Both Frequency Division Duplex (“FDD”) and Time Division Duplex (“TDD”) modes are commonly used in wireless communications systems. For example, the LTE standard supports both FDD and TDD modes, as another example 802.11 versions (e.g. Wi-Fi) support TDD mode of operation.
In the case of LTE, various numbered bands are defined within what is called “Evolved UMTS Terrestrial Radio Access” (E-UTRA) air interface. Each E-UTRA band not only specifies a particular band number, but it defines whether the band is FDD or TDD, and what bandwidths are supported within the band (e.g. see http://en.wikipedia.org/wiki/LTE_frequency_bands#Frequency_bands_and_channel_bandwidths for a list of E-UTRA bands and their specifications). For example, Band 7 is an FDD band defined as using the frequency ranges of 2,500-2,570 MHz for Uplink (“UL”), 2,620-2,690 for downlink (“DL”), it supports 5, 10, 15, 20 and MHz signal bandwidths within each of the UL and DL bands.
In many cases E-UTRA bands overlap. For example, different bands may be common spectrum that has been allocated in different markets or regions. For example, Band 41 is a TDD band using the frequency ranges of 2,496-2,690 MHz for both UL and DL, which overlaps with both UL and DL ranges in FDD Band 7. Currently, Band 41 is used in the U.S. by Sprint, while Band 7 is used by Rogers Wireless in the bordering country of Canada. Thus, in the U.S., 2,500-2,570 MHz is TDD spectrum, while in Canada that same frequency range is UL for FDD spectrum.
Typically, a mobile device, upon attaching to a wireless network, will scan through the band searching for transmissions from one or more base stations, and typically during the attach procedure, the base station will transmit the characteristics of the network, such as the bandwidth used by the network, and details of the protocol in use. For example, if an LTE device scans through 2,620-2,690 MHz in the U.S., it might receive an LTE DL frame transmitted by an eNodeB that identifies the spectrum as Band 41, and if the LTE device supports Band 41 and TDD, it may attempt to connect to the eNodeB in TDD mode in that band. Similarly, if an LTE device scans through 2,620-2,690 MHz in the Canada, it might receive an LTE DL frame transmitted by an eNodeB that identifies the spectrum as Band 7, and if the LTE device supports Band 7 and FDD, it may attempt to connect to the eNodeB in FDD mode in Band 7.
Most early LTE networks deployed worldwide used FDD mode (e.g., Verizon, AT&T), but increasingly TDD mode is being used, both in markets with extensive FDD coverage, such as the U.S. (where Sprint is deploying TDD) and in markets that do not yet have extensive LTE coverage, such as China (where China Mobile is deploying TDD). In many cases, a single operator is deploying both FDD and TDD at different frequencies (e.g. Sprint operates both FDD LTE and TDD LTE in different frequencies in the U.S.), and may offer LTE devices which can operate in both modes, depending on which band is used.
Note that the E-UTRA list of LTE bands is by no means a final list, but rather evolves as new spectrum is allocated to mobile operators and devices to use that spectrum are specified. New bands are specified both in spectrum with no current band that overlaps its frequencies, and in spectrum in bands overlapping frequencies of previous band allocations. For example, Band 44, a TDD band spanning 703-803 MHz, was added as an E-UTRA band several years after older 700 MHz FDD bands were specified, such as Bands 12, 13, 14 and 17.
As can be seen in
As can been seen in
The Financial Times article points out that TDD is far better suited to such asymmetry since it can be configured to allocate far more timeslots to the DL data than the UL data. For example, in the case when 20 MHz is allocated to FDD (as 10+10 MHz), DL data throughput is limited to a maximum of full-time use of 10 MHz (even when the UL data needs far less than the 10 MHz it has been allocated), whereas when 20 MHz allocated to TDD, DL data throughput can use all 20 MHz the vast majority of the time, allocating the 20 MHz to UL data a small percentage of the time, far better matching the characteristics of data usage today. The article acknowledges that, unfortunately, most existing U.S. mobile spectrum is already committed to FDD mode, but urges the FCC to encourage the use of TDD as it allocates new spectrum.
Although TDD would certainly allow for more efficient use of new spectrum allocations given the increasingly asymmetric nature of mobile data, unfortunately existing FDD networks deployments cannot change operating mode to TDD since the vast majority of users of such LTE FDD networks have devices that only support FDD mode and their devices would cease to be able to connect if the network were switched to TDD mode. Consequently, as LTE data usage becomes increasingly asymmetric, existing LTE FDD networks will see increasing DL congestion, while UL spectrum will be increasingly underutilized (at 8:1 DL:UL ratio, the lower estimate of the May 28, 2013 Financial Times article, that would imply that if the DL channel is fully utilized, only ⅛th, equivalent to 1.25 MHz of 10 Mhz, would be used of the UL channel). This is extremely wasteful and inefficient, particularly given the limited physical existence of practical mobile spectrum (e.g. frequencies that can penetrate walls and propagate well non-line-of-sight, such as ˜450-2600 MHz) and the exponential growth of (increasingly asymmetric) mobile data (e.g. Cisco February 2013 VNI predicts a 61% CAGR in mobile data growth through 2018, most of which is streaming video and other highly asymmetric data).
A better understanding of the present invention can be obtained from the following detailed description in conjunction with the drawings, in which:
One solution to overcome many of the above prior art limitations is to have user devices concurrently operate in TDD mode in the same spectrum as currently used UL or DL FDD spectrum, such that the TDD spectrum usage is coordinated so as to not conflict with current FDD spectrum usage. Particularly in the FDD UL channel, there is increasingly more unused spectrum, and TDD devices could use that spectrum without impacting the throughput of the existing FDD network. The also enables TDD usage highly propagation-efficient UHF spectrum which, in many regions of the world is almost entirely allocated to FDD, relegating TDD to far less propagation-efficient microwave bands.
In another embodiment is to have user devices concurrently operated in FDD mode in the same spectrum as currently used UL or DL FDD spectrum, such that the UL and DL channels are reversed and each network's spectrum usage is coordinated so as not to conflict with the other network's spectrum usage. Given that the UL channel of each network is increasingly underutilized relative to the DL channel, it allows each network's DL channel to utilize the unused spectrum in the other network's UL channel.
Further, in either embodiment spectral efficiency can be vastly increased by implementing one or both networks using Distributed-Input Distributed-Output (“DIDO”) technology as described in the following patents, patent applications and provisional applications, all of which are assigned the assignee of the present patent and are incorporated by reference. These patents, applications and provisional applications are sometimes referred to collectively herein as the “Related Patents and Applications.”
U.S. Provisional Application Ser. No. 61/937,273, entitled “Systems and Methods for Mapping Virtual Radio Instances into Physical Areas to Coherence in Distributed Antenna Wireless Systems”
U.S. application Ser. No. 14/156,254, entitled “System and Method For Distributed Antenna Wireless Communications”
U.S. application Ser. No. 14/086,700, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology”
U.S. application Ser. No. 14/023,302, entitled “Systems And Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering”
U.S. application Ser. No. 13/844,355, entitled “Systems and Methods for Radio Frequency Calibration Exploiting Channel Reciprocity in Distributed Input Distributed Output Wireless Communications”
U.S. application Ser. No. 13/797,984, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology”
U.S. application Ser. No. 13/797,971, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology”
U.S. application Ser. No. 13/797,950, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology”
U.S. application Ser. No. 13/633,702, entitled “Systems and Methods for wireless backhaul in distributed-input distributed-output wireless systems”
U.S. application Ser. No. 13/475,598, entitled “Systems and Methods to enhance spatial diversity in distributed-input distributed-output wireless systems”
U.S. application Ser. No. 13/464,648, entitled “System and Methods to Compensate for Doppler Effects in Distributed-Input Distributed Output Systems”
U.S. application Ser. No. 13/233,006, entitled “System and Methods for planned evolution and obsolescence of multiuser spectrum”
U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems”
U.S. application Ser. No. 12/802,989, entitled “System And Method For Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The Client”
U.S. application Ser. No. 12/802,988, entitled “Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems”
U.S. application Ser. No. 12/802,975, entitled “System And Method For Link adaptation In DIDO Multicarrier Systems”
U.S. application Ser. No. 12/802,974, entitled “System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters”
U.S. application Ser. No. 12/802,958, entitled “System And Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network”
U.S. Pat. No. 8,654,815, issued Feb. 18, 2014, entitled “System and Method for Distributed Input Distributed Output Wireless Communications”
U.S. Pat. No. 8,571,086, issued Oct. 29, 2013, entitled “System and Method for DIDO precoding interpolation in multicarrier systems”
U.S. Pat. No. 8,542,763, issued Sep. 24, 2013, entitled “Systems and Methods to coordinate transmissions in distributed wireless systems via user clustering”
U.S. Pat. No. 8,428,162, issued Apr. 23, 2013, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”
U.S. Pat. No. 8,170,081, issued May 1, 2012, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements”
U.S. Pat. No. 8,160,121, issued Apr. 17, 2012, entitled, “System and Method For Distributed Input-Distributed Output Wireless Communications”;
U.S. Pat. No. 7,885,354, issued Feb. 8, 2011, entitled “System and Method For Enhancing Near Vertical Incidence Skywave (“NVIS”) Communication Using Space-Time Coding.”
U.S. Pat. No. 7,711,030, issued May 4, 2010, entitled “System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”;
U.S. Pat. No. 7,636,381, issued Dec. 22, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;
U.S. Pat. No. 7,633,994, issued Dec. 15, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;
U.S. Pat. No. 7,599,420, issued Oct. 6, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;
U.S. Pat. No. 7,418,053, issued Aug. 26, 2008, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;
The present invention discloses systems and methods for concurrent spectrum usage within actively used spectrum. Some of the embodiments utilize Distributed-Input Distributed-Output and MU-MAS technology previously disclosed by the assignee of the assignee of the present patent. The disclosures in Section 1 and Section 2 below correspond to the disclosures in the U.S. Provisional Application Serial No. ##### filed, entitled “Systems and Methods for Mapping Virtual Radio Instances into Physical Areas to Coherence in Distributed Antenna Wireless Systems” and relate to the present invention.
1. Systems and Methods for Mapping VRIs into Areas of Coherence
One embodiment of the present invention discloses systems and methods to deliver multiple simultaneous non-interfering data streams within the same frequency band between a network and a plurality of areas of coherence in a wireless link through Virtual Radio Instances (VRIs). In one embodiment the system is a multiuser multiple antenna system (MU-MAS) as depicted in
1.1 Overview of the System Architecture
In
The area of coherence is a volume in space where the waveforms from different antennas of the MU-MAS add up coherently in a way that only the data output 112 of one VRI is received within that area of coherence, without any interference from other data output from other VRIs sent simultaneously over the same wireless link. In the present application we use the term “area of coherence” to describe volumes of coherence or private cells (e.g., “pCells™” 103) as described in our previous patent application [U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems”]. In one embodiment, the areas of coherence correspond to the locations of the user equipment (UE) 111 or subscribers of the wireless network, such that every subscriber is associated to one or multiple data sources 101. The areas of coherence may vary in size and shape depending on propagation conditions as well as type of MU-MAS precoding techniques employed to generate them. In one embodiment of the invention, the MU-MAS precoder dynamically adjusts size and shape of the areas of coherence to adapt to the changing propagation conditions while delivering contents to the users with good link reliability.
The data sources 101 are first sent through the Network 102 to the DIDO Radio Access Network (DRAN) 104. Then, the DRAN translates the data files or streams into a data format that can be received by the UEs and sends the data files or streams simultaneously to the plurality of areas of coherence, such that every UE receives its own data files or streams without interference from other data files or streams sent to other UEs. The DRAN consists of a gateway 105 as the interface between the network and the VRIs 106. The VRIs translate packets being routed by the gateway into data streams 112, either as raw data, or in a packet or frame structure, that are fed to a MU-MAS baseband unit. In one embodiment, the VRI comprises the open systems interconnection (OSI) protocol stack consisting of sever layers: application, presentation, session, transport, network, data link and physical, as depicted in
In another embodiment, the VRIs are defined from different wireless standards. By way of example, but not limitation, a first VRI consists of the protocol stack from the GSM standard, a second VRI from the 3G standard, a third VRI from HSPA+ standard, a fourth VRI from LTE standard, as fifth VRI from LTE-A standard and a sixth VRI from the Wi-Fi standard. In an exemplary embodiment, the VRIs comprise the control-plane or user-plane protocol stack defined by the LTE standards. The user-plane protocol stack is shown in
The Virtual Connection Manager (VCM) 107 is responsible for assigning the PHY layer identity of the UEs (e.g., cell-specific radio network temporary identifier, RNTI), authentication and mobility of the VRI and UE. The data streams 112 at the output of the VRIs are fed to the Virtual Radio Manager (VRM) 108. The VRM comprises a scheduler unit (that schedules DL (downlink) and UL (uplink) packets for different UEs), a baseband unit (e.g., comprising of FEC encoder/decoder, modulator/demodulator, resource grid builder) and a MU-MAS baseband processor (comprised of precoding logic for implementing precoding operations). In one embodiment, the data streams 112 are I/Q samples at the output of the PHY layer in
The MU-MAS baseband processor is the core of the VRM that converts the M I/Q samples from the M VRIs into N data streams 113 sent to N access points (APs) 109. In one embodiment, the data streams 113 are I/Q samples of the N waveforms transmitted over the wireless link 110 from the APs 109. In this embodiment the AP consists of ADC/DAC, RF chain and antenna. In a different embodiment, the data streams 113 are bits of information and MU-MAS precoding information that are combined at the APs to generate the N waveforms sent over the wireless link 110. In this embodiment every AP is equipped with CPU, DSP or SoC to carry out additional baseband processing before the ADC/DAC units.
1.2 Supporting Mobility and Handoff
The systems and methods described thus far work as long the UEs are within reach of the APs. When the UEs travel away from the AP coverage area the link may drop and the DRAN 301 is unable to create areas of coherence. To extend the coverage area, the systems can gradually evolve by adding new APs. There may not be enough processing power in the VRM, however, to support the new APs or there may be practical installation issues to connect the new APs to the same VRM. In these scenarios, it is necessary to add adjacent DRANs 302 and 303 to support the new APs as depicted in
In one embodiment a given UE is located in the coverage area served by the first DRAN 301 and the adjacent DRAN 302. In this embodiment, the adjacent DRAN 302 only carries out MU-MAS baseband processing for that UE, jointly with the MU-MAS processing from the first DRAN 301. No VRI is handled by the adjacent DRAN 302 for the given UE, since the VRI for that UE is already running within the first DRAN 301. To enable joint precoding between the first and adjacent DRANs, baseband information is exchanged between the VRM in the first DRAN 301 and the VRM in the adjacent DRAN 302 through the cloud-VRM 304 and the links 305. The links 305 are any wireline (e.g., fiber, DSL, cable) or wireless link (e.g., line-of-sight links) that can support adequate connection quality (e.g. low enough latency and adequate data rate) to avoid degrading performance of the MU-MAS precoding.
In a different embodiment a given UE moves out of the coverage area of the first DRAN 301 into the coverage area of the adjacent DRAN 303. In this embodiment the VRI associated to that UE is “teleported” from the first DRAN 301 to the adjacent DRAN 303. What is meant by the VRI being teleported or “VRI teleportation” is the VRI state information is transferred from DRAN 301 to DRAN 303, and the VRI ceases to execute within DRAN 301 and begins to execute within DRAN 303. Ideally, the VRI teleportation occurs fast enough that, from the perspective of the UE served by the teleported VRI, it does not experience any discontinuity in its data stream from the VRI. In one embodiment, if there is a delay before the VRI is fully executing after being teleported, then before the VRI teleportation begins, the UE served by that VRI is put into a state where it will not drop its connection or otherwise enter an undesirable state until the VRI starts up at the adjacent DRAM 303, and the UE once again is served by an executing VRI. “VRI teleportation” is enabled by the cloud-VCM 306 that connects the VCM in the first DRAN 301 to the VCM in the adjacent DRAN 303. The wireline or wireless links 307 between VCM do not have the same restrictive constraints as the links 305 between VRMs since they only carry data and do not affect performance of the MU-MAS precoding. In the same embodiment of the invention, additional links 305 are employed between the first DRAN 301 and the adjacent DRAN 303 to connect their VRMs that can support adequate connection quality (e.g., low enough latency and adequate data rate) to avoid degrading performance of the MU-MAS precoding. In one embodiment of the invention, the gateways of the first and adjacent DRANs are connected to the cloud-gateway 308 that manages all network address (or IP address) translation across DRANs.
