electrical stimulation pulses may influence the reception of communication signals and/or the effectiveness of electrical stimulation pulses. Although it was described that each of communication module 102 and pulse generator module 104 may include switching circuitry, in some embodiments, LCP 100 may have a single switching module connected to the communication module 102, the pulse generator module 104, and electrodes 114 and/or 114′. In such embodiments, processing module 110 may control the switching module to connect modules 102/104 and electrodes 114/114′ as appropriate.
In some embodiments, processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of LCP 100. By using a pre-programmed chip, processing module 110 may use less power than other programmable circuits while able to maintain basic functionality, thereby potentially increasing the battery life of LCP 100. In other instances, processing module 110 may include a programmable microprocessor or the like. Such a programmable microprocessor may allow a user to adjust the control logic of LCP 100 after manufacture, thereby allowing for greater flexibility of LCP 100 than when using a pre-programmed chip.
Processing module 110, in additional embodiments, may include a memory circuit and processing module 110 may store information on and read information from the memory circuit. In other embodiments, LCP 100 may include a separate memory circuit (not shown) that is in communication with processing module 110, such that processing module 110 may read and write information to and from the separate memory circuit. The memory circuit, whether part of processing module 110 or separate from processing module 110, may be volatile memory, non-volatile memory, or a combination of volatile memory and non-volatile memory.
Energy storage module 112 may provide a power source to LCP 100 for its operations. In some embodiments, energy storage module 112 may be a non-rechargeable lithium-based battery. In other embodiments, the non-rechargeable battery may be made from other suitable materials. In some embodiments, energy storage module 112 may include a rechargeable battery. In still other embodiments, energy storage module 112 may include other types of energy storage devices such as capacitors or super capacitors.
To implant LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.), may fix LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, LCP 100 may include one or more anchors 116. The one or more anchors 116 are shown schematically in
In some examples, LCP 100 may be configured to be implanted on a patient's heart or within a chamber of the patient's heart. For instance, LCP 100 may be implanted within any of a left atrium, right atrium, left ventricle, or right ventricle of a patient's heart. By being implanted within a specific chamber, LCP 100 may be able to sense cardiac electrical signals originating or emanating from the specific chamber that other devices may not be able to sense with such resolution. Where LCP 100 is configured to be implanted on a patient's heart, LCP 100 may be configured to be implanted on or adjacent to one of the chambers of the heart, or on or adjacent to a path along which intrinsically generated cardiac electrical signals generally follow. In these examples, LCP 100 may also have an enhanced ability to sense localized intrinsic cardiac electrical signals and deliver localized electrical stimulation therapy.
While MD 200 may be another leadless device such as shown in
Leads 212, in some embodiments, may additionally contain one or more sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and/or other sensors which are configured to measure one or more physiological parameters of the heart and/or patient. In such embodiments, mechanical sensing module 208 may be in electrical communication with leads 212 and may receive signals generated from such sensors.
While not required, in some embodiments MD 200 may be an implantable medical device. In such embodiments, housing 220 of MD 200 may be implanted in, for example, a transthoracic region of the patient. Housing 220 may generally include any of a number of known materials that are safe for implantation in a human body and may, when implanted, hermetically seal the various components of MD 200 from fluids and tissues of the patient's body. In such embodiments, leads 212 may be implanted at one or more various locations within the patient, such as within the heart of the patient, adjacent to the heart of the patient, adjacent to the spine of the patient, or any other desired location.
In some embodiments, MD 200 may be an implantable cardiac pacemaker (ICP). In these embodiments, MD 200 may have one or more leads, for example leads 212, which are implanted on or within the patient's heart. The one or more leads 212 may include one or more electrodes 214 that are in contact with cardiac tissue and/or blood of the patient's heart. MD 200 may be configured to sense intrinsically generated cardiac electrical signals and determine, for example, one or more cardiac arrhythmias based on analysis of the sensed signals. MD 200 may be configured to deliver CRT, ATP therapy, bradycardia therapy, and/or other therapy types via leads 212 implanted within the heart. In some embodiments, MD 200 may additionally be configured to provide defibrillation/cardioversion therapy.
In some instances, MD 200 may be an implantable cardioverter-defibrillator (ICD). In such embodiments, MD 200 may include one or more leads implanted within a patient's heart. MD 200 may also be configured to sense electrical cardiac signals, determine occurrences of tachyarrhythmias based on the sensed electrical cardiac signals, and deliver defibrillation and/or cardioversion therapy in response to determining an occurrence of a tachyarrhythmia (for example by delivering defibrillation and/or cardioversion pulses to the heart of the patient). In other embodiments, MD 200 may be a subcutaneous implantable cardioverter-defibrillator (SICD). In embodiments where MD 200 is an SICD, one of leads 212 may be a subcutaneously implanted lead. In at least some embodiments where MD 200 is an SICD, MD 200 may include only a single lead which is implanted subcutaneously but outside of the chest cavity, however this is not required.
In some embodiments, MD 200 may not be an implantable medical device. Rather, MD 200 may be a device external to the patient's body, and electrodes 214 may be skin-electrodes that are placed on a patient's body. In such embodiments, MD 200 may be able to sense surface electrical signals (e.g. electrical cardiac signals that are generated by the heart or electrical signals generated by a device implanted within a patient's body and conducted through the body to the skin). MD 200 may further be configured to deliver various types of electrical stimulation therapy, including, for example, defibrillation therapy via skin-electrodes 214.
Various devices of system 300 may communicate via communication pathway 308. For example, LCPs 302 and/or 304 may sense intrinsic cardiac electrical signals and may communicate such signals to one or more other devices 302/304, 306, and 310 of system 300 via communication pathway 308. In one embodiment, one or more of devices 302/304 may receive such signals and, based on the received signals, determine an occurrence of an arrhythmia. In some cases, device or devices 302/304 may communicate such determinations to one or more other devices 306 and 310 of system 300. In some cases, one or more of devices 302/304, 306, and 310 of system 300 may take action based on the communicated determination of an arrhythmia, such as by delivering a suitable electrical stimulation to the heart of the patient. One or more of devices 302/304, 306, and 310 of system 300 may additionally communicate command or response messages via communication pathway 308. The command messages may cause a receiving device to take a particular action whereas response messages may include requested information or a confirmation that a receiving device did, in fact, receive a communicated message or data.
It is contemplated that the various devices of system 300 may communicate via pathway 308 using RF signals, inductive coupling, optical signals, acoustic signals, or any other signals suitable for communication. Additionally, in at least some embodiments, the various devices of system 300 may communicate via pathway 308 using multiple signal types. For instance, other sensors/device 310 may communicate with external device 306 using a first signal type (e.g. RF communication) but communicate with LCPs 302/304 using a second signal type (e.g. conducted communication). Further, in some embodiments, communication between devices may be limited. For instance, as described above, in some embodiments, LCPs 302/304 may communicate with external device 306 only through other sensors/devices 310, where LCPs 302/304 send signals to other sensors/devices 310, and other sensors/devices 310 relay the received signals to external device 306.
In some cases, the various devices of system 300 may communicate via pathway 308 using conducted communication signals. Accordingly, devices of system 300 may have components that allow for such conducted communication. For instance, the devices of system 300 may be configured to transmit conducted communication signals (e.g. current and/or voltage pulses, referred herein as electrical communication pulses) into the patient's body via one or more electrodes of a transmitting device, and may receive the conducted communication signals via one or more electrodes of a receiving device. The patient's body may “conduct” the conducted communication signals from the one or more electrodes of the transmitting device to the electrodes of the receiving device in the system 300. In such embodiments, the delivered conducted communication signals may differ from pacing pulses, defibrillation and/or cardioversion pulses, or other electrical stimulation therapy signals. For example, the devices of system 300 may deliver electrical communication pulses at an amplitude/pulse width that is sub-threshold. That is, the communication pulses may have an amplitude/pulse width designed to not capture the heart. In some cases, the amplitude/pulse width of the delivered electrical communication pulses may be above the capture threshold of the heart, but may be delivered during a refractory period of the heart and/or may be incorporated in or modulated onto a pacing pulse, if desired. In some cases, the delivered electrical communication pulses may be notches or other disturbances in a pacing pulse.
Unlike normal electrical stimulation therapy pulses, the electrical communication pulses may be delivered in specific sequences which convey information to receiving devices. For instance, delivered electrical communication pulses may be modulated in any suitable manner to encode communicated information. In some cases, the communication pulses may be pulse width modulated and/or amplitude modulated. Alternatively, or in addition, the time between pulses may be modulated to encode desired information. In some cases, a predefined sequence of communication pulses may represent a corresponding symbol (e.g. a logic “1” symbol, a logic “0” symbol, an ATP therapy trigger symbol, etc.). In some cases, conducted communication pulses may be voltage pulses, current pulses, biphasic voltage pulses, biphasic current pulses, or any other suitable electrical pulse as desired.
In some embodiments, external defibrillator 406 may be configured to deliver a voltage and/or current signal into the patient through skin 415 as a patch-integrity signal, and may further sense the patch-integrity signal in order to determine information about the contact between electrodes 408 and skin 415. External defibrillator 406 may be configured to display or emit an alarm if the received patch-integrity signal indicates insufficient contact between electrodes 408 and skin 415 to achieve sufficient sensing by the patch electrodes 408 of cardiac electrical signals of heart 410 and/or for safe delivery of defibrillation and/or cardioversion pulses. In some embodiments, the patch-integrity signal may represent a continuous signal, such as a sine-wave, square-wave, saw-tooth wave, or the like. Additionally, and in some cases, the patch-integrity signal may have a frequency of between about 50 kHz and about 150 kHz, but this is not required. In some instances, this patch-integrity signal may interfere with the conducted communication signals delivered and received by LCP 402 and external support device 420. Accordingly, the LCP 402 and/or external support device 420 may employ one or more techniques for enhancing the effectiveness of their conducted communication scheme, as described in more detail below.
It should be understood that the system of
In the example shown in
As described, in some conducted communication schemes, the specific characteristics or spacing of received pulses, such as pulses 552 of conducted communication signal 550, may convey information. In some embodiments, LCP 402 and external support device 420 may be configured according to a specific communication protocol, whereby specific patterns of pulse characteristics and/or pulse spacing may represent predefined messages. Some example messages may include identification messages, commands, requests for data, and the like. If a received set of pulses do not have the characteristics that correspond to a recognized message format, the device may determine that a valid message has not been received, and conversely if a received set of pulses do have the characteristics that correspond to a recognized message formats, the device may determine that a valid message has been received.
In at least some instances, LCP 402 and/or external support device 420 may also determine whether a received message is valid by checking a received message for errors. For instance, the receiving device, even after receiving a series of pulses that correspond to a recognized message format, may employ one or more error checking schemes, such as repetition codes, parity bits, checksums, cyclic redundancy checks (CRC), or the like. When so provided, the device may only determine that a received message is valid if the error checking algorithm determines that there are no errors, or no significant errors, in the received message.
As can be seen in
In the example method 700, LCP 402 may begin by setting receive threshold 505 to an initial value, as shown at 702. The initial value may be set such that, under most conditions, receive threshold 505 is below the amplitude of signal component 502 of conducted communication signal 500. Next, LCP 402 may reset and begin a communication window timer, as shown at 704, and reset and begin a communication session timer, as shown at 706. In some embodiments, LCP 402 may begin the communication window timer only at predefined times. For instance, the communication window timer may be synchronized to line up with one or more features of a sensed cardiac electrical signal, such as an R-wave. In such an example, once LCP 402 resets the communication window timer, LCP 402 may wait to start the communication window timer until sensing a particular feature in the cardiac electrical signal. In at least some instances, LCP 402 may start the communication window timer after a predefined time after sensing the particular feature. As one example, LCP 402 may wait between about 50 ms and about 150 ms after sensing an R-wave to begin the communication window timer.