In one embodiment of the invention, VRI teleportation occurs between the DRAN network disclosed in the present application and any adjacent wireless network 401 as depicted in
In one embodiment, the adjacent wireless network 401 is the LTE network shown in
2. Systems and Methods for DL and UL MU-MAS Processing
Typical downlink (DL) wireless links consist of broadcast physical channels carrying information for the entire cell and dedicated physical channels with information and data for given UE. For example, the LTE standard defines broadcast channels such as P-SS and S-SS (used for synchronization at the UE), MIB and PDCCH as well as channels for carrying data to given UE such as the PDSCH. In one embodiment of the present invention, all the LTE broadcast channels (e.g., P-SS, S-SS, MIC, PDCCH) are precoded such that every UE receives its own dedicated information. In a different embodiment, part of the broadcast channel is precoded and part is not. By way of example, but not limitation, the PDCCH contains broadcast information as well as information dedicated to one UE, such as the DCI 1A and DCI 0 used to point the UEs to the resource blocks (RBs) to be used over DL and uplink (UL) channels. In one embodiment, the broadcast part of the PDCCH is not precoded, whereas the portion containing the DCI 1A and 0 is precoded in such a way that every UE obtains its own dedicated information about the RBs that carry data.
In another embodiment of the invention, precoding is applied to all or only part of the data channels, such as the PDSCH in LTE systems. By applying precoding over the entire data channel, one embodiment of the MU-MAS disclosed in the present application allocates the entire bandwidth to every UE and the plurality of data streams of the plurality of UEs are separated via spatial processing. In typical scenarios, however, most, if not all, of the UEs do not need the entire bandwidth (e.g., ˜70 Mbps per UE, peak data rate for TDD configuration #2 in 20 MHz of spectrum). Then, one embodiment of the MU-MAS in the present application subdivides the DL RBs in multiple blocks as in OFDMA systems and assigns each block to a subset of UEs. All the UEs within the same block are separated through the MU-MAS precoding. In another embodiment, the MU-MAS allocates different DL subframes to different subsets of UEs, thereby dividing up the DL as in TDMA systems. In yet another embodiment, the MU-MAS both subdivides the DL RBs in multiple blocks as in OFDMA systems among subsets of UEs and also allocates different DL subframes to different subsets of UEs as in TDMA systems, thus utilizing both OFDMA and TDMA to divide up the throughput. For example, if there are 10 APs in a TDD configuration #2 in 20 MHz, then there is an aggregate DL capacity of 70 Mbps*10=700 Mbps. If there are 10 UEs, then each UE could receive 70 Mbps concurrently. If there are 200 UEs, and the aggregate throughput is to be divided up equally, then using OFDMA, TDMA or a combination thereof, the 200 UEs would be divided into 20 groups of 10 UEs, whereby each UE would receive 700 Mbps/200=3.5 Mbps. As another example, if 10 UEs required 20 Mbps, and the other UEs were to evenly share the remaining throughput, then 20 Mbps*10=200 Mbps of the 700 Mbps would be used for 10 UEs, leaving 700 Mbps-200 Mbps=500 Mbps to divide among the remaining 200−10=190 UEs. As such, each of the remaining 90 UEs would receive 500 Mbps/190=2.63 Mbps. Thus, far more UEs than APs can be supported in the MU-MAS system of the present invention, and the aggregate throughput of all the APs can be divided among the many UEs.
In the UL channel, the LTE standard defines conventional multiple access techniques such as TDMA or SC-FDMA. In one embodiment of the present invention, the MU-MAS precoding is enabled over the DL in a way to assign UL grants to different UEs to enable TDMA and SC-FDMA multiple access techniques. As such, the aggregate UL throughput can be divided among far more UEs than there are APs.
When there are more UEs than there are APs and the aggregate throughput is divided among the UEs, as described above, in one embodiment, the MU-MAS system supports a VRI for each UE, and the VRM controls the VRIs such that VRIs utilize RBs and resource grants in keeping with the chosen OFDMA, TDMA or SC-FDMA system(s) used to subdivide the aggregate throughput. In another embodiment, one or more individual VRIs may support multiple UEs and manage the scheduling of throughput among these UEs via OFDMA, TDMA or SC-FDMA techniques.
In another embodiment, the scheduling of throughput is based on load balancing of user demand, using any of many prior art techniques, depending upon the policies and performance goals of the system. In another embodiment, scheduling is based upon Quality of Service (QoS) requirements for particular UEs (e.g. that pay for a particular tier of service, guaranteeing certain throughput levels) or for particular types of data (e.g. video for a television service).
In a different embodiment, UL receive antenna selection is applied to improve link quality. In this method, the UL channel quality is estimated at the VRM based on signaling information sent by the UEs (e.g., SRS, DMRS) and the VRM decides the best receive antennas for different UEs over the UL. Then the VRM assigns one receive antenna to every UE to improve its link quality. In a different embodiment, receive antenna selection is employed to reduce cross-interference between frequency bands due to the SC-FDMA scheme. One significant advantage of this method is that the UE would transmit over the UL only to the AP closest to its location. In this scenario, the UE can significantly reduce its transmit power to reach the closest AP, thereby improving battery life. In the same embodiment, different power scaling factors are utilized for the UL data channel and for the UL signaling channel. In one exemplary embodiment, the power of the UL signaling channel (e.g., SRS) is increased compared to the data channel to allow UL CSI estimation and MU-MAS precoding (exploiting UL/DL channel reciprocity in TDD systems) from many APs, while still limiting the power required for UL data transmission. In the same embodiment, the power levels of the UL signaling and UL data channels are adjusted by the VRM through DL signaling based on transmit power control methods that equalize the relative power to/from different UEs.
In a different embodiment, maximum ratio combining (MRC) is applied at the UL receiver to improve signal quality from every UE to the plurality of APs. In a different embodiment zero-forcing (ZF) or minimum mean squared error (MMSE) or successive interference cancellation (SIC) or other non-linear techniques or the same precoding technique as for the DL precoding are applied to the UL to differentiate data streams being received from different UEs' areas of coherence. In the same embodiment, receive spatial processing is applied to the UL data channel (e.g., PUSCH) or UL control channel (e.g., PUCCH) or both.
3. Systems and Methods for Concurrent Spectrum Usage within Actively Used Spectrum
As detailed in the Background section above, and shown in
The LTE standard also supports TDD LTE (also called “TD-LTE”) whose physical layer structure is illustrated in the lower half of
Other than the fact that TD-LTE is bi-directional in one channel, the structure and details of TD-LTE and FDD LTE are almost identical. In both modes every frame has 10 ms duration and consists of ten subframes of 1 ms each. The modulation and coding schemes are almost identical, and the upper layers of the protocol stack are effectively the same. In both cases, the time and frequency reference for the user equipment (“UE”) devices (e.g. mobile phones, tablets) is provided by the eNodeB (the LTE base station protocol stack) to all devices (via the DL channel with FDD LTE and during DL subframes with TD-LTE).
Notably, in the case of both FDD and TDD LTE, the network can be configured so that a UE may only transmit UL data when given a grant to do so by the eNodeB, received through a DL transmission. As such, the eNodeB not only controls when it transmits DL data, but it also controls when UEs may transmit UL data.
Also, notably, in the case of an LTE FDD UE, its receiver is only tuned to its DL channel and has no receiver tuned to its UL channel. As such an FDD UE is “deaf” to anything that is transmitted in its UL channel by another device.
And, in the case of all LTE UEs, whether FDD or TDD, even to the extent their receivers are tuned to a particular channel, other than certain control signals intended for all UEs (or for a given UE) which maintain their time reference and connection to the network, or give them directions at what time and frequency they are to receive data, they ignore DL data not intended to them. Or to put it another way, the only relevant DL data to an LTE UE is data that is either control information or is data that is directed to the UE. During other times, whether the channel is utilized with a DL to another UE, not utilized at all or utilized for a purpose that falls outside of the LTE standard, the UE is “deaf” to any DL transmissions that are not control information or DL data directed to that UE. Thus, LTE receivers, whether FDD or TDD, only receive control data intended for all UEs or for a given UE, or receive data for a given UE. Other transmissions in the DL channel are ignored.
The middle two lines of boxes in
The third two lines of boxes in
For FDD LTE 910 and TDD LTE 920 networks to concurrently use the same spectrum, their operation must be coordinated by either one eNodeB that is set up to operate two spectrum sharing networks concurrently, or by the coordination of an eNodeB operating the existing TDD LTE 920 network and a second network controller that could be a second eNodeB or another system compatible with LTE timing and frame structure, such as the Distributed-Input Distributed-Output Distributed antenna MU-MAS C-RAN system disclosed in Sections 1 and 2 above and in the Related Patents and Applications. In any of these cases, both the frames of the FDD LTE 910 and TDD LTE 920 systems have to be synchronized, not only in terms of timing, but in terms of subframe resource allocations. For example, in the case of
One tool that is available for balancing the UL subframe resources (and to meet network operator priorities) that is not available in a standalone FDD LTE system are the TDD LTE Duplex Configurations shown in
Note that, if desired, UL resource allocation between the FDD LTE 910 and TDD LTE 920 networks can be even more fine-grained than a subframe basis. It is possible to allocate some resource blocks within a single subframe to FDD devices and others to TDD devices. For example, the LTE standard employs SC-FDMA multiple access technique for the UL channel. As such, UL channels from FDD and TDD devices can be assigned to different resource blocks within the same subframe via SC-FDMA scheme.
Finally, it is possible to schedule an FDD LTE 910 UL during what would be a TDD LTE 920 DL or Special subframe. One consideration is that TDD DL control signals used by the TDD LTE UEs to maintain their connections and maintain timing (e.g., P-SS and S-SS broadcast signaling sent over subframes #0 and #5) must be received by the TDD LTE UEs with sufficient regularity or else the UEs may disconnect.
Note that the FDD devices attached to the FDD LTE 1110 network are relying on DL transmissions for control and timing information, as well as for data and they must receive adequate control signals on a sufficiently regular basis to remain connected. In one embodiment of the invention, the FDD devices use the broadcast signaling sent by the TDD LTE 1120 network over the DL subframes (e.g., subframes #0 and #5) to obtain time and frequency synchronization. In a different embodiment, subframes #0 and #5 carrying broadcast signaling are assigned to the FDD LTE 1110 network and used to derive time and frequency synchronization at every FDD device.
Although, as described above, typically the FDD DL channel is far more congested than the FDD UL channel, there may be reasons why a mobile operator wishes to share the DL channel. For example, some UL channels are limited to only UL use by the spectrum regulating authority (e.g. there may be concerns about output power interfering with adjacent bands). Also, once a mobile operator begins to offer TDD devices compatible with its FDD spectrum, the mobile operator will likely find these devices to be using spectrum more efficiently than FDD devices and, as such, may discontinue sales of FDD devices. As old FDD devices gradually are replaced and an increasing percentage of devices are TDD, the operator may wish to allocate increasingly more of its spectrum to TDD devices, but still maintain compatibility with the remaining FDD devices in the market.
Toward this end, as there are fewer and fewer FDD devices remaining in operation, the operator may decide to use both the UL and DL bands for TDD operation. This is illustrated in
An operator may also choose to forgo TDD altogether but instead add a second FDD network in the same spectrum as an existing FDD network, but with the Uplink and Downlink channels swapped. This is illustrated in
Also, this structure enables the controller (or controllers) that manage the network to dynamically change the number of UL and DL subframes allocated to each network on a subframe-by-subframe basis, affording extremely dynamic UL/DL traffic adaptation, despite the fact that FDD devices are using both networks.
As with the combined FDD/TDD networks previously described, the same constraints apply for FDD mode in that the LTE devices must receive sufficient control and timing information to remain connected and operate well, and they need sufficiently regular and adequate number of UL frames.
The two FDD networks can be operated independently or through Carrier Aggregation.
In another embodiment, the control information transmitted by the DL channel an existing active network (e.g. in
Although the above embodiments of concurrently supporting networks in the same spectrum used the LTE standard for examples, similar techniques can be utilized with other wireless protocols as well.
4. Utilizing DIDO MU-MAS Concurrently with Actively Used Spectrum
As disclosed in Sections 1 and 2 and in the Related Patents and Applications, the DIDO MU-MAS techniques dramatically increase the capacity of wireless networks, improve reliability and throughput per device, and make it possible to reduce the cost of devices as well.
In general, DIDO technology operates more efficiently in TDD than FDD networks because the UL and DL are in the same channel and, as a result, training transmission received in the UL channel can be used to derive channel state information for the DL channel by exploiting channel reciprocity. Also, as described, TDD mode inherently better suits the asymmetry of mobile data, allowing for more efficient spectrum utilization.
Given that most of the world's current LTE deployments are FDD, by utilizing the techniques disclosed in Section 3, it is possible to deploy a TDD network in spectrum actively used for FDD, and DIDO can be used with that new TDD network, thereby dramatically increasing the capacity of the spectrum. This is particularly significant in that, UHF frequencies propagate far better than microwave frequencies, but most UHF mobile frequencies are already in use by FDD networks. By combining DIDO-based TDD networks with existing FDD networks in UHF spectrum, an exceptionally efficient TDD network can be deployed. For example, Band 44 is a TDD band from 703-803 MHz, overlaying a large number of 700 MHz FDD bands in the U.S. Band 44 devices could be used concurrently in the same spectrum as 700 MHz FDD devices, enabling DIDO TDD in prime spectrum.
DIDO does not add significant new constraints to the spectrum combining techniques described above. The DRAN 104 shown in
Notably, if the DIDO system is controlling the entire system and providing the eNodeB for the FDD network, then DIDO can use a training signal such as the SRS UL from the FDD devices so as to decode via spatial processing the UL from multiple existing FDD devices at the same time and within the same frequency band, thus dramatically increasing the spectral efficiency of the existing FDD UL channel and also reducing the UL power required (and/or receiving better signal quality) since the distributed DIDO APs are likely closer to the UEs than a single cellular base station, and also can utilize signal combining techniques, such as maximum ratio combining (MRC) or other techniques as described previously for DIDO.