In some cases, LCP 402 may count the number of received pulses in a received conducted communication signal, as shown at 708. For instance, received conducted communication signal 500 may be passed through the comparator circuit using receive threshold 505, resulting in conducted communication signal 550. As one example implementation, LCP 402 may increment a pulse count value every time LCP 402 detects a pulse in conducted communication signal 550.
Next, LCP 402 may determine whether the communication session timer has exceeded the communication session timer threshold, as shown at 710. If the communication session timer has exceeded the communication session timer threshold, LCP 402 may begin method 700 again back at 702. The communication session timer may help ensure that if receive threshold 505 ever gets set above the maximum amplitude of signal component 502 of conducted communication signal 500, receive threshold 505 is reset to a lower value. Although step 702 includes setting receive threshold 505 back to its initial value, in some instances, if LCP 402 arrives at step 702 through block 712, LCP 402 may set receive threshold 505 to a lower value that is different than the initial value. For instance, LCP 402 may simply reduce the value of receive threshold 505 instead of setting it back to its initial value.
If LCP 402 determines that the communication session timer has not exceeded the communication session timer threshold, LCP 402 may determine whether the communication window timer has exceeded the communication window timer threshold, as shown at 712. If LCP 402 determines that the communication window timer exceeded the communication window timer threshold, LCP 402 may reset the pulse count and reset and begin the communication window timer, as shown at 720, and then begin again with counting received pulses at 708.
If LCP 402 determines that the communication window timer does not exceed the communication window timer threshold, LCP 402 may determine whether a valid message was received, as shown at 714. For example, LCP 402 may compare the pattern of received pulses to predefined pulse patterns that represent messages. In some instances, LCP 402 may run one or more error checking schemes before or after determining whether the pattern of received pulses corresponds to one of the predefined pulse patterns. LCP 402 may determine that a valid message has been received after determining that the pattern of received pulses corresponds to one of the predefined pulse patterns, and if so provided, after determining that t there are no errors, or significant errors, in the received pulse pattern. If LCP 402 determines that a valid message has been received, LCP 402 may begin the method again at block 706, such as by following the ‘YES’ branch of block 714.
If no valid message has yet been received, LCP 402 may determine whether the pulse count is greater than the pulse count threshold, as shown at 716. The pulse count threshold may be set to above a maximum number of pulses that LCP 402 could possibly receive in a valid message. For instance, if each message may correspond to a predefined pulse pattern or sequence, there may be a maximum number of pulses that may be sent in a given message. Accordingly, if LCP 402 receives a number of pulses that is above the pulse count threshold within a communication window, LCP 402 may conclude that the conducted communication signal 550 has been corrupted by noise. Therefore, if LCP 402 determines that the pulse count has exceeded the pulse count threshold, LCP 402 may increase the value of receive threshold 505 and reset the pulse count, as shown at 718, and begin method 700 again at step 704. LCP 402 may increase the value of receive threshold 505 by a predetermined amount, based on how long it took for the number of received pulses to exceed the pulse count threshold, based on how much the number of received pulses exceeded the pulse count threshold, and/or based on any other suitable criteria. If the pulse count has not exceed the pulse count threshold, LCP 402 may loop back to step 708 and continue counting received pulses.
In some instances, LCP 402 may wait until the end of a communication window to determine whether a valid message was received and whether the pulse count exceeded the pulse count threshold. For instance, blocks 714 and 716 may be connected to the ‘YES’ branch block 712, such that LCP 402 only determines whether a valid message was received and whether the pulse count exceeded the pulse count threshold after the communication window timer exceeds the communication window timer threshold. Block 720 may then be connected to the ‘NO’ branch of block 716.
The LCP 402 may be configured to adjust receive threshold 505 based at least in part on the amplitude of conducted communication signal 500. Setting receive threshold 505 at an appropriate level effectively filters out noise component 504 in conducted communication signal 550. In operation, method 700 may work to increase receive threshold 505 above the peak amplitude of noise component 504 such that the peaks of noise component 504 are below receive threshold 505 such that the comparator circuit does not produce corresponding pulses in conducted communication signal 550. However, receive threshold 505 may remain below the peak amplitude of signal component 502, such that the comparator circuit does produce pulses in conducted communication signal 550 that correspond to the pulses in signal component 502.
LCP 402 may begin, as shown in method 700, by setting receive threshold 505 to an initial value, resetting and beginning a communication window timer, and resetting and beginning a communication session timer, as shown at 752, 754, and 756, respectively. Next, LCP 452 may determine whether the communication session timer has exceeded the communication session timer threshold, as shown at 758.
If LCP 402 determines that the communication window session timer has not exceeded the communication window session threshold, LCP 402 may determine whether the communication window timer has exceeded the communication window timer threshold, as shown at 760. If LCP 402 determines that the communication window timer has not exceeded the communication window timer threshold, LCP 402 may determine whether a valid message has been received, as shown at 764. If no valid messaged has been received, LCP 402 may loop back to block 758. In this manner, LCP 402 may continue to check whether a valid message has been received during a communication window.
If LCP 402 determines that the communication window timer has exceeded the communication window timer threshold, LCP 402 may determine whether at least one valid messaged was received during the communication window. If no valid message was received, LCP 402 may increase receive threshold 505 and reset and begin the communication window timer, as shown at 766, and begin method 750 again at 758. LCP 402 may increase the value of receive threshold 505 by a predetermined amount, based on how long it took for the number of received pulses to exceed the pulse count threshold, or based on other criteria. If LCP 402 determines that at least one valid message has been received, LCP 402 may begin method 750 again at block 754.
In this manner, if receive threshold 505 is set too low, e.g. below the maximum amplitude of noise component 504, LCP 402 will not readily receive valid messages and will then increase the receive threshold 505. This will continue until receive threshold 505 is set above the amplitude of noise component 504 and LCP 402 may begin to receive valid messages based on only the signal component 502.
In some instances, LCP 402 may wait until after the communication window timer has exceeded the communication window timer threshold before determining whether a valid message has been received. For example, method 750 may not include block 764 at all. Instead, the ‘NO’ branch of block 760 may connect directly to block 756.
In some instances, LCP 402 may wait longer than a single communication window period before determining whether a pulse count exceeds a pulse count threshold or whether a valid message was received. For example, LCP 402 may wait until two, three, or even four communication windows have elapsed before making any determinations. These are just some example alternatives to the method shown in
In the example of
As can be seen, dynamic receive threshold 505a is configured to decay after the conducted communication signal 500 reaches a peak amplitude that is above the then existing dynamic receive threshold 505a. For example, in
In some instances, instead of setting dynamic receive threshold 505a to the value of the most recent peak of conducted communication signal 500, LCP 402 may set dynamic receive threshold 505a to a value that is proportional to the most recent peak of conducted communication signal 500. For instance, LCP 402 may set dynamic receive threshold 505a to a value that is between 60%-99% of the maximum value of the most recent peak. This is just one example. Other examples include between 70%-99%, 80%-99%, or 90%-99% of the maximum value of the most recent peak of conducted communication signal 500.
In some cases, the decay characteristics of the dynamic receive threshold 505a may be based, at least partially, on the characteristics of the conducted communication signal 500. For example, dynamic receive threshold 505a may be configured to decay more quickly for higher values of the dynamic receive threshold 505a. In another example, dynamic receive threshold 505a may be configured to decay more quickly the longer it has been since the dynamic receive threshold 505a has been reset, which would correspond to a longer period of low amplitude activity of conducted communication signal 500. These are just examples.
In some alternative embodiments, LCP 402 may adjust the receive threshold to a value where LCP 402 detects that it successfully receives communication signals but does not receive noise signals. For instance, LCP 402 may initiate a search algorithm in order to adjust a receive threshold, such as threshold 505 or 505a. In some embodiments, the algorithm may have the receive threshold decay in a step-wise manner, and the time between decay steps may range from between about 4 ms to about 10,000 ms. The 4 ms value may represent the shortest length communication. The 10,000 ms value may represent a slow respiratory cycle which could impact a signal to noise ratio. However, in other embodiments, the time between decay steps may have any value between 4 ms and 10,000 ms. In some embodiments, the decay at each step may occur in binary ratios, such as 1/16, 1/32, 1/64, 1/128, or 1/256 or the like. For instance, at each decay step, receive threshold 505a may decay by the chosen 1/16 (or other chosen binary ratio) of the current value of receive threshold 505a. In further embodiments, the decay value may change at successive steps. For instance, the first decay amount may be 1/256 of receive threshold 505a, the second decay amount may be 1/128 of receive threshold 505a, the third decay amount may be 1/64 of receive threshold 505a, and the like. Once LCP 100 sets the receive threshold to a value where LCP 100 determines that it is receiving both a signal component and a noise component in received communication signals, LCP 100 may set the receive threshold to the previous value where LCP 100 did not detect both signal components and noise components in received communication signals. One particularly useful embodiments may include setting the time between decay steps at 25 ms and the decay value to 1/64. However, this is just one example.
In some cases, LCP 402 may employ an adaptive filter to help filter out noise component 504. As described, the patch-integrity signal of an external defibrillator 406 may be a continuous signal having generally static characteristics, such as frequency and/or amplitude. In such cases, LCP 402 may sense, outside of a communication period, the patch-integrity signal. LCP 402 may then process the patch-integrity signal to determine at least the frequency of the signal and may configure an adaptive filter into a notch filter centered at the frequency of the patch-integrity signal. In cases where patch-integrity signal has a single frequency, or a narrow frequency spectrum, the notch filter may be particularly effective in filtering out, or at least reducing in amplitude, the noise component 504.
Although the techniques were generally described separately, in instances, LCP 402 may employ multiple of the disclosed techniques simultaneously. For example, LCP 402 may implement the pulse-counting method described above in addition to a dynamic receive threshold. In another example, LCP 402 may implement the pulse counting method along with an adaptive filter. In general, in different embodiments, LCP 402 may include all combinations of the above described techniques.
It should be understood that although the above methods were described with LCP 402 as a receiver and external support device 420 as a transmitter, this was just for illustrative purposes. In some cases, external support device 420 may act as a receiver and may implement any techniques described with respect to LCP 402. Additionally, it should be understood that the described techniques are not limited to system 400. Indeed, the described techniques may be implemented by any device and/or system that uses conducted communication.