Thus, DIDO can replace existing eNodeBs and simultaneously use existing spectrum with DIDO TDD devices, while also applying the benefits of DIDO to the UL of the existing FDD devices that are already deployed.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/980,479, filed, Apr. 16, 2014, entitled, “Systems And Methods For Concurrent Spectrum Usage Within Actively Used Spectrum”. This application may be related to the following co-pending U.S. Patent Applications and U.S. Provisional Applications: U.S. Provisional Application Ser. No. 61/937,273, entitled “Systems and Methods for Mapping Virtual Radio Instances into Physical Areas to Coherence in Distributed Antenna Wireless Systems” U.S. application Ser. No. 13/844,355, entitled “Systems and Methods for Radio Frequency Calibration Exploiting Channel Reciprocity in Distributed Input Distributed Output Wireless Communications” U.S. application Ser. No. 13/797,984, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology” U.S. application Ser. No. 13/797,971, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology” U.S. application Ser. No. 13/797,950, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology” U.S. application Ser. No. 14/156,254, entitled “System and Method For Distributed Antenna Wireless Communications” U.S. application Ser. No. 14/086,700, entitled “Systems and Methods for Exploiting Inter-cell Multiplexing Gain in Wireless Cellular Systems Via Distributed Input Distributed Output Technology” U.S. application Ser. No. 14/023,302, entitled “Systems And Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering” U.S. application Ser. No. 13/633,702, entitled “Systems and Methods for Wireless Backhaul in Distributed-Input Distributed-Output Wireless Systems” U.S. application Ser. No. 13/475,598, entitled “Systems and Methods to enhance spatial diversity in distributed-input distributed-output wireless systems” U.S. application Ser. No. 13/464,648, entitled “System and Methods to Compensate for Doppler Effects in Distributed-Input Distributed Output Systems” U.S. application Ser. No. 13/461,682, entitled “System and Method for Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements” U.S. application Ser. No. 13/233,006, entitled “System and Methods for planned evolution and obsolescence of multiuser spectrum” U.S. application Ser. No. 13/232,996, entitled “Systems and Methods to Exploit Areas of Coherence in Wireless Systems” U.S. application Ser. No. 12/802,989, entitled “System And Method For Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The Client” U.S. application Ser. No. 12/802,988, entitled “Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems” U.S. application Ser. No. 12/802,975, entitled “System And Method For Link adaptation In DIDO Multicarrier Systems” U.S. application Ser. No. 12/802,974, entitled “System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters” U.S. application Ser. No. 12/802,958, entitled “System And Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network” U.S. Pat. No. 8,654,815, to issue Feb. 18, 2014, entitled “System and Method for Distributed Input Distributed Output Wireless Communications” U.S. Pat. No. 8,571,086, issued Oct. 29, 2013, entitled “System and Method for DIDO Precoding Interpolation in Multicarrier Systems” U.S. Pat. No. 8,542,763, issued Sep. 24, 2013, entitled “Systems and Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering” U.S. Pat. No. 8,428,162, issued Apr. 23, 2013, entitled “System and Method for Distributed Input Distributed Output Wireless Communications” U.S. Pat. No. 8,170,081, issued May 1, 2012, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements” U.S. Pat. No. 8,160,121, issued Apr. 17, 2012, entitled, “System and Method For Distributed Input-Distributed Output Wireless Communications”; U.S. Pat. No. 7,885,354, issued Feb. 8, 2011, entitled “System and Method For Enhancing Near Vertical Incidence Skywave (“NVIS”) Communication Using Space-Time Coding.” U.S. Pat. No. 7,711,030, issued May 4, 2010, entitled “System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”; U.S. Pat. No. 7,636,381, issued Dec. 22, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,633,994, issued Dec. 15, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,599,420, issued Oct. 6, 2009, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”; U.S. Pat. No. 7,418,053, issued Aug. 26, 2008, entitled “System and Method for Distributed Input Distributed Output Wireless Communication”;
Number | Name | Date | Kind |
---|---|---|---|
3887925 | Ranghelli et al. | Jun 1975 | A |
4003016 | Remley | Jan 1977 | A |
4253193 | Kennard et al. | Feb 1981 | A |
4564935 | Kaplan | Jan 1986 | A |
4771289 | Masak | Sep 1988 | A |
5045862 | Alden et al. | Sep 1991 | A |
5088091 | Schroeder et al. | Feb 1992 | A |
5095500 | Tayloe et al. | Mar 1992 | A |
5097485 | O'Connor et al. | Mar 1992 | A |
5315309 | Rudow et al. | May 1994 | A |
5321414 | Alden et al. | Jun 1994 | A |
5377183 | Dent | Dec 1994 | A |
5400037 | East | Mar 1995 | A |
5483667 | Faruque | Jan 1996 | A |
5555257 | Dent | Sep 1996 | A |
5600326 | Yu et al. | Feb 1997 | A |
5661765 | Ishizu | Aug 1997 | A |
5742253 | Conroy et al. | Apr 1998 | A |
5809422 | Raleigh et al. | Sep 1998 | A |
5838671 | Ishikawa et al. | Nov 1998 | A |
5872814 | McMeekin | Feb 1999 | A |
5950124 | Trompower et al. | Sep 1999 | A |
5983104 | Wickman et al. | Nov 1999 | A |
6005516 | Reudink et al. | Dec 1999 | A |
6005856 | Jensen et al. | Dec 1999 | A |
6014107 | Wiesenfarth | Jan 2000 | A |
6041365 | Kleinerman | Mar 2000 | A |
6052582 | Blasing et al. | Apr 2000 | A |
6061021 | Zibell | May 2000 | A |
6061023 | Daniel | May 2000 | A |
6067290 | Paulraj et al. | May 2000 | A |
6232921 | Aiken et al. | May 2001 | B1 |
6252912 | Salinger | Jun 2001 | B1 |
6275738 | Kasevich et al. | Aug 2001 | B1 |
6308080 | Burt et al. | Oct 2001 | B1 |
6320853 | Wong et al. | Nov 2001 | B1 |
6323823 | Wong et al. | Nov 2001 | B1 |
6330460 | Wong et al. | Dec 2001 | B1 |
6377782 | Bishop et al. | Apr 2002 | B1 |
6400761 | Smee et al. | Jun 2002 | B1 |
6411612 | Halford et al. | Jun 2002 | B1 |
6421543 | Molnar | Jul 2002 | B1 |
6442151 | H'Mimy et al. | Aug 2002 | B1 |
6445910 | Oestreich | Sep 2002 | B1 |
6448937 | Aiken et al. | Sep 2002 | B1 |
6453177 | Wong et al. | Sep 2002 | B1 |
6459900 | Scheinert | Oct 2002 | B1 |
6473467 | Wallace et al. | Oct 2002 | B1 |
6484030 | Antoine et al. | Nov 2002 | B1 |
6519478 | Scherzer et al. | Feb 2003 | B1 |
6611231 | Crilly, Jr. et al. | Aug 2003 | B2 |
6654590 | Boros et al. | Nov 2003 | B2 |
6668161 | Boros et al. | Dec 2003 | B2 |
6684366 | Trott et al. | Jan 2004 | B1 |
6697644 | Scherzer et al. | Feb 2004 | B2 |
6718180 | Lundh et al. | Apr 2004 | B1 |
6718184 | Aiken et al. | Apr 2004 | B1 |
6760388 | Ketchum et al. | Jul 2004 | B2 |
6760599 | Uhlik | Jul 2004 | B1 |
6760603 | Scherzer et al. | Jul 2004 | B1 |
6763225 | Farmine et al. | Jul 2004 | B1 |
6771706 | Ling et al. | Aug 2004 | B2 |
6785341 | Walton et al. | Aug 2004 | B2 |
6791508 | Berry et al. | Sep 2004 | B2 |
6792259 | Parise | Sep 2004 | B1 |
6794939 | Kim et al. | Sep 2004 | B2 |
6795413 | Uhlik | Sep 2004 | B1 |
6799026 | Scherzer et al. | Sep 2004 | B1 |
6801580 | Kadous | Oct 2004 | B2 |
6804311 | Dabak et al. | Oct 2004 | B1 |
6834043 | Vook et al. | Dec 2004 | B1 |
6836673 | Trott | Dec 2004 | B1 |
6847832 | Wong et al. | Jan 2005 | B2 |
6862271 | Medvedev et al. | Mar 2005 | B2 |
6888795 | Gupta et al. | May 2005 | B2 |
6888809 | Foschini et al. | May 2005 | B1 |
6888899 | Raleigh et al. | May 2005 | B2 |
6895258 | Scherzer et al. | May 2005 | B1 |
6901062 | Scherzer et al. | May 2005 | B2 |
6919857 | Shamblin et al. | Jul 2005 | B2 |
6920192 | Laroia et al. | Jul 2005 | B1 |
6925127 | Dent | Aug 2005 | B1 |
6956537 | Scherzer et al. | Oct 2005 | B2 |
6963742 | Boros et al. | Nov 2005 | B2 |
6970682 | Crilly, Jr. et al. | Nov 2005 | B2 |
6978150 | Hamabe | Dec 2005 | B2 |
6996060 | Dahlby et al. | Feb 2006 | B1 |
7006043 | Nalbandian | Feb 2006 | B1 |
7013144 | Yamashita et al. | Mar 2006 | B2 |
7016649 | Narasimhan et al. | Mar 2006 | B1 |
7020490 | Khatri | Mar 2006 | B2 |
7027415 | Dahlby et al. | Apr 2006 | B1 |
7027523 | Jalali et al. | Apr 2006 | B2 |
7027837 | Uhlik et al. | Apr 2006 | B1 |
7031336 | Scherzer et al. | Apr 2006 | B2 |
7031754 | Scherzer et al. | Apr 2006 | B2 |
7068704 | Orr | Jun 2006 | B1 |
7072413 | Walton et al. | Jul 2006 | B2 |
7072693 | Farlow et al. | Jul 2006 | B2 |
7075485 | Song et al. | Jul 2006 | B2 |
7079809 | Scherzer | Jul 2006 | B1 |
7085240 | Wu et al. | Aug 2006 | B2 |
7095723 | Sezgin et al. | Aug 2006 | B2 |
7096040 | Scherzer et al. | Aug 2006 | B1 |
7116723 | Kim et al. | Oct 2006 | B2 |
7117014 | Van Rensburg et al. | Oct 2006 | B1 |
7120440 | Cho et al. | Oct 2006 | B2 |
7139527 | Tamaki et al. | Nov 2006 | B2 |
7142154 | Quilter et al. | Nov 2006 | B2 |
7154936 | Bjerke et al. | Dec 2006 | B2 |
7154960 | Liu et al. | Dec 2006 | B2 |
7158493 | Uhlik et al. | Jan 2007 | B1 |
7167684 | Kadous et al. | Jan 2007 | B2 |
7181167 | Onggosanusi et al. | Feb 2007 | B2 |
7184492 | Dent | Feb 2007 | B2 |
7193991 | Melpignano et al. | Mar 2007 | B2 |
7194006 | Wong et al. | Mar 2007 | B2 |
7197082 | Alexiou et al. | Mar 2007 | B2 |
7197084 | Ketchum et al. | Mar 2007 | B2 |
7197282 | Dent et al. | Mar 2007 | B2 |
7209511 | Dent | Apr 2007 | B2 |
7218689 | Gupta | May 2007 | B2 |
7224942 | Dent | May 2007 | B2 |
7227855 | Barratt et al. | Jun 2007 | B1 |
7242724 | Alexiou et al. | Jul 2007 | B2 |
7242964 | Aiken et al. | Jul 2007 | B1 |
7248645 | Malle et al. | Jul 2007 | B2 |
7248841 | Agee et al. | Jul 2007 | B2 |
7248879 | Walton et al. | Jul 2007 | B1 |
7269231 | Ding et al. | Sep 2007 | B2 |
7272294 | Zhou et al. | Sep 2007 | B2 |
7299071 | Barratt et al. | Nov 2007 | B1 |
7310680 | Graham | Dec 2007 | B1 |
7313403 | Gong et al. | Dec 2007 | B2 |
7327795 | Oprea | Feb 2008 | B2 |
7333540 | Yee | Feb 2008 | B2 |
7336626 | Barratt et al. | Feb 2008 | B1 |
7339906 | Dahlby et al. | Mar 2008 | B1 |
7339908 | Uhlik et al. | Mar 2008 | B2 |
7352774 | Uhlik et al. | Apr 2008 | B2 |
7363376 | Uhlik et al. | Apr 2008 | B2 |
7366202 | Scherzer et al. | Apr 2008 | B2 |
7366245 | Li et al. | Apr 2008 | B2 |
7366519 | Jason et al. | Apr 2008 | B2 |
7369841 | Uhlik et al. | May 2008 | B1 |
7369876 | Lee et al. | May 2008 | B2 |
7394858 | Sadowsky et al. | Jul 2008 | B2 |
7406315 | Uhlik et al. | Jul 2008 | B2 |
7412212 | Hottinen | Aug 2008 | B2 |
7418053 | Perlman et al. | Aug 2008 | B2 |
7430197 | Uhlik | Sep 2008 | B1 |
7437177 | Ozluturk et al. | Oct 2008 | B2 |
7450489 | Sandhu | Nov 2008 | B2 |
7451839 | Perlman | Nov 2008 | B2 |
7471736 | Ding et al. | Dec 2008 | B2 |
7486931 | Cho et al. | Feb 2009 | B2 |
7492743 | Uhlik | Feb 2009 | B2 |
7499548 | Meandzija et al. | Mar 2009 | B2 |
7502420 | Ketchum | Mar 2009 | B2 |
7519011 | Petrus et al. | Apr 2009 | B2 |
7548752 | Sampath et al. | Jun 2009 | B2 |
7558575 | Losh et al. | Jul 2009 | B2 |
7599420 | Forenza et al. | Oct 2009 | B2 |
7599443 | Ionescu et al. | Oct 2009 | B2 |
7606192 | Uhlik | Oct 2009 | B2 |
7609751 | Giallorenzi et al. | Oct 2009 | B1 |
7616698 | Sun et al. | Nov 2009 | B2 |
7630337 | Zheng et al. | Dec 2009 | B2 |
7633944 | Chang et al. | Dec 2009 | B1 |
7633994 | Forenza et al. | Dec 2009 | B2 |
7636381 | Forenza et al. | Dec 2009 | B2 |
7684753 | Ionescu et al. | Mar 2010 | B2 |
7688789 | Pan et al. | Mar 2010 | B2 |
7689639 | Dent | Mar 2010 | B2 |
7719993 | Li et al. | May 2010 | B2 |
7729316 | Uhlik | Jun 2010 | B2 |
7729433 | Jalloul et al. | Jun 2010 | B2 |
7729443 | Fukuoka et al. | Jun 2010 | B2 |
7747250 | Larsson et al. | Jun 2010 | B2 |
7751368 | Li et al. | Jul 2010 | B2 |
7751843 | Butala | Jul 2010 | B2 |
7756222 | Chen et al. | Jul 2010 | B2 |
7801490 | Scherzer | Sep 2010 | B1 |
7849173 | Uhlik | Dec 2010 | B1 |
7864663 | Dent | Jan 2011 | B2 |
7948444 | Signell et al. | May 2011 | B2 |
7961809 | Bourdoux et al. | Jun 2011 | B2 |
7978673 | Uhlik et al. | Jul 2011 | B1 |
7986742 | Ketchum et al. | Jul 2011 | B2 |
7995973 | Dent et al. | Aug 2011 | B2 |
8041362 | Li et al. | Oct 2011 | B2 |
8081944 | Li | Dec 2011 | B2 |
8086271 | Dent | Dec 2011 | B2 |
8090320 | Dent et al. | Jan 2012 | B2 |
8116710 | Dent et al. | Feb 2012 | B2 |
8126510 | Samson et al. | Feb 2012 | B1 |
8170081 | Forenza et al. | May 2012 | B2 |
8260198 | Yamaura | Sep 2012 | B2 |
8320432 | Chockalingam et al. | Nov 2012 | B1 |
8428177 | Tsai et al. | Apr 2013 | B2 |
8451764 | Chao et al. | May 2013 | B2 |
8482462 | Komijani et al. | Jul 2013 | B2 |
8548384 | Lee et al. | Oct 2013 | B2 |
8638880 | Baldemair et al. | Jan 2014 | B2 |
8654815 | Forenza et al. | Feb 2014 | B1 |
8675768 | Xu et al. | Mar 2014 | B2 |
8705484 | Caire et al. | Apr 2014 | B2 |
8731480 | Kim et al. | May 2014 | B2 |
8787469 | Kim et al. | Jul 2014 | B2 |
8797970 | Xing et al. | Aug 2014 | B2 |
8849339 | Anto et al. | Sep 2014 | B2 |
8902862 | Yu et al. | Dec 2014 | B2 |
8971380 | Forenza et al. | Mar 2015 | B2 |
8989155 | Forenza et al. | Mar 2015 | B2 |
9094180 | Zirwas et al. | Jul 2015 | B2 |
9179495 | Scherzer et al. | Nov 2015 | B1 |
9252858 | Abbasfar et al. | Feb 2016 | B2 |
9307506 | Kelly et al. | Apr 2016 | B1 |
9331882 | Fehri et al. | May 2016 | B2 |
9685997 | Forenza et al. | Jun 2017 | B2 |
9698881 | Nammi et al. | Jul 2017 | B2 |
10205513 | Winters et al. | Feb 2019 | B1 |
10277290 | Forenza et al. | Apr 2019 | B2 |
10349417 | Forenza et al. | Jul 2019 | B2 |
10637554 | Zhu et al. | Apr 2020 | B2 |
10749583 | Park et al. | Aug 2020 | B2 |
10804985 | Ge et al. | Oct 2020 | B2 |
10985811 | Forenza et al. | Apr 2021 | B2 |
20010031647 | Scherzer et al. | Oct 2001 | A1 |
20020027985 | Rashid-Farrokhi | Mar 2002 | A1 |
20020051433 | Affes et al. | May 2002 | A1 |
20020097705 | Sezgin et al. | Jul 2002 | A1 |
20020136169 | Struhsaker et al. | Sep 2002 | A1 |
20020142723 | Foschini et al. | Oct 2002 | A1 |
20020168017 | Berthet et al. | Nov 2002 | A1 |
20020177447 | Walton et al. | Nov 2002 | A1 |
20020181444 | Acampora | Dec 2002 | A1 |
20020193146 | Wallace et al. | Dec 2002 | A1 |
20030003863 | Thielecke et al. | Jan 2003 | A1 |
20030012315 | Fan | Jan 2003 | A1 |
20030036359 | Dent et al. | Feb 2003 | A1 |
20030043887 | Hudson | Mar 2003 | A1 |
20030043929 | Sampath | Mar 2003 | A1 |
20030045297 | Dent | Mar 2003 | A1 |
20030048753 | Jalali | Mar 2003 | A1 |
20030065779 | Malik et al. | Apr 2003 | A1 |
20030092456 | Dent | May 2003 | A1 |
20030114165 | Mills | Jun 2003 | A1 |
20030114193 | Kavak et al. | Jun 2003 | A1 |
20030125026 | Tsunehara et al. | Jul 2003 | A1 |
20030125040 | Walton et al. | Jul 2003 | A1 |
20030138206 | Sheng et al. | Jul 2003 | A1 |
20030139196 | Medvedev et al. | Jul 2003 | A1 |
20030147362 | Dick et al. | Aug 2003 | A1 |
20030148738 | Das et al. | Aug 2003 | A1 |
20030156056 | Perry | Aug 2003 | A1 |
20030161282 | Medvedev et al. | Aug 2003 | A1 |
20030211843 | Song et al. | Nov 2003 | A1 |
20030214431 | Hager et al. | Nov 2003 | A1 |
20030220112 | Bugeja | Nov 2003 | A1 |
20030222820 | Karr et al. | Dec 2003 | A1 |
20030223391 | Malaender et al. | Dec 2003 | A1 |
20030235146 | Wu et al. | Dec 2003 | A1 |
20040002835 | Nelson | Jan 2004 | A1 |
20040008650 | Le et al. | Jan 2004 | A1 |
20040009755 | Yoshida | Jan 2004 | A1 |
20040042556 | Medvedev et al. | Mar 2004 | A1 |
20040043784 | Czaja et al. | Mar 2004 | A1 |
20040063450 | Uhlik | Apr 2004 | A1 |
20040082356 | Walton et al. | Apr 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040097197 | Juncker et al. | May 2004 | A1 |
20040131011 | Sandell et al. | Jul 2004 | A1 |
20040136349 | Walton et al. | Jul 2004 | A1 |
20040152480 | Willars et al. | Aug 2004 | A1 |
20040170430 | Gorokhov | Sep 2004 | A1 |
20040176097 | Wilson et al. | Sep 2004 | A1 |
20040179627 | Ketchum et al. | Sep 2004 | A1 |
20040185909 | Alexiou et al. | Sep 2004 | A1 |
20040190636 | Oprea | Sep 2004 | A1 |
20040203347 | Nguyen | Oct 2004 | A1 |
20040203987 | Butala | Oct 2004 | A1 |
20040209579 | Vaidyanathan | Oct 2004 | A1 |
20040252632 | Bourdoux et al. | Dec 2004 | A1 |
20050003865 | Lastinger et al. | Jan 2005 | A1 |
20050020237 | Alexiou et al. | Jan 2005 | A1 |
20050024231 | Fincher et al. | Feb 2005 | A1 |
20050031047 | Maltsev et al. | Feb 2005 | A1 |
20050041750 | Lau | Feb 2005 | A1 |
20050041751 | Nir et al. | Feb 2005 | A1 |
20050042988 | Hoek et al. | Feb 2005 | A1 |
20050043031 | Cho et al. | Feb 2005 | A1 |
20050047515 | Walton et al. | Mar 2005 | A1 |
20050058217 | Sandhu et al. | Mar 2005 | A1 |
20050075110 | Posti et al. | Apr 2005 | A1 |
20050085267 | Lemson et al. | Apr 2005 | A1 |
20050096058 | Warner et al. | May 2005 | A1 |
20050101259 | Tong et al. | May 2005 | A1 |
20050101352 | Logothetis et al. | May 2005 | A1 |
20050111406 | Pasanen et al. | May 2005 | A1 |
20050111599 | Walton et al. | May 2005 | A1 |
20050148368 | Scheinert et al. | Jul 2005 | A1 |
20050157683 | Ylitalo et al. | Jul 2005 | A1 |
20050169396 | Baier et al. | Aug 2005 | A1 |
20050174977 | Pedlar et al. | Aug 2005 | A1 |
20050186991 | Bateman | Aug 2005 | A1 |
20050232135 | Mukai et al. | Oct 2005 | A1 |
20050239406 | Shattil | Oct 2005 | A1 |
20050259627 | Song et al. | Nov 2005 | A1 |
20050265273 | Karabinis et al. | Dec 2005 | A1 |
20050271009 | Shirakabe et al. | Dec 2005 | A1 |
20050287962 | Mehta et al. | Dec 2005 | A1 |
20060023803 | Perlman et al. | Feb 2006 | A1 |
20060032979 | Mitchell et al. | Feb 2006 | A1 |
20060046658 | Cruz et al. | Mar 2006 | A1 |
20060050804 | Leclair | Mar 2006 | A1 |
20060056855 | Nakagawa et al. | Mar 2006 | A1 |
20060062180 | Sayeedi et al. | Mar 2006 | A1 |
20060098568 | Oh et al. | May 2006 | A1 |
20060098754 | Kim et al. | May 2006 | A1 |
20060146755 | Pan et al. | Jul 2006 | A1 |
20060159160 | Kim et al. | Jul 2006 | A1 |
20060159187 | Wang et al. | Jul 2006 | A1 |
20060165120 | Karabinis | Jul 2006 | A1 |
20060198461 | Hayase | Sep 2006 | A1 |
20060199584 | Bergstrom | Sep 2006 | A1 |
20060203708 | Sampath et al. | Sep 2006 | A1 |
20060209979 | Sandell et al. | Sep 2006 | A1 |
20060270359 | Karmi et al. | Nov 2006 | A1 |
20060281421 | Pan et al. | Dec 2006 | A1 |
20060287743 | Sampath et al. | Dec 2006 | A1 |
20060292990 | Karabinis et al. | Dec 2006 | A1 |
20070004337 | Biswas et al. | Jan 2007 | A1 |
20070015526 | Hansen | Jan 2007 | A1 |
20070025464 | Perlman | Feb 2007 | A1 |
20070054633 | Piirainen | Mar 2007 | A1 |
20070058590 | Wang et al. | Mar 2007 | A1 |
20070064823 | Hwang et al. | Mar 2007 | A1 |
20070066331 | Zheng et al. | Mar 2007 | A1 |
20070082674 | Pedersen et al. | Apr 2007 | A1 |
20070086400 | Shida et al. | Apr 2007 | A1 |
20070093273 | Cai | Apr 2007 | A1 |
20070093274 | Jafarkhani et al. | Apr 2007 | A1 |
20070099665 | Kim et al. | May 2007 | A1 |
20070132653 | Weller et al. | Jun 2007 | A1 |
20070135125 | Kim et al. | Jun 2007 | A1 |
20070183362 | Mondal et al. | Aug 2007 | A1 |
20070206504 | Koo et al. | Sep 2007 | A1 |
20070211747 | Kim | Sep 2007 | A1 |
20070220151 | Li et al. | Sep 2007 | A1 |
20070242782 | Han et al. | Oct 2007 | A1 |
20070243871 | Chen | Oct 2007 | A1 |
20070249380 | Stewart et al. | Oct 2007 | A1 |
20070253508 | Zhou et al. | Nov 2007 | A1 |
20070254602 | Li et al. | Nov 2007 | A1 |
20070258531 | Chen et al. | Nov 2007 | A1 |
20070263736 | Yuda et al. | Nov 2007 | A1 |
20070280116 | Wang et al. | Dec 2007 | A1 |
20080013644 | Hugl et al. | Jan 2008 | A1 |
20080051150 | Tsutsui | Feb 2008 | A1 |
20080080631 | Forenza et al. | Apr 2008 | A1 |
20080080635 | Hugl et al. | Apr 2008 | A1 |
20080089396 | Zhang et al. | Apr 2008 | A1 |
20080102881 | Han et al. | May 2008 | A1 |
20080107135 | Ibrahim | May 2008 | A1 |
20080117961 | Han et al. | May 2008 | A1 |
20080118004 | Forenza et al. | May 2008 | A1 |
20080125051 | Kim et al. | May 2008 | A1 |
20080130790 | Forenza et al. | Jun 2008 | A1 |
20080132281 | Kim et al. | Jun 2008 | A1 |
20080165866 | Teo et al. | Jul 2008 | A1 |
20080181285 | Hwang et al. | Jul 2008 | A1 |
20080192683 | Han et al. | Aug 2008 | A1 |
20080192697 | Shaheen | Aug 2008 | A1 |
20080205538 | Han et al. | Aug 2008 | A1 |
20080214185 | Cho et al. | Sep 2008 | A1 |
20080227422 | Hwang et al. | Sep 2008 | A1 |
20080232394 | Kozek et al. | Sep 2008 | A1 |
20080233902 | Pan et al. | Sep 2008 | A1 |
20080239938 | Jalloul et al. | Oct 2008 | A1 |
20080260054 | Myung et al. | Oct 2008 | A1 |
20080261587 | Lennartson et al. | Oct 2008 | A1 |
20080268833 | Huang et al. | Oct 2008 | A1 |
20080292011 | Yang | Nov 2008 | A1 |
20080317014 | Veselinovic et al. | Dec 2008 | A1 |
20090010204 | Pratt, Jr. et al. | Jan 2009 | A1 |
20090016463 | Roh | Jan 2009 | A1 |
20090023467 | Huang et al. | Jan 2009 | A1 |
20090034636 | Kotecha et al. | Feb 2009 | A1 |
20090041148 | Li et al. | Feb 2009 | A1 |
20090041151 | Khan et al. | Feb 2009 | A1 |
20090046678 | Lee et al. | Feb 2009 | A1 |
20090046800 | Xu et al. | Feb 2009 | A1 |
20090060013 | Ashikhmin et al. | Mar 2009 | A1 |
20090067402 | Forenza et al. | Mar 2009 | A1 |
20090069054 | Zangi et al. | Mar 2009 | A1 |
20090075686 | Gomadam et al. | Mar 2009 | A1 |
20090086648 | Xu et al. | Apr 2009 | A1 |
20090086855 | Jin et al. | Apr 2009 | A1 |
20090097448 | Vasudevan | Apr 2009 | A1 |
20090135944 | Dyer et al. | May 2009 | A1 |
20090168914 | Chance et al. | Jul 2009 | A1 |
20090195355 | Mitchell | Aug 2009 | A1 |
20090202016 | Seong et al. | Aug 2009 | A1 |
20090207822 | Kim et al. | Aug 2009 | A1 |
20090209206 | Zou et al. | Aug 2009 | A1 |
20090227249 | Ylitalo | Sep 2009 | A1 |
20090227292 | Laroia et al. | Sep 2009 | A1 |
20090232245 | Lakkis | Sep 2009 | A1 |
20090262695 | Chen et al. | Oct 2009 | A1 |
20090268675 | Choi | Oct 2009 | A1 |
20090274196 | Black et al. | Nov 2009 | A1 |
20090285156 | Huang et al. | Nov 2009 | A1 |
20090290517 | Rao et al. | Nov 2009 | A1 |
20090290632 | Wegener | Nov 2009 | A1 |
20090296650 | Venturing et al. | Dec 2009 | A1 |
20090316807 | Kim et al. | Dec 2009 | A1 |
20090318183 | Hugl et al. | Dec 2009 | A1 |
20100008331 | Li et al. | Jan 2010 | A1 |
20100034151 | Alexiou et al. | Feb 2010 | A1 |
20100068999 | Bangs et al. | Mar 2010 | A1 |
20100098030 | Wang et al. | Apr 2010 | A1 |
20100099428 | Bhushan et al. | Apr 2010 | A1 |
20100119001 | Walton et al. | May 2010 | A1 |
20100150013 | Hara et al. | Jun 2010 | A1 |
20100157861 | Na et al. | Jun 2010 | A1 |
20100164802 | Li et al. | Jul 2010 | A1 |
20100172309 | Forenza et al. | Jul 2010 | A1 |
20100178934 | Moeglein et al. | Jul 2010 | A1 |
20100183099 | Toda et al. | Jul 2010 | A1 |
20100189191 | Taoka et al. | Jul 2010 | A1 |
20100195527 | Gorokhov et al. | Aug 2010 | A1 |
20100203887 | Kim et al. | Aug 2010 | A1 |
20100220679 | Abraham et al. | Sep 2010 | A1 |
20100227562 | Shim et al. | Sep 2010 | A1 |
20100232336 | Choudhury et al. | Sep 2010 | A1 |
20100234071 | Shabtay et al. | Sep 2010 | A1 |
20100238824 | Farajidana et al. | Sep 2010 | A1 |
20100238984 | Sayana et al. | Sep 2010 | A1 |
20100260060 | Abraham et al. | Oct 2010 | A1 |
20100260103 | Guey et al. | Oct 2010 | A1 |
20100260115 | Frederiksen et al. | Oct 2010 | A1 |
20100265842 | Khandekar et al. | Oct 2010 | A1 |
20100279625 | Ko et al. | Nov 2010 | A1 |
20100290369 | Hui | Nov 2010 | A1 |
20100290382 | Hui et al. | Nov 2010 | A1 |
20100296591 | Xu et al. | Nov 2010 | A1 |
20100315966 | Weigand | Dec 2010 | A1 |
20100316154 | Park et al. | Dec 2010 | A1 |
20100316163 | Forenza et al. | Dec 2010 | A1 |
20100322176 | Chen et al. | Dec 2010 | A1 |
20100323611 | Choudhury | Dec 2010 | A1 |
20110002371 | Forenza et al. | Jan 2011 | A1 |
20110002410 | Forenza et al. | Jan 2011 | A1 |
20110002411 | Forenza et al. | Jan 2011 | A1 |
20110003606 | Forenza et al. | Jan 2011 | A1 |
20110003607 | Forenza et al. | Jan 2011 | A1 |
20110003608 | Forenza et al. | Jan 2011 | A1 |
20110007856 | Jang et al. | Jan 2011 | A1 |
20110019715 | Brisebois | Jan 2011 | A1 |
20110038436 | Kim et al. | Feb 2011 | A1 |
20110044193 | Forenza et al. | Feb 2011 | A1 |
20110051832 | Mergen et al. | Mar 2011 | A1 |
20110069638 | Ishizu et al. | Mar 2011 | A1 |
20110077038 | Montojo et al. | Mar 2011 | A1 |
20110085610 | Zhuang et al. | Apr 2011 | A1 |
20110086611 | Klein et al. | Apr 2011 | A1 |
20110090840 | Lee et al. | Apr 2011 | A1 |
20110090885 | Safavi | Apr 2011 | A1 |
20110105174 | Pelletier et al. | May 2011 | A1 |
20110111781 | Chen et al. | May 2011 | A1 |
20110135308 | Tarlazzi et al. | Jun 2011 | A1 |
20110142020 | Kang et al. | Jun 2011 | A1 |
20110142104 | Coldrey et al. | Jun 2011 | A1 |
20110149765 | Gorokhov et al. | Jun 2011 | A1 |
20110164597 | Amini et al. | Jul 2011 | A1 |
20110164697 | Liao et al. | Jul 2011 | A1 |
20110194504 | Gorokhov et al. | Aug 2011 | A1 |
20110195670 | Dakshinamurthy et al. | Aug 2011 | A1 |
20110199946 | Breit et al. | Aug 2011 | A1 |
20110205963 | Tang et al. | Aug 2011 | A1 |
20110207416 | Doi | Aug 2011 | A1 |
20110211485 | Xu et al. | Sep 2011 | A1 |
20110216662 | Nie et al. | Sep 2011 | A1 |
20110261769 | Ji et al. | Oct 2011 | A1 |
20110274053 | Baik et al. | Nov 2011 | A1 |
20110294527 | Brueck et al. | Dec 2011 | A1 |
20110305195 | Forck et al. | Dec 2011 | A1 |
20110306381 | Jia et al. | Dec 2011 | A1 |
20110310987 | Lee et al. | Dec 2011 | A1 |
20110310994 | Ko et al. | Dec 2011 | A1 |
20120002743 | Cavalcante et al. | Jan 2012 | A1 |
20120014415 | Su et al. | Jan 2012 | A1 |
20120014477 | Ko et al. | Jan 2012 | A1 |
20120021707 | Forrester et al. | Jan 2012 | A1 |
20120039419 | Maddah-Ali et al. | Feb 2012 | A1 |
20120046039 | Hagerman et al. | Feb 2012 | A1 |
20120051257 | Kim et al. | Mar 2012 | A1 |
20120054172 | Agrawal et al. | Mar 2012 | A1 |
20120076023 | Ko et al. | Mar 2012 | A1 |
20120076028 | Ko et al. | Mar 2012 | A1 |
20120076042 | Chun et al. | Mar 2012 | A1 |
20120076236 | Ko et al. | Mar 2012 | A1 |
20120082038 | Xu | Apr 2012 | A1 |
20120087261 | Yoo et al. | Apr 2012 | A1 |
20120087430 | Forenza et al. | Apr 2012 | A1 |
20120093078 | Perlman et al. | Apr 2012 | A1 |
20120106388 | Shimezawa et al. | May 2012 | A1 |
20120108278 | Kim et al. | May 2012 | A1 |
20120114021 | Chung et al. | May 2012 | A1 |
20120151305 | Zhang et al. | Jun 2012 | A1 |
20120163427 | Kim | Jun 2012 | A1 |
20120176982 | Zirwas et al. | Jul 2012 | A1 |
20120188988 | Chung et al. | Jul 2012 | A1 |
20120218968 | Kim et al. | Aug 2012 | A1 |
20120224528 | Tapia et al. | Sep 2012 | A1 |
20120230691 | Hui et al. | Sep 2012 | A1 |
20120236741 | Xu et al. | Sep 2012 | A1 |
20120236840 | Kim et al. | Sep 2012 | A1 |
20120252470 | Wong et al. | Oct 2012 | A1 |
20120258657 | Scheinert | Oct 2012 | A1 |
20120275530 | Olesen et al. | Nov 2012 | A1 |
20120281555 | Gao et al. | Nov 2012 | A1 |
20120281622 | Saban et al. | Nov 2012 | A1 |
20120288022 | Guey et al. | Nov 2012 | A1 |
20120289284 | Kuningas | Nov 2012 | A1 |
20120300717 | Cepeda et al. | Nov 2012 | A1 |
20120314570 | Forenza et al. | Dec 2012 | A1 |
20120314649 | Forenza et al. | Dec 2012 | A1 |
20120328301 | Gupta et al. | Dec 2012 | A1 |
20130010840 | Maddah-Ali et al. | Jan 2013 | A1 |
20130028109 | Joengren et al. | Jan 2013 | A1 |
20130033998 | Seo et al. | Feb 2013 | A1 |