In some cases, one or more of the devices of system 400 (or other system) may be configured to actively cancel the patch-integrity signal. For instance, in the example of
In some instances, external support device 420 may include a pulse generator module whereby external support device 420 may generate varied waveforms. After external support device 420 senses patch-integrity signal 810, external support device 420 may generate a cancelling or inverse signal 812 (see
External support device 420 may deliver the generated inverse signal 812 into the body of the patient, for example through electrodes 404. Since inverse signal 812 has similar but opposite characteristics of patch-integrity signal 810, inverse signal 812 may destructively interfere with patch-integrity signal 810, thereby canceling out and/or at least reducing the amplitude of patch-integrity signal 810 sensed by other devices connected to the patient, such as LCP 402. In some examples, inverse signal 812 may be the exact opposite of patch-integrity signal 810 and may fully cancel inverse signal 812 such that LCP 402 does not sense patch-integrity signal 810. In other examples, inverse signal 812 may only be similar to patch-integrity signal 810 and may only reduce the amplitude of patch-integrity signal 810 sensed by LCP 402. In any case, the delivered inverse signal 812 may reduce the amplitude of patch-integrity signal 810 sensed by LCP 402, which can enhance the signal-to-noise ratio (SNR) of conducted communication between external support device 420 and LCP 402 (and/or between LCP 402 and another implanted devices). An example of a signal sensed by LCP 402 while external support device 420 is delivering inverse signal 812 is shown in
In at least some embodiments, instead of attempting to match the amplitude of patch-integrity signal 810, external support device 420 may generate inverse signal 812 having a different amplitude than patch-integrity signal 810. The amplitude of patch-integrity signal 810 sensed by devices connected to the patient other than external support device 420, such as LCP 402, may differ than the amplitude of patch-integrity signal 810 sensed by external support device 420. Accordingly, delivering inverse signal 812 into the patient with an amplitude similar to patch-integrity signal 810 sensed by external support device 420 may cancel out patch-integrity signal 810 sensed by LCP 402, but may additionally introduce noise in the form of inverse signal 812, which was not fully cancelled out by patch-integrity signal 810. Accordingly, in some instances, external support device 420 may generate inverse signal 812 having an amplitude higher, or lower, than the amplitude of patch-integrity signal 810 sensed by external support device 420. External support device 420 may attempt to match the amplitude of inverse signal 812 sensed by LCP 402 to the amplitude of patch-integrity signal 810 sensed by LCP 402. For example, external support device 420 may adjust the amplitude of inverse signal 812 based on feedback received from LCP 402, or based on a presence or absence of received messages from LCP 402. In other embodiments, external support device 420 may include a physical dial or gain adjuster 424 that a user may adjust to increase or decrease the amplitude of generated inverse signal 812 (see
Delivering inverse signal 812 into the patient's body may enhance the signal-to-noise ratio (SNR) of conducted communication with the body by removing or reducing the patch-integrity signal 810 in the body. In some embodiments, external support device 420 may deliver inverse signal 812 into the patient's body continuously. In other cases, the delivered inverse signal 812 may cause external defibrillator 406 to generate or emit an alarm as patch-integrity signal 810 sensed by external defibrillator 406 may be fully cancelled or reduced in amplitude below a certain alarm threshold. Accordingly, in some cases, external support device 420 may only selectively deliver inverse signal 812 into the patient's body. For example, external support device 420 may only deliver inverse signal 812 into the patient's body while external support device 420 or LCP 402 are delivering conducted communication signals into the patient's body. In some cases, LCP 402 may have an easier time discriminating between the delivered conducted communication signals from patch-integrity signal 810. In some cases, the conducted communication scheme of external support device 420 and LCP 402 may include only delivering conducted communication signals during predefined time periods. For instance, external support device 420 and LCP 402 may be configured to only deliver conducted communication signals during communication windows lasting about 100 ms, with each communication window separated by 800 ms. These numbers are just examples. The communication window lengths and spacing may be any suitable values.
In some cases, the communication windows may be synchronized to one or more features of the cardiac electrical signals. For instance, external support device 420 and LCP 402 may be configured to communication during communication windows that occur about 100-250 ms after each detected R-wave. External support device 420 may be configured to only deliver inverse signal 812 into the patient's body during these communication windows. Both external support device 420 and LCP 402 may benefit from enhanced discrimination between sensed conducted communication signals and patch-integrity signal 810.
The patch-integrity signal 810 depicted in
In system 900, a switching unit 910 may be configured to switch between wires 922 from external support device 920 and wires 908 from external defibrillator 906 to connect/disconnect each device to electrodes 904. Switching unit 910 may initially connect wires 908 to electrodes 904, allowing external defibrillator 906 to deliver a patch-integrity signal through electrode 904 and into the patient through skin 915. In some cases, when external support device 920 is to deliver conducted communication signals into the patient, switching unit 910 may disconnect wires 908 of external defibrillator 906 from the electrodes 904 and connect wires 922 from external support device 920 to the electrodes 904. In this configuration, external support device 920 may deliver conducted communication signals into the patient through electrodes 904. With the external defibrillator 906 disconnected from the electrodes 904, the patch-integrity signal is effectively blocked from entering the patient, and devices may communicate through conducted communication signals without interference from the patch-integrity signal. Once the conducted communication signals have been sent and received, switching unit 910 may disconnect wires 922 of the external support device 920 from the electrodes 904 and connect wires 908 of the external defibrillator 906 to the electrodes 904. The patch-integrity signal of the external defibrillator 906 may then be delivered to the patient, verifying to the external defibrillator 906 that the patch electrodes 904 are sufficiently in electrical communication with the skin. If the communication period is kept short enough, a patch verification alarm of the external defibrillator 906 may not be triggered.
In some instances, external support device 920 may control switching unit 910 to connect/disconnect wires 908, 922 from wires 912. In other instances, external defibrillator 906 may control switching unit 910, a different device may control switching unit 910, or both of external defibrillator 906 and external support device 920 may control switching unit 910. For ease of description, the techniques are described below from the perspective of external support device 920 controlling switching unit 910.
In operation, external defibrillator 906 may normally be connected to electrode 904 to deliver a patch-integrity signal and/or sense cardiac electrical signals. Before external support device 920 delivers conducted communication signals into the patient, external support device 920 may command switching unit 910 to disconnect wires 908 of the external defibrillator 906 from the electrodes 904 and connect wires 922 of the external support device 920 to the electrodes 904, thereby blocking the patch-integrity signal from external defibrillator 906 from being delivered to the patient. Once external support device 920 is finished delivering the conducted communication signals, external support device 920 may command switching unit 910 to reconnect wires 908 of the external defibrillator 906 to the electrodes 904.
In some instances, instead of only commanding switching unit 910 to connect wires 922 of the of the external support device 920 to the electrodes 904 before external support device 920 delivers conducted communication signals into the patient, external support device 920 may cause switching unit 910 to switch at regular intervals. For instance, in some cases where external support device 920 and another device, such as an LCP device, are connected to the patient and are configured to communicate using conducted communication only during predefined communication windows, external support device 920 may command switching unit 910 to connect wires 922 of the external support device 920 to the electrodes 904 during each of the communication windows.
When wires 908 of the external defibrillator 906 are disconnected from the electrodes 904, wires 908 may form an open circuit which may cause external defibrillator 906 to generate or emit an alarm, as external defibrillator 906 may no longer sense the patch-integrity signal. In some embodiments, in order help prevent external defibrillator 906 from generating an alarm, when switching unit 910 disconnects wires 908 of the external defibrillator 906 from the electrodes 904, switching unit 910 may connect wires 908 directly together, or may connect wires 908 together through a resistive or other network contained within switching unit 910. In these embodiments, switching unit 910 may maintain a closed loop for the patch-integrity signal, which may help prevent external defibrillator 906 from generating or emitting an alarm.
Although system 900 is depicted as including external defibrillator 906, switching unit 910, and external support device 920, it is contemplated that system 900 may include fewer or more devices. For instance, the support functions of external support device 920 and the switching functions of switching unit 910 may be built into external defibrillator 906. When so provided, external defibrillator 906 may have an internal switching mechanism and can control the switching mechanism to help support conducted communication via other devices within the patient.
In general, those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. For instance, as described herein, various embodiments include one or more modules described as performing various functions. However, other embodiments may include additional modules that split the described functions up over more modules than that described herein. Additionally, other embodiments may consolidate the described functions into fewer modules. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/207,658 filed on Aug. 20, 2015, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3835864 | Rasor et al. | Sep 1974 | A |
3943936 | Rasor et al. | Mar 1976 | A |
4142530 | Wittkampf | Mar 1979 | A |
4151513 | Menken et al. | Apr 1979 | A |
4157720 | Greatbatch | Jun 1979 | A |
RE30366 | Rasor et al. | Aug 1980 | E |
4243045 | Maas | Jan 1981 | A |
4250884 | Hartlaub et al. | Feb 1981 | A |
4256115 | Bilitch | Mar 1981 | A |
4263919 | Levin | Apr 1981 | A |
4310000 | Lindemans | Jan 1982 | A |
4312354 | Walters | Jan 1982 | A |
4323081 | Wiebusch | Apr 1982 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4365639 | Goldreyer | Dec 1982 | A |
4440173 | Hudziak et al. | Apr 1984 | A |
4476868 | Thompson | Oct 1984 | A |
4522208 | Buffet | Jun 1985 | A |
4537200 | Widrow | Aug 1985 | A |
4556063 | Thompson et al. | Dec 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4593702 | Kepski et al. | Jun 1986 | A |
4593955 | Leiber | Jun 1986 | A |
4630611 | King | Dec 1986 | A |
4635639 | Hakala et al. | Jan 1987 | A |
4674508 | DeCote | Jun 1987 | A |
4712554 | Garson | Dec 1987 | A |
4729376 | DeCote | Mar 1988 | A |
4754753 | King | Jul 1988 | A |
4759366 | Callaghan | Jul 1988 | A |
4776338 | Lekholm et al. | Oct 1988 | A |
4787389 | Tarjan | Nov 1988 | A |
4793353 | Borkan | Dec 1988 | A |
4819662 | Heil et al. | Apr 1989 | A |
4858610 | Callaghan et al. | Aug 1989 | A |
4886064 | Strandberg | Dec 1989 | A |
4887609 | Cole, Jr. | Dec 1989 | A |
4928688 | Mower | May 1990 | A |
4967746 | Vandegriff | Nov 1990 | A |
4987897 | Funke | Jan 1991 | A |
4989602 | Sholder et al. | Feb 1991 | A |
5012806 | De Bellis | May 1991 | A |
5036849 | Hauck et al. | Aug 1991 | A |
5040534 | Mann et al. | Aug 1991 | A |
5058581 | Silvian | Oct 1991 | A |
5078134 | Heilman et al. | Jan 1992 | A |
5109845 | Yuuchi et al. | May 1992 | A |
5113859 | Funke | May 1992 | A |
5117824 | Keimel et al. | Jun 1992 | A |
5127401 | Grevious et al. | Jul 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5144950 | Stoop et al. | Sep 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5179945 | Van Hofwegen et al. | Jan 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5241961 | Henry | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5259387 | dePinto | Nov 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5284136 | Hauck et al. | Feb 1994 | A |
5300107 | Stokes et al. | Apr 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5305760 | McKown et al. | Apr 1994 | A |
5312439 | Loeb | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5318597 | Hauck et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5334222 | Salo et al. | Aug 1994 | A |
5342408 | Decoriolis et al. | Aug 1994 | A |
5370667 | Alt | Dec 1994 | A |
5372606 | Lang et al. | Dec 1994 | A |
5376106 | Stahmann et al. | Dec 1994 | A |
5383915 | Adams | Jan 1995 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5404877 | Nolan et al. | Apr 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411031 | Yomtov | May 1995 | A |
5411525 | Swanson et al. | May 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5456691 | Snell | Oct 1995 | A |
5458622 | Alt | Oct 1995 | A |
5466246 | Silvian | Nov 1995 | A |
5468254 | Hahn et al. | Nov 1995 | A |
5472453 | Alt | Dec 1995 | A |
5522866 | Fernald | Jun 1996 | A |
5540727 | Tockman et al. | Jul 1996 | A |
5545186 | Olson et al. | Aug 1996 | A |
5545202 | Dahl et al. | Aug 1996 | A |
5571146 | Jones et al. | Nov 1996 | A |
5591214 | Lu | Jan 1997 | A |
5620466 | Haefner et al. | Apr 1997 | A |
5634938 | Swanson et al. | Jun 1997 | A |
5649968 | Alt et al. | Jul 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5674259 | Gray | Oct 1997 | A |
5683426 | Greenhut et al. | Nov 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5706823 | Wodlinger | Jan 1998 | A |
5709215 | Perttu et al. | Jan 1998 | A |
5720770 | Nappholz et al. | Feb 1998 | A |
5728154 | Crossett et al. | Mar 1998 | A |
5741314 | Daly et al. | Apr 1998 | A |
5741315 | Lee et al. | Apr 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5752977 | Grevious et al. | May 1998 | A |
5755736 | Gillberg et al. | May 1998 | A |
5759199 | Snell et al. | Jun 1998 | A |
5774501 | Halpern et al. | Jun 1998 | A |
5792195 | Carlson et al. | Aug 1998 | A |
5792202 | Rueter | Aug 1998 | A |
5792203 | Schroeppel | Aug 1998 | A |
5792205 | Alt et al. | Aug 1998 | A |
5792208 | Gray | Aug 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836985 | Goyal et al. | Nov 1998 | A |
5836987 | Baumann et al. | Nov 1998 | A |
5842977 | Lesho et al. | Dec 1998 | A |
5855593 | Olson et al. | Jan 1999 | A |
5873894 | Vandegriff et al. | Feb 1999 | A |
5891184 | Lee et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5899876 | Flower | May 1999 | A |
5899928 | Sholder et al. | May 1999 | A |
5919214 | Ciciarelli et al. | Jul 1999 | A |
5935078 | Feierbach | Aug 1999 | A |
5941906 | Barreras et al. | Aug 1999 | A |
5944744 | Paul et al. | Aug 1999 | A |
5954757 | Gray | Sep 1999 | A |
5978713 | Prutchi et al. | Nov 1999 | A |
5991660 | Goyal | Nov 1999 | A |
5991661 | Park et al. | Nov 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999857 | Weijand et al. | Dec 1999 | A |
6016445 | Baura | Jan 2000 | A |
6026320 | Carlson et al. | Feb 2000 | A |
6029085 | Olson et al. | Feb 2000 | A |
6041250 | dePinto | Mar 2000 | A |
6044298 | Salo et al. | Mar 2000 | A |
6044300 | Gray | Mar 2000 | A |
6055454 | Heemels | Apr 2000 | A |
6073050 | Griffith | Jun 2000 | A |
6076016 | Feierbach | Jun 2000 | A |
6077236 | Cunningham | Jun 2000 | A |
6080187 | Alt et al. | Jun 2000 | A |
6083248 | Thompson | Jul 2000 | A |
6106551 | Crossett et al. | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6128526 | Stadler et al. | Oct 2000 | A |
6141581 | Olson et al. | Oct 2000 | A |
6141588 | Cox et al. | Oct 2000 | A |
6141592 | Pauly | Oct 2000 | A |
6144879 | Gray | Nov 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167310 | Grevious | Dec 2000 | A |
6201993 | Kruse et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6211799 | Post et al. | Apr 2001 | B1 |
6221011 | Bardy | Apr 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6240317 | Villaseca et al. | May 2001 | B1 |
6256534 | Dahl | Jul 2001 | B1 |
6259947 | Olson et al. | Jul 2001 | B1 |
6266558 | Gozani et al. | Jul 2001 | B1 |
6266567 | Ishikawa et al. | Jul 2001 | B1 |
6270457 | Bardy | Aug 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6273856 | Sun et al. | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6285907 | Kramer et al. | Sep 2001 | B1 |
6292698 | Duffin et al. | Sep 2001 | B1 |
6295473 | Rosar | Sep 2001 | B1 |
6297943 | Carson | Oct 2001 | B1 |
6298271 | Weijand | Oct 2001 | B1 |
6307751 | Bodony et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6336903 | Bardy | Jan 2002 | B1 |
6345202 | Richmond et al. | Feb 2002 | B2 |
6351667 | Godie | Feb 2002 | B1 |
6351669 | Hartley et al. | Feb 2002 | B1 |
6353759 | Hartley et al. | Mar 2002 | B1 |
6358203 | Bardy | Mar 2002 | B2 |
6361780 | Ley et al. | Mar 2002 | B1 |
6368284 | Bardy | Apr 2002 | B1 |
6371922 | Baumann et al. | Apr 2002 | B1 |
6398728 | Bardy | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6400990 | Silvian | Jun 2002 | B1 |
6408208 | Sun | Jun 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411848 | Kramer et al. | Jun 2002 | B2 |
6424865 | Ding | Jul 2002 | B1 |
6434429 | Kraus et al. | Aug 2002 | B1 |
6438410 | Hsu et al. | Aug 2002 | B2 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6438421 | Stahmann et al. | Aug 2002 | B1 |
6440066 | Bardy | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6442426 | Kroll | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6443891 | Grevious | Sep 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6453200 | Koslar | Sep 2002 | B1 |
6459929 | Hopper et al. | Oct 2002 | B1 |
6470215 | Kraus et al. | Oct 2002 | B1 |