20130038766 | Perlman et al. | Feb 2013 | A1 |
20130039168 | Forenza | Feb 2013 | A1 |
20130039332 | Nazar et al. | Feb 2013 | A1 |
20130039349 | Ebrahimi et al. | Feb 2013 | A1 |
20130039387 | Qu | Feb 2013 | A1 |
20130058307 | Kim et al. | Mar 2013 | A1 |
20130077514 | Dinan | Mar 2013 | A1 |
20130077569 | Nam et al. | Mar 2013 | A1 |
20130083681 | Ebrahimi et al. | Apr 2013 | A1 |
20130089009 | Li et al. | Apr 2013 | A1 |
20130089159 | Liu | Apr 2013 | A1 |
20130094548 | Park | Apr 2013 | A1 |
20130114437 | Yoo et al. | May 2013 | A1 |
20130114763 | Park | May 2013 | A1 |
20130115986 | Mueck et al. | May 2013 | A1 |
20130128821 | Hooli et al. | May 2013 | A1 |
20130142290 | Farmanbar et al. | Jun 2013 | A1 |
20130170360 | Xu et al. | Jul 2013 | A1 |
20130188567 | Wang et al. | Jul 2013 | A1 |
20130195047 | Koivisto et al. | Aug 2013 | A1 |
20130195086 | Xu et al. | Aug 2013 | A1 |
20130195467 | Schmid et al. | Aug 2013 | A1 |
20130208604 | Lee et al. | Aug 2013 | A1 |
20130208671 | Royz et al. | Aug 2013 | A1 |
20130242890 | He et al. | Sep 2013 | A1 |
20130242956 | Hall | Sep 2013 | A1 |
20130272170 | Chatterjee et al. | Oct 2013 | A1 |
20130272250 | Shimezawa et al. | Oct 2013 | A1 |
20130273950 | Sun et al. | Oct 2013 | A1 |
20130286958 | Liang et al. | Oct 2013 | A1 |
20130286997 | Davydov et al. | Oct 2013 | A1 |
20130315189 | Kim et al. | Nov 2013 | A1 |
20130315195 | Ko et al. | Nov 2013 | A1 |
20130315211 | Balan et al. | Nov 2013 | A1 |
20130322308 | Yu et al. | Dec 2013 | A1 |
20130329592 | Beale | Dec 2013 | A1 |
20140029490 | Kim et al. | Jan 2014 | A1 |
20140038619 | Moulsley | Feb 2014 | A1 |
20140064206 | Bao et al. | Mar 2014 | A1 |
20140086296 | Badic et al. | Mar 2014 | A1 |
20140087680 | Luukkala et al. | Mar 2014 | A1 |
20140094169 | Takano | Apr 2014 | A1 |
20140112216 | Seo et al. | Apr 2014 | A1 |
20140113677 | Parkvall et al. | Apr 2014 | A1 |
20140140225 | Wala | May 2014 | A1 |
20140146756 | Sahin et al. | May 2014 | A1 |
20140153427 | Seo et al. | Jun 2014 | A1 |
20140185700 | Dong et al. | Jul 2014 | A1 |
20140198744 | Wang et al. | Jul 2014 | A1 |
20140206280 | Nilsson et al. | Jul 2014 | A1 |
20140219142 | Schulz et al. | Aug 2014 | A1 |
20140219152 | Anto et al. | Aug 2014 | A1 |
20140219202 | Kim et al. | Aug 2014 | A1 |
20140219267 | Eyuboglu et al. | Aug 2014 | A1 |
20140225788 | Schulz et al. | Aug 2014 | A1 |
20140226570 | Comeau | Aug 2014 | A1 |
20140241209 | Pollakowski et al. | Aug 2014 | A1 |
20140241218 | Moshfeghi | Aug 2014 | A1 |
20140241240 | Kloper et al. | Aug 2014 | A1 |
20140245095 | Nammi et al. | Aug 2014 | A1 |
20140295758 | Pedersen | Oct 2014 | A1 |
20140301345 | Kim et al. | Oct 2014 | A1 |
20140307630 | Nagata et al. | Oct 2014 | A1 |
20140340255 | Meerkerk et al. | Nov 2014 | A1 |
20140340260 | Richards | Nov 2014 | A1 |
20140341143 | Yang et al. | Nov 2014 | A1 |
20140348077 | Chen et al. | Nov 2014 | A1 |
20140348090 | Nguyen et al. | Nov 2014 | A1 |
20140348131 | Duan et al. | Nov 2014 | A1 |
20150003311 | Feuersaenger et al. | Jan 2015 | A1 |
20150011197 | Tarraf et al. | Jan 2015 | A1 |
20150016317 | Park et al. | Jan 2015 | A1 |
20150092416 | Potucek et al. | Apr 2015 | A1 |
20150098410 | Jöngren et al. | Apr 2015 | A1 |
20150117392 | Hammarwall et al. | Apr 2015 | A1 |
20150118369 | Hyde et al. | Apr 2015 | A1 |
20150131751 | Bayesteh et al. | May 2015 | A1 |
20150270882 | Shattil | Sep 2015 | A1 |
20150271003 | Kuchi et al. | Sep 2015 | A1 |
20150296533 | Park et al. | Oct 2015 | A1 |
20150305010 | Guan | Oct 2015 | A1 |
20160013855 | Campos et al. | Jan 2016 | A1 |
20160061027 | Gao et al. | Mar 2016 | A1 |
20160094318 | Shattil et al. | Mar 2016 | A1 |
20160157146 | Karabinis | Jun 2016 | A1 |
20160248559 | Guo et al. | Aug 2016 | A1 |
20160302028 | Ling et al. | Oct 2016 | A1 |
20160353290 | Nammi et al. | Dec 2016 | A1 |
20160374070 | Ghosh | Dec 2016 | A1 |
20190385057 | Litichever et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2018200832 | Feb 2018 | AU |
1307842 | Sep 1992 | CA |
2011298 | May 1999 | CA |
2856772 | Jan 2006 | CA |
1256803 | Jun 2000 | CN |
1516370 | Jul 2004 | CN |
1538636 | Oct 2004 | CN |
1703113 | Nov 2005 | CN |
1734972 | Feb 2006 | CN |
1820424 | Aug 2006 | CN |
1898973 | Jan 2007 | CN |
101238648 | Aug 2008 | CN |
101291503 | Oct 2008 | CN |
101310454 | Nov 2008 | CN |
101405965 | Apr 2009 | CN |
101442388 | May 2009 | CN |
101536320 | Sep 2009 | CN |
101542938 | Sep 2009 | CN |
101682432 | Mar 2010 | CN |
101873281 | Oct 2010 | CN |
101981826 | Feb 2011 | CN |
102007707 | Apr 2011 | CN |
102185641 | Sep 2011 | CN |
102186541 | Sep 2011 | CN |
102439891 | May 2012 | CN |
102948085 | Feb 2013 | CN |
103069903 | Apr 2013 | CN |
103117975 | May 2013 | CN |
103797725 | May 2014 | CN |
104025684 | Sep 2014 | CN |
1359683 | Nov 2003 | EP |
1392029 | Feb 2004 | EP |
1597842 | Nov 2005 | EP |
2244390 | Oct 2010 | EP |
2889957 | Jul 2015 | EP |
2904814 | Aug 2015 | EP |
3419188 | Dec 2018 | EP |
2300547 | Nov 1996 | GB |
H03179948 | Aug 1991 | JP |
11-252613 | Sep 1999 | JP |
2001217759 | Aug 2001 | JP |
2002281551 | Sep 2002 | JP |
2002374224 | Dec 2002 | JP |
2003018054 | Jan 2003 | JP |
2003-134013 | May 2003 | JP |
2003179948 | Jun 2003 | JP |
2003284128 | Oct 2003 | JP |
2004502376 | Jan 2004 | JP |
2004104206 | Apr 2004 | JP |
2005039822 | Feb 2005 | JP |
2005-159448 | Jun 2005 | JP |
2006081162 | Mar 2006 | JP |
2006245871 | Sep 2006 | JP |
2007060106 | Mar 2007 | JP |
2007116686 | May 2007 | JP |
2008-035287 | Feb 2008 | JP |
2009213052 | Sep 2009 | JP |
2009273167 | Nov 2009 | JP |
2009540692 | Nov 2009 | JP |
2010016674 | Jan 2010 | JP |
2010021999 | Jan 2010 | JP |
2010068496 | Mar 2010 | JP |
2010-074520 | Apr 2010 | JP |
2010-206794 | Sep 2010 | JP |
2010193189 | Sep 2010 | JP |
2010-537577 | Dec 2010 | JP |
2011035912 | Feb 2011 | JP |
2011-078025 | Apr 2011 | JP |
2011-097225 | May 2011 | JP |
2011517393 | Jun 2011 | JP |
2011-524117 | Aug 2011 | JP |
2011-176493 | Sep 2011 | JP |
2012-124859 | Jun 2012 | JP |
2012-175189 | Sep 2012 | JP |
2012-521180 | Sep 2012 | JP |
2012-532495 | Dec 2012 | JP |
2013502117 | Jan 2013 | JP |
2013-507064 | Feb 2013 | JP |
2013-102450 | May 2013 | JP |
10-2008-0081698 | Sep 2008 | KR |
10-2009-0132625 | Dec 2009 | KR |
10-2010-0057071 | May 2010 | KR |
20120003781 | Jan 2012 | KR |
10-2012-0024836 | Mar 2012 | KR |
10-2012-0084243 | Jul 2012 | KR |
10-2012-0119175 | Oct 2012 | KR |
10-2018-0061394 | Jun 2018 | KR |
2330381 | Jul 2008 | RU |
2010110620 | Sep 2011 | RU |
2012121952 | Feb 2014 | RU |
2543092 | Feb 2015 | RU |
201031243 | Aug 2010 | TW |
201112665 | Apr 2011 | TW |
201212570 | Mar 2012 | TW |
201220741 | May 2012 | TW |
WO-9923767 | May 1999 | WO |
0054463 | Sep 2000 | WO |
WO-0201732 | Jan 2002 | WO |
WO-0208785 | Jan 2002 | WO |
WO-02054626 | Jul 2002 | WO |
WO-02093784 | Nov 2002 | WO |
WO-02099995 | Dec 2002 | WO |
WO-03003604 | Jan 2003 | WO |
WO-03084092 | Oct 2003 | WO |
WO-03094460 | Nov 2003 | WO |
WO-03107582 | Dec 2003 | WO |
WO-2004017586 | Feb 2004 | WO |
WO-2005046081 | May 2005 | WO |
WO-2005064871 | Jul 2005 | WO |
WO-2006049417 | May 2006 | WO |
2006063138 | Jun 2006 | WO |
WO-2006078019 | Jul 2006 | WO |
WO-2006110737 | Oct 2006 | WO |
WO-2006113872 | Oct 2006 | WO |
WO-2007024913 | Mar 2007 | WO |
WO-2007027825 | Mar 2007 | WO |
2007046621 | Apr 2007 | WO |
WO-2007114654 | Oct 2007 | WO |
2008119216 | Oct 2008 | WO |
2009026400 | Feb 2009 | WO |
WO-2009099752 | Aug 2009 | WO |
WO-2009125962 | Oct 2009 | WO |
2009151989 | Dec 2009 | WO |
2010019524 | Feb 2010 | WO |
WO-2010017482 | Feb 2010 | WO |
WO-2010067419 | Jun 2010 | WO |
WO-2011018121 | Feb 2011 | WO |
WO-2011099802 | Aug 2011 | WO |
WO-2011100492 | Aug 2011 | WO |
2011116824 | Sep 2011 | WO |
2011155763 | Dec 2011 | WO |
2012007837 | Jan 2012 | WO |
WO-2012001086 | Jan 2012 | WO |
WO-2012044969 | Apr 2012 | WO |
WO-2012058600 | May 2012 | WO |
WO-2012061325 | May 2012 | WO |
2012108807 | Aug 2012 | WO |
2012108976 | Aug 2012 | WO |
WO-2012130071 | Oct 2012 | WO |
WO-2013040089 | Mar 2013 | WO |
WO-2013166464 | Nov 2013 | WO |
WO-2013173809 | Nov 2013 | WO |
2014055294 | Apr 2014 | WO |
2016057304 | Apr 2016 | WO |
Entry |
---|
3GPP, “LTE”, downloaded from http://www.3gpp.org/LTE on Aug. 14, 2014, 4 pages. |
3GPP Technical Specification Group, “Spatial channel model, SCM-134 text V6.0”, Spatial Channel Model AHG (Combined ad-hoc from 3GPP and 3GPP2), Apr. 2003, pp. 1-45. |
3GPP TR 25.876 V7.0.0 (Mar. 2007)., “Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Multiple Input Multiple Output in UTRA; (Release 7)3GPP TR 25.876 v7.0.0 (Mar. 2007),” Mar. 2007, pp. 2-76. |
3GPP TR 25.912, “Feasibility Study for Evolved UTRA and UTRAN”, V9.0.0 (Oct. 2009), Oct. 2009, pp. 1-66. |
3GPP TR 25.913, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)”, V8.0.0 (Jan. 2009), Jan. 2009, pp. 1-20. |
3GPP TR 36.819, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Coordinated multi-point operation for LTE physical layer aspects (Release 11),” Dec. 20, 2011, 69 pages. |
3GPP, TS 36.201, “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer-General Description (Release 11),” Oct. 2012, pp. 1-14. |
3GPP, TS 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 11),” Oct. 2012, pp. 1-107. |
3GPP TS 36.211 V8.7.0 (May 2009), “Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8) 3GPP TS 36.211 V8.7.0 (May 2009),” May 2009, pp. 1-83. |
3GPP, TS 36.212, “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 11),” Oct. 2012, pp. 1-80. |
3GPP TS 36.212 V9.1.0 Release 9, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding, ETSI TS 136 212 (Apr. 2010), Technical Specification, Apr. 2010, pp. 1-63. |
3GPP, TS 36.212.V8.7.0 (May 2009), “Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel Coding (Release 8) 3GPP, TS 36.212.V8.7.0 (May 2009),” May 2009, 60 pages. |
3GPP, TS 36.213, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 11),” Oct. 2012, 145 pages. |
3GPP, TS 36.808, “Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation (Release 10)”, v10.0.0, Jun. 2012, 28 pages. |
3GPP, “UMTS”, Universal Mobile Telecommunications System, downloaded from www.3gpp.org/articleumts on Nov. 17, 2014, 2 pages. |
Abandonment from U.S. Appl. No. 13/475,598, mailed Feb. 8, 2016, 1 page. |
Abandonment from U.S. Appl. No. 14/086,700, mailed Dec. 26, 2017, 2 pages. |
Abbasi N., “Capacity estimation of HF-MIMO systems,” International Conference on Ionospheric Systems and Techniques, 2009, 5 pages. |
Adrian K., et al., “Quantum Tagging: Authenticating Location via Quantum Information and Relativistic Signalling Constraints,” 2010, Phys. Rev. A84, 012326 (2011), DOI: 10.1103/PhysRevA.84.012326, arXiv: 1008.2147, 9 pages. |
Advisory Action for U.S. Appl. No. 12/802,989, dated May 4, 2017, 3 pages. |
Aggarwal R., et al., “On the Design of Large Scale Wireless Systems,” IEEE Journal of Selected Areas Communications, Jun. 2012, vol. 31 (2), pp. 1-50. |
Airgo—Wireless without Limits—Homepage, http:www.airgonetworks.com, printed on Apr. 9, 2004, 1 page. |
Akbudak T., et al., “CoMP in Heterogeneous networks: A Low-Complexity Linear Transceiver Design,” Workshop on Cooperative and Cognitice Mobile Networks, Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 5624-5629. |
Aktas D., et al., “Scaling Results on the Sum Capacity of Cellular Networks with MIMO Links”, IEEE Transactions on Information Theory, 2006, vol. 52, pp. 3264-3274. |
Akyildiz I.F., et al., “The Evolution to 4G Cellular Systems: LTE-Advanced,” Physical Communication, Elsevier, 2010, vol. 3 (2010), pp. 217-244. |
Alamouti S.M., et al., “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, 1998, vol. 16(8), pp. 1451-1458. |
Alrabadi O.N., et al., “Beamforming via Large and Dense Antenna Arrays above a Clutter,” Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 314-325. |
Andersen J. B., et al., “The MIMO Cube—a Compact MIMO Antenna,” IEEE Proceedings of Wireless Personal Multimedia Communications International Symposium, vol. 1, Oct. 2002, pp. 112-114. |
Andersen J.B., “Antenna Arrays in Mobile Communications: Gain, diversity, and Channel Capacity.1”, IEEE Antennas and Propagation Magazine, vol. 42 (2), Apr. 2000, pp. 12-16. |
Anderson A.L., et al., “Beamforming in large-scale MIMO Muitiuser Links Under a Per-node Power Constraint,” Proceedings in international Symposium on Wireless Communication Systems, Aug. 2012, pp. 821-825. |
Andrews J.G., “Seven Ways That Hetnet are a Cellular Paradigm Shift,” IEEE Communications Magazine, Mar. 2013, [online], Retrieved from the Internet: http://users.ece.utexas.edu/-jandrews/pubs/And HetNet CommMag2012v3.pdf, pp. 136-144. |
Andrews M.R., et al., “Tripling the Capacity of Wireless Communications using Electromagnetic Polarization,” Nature, 2001, vol. 409, pp. 316-318. |
Anritsu, “LTE resource guide”, 18 pages, 2009, www.us.anritsu.com. |
Araujo D. C., et al., “Channel Estimation for Millimeter-Wave Very-Large MIMO Systems,” EUSPICO 2014, in proceedings, 5 pages. |
Arnau J., et al., “Dissection of Multibeam Satellite Communications with a Large-scale Antenna System Toolbox,” European Wireless 2014 (EW2014), pp. 548-553. |
ArrayComm, “Field-Proven Results,” Improving wireless economics through MAS software, printed on Mar. 28, 2011, www.arraycomm.comserve.phppage=proof, 3 pages. |
Artigue C., et al.,“On the Precoder Design of Flat Fading MIMO Systems Equipped with MMSE Receivers: A Large System Approach”, IEEE Trans. Inform. Theory, 2011, vol. 57 (7), pp. 4138-4155. |
AT&T, “1946: First Mobile Telephone Call” 1 page, Jun. 17, 1946 [online]. Retrieved from the Internet: http:www.corp.att.comattlabsreputationtimeline46mobile.html. |
Baker M., “L TE-Advanced Physical Layer,” Alcatel-Lucent, Dec. 2009, 48 pages. |
Barbieri A., et al., “Coordinated Downlink Multi-point Communications in Heterogeneous Cellular Networks”, (Qualcomm), Information Theory and App. Workshop, Feb. 2012, pp. 7-16. |
BelAir Networks, “Small cells”, 4 pages, 2007 [online], retrieved from the Internet: http:www.belairnetworks.comsitesdefaultfilesVVP SmallCells.pdf. |
Benedetto M.D., et al., “Analysis of the effect of the I/Q baseband Filter mismatch in an OFDM modem,” Wireless personal communications, 2000, pp. 175-186. |
Bengtsson E.L., “UE Antenna Properties and Their Influence on Massive MIMO System Performance,” 2002, 5 pages. |
Bengtsson M., “A Pragmatic Approach to Multi-User Spatial Multiplexing,” IEEE, 2002, pp. 130-134. |
Bernstein D.J., et al., “Post-quantum cryptography”, 2009, 248 Pages. |
Besson O., et al., “On parameter estimation of MIMO flat-fading channels with frequency offsets,” IEEE Transactions on Transaction, Signal Processing, see also Acoustics, Speech, and Signal Processing, vol. 51 (3), 2003, pp. 602-613. |
Bhagavatula R., et al., “Sizing up MIMO Arrays,” IEEE Vehicular Technology Magazine, 2008, vol. 3 (4), pp. 31-38. |
Bjornson E, et al., Designing Multi-User MIMO for Energy Efficiency: When is Massive MIMO the Answer?, IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, Apr. 2014, 6 pages. |
Bjornson E, et al., Massive MIMO and Small Cells: Improving Energy Efficiency by Optimal Soft-Cell Coordination, ICT, 2013, Wireless Communications Symposium, pp. 5442-5447. |
Blelloch G.E., “Introduction to Data Compression”, Jan. 31, 2013, pp. 1-55. |
Bloomberg BusinessWeek, “Steve Perlman's Wireless Fix”, Aug. 14, 2014, 7 pages [online], Retrieved from the Internet: http://www.businessweek.commagazinethe-edison-of-silicon-valley-07272011.html. |
Boche H., et al., “A General Duality Theory for Uplink and Downlink Beamforming”, 2002, vol. 1, pp. 87-91. |
Boche H., et al., “Analysis of Different Precoding decoding Strategies for Multiuser Beamforming”, IEEE Vehicular Technology Conference, 2003, vol. 1, pp. 39-43. |
Bourdoux A., et al., “Non-reciprocal Transceivers in OFDMSDMA Systems: Impact and Mitigation”, IEEE, 2003, pp. 183-186. |
Brassard G., et al., “A Quantum Bit Commitment Scheme Provably Unbreakable by both Parties”, 1993, pp. 362-371. |
Brodersen R. et al., “Degrees of Freedom in Multiple Antenna Channels: A Signal Space Approach,” IEEE Transactions on Information Theory, 2005, vol. 51 (2), pp. 523-536. |
Buhrman H., et al., “Position-Based Quantum Cryptography: Impossibility and Constructions,” 2010, 27 pages. |
Bydon, “Silicon Valley Inventor's Radical Rewrite of Wireless”, The Wall Street Journal [online], [retrieved on Jul. 28, 2011] Retrieved from the Internet: URL: http:blogs.wsj.comdigits20110728silicon-valley-inventors-radical-rewrite-of-wireless, 2 pages. |
C. Guthy, W. Utschick, and M.L. Honig, Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel, in Proc. of the IEEE Intl Symp. Inform. Theory, Austin, U.S.A., Jun. 2010, 5 pages. |
Caire, “On Achivable Rates in a Multi-Antenna Broadcast Downlink,” IEEE Transactions on Information Theory, 2003, vol. 49, pp. 1691-1706. |
Catreux S., et al., “Adaptive Modulation and MIMO Coding for Broadband Wireless Data Networks,” IEEE Communications Magazine, 2002, vol. 2, pp. 108-115. |
Cerato B., et al., Hardware implementation of low-complexity detector for large MIMO, in Proc. IEEE ISCAS'2009, Taipei, May 2009, pp. 593-596. |
Cetiner B.A., et al., “Multifunctional Reconfigurable MEMS Integrated Antennas for Adaptive MIMO Systems”, Adaptive Antennas and MIMO Systems for Wireless Systems, IEEE Communications Magazine, vol. 42 (12), Dec. 2004, pp. 62-70. |
Cetiner et al., “A Reconfigurable Spiral Antenna for Adaptive MIMO Systems”, EURASIP Journal on Wireless Communications and Networking 2005:3, 382-389, plus International Journal of Digital Multimedia Broadcasting, Special Issue on: Audio Coding, Indexing, and Effects for Broadcasting Applications, Call for Papers Hindawi Publishing Corporation, http://www.hindawi.com, pp. 1, and Special Issue on: Advances in 3DTV: Theory and Practice, Call for Papers Hindawi Publishing Corporation, http://www.hindawi.com, pp. 1. |
Chae C B., et al., “Adaptive MIMO Transmission Techniques for Broadband Wireless Communication Systems”, IEEE Communications Magazine, 2010, vol. 48 (5), pp. 112-118. |
Chae C B., et al., “Coordinated Beamforming with Limited Feedback in the MIMO Broadcast Channel,” Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Comm. Networks, IEEE Journal on Selected Areas in Communications, 2008, vol. 26 (8), pp. 1505-1515. |
Chandran N., et al., “Position-Based Cryptography”, Department of Computer Science, UCLA, 2009, 50 pages. |
Chandrasekaran S., et al., “Near-Optimal Large-MIMO Detection Using Randomized MCMC and Randomized Search Algorithms,” Proceeding in Institute of Electrical and Electronics Engineers International Conference on Communications, 2011, 5 pages. |
Chapter 26—Electromagnetic-Wave Propagation, 1973, pp. 1-32, Reference Data for Radio Engineers, 5th Edition, Howard W. Sams & Co., Inc. |
Chen R., et al., “Transmit selection diversity for unitary precoded multiuser spatial multiplexing systems with linear receivers,” IEEE Trans. on Signal Processing, 2005, pp. 1-30. |
Chen R., et al., “Transmit Selection Diversity for Unitary Precoded Multiuser Spatial Multiplexing Systems with Linear Receivers,” IEEE Trans. on Signal Processing, 2007, vol. 55 (3), pp. 1159-1171. |
Chen R., “Multiuser Space-Time Block Coded MIMO System with Downlink,” IEEE Communications Society, 2004, pp. 2689-2693. |
Chockalingam A., “Low-Complexity Algorithms for Large-MIMO Detection,” International Symposium on Communications, Control and Signal Processing, 2010, 6 pages. |
Choi J., et al., “Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training with Memory,” IEEE Journal of Selected Topics in Signal Processing on Signal Processing for Large-Scale MIMO Communications, 2013, 13 pages. |
Choi J., et al., “Interpolation Based Transmit Beamforming for MIMO-OFDM with Limited Feedback,” IEEE Transactions on Signal Processing, 2005, vol. 53 (11), pp. 4125-4135. |
Choi J., et al., “Noncoherent Trellis Coded Quantization: A Practical Limited Feedback Technique for Massive MIMO Systems,” Nov. 8, 2013, pp. 1-14. |
Choi L.U., et al., “A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach,” IEEE Trans. Wireless Comm, 2004, vol. 3 (1), pp. 20-24. |
Choi W., et al., “Opportunistic space division multiple access with beam selection,” IEEE Trans. on Communications, 2006, pp. 1-23. |
Christian C., et al., “Oblivious Transfer with a Memory-Bounded Receiver”, IEEE, 1998, pp. 493-502. |
Chu D., et al., “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Trans. Inform. Theory, 1972, vol. 18 (4), pp. 531-532. |
Chuah C N., et al., “Capacity Scaling in MIMO Wireless Systems under Correlated Fading”, IEEE Trans. Inform. Theory, 2002, vol. 48 (3), pp. 637-650. |
Cohn H., et al., “Group-theoretic Algorithms for Matrix Multiplication”, IEEE Symposium on Foundations of Computer Science, 2005, pp. 379-388. |
Communication pursuant to Article 94(3) EPC for Application No. EP13856705.2, dated Jul. 18, 2017, 5 pages. |
Communication pursuant to Article 94(3) EPC for European Application No. 08798313.6, dated May 2, 2017, 7 pages. |
Communication pursuant to Article 94(3) EPC for European Application No. 10156950.7, dated May 9, 2017, 9 pages. |
Communication pursuant to Article 94(3) EPC for European Application No. 10156954, dated Jan. 25, 2017, 5 pages. |
Communication under rule 71(3) EPC for European Application No. 08798313.6, dated Oct. 24, 2017, 8 pages. |
Coopersmith D., et al., “Matrix Multiplication via Arithmetic Progression”, Journal of Symbolic Computation, 1990, vol. 9, pp. 251-280. |
Costa, “Writing on Dirty Paper,” IEEE Transactions On Information Theory, 1983, vol. IT-29 (3), pp. 439-441. |
Couillet R., et al., “A Deterministic Equivalent for the Analysis of Correlated MIMO Multiple Access Channels,” IEEE Trans. Inform. Theory, 2011, vol. 57 (6), pp. 3493-3514. |
Coulson J., et al., “Maximum likelihood synchronization for OFDM using a pilot symbol: analysis,” IEEE Journal on Selected Areas in Communications, 2001, vol. 19 (12), pp. 2495-2503. |
Dahlman E., et al., “4G: LTE/LTE-Advanced for Mobile Broadband”, Elsevier, 2011, Cover page, Title page, Copyright page, Table of Contents, 21 pages. |
Dai et al., “Reduced-complexity performance-lossless (quasi-)maximum-likelihood detectors for S-QAM modulated MIMO systems,” Electronics Letters, 2013, vol. 49(11), pp. 724-725. |
Dai et al., “Reducing the Complexity of Quasi-ML Detectors for MIMO Systems Through Simplified Branch Metric and Accumulated Branch Metric Based Detection,” Communications Letters, 2013, vol. 17(5), pp. 916-919. |
Dai X., et al., “Carrier frequency offset estimation for OFDM/SDMA systems using consecutive pilots,” IEEE Proceedings Communications, 2005, vol. 152, pp. 624-632. |
Damgard I., et al., “Cryptography in the Bounded Quantum-Storage Model”, IEEE, 2005, pp. 24-27. |
Daniel J., “Introduction to public safety: RF Signal Distribution Using Fiber Optics,” 2009, 13 pages, http://www.rfsolutions.com/fiber.pdf. |
Datta, et al., “A Hybrid RTS-BP Algorithm for Improved Detection of Large-MIMO M-QAM Signals,” in Proc. IEEE National Conference on Communication, 2011, 6 pages. |
Datta et al., “Random-Restart Reactive Tabu Search Algorithm for Detection in Large-MIMO Systems,” IEEE Communications Letters, 2010, vol. 14(12), pp. 1107-1109. |
Datta T., et al., “A Novel MCMC Based Receiver for Large-Scale Uplink Multiuser MIMO Systems” Jan. 2012, 37 pages. |
Debbah M., et al., “MIMO Channel Modelling and the Principle of Maximum Entropy,” IEEE Transactions on Information Theory, 2005, vol. 51 (5), pp. 1667-1690. |
Decision of Grant a Patent for Japanese Application No. 2016120928, dated Apr. 10, 2017, 6 pages. |
Decision of Grant from foreign counterpart Japanese Patent Application No. 2015-510498, dated Jun. 14, 2017, 6 pages. |
Decision of Grant from foreign counterpart Russian Patent Application No. 2014151216, dated Jan. 31, 2017, 18 pages. |
Decision of Refusal from foreign counterpart Japanese Patent Application No. 2014530763, dated Dec. 19, 2016, 6 pages. |
Decision of Refusal from foreign counterpart Korean Patent Application No. 2010-7006265, dated Apr. 23, 2015, 2 pages. |
Degen C., et al., “Performance evaluation of MIMO systems using dual-polarized antennas,” International Conference on Telecommunications, 2003, vol. 2, pp. 1520-1525. |
Delfas N., “Mobile Data Wave: Who Dares to Invest, Wins,” Morgan Stanley Research Global, Jun. 13, 2012, pp. 1-62. |
Derrick W K et al., “Energy-Efficient Resource Allocation in OFDMA Systems with Large Numbers of Base Station Antennas”, 2011, 30 pages. |
Devasirvatham, “Radio Propagation Measurements At 850MHz. 1.7GHz and 4GHz Inside Two Dissimilar Office Buildings,” Electronics Letter, 1990, vol. 26 (7), pp. 445-447. |
Devasirvatham, “Time Delay Spread and Signal Level Measurements of 850 MHz Radio Waves in Building Environments,” IEEE Transactions on Antennas and Propagation, 1986, vol. AP-34(11), pp. 1300-1305. |
Devasirvatham, “Time Delay Spread Measurements at 850 MHz and 1 7 GHz Inside A Metropolitan Office Building,” Electronics Letters, 1989, vol. 25 (3), pp. 194-196. |
Devillers B., et al. Mutual coupling effects in multiuser massive MIMO base stations, IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2012, 2 pages. |
Dietrich C B., et al., “Spatial, polarization, and pattern diversity for wireless handheld terminals,” Proc. IEEE Antennas and Prop. Symp, 2001, vol. 49, pp. 1271-1281. |
Dighe et al., “Analysis of Transmit-Receive Diversity in Rayleigh Fading”, IEEE Transactions on Communications, vol. 51 (4), Apr. 2003, pp. 694-703. |
DigitalAir wireless, GeoDesy Laser Links 1.25Gbps Full Duplex, downloaded from URL: http:www.digitalairwireless.comoutdoor-wireless-networkspoint-to-point-wirelesslaser-fso-linksgeodesy-fso-laser-links.html on Oct. 2, 2015, 4 pages. |
DigitalAir wireless, Outdoor Wireless, 5 pages, downloaded from http:www.digitalairwireless.com/outdoor-wireless-networks.html on Sep. 29, 2015 on 5 pages. |
Ding P., et al., “On the sum rate of channel subspace feedback for multi-antenna broadcast channels,” IEEE Globecom, 2005 vol. 5, pp. 2699-2703. |
Discussion Draft, A bill, 112th congress, 1st session, Jul. 12, 2011, House Republicans, Spectrum Innovation Act of 2011, 2011, 55 pages. |
Dohler M., et al., “A Step towards MIMO: Virtual Antenna Arrays,” European Cooperation in the Field of Scientific and Technical Research, 2003, 9 pages. |
Dong L., et al., “Multiple-input multiple-output wireless communication systems using antenna pattern diversity,” Proceedings of IEEE Globe Telecommunications Conference, 2002, vol. 1, pp. 997-1001. |
Dumont J., et al. “On the Capacity Achieving Transmit Covariance Matrices for MIMO Rician Channels: An Asymptotic Approach,” IEEE Transactions on Information Theory, 2010, vol. 56 (3), pp. 1048-1069. |
Duplicity J., et al., “MU-MIMO in LTE Systems,” EURASIP Journal on Wireless Communications and Networking, 2011, 10 pages. |
Dupuy, et al., On the Capacity Achieving Covariance Matrix for Frequency Selective MIMO Channels Using the Asymptotic Approach, IEEE Trans. Inform. Theory, 2010, pp. 2153-2157. |
Dupuy, et al., On the Capacity Achieving Covariance Matrix for Frequency Selective MIMO Channels Using the Asymptotic Approach, IEEE Trans. Inform. Theory, 2011, vol. 57 (9), pp. 5737-5753. |