6471645 | Warkentin et al. | Oct 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6487443 | Olson et al. | Nov 2002 | B2 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6498951 | Larson et al. | Dec 2002 | B1 |
6507755 | Gozani et al. | Jan 2003 | B1 |
6507759 | Prutchi et al. | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6526311 | Begemann | Feb 2003 | B2 |
6539253 | Thompson et al. | Mar 2003 | B2 |
6542775 | Ding et al. | Apr 2003 | B2 |
6553258 | Stahmann et al. | Apr 2003 | B2 |
6561975 | Pool et al. | May 2003 | B1 |
6564807 | Schulman et al. | May 2003 | B1 |
6574506 | Kramer et al. | Jun 2003 | B2 |
6584351 | Ekwall | Jun 2003 | B1 |
6584352 | Combs et al. | Jun 2003 | B2 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6597951 | Kramer et al. | Jul 2003 | B2 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6628985 | Sweeney et al. | Sep 2003 | B2 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6666844 | Igo et al. | Dec 2003 | B1 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6690959 | Thompson | Feb 2004 | B2 |
6694189 | Begemann | Feb 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6718212 | Parry et al. | Apr 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6738670 | Almendinger et al. | May 2004 | B1 |
6746797 | Benson et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6763269 | Cox | Jul 2004 | B2 |
6778860 | Ostroff et al. | Aug 2004 | B2 |
6788971 | Sloman et al. | Sep 2004 | B1 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6807442 | Myklebust et al. | Oct 2004 | B1 |
6847844 | Sun et al. | Jan 2005 | B2 |
6871095 | Stahmann et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6885889 | Chinchoy | Apr 2005 | B2 |
6892094 | Ousdigian et al. | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6904315 | Panken et al. | Jun 2005 | B2 |
6922592 | Thompson et al. | Jul 2005 | B2 |
6931282 | Esler | Aug 2005 | B2 |
6934585 | Schloss et al. | Aug 2005 | B1 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6978176 | Lattouf | Dec 2005 | B2 |
6985773 | Von Arx et al. | Jan 2006 | B2 |
6990375 | Kloss et al. | Jan 2006 | B2 |
7001366 | Ballard | Feb 2006 | B2 |
7003350 | Denker et al. | Feb 2006 | B2 |
7006864 | Echt et al. | Feb 2006 | B2 |
7013178 | Reinke et al. | Mar 2006 | B2 |
7027871 | Burnes et al. | Apr 2006 | B2 |
7050849 | Echt et al. | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7063693 | Guenst | Jun 2006 | B2 |
7082336 | Ransbury et al. | Jul 2006 | B2 |
7085606 | Flach et al. | Aug 2006 | B2 |
7092758 | Sun et al. | Aug 2006 | B2 |
7110824 | Amundson et al. | Sep 2006 | B2 |
7120504 | Osypka | Oct 2006 | B2 |
7130681 | Gebhardt et al. | Oct 2006 | B2 |
7139613 | Reinke et al. | Nov 2006 | B2 |
7142912 | Wagner et al. | Nov 2006 | B2 |
7146225 | Guenst et al. | Dec 2006 | B2 |
7146226 | Lau et al. | Dec 2006 | B2 |
7149581 | Goedeke | Dec 2006 | B2 |
7149588 | Lau et al. | Dec 2006 | B2 |
7158839 | Lau | Jan 2007 | B2 |
7162307 | Patrias | Jan 2007 | B2 |
7164952 | Lau et al. | Jan 2007 | B2 |
7177700 | Cox | Feb 2007 | B1 |
7181505 | Haller et al. | Feb 2007 | B2 |
7184830 | Echt et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7200439 | Zdeblick et al. | Apr 2007 | B2 |
7206423 | Feng et al. | Apr 2007 | B1 |
7209785 | Kim et al. | Apr 2007 | B2 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7211884 | Davis et al. | May 2007 | B1 |
7212871 | Morgan | May 2007 | B1 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7228183 | Sun et al. | Jun 2007 | B2 |
7236821 | Cates et al. | Jun 2007 | B2 |
7236829 | Farazi et al. | Jun 2007 | B1 |
7254448 | Almendinger et al. | Aug 2007 | B2 |
7260436 | Kilgore et al. | Aug 2007 | B2 |
7270669 | Sra | Sep 2007 | B1 |
7272448 | Morgan et al. | Sep 2007 | B1 |
7277755 | Falkenberg et al. | Oct 2007 | B1 |
7280872 | Mosesov et al. | Oct 2007 | B1 |
7288096 | Chin | Oct 2007 | B2 |
7289847 | Gill et al. | Oct 2007 | B1 |
7289852 | Helfinstine et al. | Oct 2007 | B2 |
7289853 | Campbell et al. | Oct 2007 | B1 |
7289855 | Nghiem et al. | Oct 2007 | B2 |
7302294 | Kamath et al. | Nov 2007 | B2 |
7305266 | Kroll | Dec 2007 | B1 |
7310556 | Bulkes | Dec 2007 | B2 |
7319905 | Morgan et al. | Jan 2008 | B1 |
7333853 | Mazar et al. | Feb 2008 | B2 |
7336994 | Hettrick et al. | Feb 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7366572 | Heruth et al. | Apr 2008 | B2 |
7373207 | Lattouf | May 2008 | B2 |
7384403 | Sherman | Jun 2008 | B2 |
7386342 | Falkenberg et al. | Jun 2008 | B1 |
7392090 | Sweeney et al. | Jun 2008 | B2 |
7406105 | DelMain et al. | Jul 2008 | B2 |
7406349 | Seeberger et al. | Jul 2008 | B2 |
7410497 | Hastings et al. | Aug 2008 | B2 |
7425200 | Brockway et al. | Sep 2008 | B2 |
7433739 | Salys et al. | Oct 2008 | B1 |
7496409 | Greenhut et al. | Feb 2009 | B2 |
7496410 | Heil | Feb 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7512448 | Malick et al. | Mar 2009 | B2 |
7515969 | Tockman et al. | Apr 2009 | B2 |
7526342 | Chin et al. | Apr 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7532933 | Hastings et al. | May 2009 | B2 |
7536222 | Bardy et al. | May 2009 | B2 |
7536224 | Ritscher et al. | May 2009 | B2 |
7539541 | Quiles et al. | May 2009 | B2 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7565195 | Kroll et al. | Jul 2009 | B1 |
7584002 | Burnes et al. | Sep 2009 | B2 |
7590455 | Heruth et al. | Sep 2009 | B2 |
7606621 | Brisken et al. | Oct 2009 | B2 |
7610088 | Chinchoy | Oct 2009 | B2 |
7610092 | Cowan et al. | Oct 2009 | B2 |
7610099 | Almendinger et al. | Oct 2009 | B2 |
7610104 | Kaplan et al. | Oct 2009 | B2 |
7616991 | Mann et al. | Nov 2009 | B2 |
7617001 | Penner et al. | Nov 2009 | B2 |
7617007 | Williams et al. | Nov 2009 | B2 |
7630767 | Poore et al. | Dec 2009 | B1 |
7634313 | Kroll et al. | Dec 2009 | B1 |
7637867 | Zdeblick | Dec 2009 | B2 |
7640060 | Zdeblick | Dec 2009 | B2 |
7647109 | Hastings et al. | Jan 2010 | B2 |
7650186 | Hastings et al. | Jan 2010 | B2 |
7657311 | Bardy et al. | Feb 2010 | B2 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7682316 | Anderson et al. | Mar 2010 | B2 |
7691047 | Ferrari | Apr 2010 | B2 |
7702392 | Echt et al. | Apr 2010 | B2 |
7713194 | Zdeblick | May 2010 | B2 |
7713195 | Zdeblick | May 2010 | B2 |
7729783 | Michels et al. | Jun 2010 | B2 |
7734333 | Ghanem et al. | Jun 2010 | B2 |
7734343 | Ransbury et al. | Jun 2010 | B2 |
7738958 | Zdeblick et al. | Jun 2010 | B2 |
7738964 | Von Arx et al. | Jun 2010 | B2 |
7742812 | Ghanem et al. | Jun 2010 | B2 |
7742816 | Masoud et al. | Jun 2010 | B2 |
7742822 | Masoud et al. | Jun 2010 | B2 |
7743151 | Vallapureddy et al. | Jun 2010 | B2 |
7747335 | Williams | Jun 2010 | B2 |
7751881 | Cowan et al. | Jul 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7761150 | Ghanem et al. | Jul 2010 | B2 |
7761164 | Verhoef et al. | Jul 2010 | B2 |
7765001 | Echt et al. | Jul 2010 | B2 |
7769452 | Ghanem et al. | Aug 2010 | B2 |
7783362 | Whitehurst et al. | Aug 2010 | B2 |
7792588 | Harding | Sep 2010 | B2 |
7797059 | Bornzin et al. | Sep 2010 | B1 |
7801596 | Fischell et al. | Sep 2010 | B2 |
7809438 | Echt et al. | Oct 2010 | B2 |
7840281 | Kveen et al. | Nov 2010 | B2 |
7844331 | Li et al. | Nov 2010 | B2 |
7844348 | Swoyer et al. | Nov 2010 | B2 |
7846088 | Ness | Dec 2010 | B2 |
7848815 | Brisken et al. | Dec 2010 | B2 |
7848823 | Drasler et al. | Dec 2010 | B2 |
7860455 | Fukumoto et al. | Dec 2010 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7877136 | Moffitt et al. | Jan 2011 | B1 |
7877142 | Moaddeb et al. | Jan 2011 | B2 |
7881786 | Jackson | Feb 2011 | B2 |
7881798 | Miesel et al. | Feb 2011 | B2 |
7881810 | Chitre et al. | Feb 2011 | B1 |
7890173 | Brisken et al. | Feb 2011 | B2 |
7890181 | Denzene et al. | Feb 2011 | B2 |
7890192 | Kelsch et al. | Feb 2011 | B1 |
7894885 | Bartal et al. | Feb 2011 | B2 |
7894894 | Stadler et al. | Feb 2011 | B2 |
7894907 | Cowan et al. | Feb 2011 | B2 |
7894910 | Cowan et al. | Feb 2011 | B2 |
7894915 | Chitre et al. | Feb 2011 | B1 |
7899537 | Kroll et al. | Mar 2011 | B1 |
7899541 | Cowan et al. | Mar 2011 | B2 |
7899542 | Cowan et al. | Mar 2011 | B2 |
7899554 | Williams et al. | Mar 2011 | B2 |
7901360 | Yang et al. | Mar 2011 | B1 |
7904170 | Harding | Mar 2011 | B2 |
7907993 | Ghanem et al. | Mar 2011 | B2 |
7920928 | Yang et al. | Apr 2011 | B1 |
7925343 | Min et al. | Apr 2011 | B1 |
7930022 | Zhang et al. | Apr 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7937135 | Ghanem et al. | May 2011 | B2 |
7937148 | Jacobson | May 2011 | B2 |
7937161 | Hastings et al. | May 2011 | B2 |
7941214 | Kleckner et al. | May 2011 | B2 |
7945333 | Jacobson | May 2011 | B2 |
7946997 | Hübinette | May 2011 | B2 |
7949404 | Hill | May 2011 | B2 |
7949405 | Feher | May 2011 | B2 |
7953486 | Daum et al. | May 2011 | B2 |
7953493 | Fowler et al. | May 2011 | B2 |
7962202 | Bhunia | Jun 2011 | B2 |
7974702 | Fain et al. | Jul 2011 | B1 |
7979136 | Young et al. | Jul 2011 | B2 |
7983753 | Severin | Jul 2011 | B2 |
7991467 | Markowitz et al. | Aug 2011 | B2 |
7991471 | Ghanem et al. | Aug 2011 | B2 |
7996087 | Cowan et al. | Aug 2011 | B2 |
8000791 | Sunagawa et al. | Aug 2011 | B2 |
8000807 | Morris et al. | Aug 2011 | B2 |
8001975 | DiSilvestro et al. | Aug 2011 | B2 |
8002700 | Ferek-Petric et al. | Aug 2011 | B2 |
8010209 | Jacobson | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8019434 | Quiles et al. | Sep 2011 | B2 |
8027727 | Freeberg | Sep 2011 | B2 |
8027729 | Sunagawa et al. | Sep 2011 | B2 |
8032219 | Neumann et al. | Oct 2011 | B2 |
8036743 | Savage et al. | Oct 2011 | B2 |
8046079 | Bange et al. | Oct 2011 | B2 |
8046080 | Von Arx et al. | Oct 2011 | B2 |
8050297 | Delmain et al. | Nov 2011 | B2 |
8050759 | Stegemann et al. | Nov 2011 | B2 |
8050774 | Kveen et al. | Nov 2011 | B2 |
8055345 | Li et al. | Nov 2011 | B2 |
8055350 | Roberts | Nov 2011 | B2 |
8060212 | Rios et al. | Nov 2011 | B1 |
8065018 | Haubrich et al. | Nov 2011 | B2 |
8073542 | Doerr | Dec 2011 | B2 |
8078278 | Penner | Dec 2011 | B2 |
8078283 | Cowan et al. | Dec 2011 | B2 |
8082025 | Amitai | Dec 2011 | B2 |
8095123 | Gray | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103359 | Reddy | Jan 2012 | B2 |
8103361 | Moser | Jan 2012 | B2 |
8112148 | Giftakis et al. | Feb 2012 | B2 |
8114021 | Robertson et al. | Feb 2012 | B2 |
8121680 | Falkenberg et al. | Feb 2012 | B2 |
8123684 | Zdeblick | Feb 2012 | B2 |
8126545 | Flach et al. | Feb 2012 | B2 |
8131334 | Lu et al. | Mar 2012 | B2 |
8140161 | Willerton et al. | Mar 2012 | B2 |
8150521 | Crowley et al. | Apr 2012 | B2 |
8160672 | Kim et al. | Apr 2012 | B2 |
8160702 | Mann et al. | Apr 2012 | B2 |
8160704 | Freeberg | Apr 2012 | B2 |
8165694 | Carbanaru et al. | Apr 2012 | B2 |
8175715 | Cox | May 2012 | B1 |
8180451 | Hickman et al. | May 2012 | B2 |
8185213 | Kveen et al. | May 2012 | B2 |
8187161 | Li et al. | May 2012 | B2 |
8195293 | Limousin et al. | Jun 2012 | B2 |
8204595 | Pianca et al. | Jun 2012 | B2 |
8204605 | Hastings et al. | Jun 2012 | B2 |
8209014 | Doerr | Jun 2012 | B2 |
8214043 | Matos | Jul 2012 | B2 |
8224244 | Kim et al. | Jul 2012 | B2 |
8229556 | Li | Jul 2012 | B2 |
8233985 | Bulkes et al. | Jul 2012 | B2 |
8265748 | Liu et al. | Sep 2012 | B2 |
8265757 | Mass et al. | Sep 2012 | B2 |
8262578 | Bharmi et al. | Oct 2012 | B1 |
8280521 | Haubrich et al. | Oct 2012 | B2 |
8285387 | Utsi et al. | Oct 2012 | B2 |
8290598 | Boon et al. | Oct 2012 | B2 |
8290600 | Hastings et al. | Oct 2012 | B2 |
8295939 | Jacobson | Oct 2012 | B2 |
8301254 | Mosesov et al. | Oct 2012 | B2 |
8315701 | Cowan et al. | Nov 2012 | B2 |
8315708 | Berthelsdorf et al. | Nov 2012 | B2 |
8321021 | Kisker et al. | Nov 2012 | B2 |
8321036 | Brockway et al. | Nov 2012 | B2 |
8332036 | Hastings et al. | Dec 2012 | B2 |
8335563 | Stessman | Dec 2012 | B2 |
8335568 | Heruth et al. | Dec 2012 | B2 |
8340750 | Prakash et al. | Dec 2012 | B2 |
8340780 | Hastings et al. | Dec 2012 | B2 |
8352025 | Jacobson | Jan 2013 | B2 |
8352028 | Wenger | Jan 2013 | B2 |
8352038 | Mao et al. | Jan 2013 | B2 |
8359098 | Lund et al. | Jan 2013 | B2 |
8364261 | Stubbs et al. | Jan 2013 | B2 |
8364276 | Willis | Jan 2013 | B2 |
8369959 | Meskens | Feb 2013 | B2 |
8369962 | Abrahamson | Feb 2013 | B2 |
8380320 | Spital | Feb 2013 | B2 |
8386051 | Rys | Feb 2013 | B2 |
8391981 | Mosesov | Mar 2013 | B2 |
8391990 | Smith et al. | Mar 2013 | B2 |
8406874 | Liu et al. | Mar 2013 | B2 |
8406879 | Shuros et al. | Mar 2013 | B2 |
8406886 | Gaunt et al. | Mar 2013 | B2 |
8412313 | Amitai | Apr 2013 | B2 |
8412352 | Griswold et al. | Apr 2013 | B2 |
8417340 | Goossen | Apr 2013 | B2 |
8417341 | Freeberg | Apr 2013 | B2 |
8423149 | Hennig | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8433402 | Ruben et al. | Apr 2013 | B2 |
8433409 | Johnson et al. | Apr 2013 | B2 |
8433420 | Bange et al. | Apr 2013 | B2 |
8447412 | Dal Molin et al. | May 2013 | B2 |
8452413 | Young et al. | May 2013 | B2 |
8457740 | Osche | Jun 2013 | B2 |
8457742 | Jacobson | Jun 2013 | B2 |
8457744 | Janzig et al. | Jun 2013 | B2 |
8457761 | Wariar | Jun 2013 | B2 |
8478407 | Demmer et al. | Jul 2013 | B2 |
8478408 | Hastings et al. | Jul 2013 | B2 |
8478431 | Griswold et al. | Jul 2013 | B2 |
8494632 | Sun et al. | Jul 2013 | B2 |
8504156 | Bonner et al. | Aug 2013 | B2 |
8509910 | Sowder et al. | Aug 2013 | B2 |
8515559 | Roberts et al. | Aug 2013 | B2 |
8525340 | Eckhardt et al. | Sep 2013 | B2 |
8527068 | Ostroff | Sep 2013 | B2 |
8532790 | Griswold | Sep 2013 | B2 |
8538526 | Stahmann et al. | Sep 2013 | B2 |
8541131 | Lund et al. | Sep 2013 | B2 |
8543205 | Ostroff | Sep 2013 | B2 |
8547248 | Zdeblick et al. | Oct 2013 | B2 |
8548605 | Ollivier | Oct 2013 | B2 |
8554333 | Wu et al. | Oct 2013 | B2 |
8565882 | Mates | Oct 2013 | B2 |
8565897 | Regnier et al. | Oct 2013 | B2 |
8571678 | Wang | Oct 2013 | B2 |
8577327 | Makdissi et al. | Nov 2013 | B2 |
8588926 | Moore et al. | Nov 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8615310 | Khairkhahan et al. | Dec 2013 | B2 |
8626280 | Allavatam et al. | Jan 2014 | B2 |
8626294 | Sheldon et al. | Jan 2014 | B2 |
8634908 | Cowan | Jan 2014 | B2 |
8634912 | Bornzin et al. | Jan 2014 | B2 |
8634919 | Hou et al. | Jan 2014 | B1 |
8639335 | Peichel et al. | Jan 2014 | B2 |
8644934 | Hastings et al. | Feb 2014 | B2 |
8649859 | Smith et al. | Feb 2014 | B2 |
8670842 | Bornzin et al. | Mar 2014 | B1 |
8676319 | Knoll | Mar 2014 | B2 |
8676335 | Katoozi et al. | Mar 2014 | B2 |
8700173 | Edlund | Apr 2014 | B2 |
8700181 | Bornzin et al. | Apr 2014 | B2 |
8705599 | dal Molin et al. | Apr 2014 | B2 |
8718766 | Wahlberg | May 2014 | B2 |
8718773 | Willis et al. | May 2014 | B2 |
8725260 | Shuros et al. | May 2014 | B2 |
8738133 | Shuros et al. | May 2014 | B2 |
8738147 | Hastings et al. | May 2014 | B2 |
8744555 | Allavatam et al. | Jun 2014 | B2 |
8744572 | Greenhut et al. | Jun 2014 | B1 |
8747314 | Stahmann et al. | Jun 2014 | B2 |
8755884 | Demmer et al. | Jun 2014 | B2 |
8758365 | Bonner et al. | Jun 2014 | B2 |
8768483 | Schmitt et al. | Jul 2014 | B2 |
8774572 | Hamamoto | Jul 2014 | B2 |
8781605 | Bornzin et al. | Jul 2014 | B2 |
8788035 | Jacobson | Jul 2014 | B2 |
8788053 | Jacobson | Jul 2014 | B2 |
8798740 | Samade et al. | Aug 2014 | B2 |
8798745 | Jacobson | Aug 2014 | B2 |
8798762 | Fain et al. | Aug 2014 | B2 |
8798770 | Reddy | Aug 2014 | B2 |
8805505 | Roberts | Aug 2014 | B1 |
8805528 | Corndorf | Aug 2014 | B2 |
8812109 | Blomqvist et al. | Aug 2014 | B2 |
8818504 | Bodner et al. | Aug 2014 | B2 |
8827913 | Havel et al. | Sep 2014 | B2 |
8831747 | Min et al. | Sep 2014 | B1 |
8855789 | Jacobson | Oct 2014 | B2 |
8868186 | Kroll | Oct 2014 | B2 |
8886339 | Faltys et al. | Nov 2014 | B2 |
8903473 | Rogers et al. | Dec 2014 | B2 |
8903500 | Smith et al. | Dec 2014 | B2 |
8903513 | Ollivier | Dec 2014 | B2 |
8909336 | Navarro-Paredes et al. | Dec 2014 | B2 |
8914131 | Bornzin et al. | Dec 2014 | B2 |
8923795 | Makdissi et al. | Dec 2014 | B2 |
8923963 | Bonner et al. | Dec 2014 | B2 |
8938300 | Rosero | Jan 2015 | B2 |
8942806 | Sheldon et al. | Jan 2015 | B2 |
8958892 | Khairkhahan et al. | Feb 2015 | B2 |
8977358 | Ewert et al. | Mar 2015 | B2 |
8989873 | Locsin | Mar 2015 | B2 |
8996109 | Karst et al. | Mar 2015 | B2 |
9002467 | Smith et al. | Apr 2015 | B2 |
9008776 | Cowan et al. | Apr 2015 | B2 |
9008777 | Dianaty et al. | Apr 2015 | B2 |
9014818 | Deterre et al. | Apr 2015 | B2 |
9017341 | Bornzin et al. | Apr 2015 | B2 |
9020611 | Khairkhahan et al. | Apr 2015 | B2 |
9037262 | Regnier et al. | May 2015 | B2 |
9042984 | Demmer et al. | May 2015 | B2 |
9072911 | Hastings et al. | Jul 2015 | B2 |
9072913 | Jacobson | Jul 2015 | B2 |
9155882 | Grubac et al. | Oct 2015 | B2 |
9168372 | Fain | Oct 2015 | B2 |
9168380 | Greenhut et al. | Oct 2015 | B1 |
9168383 | Jacobson et al. | Oct 2015 | B2 |
9180285 | Moore et al. | Nov 2015 | B2 |
9192774 | Jacobson | Nov 2015 | B2 |
9205225 | Khairkhahan et al. | Dec 2015 | B2 |
9216285 | Boling et al. | Dec 2015 | B1 |
9216293 | Berthiaume et al. | Dec 2015 | B2 |
9216298 | Jacobson | Dec 2015 | B2 |
9227077 | Jacobson | Jan 2016 | B2 |
9238145 | Wenzel et al. | Jan 2016 | B2 |
9242102 | Khairkhahan et al. | Jan 2016 | B2 |
9242113 | Smith et al. | Jan 2016 | B2 |
9248300 | Rys et al. | Feb 2016 | B2 |
9265436 | Min et al. | Feb 2016 | B2 |
9265962 | Dianaty et al. | Feb 2016 | B2 |
9272155 | Ostroff | Mar 2016 | B2 |
9278218 | Karst et al. | Mar 2016 | B2 |
9278229 | Reinke et al. | Mar 2016 | B1 |
9283381 | Grubac et al. | Mar 2016 | B2 |
9283382 | Berthiaume et al. | Mar 2016 | B2 |
9289612 | Sambelashvili et al. | Mar 2016 | B1 |
9302115 | Molin et al. | Apr 2016 | B2 |
9333364 | Echt et al. | May 2016 | B2 |
9358387 | Suwito et al. | Jun 2016 | B2 |
9358400 | Jacobson | Jun 2016 | B2 |
9364675 | Deterre et al. | Jun 2016 | B2 |
9370663 | Moulder | Jun 2016 | B2 |
9375580 | Bonner et al. | Jun 2016 | B2 |
9375581 | Baru et al. | Jun 2016 | B2 |
9381365 | Kibler et al. | Jul 2016 | B2 |
9393424 | Demmer et al. | Jul 2016 | B2 |
9393436 | Doerr | Jul 2016 | B2 |
9399139 | Demmer et al. | Jul 2016 | B2 |
9399140 | Cho et al. | Jul 2016 | B2 |
9409033 | Jacobson | Aug 2016 | B2 |
9427594 | Bornzin et al. | Aug 2016 | B1 |
9433368 | Stahmann et al. | Sep 2016 | B2 |
9433780 | Régnier et al. | Sep 2016 | B2 |
9492668 | Sheldon et al. | Nov 2016 | B2 |
9492669 | Demmer et al. | Nov 2016 | B2 |
9492674 | Schmidt et al. | Nov 2016 | B2 |
9492677 | Greenhut et al. | Nov 2016 | B2 |
9853743 | Schmidt | Dec 2017 | B2 |
10092202 | Amitai | Oct 2018 | B2 |
20020032470 | Linberg | Mar 2002 | A1 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095196 | Linberg | Jul 2002 | A1 |
20020099423 | Berg et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | Ostroff et al. | Aug 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20020193846 | Pool et al. | Dec 2002 | A1 |
20030009203 | Lebel et al. | Jan 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030040779 | Engmark et al. | Feb 2003 | A1 |
20030041866 | Linberg et al. | Mar 2003 | A1 |
20030045805 | Sheldon et al. | Mar 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030105497 | Zhu et al. | Jun 2003 | A1 |
20030114908 | Flach | Jun 2003 | A1 |