Durgin, “Space-Time Wireless Channels”, Prentice Hall Communications Engineering and Emerging Technologies Series, 2003, Upper Saddle River, NJ, Cover page, Title pages, Copyright page, Table of Contents, Preface, 16 pages, USA. |
Eklund C., et al., “IEEE Standard 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access,” IEEE Communications Magazine, Jun. 2002, 12 pages, http://ieee802.org/16/docs/02/C80216-02_05.pdf. |
Ekstrom H., et al., “Technical Solutions for the 3G Long-Term Evolution”, IEEE Communications Magazine, 2006, pp. 38-45. |
Erceg V., et al., “TGn Channel Models,” IEEE 802.11-03940r4, May 2004, 45 pages. |
Ericsson, The evolution of EDGE, Feb. 2007, 18 pages, downloaded from http:www.ericsson.com/res/docs/whitepapersevolution_to_edge.pdf. |
ETSI, Mobile Technologies GSM, Retrieved from the Internet: URL: http://www.etsi.org/WebSite/Technologies/gsm.asp on Aug. 14, 2014, 2 pages. |
ETSI Reconfigurable Radio Systems: Status and Future Directions on Software Defined Radio and Cognitive Radio Standards, IEEE Communications Magazine, IEEE Service Center, Sep. 2010, vol. 48 (9), pp. 78-86. |
European Search Report for Application No. 10156954.9-2411, dated Sep. 2, 2010, 5 pages. |
Examination Report from counterpart Australian Patent Application No. AU2014200745, dated Sep. 25, 2015, 3 pages. |
Examination Report from foreign counterpart Australian Patent Application No. 2016219662, dated Sep. 9, 2016, 2 pages. |
Examination Report from foreign counterpart New Zealand Patent Application No. 622137, dated Dec. 21, 2016, 3 pages. |
Examination Report No. 1 from Foreign Counterpart Patent Application No. 2012308632, dated Oct. 11, 2016, 3 pages. |
Examination Report No. 2 from Foreign Counterpart Patent Application No. 2012308632, dated Jun. 6, 2017, 5 pages. |
Examination report No. 4 from foreign counterpart Australia Patent Application No. 2013347803, dated Jan. 25, 2018, 6 pages. |
Examiner's Report for Canadian Patent Application No. 2539333, dated Dec. 4, 2012, 15 pages. |
Examiner's Report from counterpart Australian Patent Application No. 2013256044, dated May 9, 2016, 2 pages. |
Examiner's Report from counterpart Canadian U.S. Appl. No. 28/656,772, dated Jan. 7, 2016, 3 pages. |
Examiner's Report from foreign counterpart Canadian Patent Application No. CN2695799, dated Apr. 1, 2015, 4 pages. |
Extended European search report for Application No. 08798313.6, dated Nov. 14, 2012, 10 pages. |
Extended European Search Report for Application No. 11838640.8, dated May 31, 2017, 15 pages. |
Extended European Search Report for Application No. 14770916.6, dated Jan. 24, 2017, 12 pages. |
Extended European Search Report for Application No. EP05254757, dated Sep. 13, 2005, 9 pages. |
Extended European Search Report from EP Application No. 10156950.7, dated Jun. 11, 2012, 10 pages. |
Extended European Search Report from EP Application No. 10184659.0, dated Nov. 29, 2012, 8 pages. |
Extended European Search Report from EP Application No. 13843203.4, dated Feb. 15, 2016, 8 pages. |
Extended European Search Report from EP Application No. 13856705.2, dated Mar. 2, 2016, 10 pages. |
Extended European Search Report from European Patent Application No. 14779084.4, dated Sep. 29, 2016, 8 pages. |
Extended Search Report from counterpart European Patent Application No. EP13784690.3, dated Nov. 23, 2015, 4 pages. |
Extended Search Report Office Action from counterpart European Patent Application No. EP13790935.4, dated Dec. 1, 2015, 9 pages. |
Fakhereddin M.J., et al., “Combined effect of polarization diversity and mutual coupling on MIMO capacity,” Proc. IEEE Antennas and Prop. Symp, 2003, vol. 2, pp. 495-498. |
FCC, Broadband action agenda, National Broadband Plan, 2010, pp. 1-8, Retrieved from the Internet: http://www.broadband.gov/plan/national-broadband-plan-action-agenda.pdf. |
FCC, Open commission meeting, Sep. 23, 2010, Retrieved from the Internet: http:reboot.fcc.govopen-meetings2010september, 3 pages. |
Federal Communications Commission, “Authorization of Spread Spectrum Systems under Parts 15 and 90 of the FCC Rules and Regulations”, Jun. 1985, 18 pages. |
Fella A., “Adaptive WiMAX Antennas: The promise of higher ROI,” http:www.wimax.comcommentaryspotlightspotlight8-08-2005searchterm=Adlane Fella, printed May 9, 2008, Aug. 8, 2005, 3 pages. |
Feng S., et al., “Self-organizing networks (SON) in 3GPP LTE”, Nom or Research, May 2008, pp. 1-15. |
Final Office Action for Japanese Application No. 2005223345, dated May 12, 2011, 9 Pages. |
Final Office Action from U.S. Appl. No. 14/086,700, dated Oct. 14, 2016, 11 pages. |
Final Office Action from U.S. Appl. No. 10/817,731, dated Jul. 9, 2008, 21 pages. |
Final Office Action from U.S. Appl. No. 10/817,731, dated Sep. 11, 2009, 36 pages. |
Final Office Action from U.S. Appl. No. 12/630,627, dated Apr. 2, 2013, 23 pages. |
Final Office Action from U.S. Appl. No. 12/630,627, dated Oct. 20, 2011, 13 pages. |
Final Office Action from U.S. Appl. No. 12/802,958, dated Apr. 15, 2015, 24 pages. |
Final Office Action from U.S. Appl. No. 12/802,958, dated Apr. 29, 2016, 33 pages. |
Final Office Action from U.S. Appl. No. 12/802,958, dated Jun. 7, 2017, 18 pages. |
Final Office Action from U.S. Appl. No. 12/802,958, dated Jun. 25, 2013, 48 pages. |
Final Office Action from U.S. Appl. No. 12/802,974, dated Aug. 1, 2014, 23 pages. |
Final Office Action from U.S. Appl. No. 12/802,974, dated Nov. 30, 2015, 22 pages. |
Final Office Action from U.S. Appl. No. 12/802,975, dated Aug. 4, 2014, 40 pages. |
Final Office Action from U.S. Appl. No. 12/802,975, dated Dec. 14, 2015, 26 pages. |
Final Office Action from U.S. Appl. No. 12/802,975, dated Dec. 22, 2016, 29 pages. |
Final Office Action from U.S. Appl. No. 12/802,988, dated Aug. 2, 2013, 13 pages. |
Final Office Action from U.S. Appl. No. 12/802,988, dated Feb. 8, 2017, 13 pages. |
Final Office Action from U.S. Appl. No. 12/802,988, dated Jan. 13, 2016, 11 pages. |
Final Office Action from U.S. Appl. No. 12/802,988, dated Jan. 22, 2018,11 pages. |
Final Office Action from U.S. Appl. No. 12/802,988, dated Oct. 21, 2014, 13 pages. |
Final Office Action from U.S. Appl. No. 12/802,988, dated Sep. 5, 2012, 8 pages. |
Final Office Action from U.S. Appl. No. 12/802,989, dated Aug. 25, 2015, 24 pages. |
Final Office Action from U.S. Appl. No. 12/802,989, dated Jun. 12, 2014, 17 pages. |
Final Office Action from U.S. Appl. No. 12/802,989, dated Nov. 2, 2016, 14 pages. |
Final Office Action from U.S. Appl. No. 12/802,989, dated Nov. 27, 2012, 12 pages. |
Final Office Action from U.S. Appl. No. 13/232,996, dated Apr. 11, 2017, 149 pages. |
Final Office Action from U.S. Appl. No. 13/232,996, dated Jul. 31, 2013, 12 pages. |
Final Office Action from U.S. Appl. No. 13/232,996, dated Nov. 12, 2015, 14 pages. |
Final Office Action from U.S. Appl. No. 13/232,996, dated Oct. 23, 2014, 15 pages. |
Final Office Action from U.S. Appl. No. 13/233,006, dated Dec. 19, 2017, 114 pages. |
Final Office Action from U.S. Appl. No. 13/233,006, dated Feb. 18, 2014, 18 pages. |
Final Office Action from U.S. Appl. No. 13/233,006, dated Nov. 5, 2015, 10 pages. |
Final Office Action from U.S. Appl. No. 13/233,006, dated Oct. 12, 2016,10 pages. |
Final Office Action from U.S. Appl. No. 13/464,648, dated Aug. 1, 2013, 10 pages. |
Final Office Action from U.S. Appl. No. 13/475,598, dated Aug. 27, 2014, 30 pages. |
Final Office Action from U.S. Appl. No. 13/797,950, dated Aug. 24, 2017, 74 pages. |
Final Office Action from U.S. Appl. No. 13/797,950, dated Feb. 2, 2016, 65 pages. |
Final Office Action from U.S. Appl. No. 13/797,971, dated Oct. 9, 2015, 52 pages. |
Final Office Action from U.S. Appl. No. 13/797,984, dated Sep. 29, 2016,13 pages. |
Final Office Action from U.S. Appl. No. 13/797,984, dated Aug. 20, 2015, 15 pages. |
Final Office Action from U.S. Appl. No. 13/844,355, dated Aug. 12, 2015, 20 pages. |
Final Office Action from U.S. Appl. No. 13/844,355, dated Dec. 15, 2016, 23 pages. |
Final Office Action from U.S. Appl. No. 13/844,355, dated Feb. 7, 2018, 24 pages. |
Final Office Action from U.S. Appl. No. 14/023,302, dated Mar. 2, 2015, 5 pages. |
Final Office Action from U.S. Appl. No. 14/086,700, dated Sep. 2, 2015, 9 pages. |
Final Office Action from U.S. Appl. No. 14/611,565, dated Jun. 16, 2016, 22 pages. |
Final Office Action from U.S. Appl. No. 14/611,565, dated Oct. 25, 2017, 25 pages. |
Final Office Action from U.S. Appl. No. 15/181,383, dated Jan. 11, 2018, 8 pages. |
Final Office Action with partial English translation for Japanese Patent Application No. 2005223345, dated Feb. 18, 2014, 23 pages. |
First Exam Report from counterpart New Zealand Application No. 701567, dated Feb. 3, 2016, 4 pages. |
First Exam Report from counterpart New Zealand Application No. 701691, dated Feb. 10, 2016, 4 pages. |
First Exam Report from counterpart New Zealand Patent Application No. 717370, dated Apr. 8, 2016, 2 pages. |
First Examination Report for foreign counterpart New Zealand Patent Application No. 728719, dated May 31, 2017, 4 pages. |
First Examination Report from counterpart Australian Patent Application No. 2014248533, dated Mar. 1, 2017, 5 pages. |
First Examination Report from counterpart New Zealand Application No. 729017, dated Jun. 30, 2017, 3 pages. |
First Examination Report mailed for counterpart Australian Patent Application No. AU2011323559, dated Sep. 30, 2015, 3 pages. |
First Examination Report mailed for foreign counterpart New Zealand Patent Application No. 622137, dated Aug. 28, 2014, 2 pages. |
First Office Action and Search Report from counterpart Taiwan Application No. 100139880, dated Feb. 26, 2016, 27 pages. |
First Office Action and Search report from foreign counterpart China Patent Application No. 201380026522.2, dated Mar. 27, 2017, 20 pages. |
First Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201210466082X, dated Apr. 3, 2015, 26 pages. |
First Office Action for counterpart Japan Patent Application No. JP2014264325, dated Nov. 12, 2015, 4 pages. |
First Office Action from counterpart China Patent Application No. 200880102933.4, dated Dec. 7, 2012, 20 pages. |
First Office Action from counterpart European Patent Application No. 201380035543.0, dated Feb. 15, 2016, 8 pages. |
First Office Action from counterpart Korean Patent Application No. 10-2015-7033311, dated Feb. 16, 2016, 12 pages. |
First Office Action from counterpart Taiwan Patent Application No. 102117728, dated Aug. 9, 2016, 11 pages. |
First Office Action from European Patent Application No. 05254757.7, dated Dec. 3, 2012, 6 pages. |
First Office Action from foreign counterpart Mexican Patent Application No. MXa2014013795, dated Nov. 1, 2016, 3 pages. |
First Office Action from foreign counterpart Mexican Patent Application No. MXa2014013795, dated Oct. 30, 2015, 7 pages. |
First Office Action from foreign counterpart Russian Patent Application No. 2011131821, dated Jun. 26, 2015, 8 pages. |
First Office Action dated Apr. 24, 2015 for foreign counterpart Mexican Patent Application No. MX/a/2014/002900, dated Apr. 24, 2015, 3 pages. |
First Office Action mailed for counterpart European Patent Application No. 12762167.0, dated Jan. 4, 2016, 4 pages. |
First Office Action Report for counterpart Chinese Patent Application No. 201310407419.4, dated Nov. 20, 2015, 8 pages. |
Fletcher P.N., et al., “Mutual coupling in multi-element array antennas and its influence on MIMO channel capacity,” IEEE Electronics Letters, 2003, vol. 39 (4), pp. 342-344. |
Forax RF-over-fiber Communications Systems, Syntonics, 2011, 2 pages, http://www.syntonicscorp.com/products/products-foraxRF.html. |
Forenza A., et al., “Adaptive MIMO Transmission for Exploiting the Capacity of Spatially Correlated Channels,” IEEE Trans. on Veh. Tech, 2007, vol. 56 (2), pp. 619-630. |
Forenza A., et al., “Adaptive MIMO transmission scheme: Exploiting the spatial selectivity of wireless channels”, Proceedings Institute of Electrical and Electronics Engineers Vehicular Technology Conference, 2005, vol. 5, pp. 3188-3192. |
Forenza A., et al., “Benefit of Pattern Diversity Via 2-element Array of Circular Patch Antennas in Indoor Clustered MIMO Channels,” IEEE Trans. on Communications, 2006, vol. 54 (5), pp. 943-954. |
Forenza A., et al., “Impact of Antenna Geometry on MIMO Communication in Indoor Clustered Channels,” Proc. IEEE Antennas and Prop. Symp, 2004, vol. 2, pp. 1700-1703. |
Forenza A., et al., “Link Adaptation and Channel Prediction in Wireless OFDM Systems,” Proceeding of IEEE International Midwest Symposium on Circuits and Systems, 2002, pp. 211-214. |
Forenza A., et al., “Optimization Methodology for Designing 2-CPAs Exploiting Pattern Diversity in Clustered MIMO Channels”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2008, vol. 56(10), pp. 1748-1759. |
Forenza A., et al., “Switching Between OSTBC and Spatial Multiplexing with Linear Receivers in Spatially Correlated MIMO Channels,” IEEE Configuration Guide: Unified Model, 2006, pp. 1-5. |
Foschin, et al., “Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency”, Proceedings of the IEEE, Aug. 2006, vol. 153 (4), pp. 548-555. |
Foschini, et al., The Value of Coherent Base Station Coordination, Conference on In-formation Sciences and Systems (CISS 2005), Mar. 16-18, 2005, 6 pages. |
Foschini G.J., et al., “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE Jour. Select. Areas in Comm, 1999, vol. 17(11), pp. 1841-1852. |