20030144701 | Mehra et al. | Jul 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030187461 | Chin | Oct 2003 | A1 |
20040024435 | Leckrone et al. | Feb 2004 | A1 |
20040068302 | Rodgers et al. | Apr 2004 | A1 |
20040087938 | Leckrone et al. | May 2004 | A1 |
20040088035 | Guenst et al. | May 2004 | A1 |
20040102830 | Williams | May 2004 | A1 |
20040127959 | Amundson et al. | Jul 2004 | A1 |
20040133242 | Chapman et al. | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040147973 | Hauser | Jul 2004 | A1 |
20040167558 | Igo et al. | Aug 2004 | A1 |
20040167587 | Thompson | Aug 2004 | A1 |
20040172071 | Bardy et al. | Sep 2004 | A1 |
20040172077 | Chinchoy | Sep 2004 | A1 |
20040172104 | Berg et al. | Sep 2004 | A1 |
20040176817 | Wahlstrand et al. | Sep 2004 | A1 |
20040176818 | Wahlstrand et al. | Sep 2004 | A1 |
20040176830 | Fang | Sep 2004 | A1 |
20040186529 | Bardy et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040210292 | Bardy et al. | Oct 2004 | A1 |
20040210293 | Bardy et al. | Oct 2004 | A1 |
20040210294 | Bardy et al. | Oct 2004 | A1 |
20040215308 | Bardy et al. | Oct 2004 | A1 |
20040220624 | Ritscher et al. | Nov 2004 | A1 |
20040220626 | Wagner | Nov 2004 | A1 |
20040220639 | Mulligan et al. | Nov 2004 | A1 |
20040249431 | Ransbury et al. | Dec 2004 | A1 |
20040260348 | Bakken et al. | Dec 2004 | A1 |
20040267303 | Guenst | Dec 2004 | A1 |
20050061320 | Lee et al. | Mar 2005 | A1 |
20050070962 | Echt et al. | Mar 2005 | A1 |
20050102003 | Grabek et al. | May 2005 | A1 |
20050149138 | Min et al. | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182465 | Ness | Aug 2005 | A1 |
20050203410 | Jenkins | Sep 2005 | A1 |
20050283208 | Von Arx et al. | Dec 2005 | A1 |
20050288743 | Ahn et al. | Dec 2005 | A1 |
20060042830 | Maghribi et al. | Mar 2006 | A1 |
20060052829 | Sun et al. | Mar 2006 | A1 |
20060052830 | Spinelli et al. | Mar 2006 | A1 |
20060064135 | Brockway | Mar 2006 | A1 |
20060064149 | Belacazar et al. | Mar 2006 | A1 |
20060085039 | Hastings et al. | Apr 2006 | A1 |
20060085041 | Hastings et al. | Apr 2006 | A1 |
20060085042 | Hastings et al. | Apr 2006 | A1 |
20060095078 | Tronnes | May 2006 | A1 |
20060106442 | Richardson et al. | May 2006 | A1 |
20060116746 | Chin | Jun 2006 | A1 |
20060135999 | Bodner et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060161061 | Echt et al. | Jul 2006 | A1 |
20060200002 | Guenst | Sep 2006 | A1 |
20060206151 | Lu | Sep 2006 | A1 |
20060212079 | Routh et al. | Sep 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241705 | Neumann et al. | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060259088 | Pastore et al. | Nov 2006 | A1 |
20060265018 | Smith et al. | Nov 2006 | A1 |
20070004979 | Wojciechowicz et al. | Jan 2007 | A1 |
20070016098 | Kim et al. | Jan 2007 | A1 |
20070027508 | Cowan | Feb 2007 | A1 |
20070078490 | Cowan et al. | Apr 2007 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088396 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20070088398 | Jacobson | Apr 2007 | A1 |
20070088405 | Jacobson | Apr 2007 | A1 |
20070135882 | Drasler et al. | Jun 2007 | A1 |
20070135883 | Drasler et al. | Jun 2007 | A1 |
20070150037 | Hastings et al. | Jun 2007 | A1 |
20070150038 | Hastings et al. | Jun 2007 | A1 |
20070156190 | Cinbis | Jul 2007 | A1 |
20070219525 | Gelfand et al. | Sep 2007 | A1 |
20070219590 | Hastings et al. | Sep 2007 | A1 |
20070225545 | Ferrari | Sep 2007 | A1 |
20070233206 | Frikart et al. | Oct 2007 | A1 |
20070239244 | Morgan et al. | Oct 2007 | A1 |
20070255376 | Michels et al. | Nov 2007 | A1 |
20070276444 | Gelbart et al. | Nov 2007 | A1 |
20070293900 | Sheldon et al. | Dec 2007 | A1 |
20070293904 | Gelbart et al. | Dec 2007 | A1 |
20080004663 | Jorgenson | Jan 2008 | A1 |
20080021505 | Hastings et al. | Jan 2008 | A1 |
20080021519 | De Geest et al. | Jan 2008 | A1 |
20080021532 | Kveen et al. | Jan 2008 | A1 |
20080065183 | Whitehurst et al. | Mar 2008 | A1 |
20080065185 | Worley | Mar 2008 | A1 |
20080071318 | Brooke et al. | Mar 2008 | A1 |
20080109054 | Hastings et al. | May 2008 | A1 |
20080119911 | Rosero | May 2008 | A1 |
20080130670 | Kim et al. | Jun 2008 | A1 |
20080154139 | Shuros et al. | Jun 2008 | A1 |
20080154322 | Jackson et al. | Jun 2008 | A1 |
20080228234 | Stancer | Sep 2008 | A1 |
20080234771 | Chinchoy et al. | Sep 2008 | A1 |
20080243217 | Wildon | Oct 2008 | A1 |
20080269814 | Rosero | Oct 2008 | A1 |
20080269825 | Chinchoy et al. | Oct 2008 | A1 |
20080275518 | Ghanem et al. | Nov 2008 | A1 |
20080275519 | Ghanem et al. | Nov 2008 | A1 |
20080288039 | Reddy | Nov 2008 | A1 |
20080294208 | Willis et al. | Nov 2008 | A1 |
20080294210 | Rosero | Nov 2008 | A1 |
20080306359 | Zdeblick et al. | Dec 2008 | A1 |
20090018599 | Hastings et al. | Jan 2009 | A1 |
20090024180 | Kisker et al. | Jan 2009 | A1 |
20090036941 | Corbucci | Feb 2009 | A1 |
20090048646 | Katoozi et al. | Feb 2009 | A1 |
20090062895 | Stahmann et al. | Mar 2009 | A1 |
20090082827 | Kveen et al. | Mar 2009 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090088813 | Brockway et al. | Apr 2009 | A1 |
20090131907 | Chin et al. | May 2009 | A1 |
20090135886 | Robertson et al. | May 2009 | A1 |
20090143835 | Pastore et al. | Jun 2009 | A1 |
20090171408 | Solem | Jul 2009 | A1 |
20090171414 | Kelly et al. | Jul 2009 | A1 |
20090204163 | Shuros et al. | Aug 2009 | A1 |
20090204170 | Hastings et al. | Aug 2009 | A1 |
20090210024 | M | Aug 2009 | A1 |
20090216292 | Pless et al. | Aug 2009 | A1 |
20090234407 | Hastings et al. | Sep 2009 | A1 |
20090234411 | Sambelashvili et al. | Sep 2009 | A1 |
20090266573 | Engmark et al. | Oct 2009 | A1 |
20090275998 | Burnes et al. | Nov 2009 | A1 |
20090275999 | Burnes et al. | Nov 2009 | A1 |
20090299447 | Jensen et al. | Dec 2009 | A1 |
20100013668 | Kantervik | Jan 2010 | A1 |
20100016911 | Willis et al. | Jan 2010 | A1 |
20100023085 | Wu et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100030327 | Chatel | Feb 2010 | A1 |
20100042108 | Hibino | Feb 2010 | A1 |
20100056871 | Govari et al. | Mar 2010 | A1 |
20100063375 | Kassab et al. | Mar 2010 | A1 |
20100063562 | Cowan et al. | Mar 2010 | A1 |
20100094367 | Sen | Apr 2010 | A1 |
20100114209 | Krause et al. | May 2010 | A1 |
20100114214 | Morelli et al. | May 2010 | A1 |
20100125281 | Jacobson et al. | May 2010 | A1 |
20100168761 | Kassab et al. | Jul 2010 | A1 |
20100168819 | Freeberg | Jul 2010 | A1 |
20100198288 | Ostroff | Aug 2010 | A1 |
20100198304 | Wang | Aug 2010 | A1 |
20100204758 | Boon et al. | Aug 2010 | A1 |
20100217367 | Belson | Aug 2010 | A1 |
20100228308 | Cowan et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100234924 | Willis | Sep 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100249729 | Morris et al. | Sep 2010 | A1 |
20100286744 | Echt et al. | Nov 2010 | A1 |
20100312309 | Harding | Dec 2010 | A1 |
20110022113 | Zdeblick et al. | Jan 2011 | A1 |
20110071586 | Jacobson | Mar 2011 | A1 |
20110077708 | Ostroff | Mar 2011 | A1 |
20110112600 | Cowan et al. | May 2011 | A1 |
20110118588 | Komblau et al. | May 2011 | A1 |
20110118810 | Cowan et al. | May 2011 | A1 |
20110137187 | Yang et al. | Jun 2011 | A1 |
20110144720 | Cowan et al. | Jun 2011 | A1 |
20110152970 | Jollota et al. | Jun 2011 | A1 |
20110160557 | Cinbis et al. | Jun 2011 | A1 |
20110160558 | Rassatt et al. | Jun 2011 | A1 |
20110160565 | Stubbs et al. | Jun 2011 | A1 |
20110160801 | Markowitz et al. | Jun 2011 | A1 |
20110160806 | Lyden et al. | Jun 2011 | A1 |
20110166620 | Cowan et al. | Jul 2011 | A1 |
20110166621 | Cowan et al. | Jul 2011 | A1 |
20110184491 | Kivi | Jul 2011 | A1 |
20110190835 | Brockway et al. | Aug 2011 | A1 |
20110208260 | Jacobson | Aug 2011 | A1 |
20110218587 | Jacobson | Sep 2011 | A1 |
20110230734 | Fain et al. | Sep 2011 | A1 |
20110237967 | Moore et al. | Sep 2011 | A1 |
20110245890 | Brisben et al. | Oct 2011 | A1 |
20110251660 | Griswold | Oct 2011 | A1 |
20110251662 | Griswold et al. | Oct 2011 | A1 |
20110270099 | Ruben et al. | Nov 2011 | A1 |
20110270339 | Murray, III et al. | Nov 2011 | A1 |
20110270340 | Pellegrini et al. | Nov 2011 | A1 |
20110276102 | Cohen | Nov 2011 | A1 |
20110282423 | Jacobson | Nov 2011 | A1 |
20120004527 | Thompson et al. | Jan 2012 | A1 |
20120029323 | Zhao | Feb 2012 | A1 |
20120041508 | Rousso et al. | Feb 2012 | A1 |
20120059271 | Amitai | Mar 2012 | A1 |
20120059433 | Cowan et al. | Mar 2012 | A1 |
20120059436 | Fontaine et al. | Mar 2012 | A1 |
20120065500 | Rogers et al. | Mar 2012 | A1 |
20120078322 | Dal Molin et al. | Mar 2012 | A1 |
20120089198 | Ostroff | Apr 2012 | A1 |
20120093245 | Makdissi et al. | Apr 2012 | A1 |
20120095521 | Hintz | Apr 2012 | A1 |
20120095539 | Khairkhahan et al. | Apr 2012 | A1 |
20120101540 | O'Brien et al. | Apr 2012 | A1 |
20120101553 | Reddy | Apr 2012 | A1 |
20120109148 | Bonner et al. | May 2012 | A1 |
20120109149 | Bonner et al. | May 2012 | A1 |
20120109236 | Jacobson et al. | May 2012 | A1 |
20120109259 | Bond et al. | May 2012 | A1 |
20120116489 | Khairkhahan et al. | May 2012 | A1 |
20120150251 | Giftakis et al. | Jun 2012 | A1 |
20120158111 | Khairkhahan et al. | Jun 2012 | A1 |
20120165827 | Khairkhahan et al. | Jun 2012 | A1 |
20120172690 | Anderson et al. | Jul 2012 | A1 |
20120172891 | Lee | Jul 2012 | A1 |
20120172892 | Grubac et al. | Jul 2012 | A1 |
20120172942 | Berg | Jul 2012 | A1 |
20120197350 | Roberts et al. | Aug 2012 | A1 |
20120197373 | Khairkhahan et al. | Aug 2012 | A1 |
20120215285 | Tahmasian et al. | Aug 2012 | A1 |
20120232565 | Kveen et al. | Sep 2012 | A1 |
20120277600 | Greenhut | Nov 2012 | A1 |
20120277606 | Ellingson et al. | Nov 2012 | A1 |
20120283795 | Stancer et al. | Nov 2012 | A1 |
20120283807 | Deterre et al. | Nov 2012 | A1 |
20120290025 | Keimel | Nov 2012 | A1 |
20120296381 | Matos | Nov 2012 | A1 |
20120303082 | Dong et al. | Nov 2012 | A1 |
20120316613 | Keefe et al. | Dec 2012 | A1 |
20130012151 | Hankins | Jan 2013 | A1 |
20130023975 | Locsin | Jan 2013 | A1 |
20130035748 | Bonner et al. | Feb 2013 | A1 |
20130041422 | Jacobson | Feb 2013 | A1 |
20130053908 | Smith et al. | Feb 2013 | A1 |
20130053915 | Holmstrom et al. | Feb 2013 | A1 |
20130053921 | Bonner et al. | Feb 2013 | A1 |
20130060298 | Splett et al. | Mar 2013 | A1 |
20130066169 | Rys et al. | Mar 2013 | A1 |
20130072770 | Rao et al. | Mar 2013 | A1 |
20130079798 | Tran et al. | Mar 2013 | A1 |
20130079861 | Reinert et al. | Mar 2013 | A1 |
20130085350 | Schugt et al. | Apr 2013 | A1 |
20130085403 | Gunderson et al. | Apr 2013 | A1 |
20130085550 | Polefko et al. | Apr 2013 | A1 |
20130096649 | Martin et al. | Apr 2013 | A1 |
20130103047 | Steingisser et al. | Apr 2013 | A1 |
20130103109 | Jacobson | Apr 2013 | A1 |
20130110008 | Bourget et al. | May 2013 | A1 |
20130110127 | Bornzin et al. | May 2013 | A1 |
20130110192 | Tran et al. | May 2013 | A1 |
20130110219 | Bornzin et al. | May 2013 | A1 |
20130116529 | Min et al. | May 2013 | A1 |
20130116738 | Samade et al. | May 2013 | A1 |
20130116740 | Bornzin et al. | May 2013 | A1 |
20130116741 | Bornzin et al. | May 2013 | A1 |
20130123872 | Bornzin et al. | May 2013 | A1 |
20130123875 | Varady et al. | May 2013 | A1 |
20130131591 | Berthiaume et al. | May 2013 | A1 |
20130131693 | Berthiaume et al. | May 2013 | A1 |
20130138006 | Bornzin et al. | May 2013 | A1 |
20130150695 | Biela et al. | Jun 2013 | A1 |
20130150911 | Perschbacher et al. | Jun 2013 | A1 |
20130150912 | Perschbacher et al. | Jun 2013 | A1 |
20130184776 | Shuros et al. | Jul 2013 | A1 |
20130196703 | Masoud et al. | Aug 2013 | A1 |
20130197609 | Moore et al. | Aug 2013 | A1 |
20130231710 | Jacobson | Sep 2013 | A1 |
20130238072 | Deterre et al. | Sep 2013 | A1 |
20130238073 | Makdissi et al. | Sep 2013 | A1 |
20130253342 | Griswold et al. | Sep 2013 | A1 |
20130253343 | Waldhauser et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253345 | Griswold et al. | Sep 2013 | A1 |
20130253346 | Griswold et al. | Sep 2013 | A1 |
20130253347 | Griswold et al. | Sep 2013 | A1 |
20130261497 | Pertijs et al. | Oct 2013 | A1 |
20130265144 | Banna et al. | Oct 2013 | A1 |
20130268042 | Hastings et al. | Oct 2013 | A1 |
20130274828 | Willis | Oct 2013 | A1 |
20130274847 | Ostroff | Oct 2013 | A1 |
20130282070 | Cowan et al. | Oct 2013 | A1 |
20130282073 | Cowan et al. | Oct 2013 | A1 |
20130296727 | Sullivan et al. | Nov 2013 | A1 |
20130303872 | Taff et al. | Nov 2013 | A1 |
20130324825 | Ostroff et al. | Dec 2013 | A1 |
20130325081 | Karst et al. | Dec 2013 | A1 |
20130345770 | Dianaty et al. | Dec 2013 | A1 |
20140012344 | Hastings et al. | Jan 2014 | A1 |
20140018876 | Ostroff | Jan 2014 | A1 |
20140018877 | Demmer et al. | Jan 2014 | A1 |
20140031836 | Ollivier | Jan 2014 | A1 |
20140039570 | Carroll et al. | Feb 2014 | A1 |
20140039591 | Drasler et al. | Feb 2014 | A1 |
20140043146 | Makdissi et al. | Feb 2014 | A1 |
20140046395 | Regnier et al. | Feb 2014 | A1 |
20140046420 | Moore et al. | Feb 2014 | A1 |
20140058240 | Mothilal et al. | Feb 2014 | A1 |
20140058494 | Ostroff et al. | Feb 2014 | A1 |
20140074114 | Khairkhahan et al. | Mar 2014 | A1 |
20140074186 | Faltys et al. | Mar 2014 | A1 |
20140094891 | Pare et al. | Apr 2014 | A1 |
20140100627 | Min | Apr 2014 | A1 |
20140107723 | Hou et al. | Apr 2014 | A1 |
20140121719 | Bonner et al. | May 2014 | A1 |
20140121720 | Bonner et al. | May 2014 | A1 |
20140121722 | Sheldon et al. | May 2014 | A1 |
20140128935 | Kumar et al. | May 2014 | A1 |
20140135865 | Hastings et al. | May 2014 | A1 |
20140142648 | Smith et al. | May 2014 | A1 |
20140148675 | Nordstrom et al. | May 2014 | A1 |
20140148815 | Wenzel et al. | May 2014 | A1 |
20140155950 | Hastings et al. | Jun 2014 | A1 |
20140163349 | Amitai | Jun 2014 | A1 |
20140169162 | Romano et al. | Jun 2014 | A1 |
20140172060 | Bornzin et al. | Jun 2014 | A1 |
20140180306 | Grubac et al. | Jun 2014 | A1 |
20140180366 | Edlund | Jun 2014 | A1 |
20140207149 | Hastings et al. | Jul 2014 | A1 |
20140207210 | Willis et al. | Jul 2014 | A1 |
20140214104 | Greenhurst et al. | Jul 2014 | A1 |
20140222098 | Baru et al. | Aug 2014 | A1 |
20140222109 | Moulder | Aug 2014 | A1 |
20140228913 | Molin et al. | Aug 2014 | A1 |
20140236172 | Hastings et al. | Aug 2014 | A1 |
20140243848 | Auricchio et al. | Aug 2014 | A1 |
20140255298 | Cole et al. | Sep 2014 | A1 |
20140257324 | Fain | Sep 2014 | A1 |
20140257422 | Herken | Sep 2014 | A1 |
20140257444 | Cole et al. | Sep 2014 | A1 |
20140276929 | Foster et al. | Sep 2014 | A1 |
20140303704 | Suwito et al. | Oct 2014 | A1 |
20140309706 | Jacobson | Oct 2014 | A1 |
20140379041 | Foster | Dec 2014 | A1 |
20150025612 | Haasl et al. | Jan 2015 | A1 |
20150039041 | Smith et al. | Feb 2015 | A1 |
20150051609 | Schmidt et al. | Feb 2015 | A1 |
20150051610 | Schmidt et al. | Feb 2015 | A1 |
20150051611 | Schmidt et al. | Feb 2015 | A1 |
20150051612 | Schmidt et al. | Feb 2015 | A1 |
20150051613 | Schmidt et al. | Feb 2015 | A1 |
20150051614 | Schmidt et al. | Feb 2015 | A1 |
20150051615 | Schmidt et al. | Feb 2015 | A1 |
20150051616 | Haasl et al. | Feb 2015 | A1 |
20150051682 | Schmidt et al. | Feb 2015 | A1 |
20150057520 | Foster et al. | Feb 2015 | A1 |
20150057558 | Stahmann et al. | Feb 2015 | A1 |
20150057721 | Stahmann et al. | Feb 2015 | A1 |
20150088155 | Stahmann et al. | Mar 2015 | A1 |
20150105836 | Bonner et al. | Apr 2015 | A1 |
20150157861 | Aghassian | Jun 2015 | A1 |
20150173655 | Demmer et al. | Jun 2015 | A1 |
20150190638 | Smith et al. | Jul 2015 | A1 |
20150196756 | Stahmann et al. | Jul 2015 | A1 |
20150196757 | Stahmann et al. | Jul 2015 | A1 |
20150196758 | Stahmann et al. | Jul 2015 | A1 |
20150196769 | Stahmann et al. | Jul 2015 | A1 |
20150217119 | Nikolski et al. | Aug 2015 | A1 |
20150221898 | Chi et al. | Aug 2015 | A1 |
20150224315 | Stahmann | Aug 2015 | A1 |
20150224320 | Stahmann | Aug 2015 | A1 |
20150258345 | Smith et al. | Sep 2015 | A1 |
20150290468 | Zhang | Oct 2015 | A1 |
20150297905 | Greenhut et al. | Oct 2015 | A1 |
20150297907 | Zhang | Oct 2015 | A1 |
20150305637 | Greenhut et al. | Oct 2015 | A1 |
20150305638 | Zhang | Oct 2015 | A1 |
20150305639 | Greenhut et al. | Oct 2015 | A1 |
20150305640 | Reinke et al. | Oct 2015 | A1 |
20150305641 | Stadler et al. | Oct 2015 | A1 |
20150305642 | Reinke et al. | Oct 2015 | A1 |
20150306374 | Seifert et al. | Oct 2015 | A1 |
20150306375 | Marshall et al. | Oct 2015 | A1 |
20150306406 | Crutchfield et al. | Oct 2015 | A1 |
20150306407 | Crutchfield et al. | Oct 2015 | A1 |
20150306408 | Greenhut et al. | Oct 2015 | A1 |
20150321016 | O'Brien et al. | Nov 2015 | A1 |
20150328459 | Chin et al. | Nov 2015 | A1 |
20160015322 | Anderson et al. | Jan 2016 | A1 |
20160023000 | Cho et al. | Jan 2016 | A1 |
20160030757 | Jacobson | Feb 2016 | A1 |
20160033177 | Barot et al. | Feb 2016 | A1 |
20160121127 | Klimovitch et al. | May 2016 | A1 |
20160121128 | Fishler et al. | May 2016 | A1 |
20160121129 | Persson et al. | May 2016 | A1 |
20160213919 | Suwito et al. | Jul 2016 | A1 |
20160213937 | Reinke et al. | Jul 2016 | A1 |
20160213939 | Carney et al. | Jul 2016 | A1 |
20160228026 | Jackson | Aug 2016 | A1 |
20160317825 | Jacobson | Nov 2016 | A1 |
20160342241 | Chung | Nov 2016 | A1 |
20170054516 | Schmidt | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
2008279789 | Oct 2011 | AU |
2008329620 | May 2014 | AU |
2014203793 | Jul 2014 | AU |
1003904 | Jan 1977 | CA |
202933393 | May 2013 | CN |
0362611 | Apr 1990 | EP |
503823 | Sep 1992 | EP |
1702648 | Sep 2006 | EP |
1904166 | Jun 2011 | EP |
2433675 | Jan 2013 | EP |
2441491 | Jan 2013 | EP |
2452721 | Nov 2013 | EP |
1948296 | Jan 2014 | EP |
2662113 | Jan 2014 | EP |
2471452 | Dec 2014 | EP |
2760541 | May 2016 | EP |
2833966 | May 2016 | EP |
2000051373 | Feb 2000 | JP |
2002502640 | Jan 2002 | JP |
2004512105 | Apr 2004 | JP |
2005508208 | Mar 2005 | JP |
2005245215 | Sep 2005 | JP |
2008540040 | Nov 2008 | JP |
5199867 | Feb 2013 | JP |
9500202 | Jan 1995 | WO |
9636134 | Nov 1996 | WO |
9724981 | Jul 1997 | WO |
9826840 | Jun 1998 | WO |
9939767 | Aug 1999 | WO |
0234330 | Jan 2003 | WO |
02098282 | May 2003 | WO |
2005000206 | Apr 2005 | WO |
2005042089 | May 2005 | WO |
2006065394 | Jun 2006 | WO |
2006086435 | Aug 2006 | WO |
2006113659 | Oct 2006 | WO |
2006124833 | Nov 2006 | WO |
2006124833 | May 2007 | WO |
2007075974 | Jul 2007 | WO |
2009006531 | Jan 2009 | WO |
2012054102 | Apr 2012 | WO |
2013080038 | Jun 2013 | WO |
2013098644 | Aug 2013 | WO |
2013184787 | Dec 2013 | WO |
2014120769 | Aug 2014 | WO |
Entry |
---|
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn) |
International Search Report and Written Opinion for Application No. PCT/US2016/047606, 13 pages, dated Nov. 30, 2016. |
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003. |
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013. |
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Jan. 29, 2016, 15 pages. |
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970. |
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013. |
Number | Date | Country | |
---|---|---|---|
20170049325 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
62207658 | Aug 2015 | US |