Friends of CRC, SHARP (Stationary High Altitude Relay Platform), http://www.friendsofcrc.ca/Projects/SHARP.html, page created on Jun. 25, 1996 by Cynthia Boyko, pp. 1-5. |
Friends of CRC, “The Friends of CRC Association”, Home page, printed on May 14, 2008, 3 pages, http://www.friendsofcrc.ca/. |
Further Examination Report for foreign counterpart New Zealand Patent Application No. 717370, dated Aug. 3, 2017, 4 pages. |
Further Examination Report from counterpart New Zealand Application No. 701567, dated Aug. 24, 2016, 6 pages. |
Further Examination Report from counterpart New Zealand Application No. 701691, dated Sep. 26, 2016, 3 pages. |
Further Examination Report (Postponed Acceptance) from foreign counterpart New Zealand Patent Application No. 728719, dated Jan. 31, 2018, 2 pages. |
Fusco T., et al., “Blind Frequency-offset Estimation for OFDM/OQAM Systems,” IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2007, vol. 55, pp. 1828-1838. |
G. Caire, et al., “On the Achievable Throughput of a Multiantenna Gaussian Broadcast Channel,” IEEE Transactions on Information Theory, Jul. 23, 2001, vol. 49, pp. 1-46. |
Gao X., et al., “Linear Pre-Coding Performance in Measured Very-Large MIMO Channels,” IEEE Vehicular Technology, 2011, pp. 1-5. |
Garcia C.R., “Channel Model for Train to Train Communication Using the 400 MHz Band,” in Proc. of IEEE Vehicular Technology Conference, 2008, pp. 3082-3086. |
Gesbert D., et al., “From Theory to Practice: An Overview of MIMO Space—Time Coded Wireless Systems,” IEEE Journal on Selected Areas in Communications, 2003, vol. 21 (3), pp. 281-302. |
Gesbert D., et al., “Multi-Cell MIMO Cooperative Networks: A New Look at Interference,” IEEE Journal on Selected Areas in Communications, 2010, vol. 28 (9), pp. 1380-1408. |
Gesbert D., et al., “Outdoor MIMO Wireless Channels: Models and Performance Prediction,” IEEE Transactions on Communications, 2002, vol. 50 (12), pp. 1926-1934. |
Ghogho M., et al., “Training design for multipath channel and frequency offset estimation in MIMO systems,” IEEE Transactions on Signal Processing, 2006, vol. 54 (10), pp. 3957-3965. |
Glazunov A.A., et al., “Experimental Characterization of the Propagation Channel along a Very Large Virtual Array in a Reverberation Chamber”, Progress In Electromagnetics Research B, 2014, vol. 59, pp. 205-217. |
Goldman D., “Sorry, America: your wireless airwaves are full”, CNN Money, 3 pages, http://money.cnn.com/2012/02/21/technology/spectrum crunch/index.html. |
Gopalakrishnan B., et al., “An Analysis of Pilot Contamination on Multi-User MIMO Cellular Systems with Many Antennas,” Proceedings in Signal Processing Advances in Wireless Communications, 2011, pp. 381-385. |
Govindasamy S., et al., “Asymptotic Spectral Efficiency of the Uplink in Spatially Distributed Wireless Networks with Multi-Antenna Base Stations,” IEEE Transactions on Communications, 2013, vol. 61(7), pp. 1-13. |
GSMA, GSM technology, 2014, 1 page [online]. Retrieved from the Internet: URL: http:www.gsmworld.comtechnologyindex.html. |
Guey J.C., et al., “Modeling and Evaluation of MIMO Systems Exploiting Channel Reciprocity in TDD Mode,” VTC 2004-Fall, IEEE 60th, Oct. 2004, pp. 4265-4269. |
Guillaud M., et al., “A Practical Method for Wireless Channel Reciprocity Exploitation Through Relative Calibration”, IEEE Proceedings Of Sign Processing, Aug. 2005, vol. 1, pp. 403-406. |
Guillaud M., et al., “A Specular Approach to MIMO Frequency selective Channel Tracking and Prediction,” in Proceedings IEEE Signal Processing Advances in Wireless Communications, Jul. 2004, pp. 59-63. |
Gunashekar G., “Investigations into the Feasibility of MIMO Techniques within the HF Band: Preliminary Results,” Radio Science, 2009, 33 pages. |
Guthy C., et al., “Large System Analysis of Sum Capacity in the Gaussian MIMO Broadcast Channel”, IEEE J. Sel. Areas Communication, 2013, vol. 31 (2), pp. 149-159. |
Guthy, et al., Large System Analysis of the Successive Encoding Successive Allocation Method for the MIMO BC, Proc. of the International ITG Workshop on Smart Antennas, Bremen, Germany, Feb. 2010. |
Hachem W., et al., “A New Approach for Mutual Information Analysis of Large Dimensional Multi-Antenna Channels,” IEEE Transactions on Information Theory, 2008, vol. 54(9), pp. 3987-4004. |
Hakkarainen A., et al., “Widely-Linear Beamforming and RF Impairment Suppression in Massive Antenna Arrays”, Journal of Communications and Networks, 2013, vol. 15 (4), pp. 383-397. |
Hallen H., “Long-Range Prediction of Fading Signals”, Institute of Electrical and Electronics Engineers Signal Processing Magazine, 2000, vol. 17 (3), pp. 62-75. |
Haring L., “Residual carrier and sampling frequency synchronization in multiuser OFDM systems,” IEEE 63rd Vehicular Technology Conference, 2006, vol. 4, pp. 1937-1941. |
Hazlett et al., “Radio Spectrum for a Hungry Wireless World”, Sep. 22, 2011, 41 pages. |
Heath R W., et al., “Antenna Selection for Spatial Multiplexing Systems with Linear Receivers,” IEEE Trans. Comm, 2001, vol. 5, pp. 142-144. |
Heath R W., et al., “Switching between diversity and multiplexing in MIMO systems,” IEEE Trans. Comm, 2005, vol. 53 (6), pp. 962-968. |
Heath R.W., et al., “Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks,” IEEE Journal on Sel. Areas in Comm., Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, 2008, vol. 26 (8), pp. 1337-1340. |
Heath R.W., et al., “Switching between Multiplexing and Diversity Based on Constellation Distance,” Proc. of Allerton Conf on 208, Comm. Control and Comp, Oct. 4-6, 2000, pp. 212-221. |
Hewlett Packard., “GPS and Precision Timing Applications,” Application Note 1272, May 1996, pp. 1-28. |
High Frequency Active Auroroal Research Program—Homepage, printed Apr. 9, 2004, http:www.haarp.alaska.edu, 1 page. |
Hochwald B., et al., “Multi-Antenna Channel Hardening and its Implications for Rate Feedback and Scheduling”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, Sep. 2004, vol. 50 (9), pp. 1893-1909. |
Hochwald B.M., et al., “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part I: Channel Inversion and Regularization”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2005, vol. 53 (1), pp. 195-202. |
Hochwald B.M., et al., “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part II: Perturbation”, Institute of Electrical and Electronics Engineers Transactions on Communications, 2005, vol. 53 (3), pp. 537-544. |
Hong M., et al., “ Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogeneous Networks,” IEEE Journal on Selected Areas in Communications, Nov. 2012, vol. 31 (2), pp. 1-20. |
Hosseini K., et al., “Massive MIMO and Small Cells: How to Densify Heterogeneous Networks,” Wireless Communications Symposium, IEEE ICC, 2013, pp. 5442-5447. |
Hoydis J., et al., “Iterative Deterministic Equivalents for the Performance Analysis of Communication Systems,” Dec. 18, 2011, pp. 1-43. |
Huang Y., et al., “Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition,” IEEE Transactions on Wireless Communications, 2013, pp. 1-14. |
Huff G.H., et al., “A Novel Radiation Pattern and Frequency Reconfigurable Single Turn Square Spiral Microstrip Antenna”, IEEE Microwave and Wireless Components Letters, vol. 13 (2), Feb. 2003, pp. 57-59. |
Huh H., et al., Achieving “Massive MIMO” Spectral Efficiency with a Not-so-Large Number of Antennas. IEEE Transactions on Wireless Communications, Sep. 2012, vol. 11 (9), pp. 3226-3239. |
Huh H., et al., Multi-cell MIMO Downlink with Cell Cooperation and Fair Scheduling: A Large-System Limit Analysis, IEEE Transactions on Information Theory, 2010, vol. 57 (12), pp. 1-29. |
IEEE 802.22, “IEEE 802.22 Working Group on Wireless Regional Area Networks”, [online], [retrieved on Aug. 14, 2014], Retrieved from the Internet: URL:http:www.ieee802.org/22/, 1 page. |
IntelliCell: A Fully Adaptive Approach to Smart Antennas, ArrayComm, Incorporated, WP-ISA-031502-2.0, 2002, pp. 1-18. |
International Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2013/071749, dated Jun. 4, 2015, 7 pages. |
International Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2014/025102, dated Sep. 24, 2015, 10 pages. |
International Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2014/025108, dated Sep. 24, 2015, 8 pages. |
International Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2014/025123, dated Sep. 24, 2015, 10 pages. |
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2015/014511, dated Aug. 18, 2016, 5 pages. |
International Preliminary Report on Patentability for Application No. PCT/US06/41009, dated Apr. 23, 2008, 4 pages. |
International Preliminary Report on Patentability for Application No. PCT/US11/58663, dated May 7, 2013, 26 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2005/11033, dated Jun. 3, 2008, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2008/073780, dated Mar. 4, 2010, 10 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2012/054937, dated Mar. 27, 2014, 13 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2013/039580, dated Nov. 4, 2014, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2013/041726, dated Nov. 18, 2014, 6 pages. |
International Preliminary Report On Patentability from foreign counterpart PCT/US2013/061493, dated Apr. 16, 2015, 7 pages. |
International Search Report and the Written Opinion for Application No. PCT/US15/14511, dated May 18, 2015, 7 pages. |
International Search Report and the Written Opinion for Application No. PCT/US2013/039580, dated Aug. 20, 2013, 12 pages. |
International Search Report and the Written Opinion for Application No. PCT/US2013/061493, dated Dec. 6, 2013, 9 pages. |
International Search Report and Written opinion for Application No. PCT/US 06/41009, dated May 24, 2007, 6 Pages. |
International Search Report and Written opinion for Application No. PCT/US05/11033, dated May 2, 2008, 10 pages. |
International Search Report and Written Opinion for Application No. PCT/US2008/073780, dated Nov. 19, 2008. |
International Search Report and Written Opinion for Application No. PCT/US2012/054937, dated Apr. 2, 2013, 17 pages. |
International Search Report and Written opinion for Application No. PCT/US2014/025105, dated Jul. 14, 2014, 12 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/025108, dated Sep. 19, 2014, 10 Pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/023436, dated Aug. 19, 2015, 10 pages. |
International Search Report and Written Opinion for Application No. PCT/US2017/047963, dated Nov. 3, 2017, 9 pages. |
International Search Report and Written opinion for International Application No. PCT/US2013/071749, dated Apr. 8, 2014, 9 pages. |
International Search Report and Written opinion for International Application No. PCT/US2014/025102, dated Jul. 18, 2014, 11 pages. |
International Search Report and Written opinion for International Application No. PCT/US2014/025123, dated Jul. 18, 2014, 11 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US 11/58663, dated Mar. 29, 2012, 33 pages. |
International Search Report and Written Opinion from foreign counterpart PCT Application No. PCT/US13/41726, dated Jul. 16, 2013, 7 pages. |
Itu, “ISM Band,” [online], Aug. 14, 2014. Retrieved from the Internet: http://www.itu.int/ITUR/terrestrial/faq/index.html#g013, pp. 1-8. |
Jafar S.A., et al., “Channel Capacity and Beamforming for Multiple Transmit and Receive Antennas with Covariance Feedback,” Proc. IEEE Int. Conf. on Comm, Jun. 2001, vol. 7, pp. 2266-2270. |
Jafar S.A., et al., “Transmitter Optimization and Optimality of Beamforming for Multiple Antenna Systems,” IEEE Trans Wireless Comm, Jul. 2004, vol. 3, No. 4, pp. 1165-1175. |
Jakes W.C., Microwave Mobile Communications, IEEE Press, 1974, Table of Contents, 4 pages. |
Jindal N., et al., “Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels”, IEEE Trans. on Information Theory, vol. 51, May 2005, pp. 1783-1794. |
Jindal N., et al., “Multi-Antenna Broadcast Channels with Limited Feedback and User Selection,” IEEE Journal on Selected Areas in Communications, 2007, vol. 25(7), pp. 1478-1491. |
Jindal N., “MIMO Broadcast Channels with Finite-Rate Feedback,” IEEE Trans. on Info. Theory, 2006, vol. 52, pp. 5045-5060. |
Jing J., et al. “A Downlink Max-SINR Precoding for Massive MIMO System,” International Journal of Future Generation Communication and Networking, 2014, vol. 7 (3), pp. 107-116. |
Joho D., et al., “Articles of the Electronic Information and Communication Society”, vol. J87-C (5), May 2004, pp. 1-19. |
Jorswieck E.A., et al., “Channel Capacity and Capacity-Range of Beamforming in MIMO Wireless Systems under Correlated Fading with Covariance Feedback,” IEEE Transactions on Wireless Communications, Sep. 2004, vol. 3, pp. 1543-1553. |
Jose J., “Channel Estimation and Linear Precoding in Multiuser Multiple-Antenna TDD Systems,” IEEE Transactions on Vehicular Technology, 2011, vol. 60 (5), pp. 2102-2116. |
Jose J., et al. “Pilot Contamination and Precoding in Multi-cell TDD Systems,” IEEE Transactions on Wireless Communications, 2011, vol. 10 (8), pp. 2640-2651. |
Judge P., “GreenTouch Shows Low Power Wireless,” TechWeekEurope UK, [online], Feb. 1, 2011, Retrieved from the Internet: http://www.techweekeruope.co.uk/workspace/greentouch-showslow, 3 pages. |
Jungnickel V., et al., “Capacity of MIMO systems with closely spaced antennas,” IEEE, 2003, vol. 7(8), pp. 361-363. |
Kamata H, et. al, “Effects of IQ Imbalance and an Effective Compensation Scheme in the MIMO-OFDM Communication System”, Proceedings of the 2005 Institute of Electronics, Information and Communication General Conference, Mar. 7, 2005, B-5-90, 5 pages. |
Kang M., et al., “Water-Filling Capacity and Beamforming Performance of MIMO Systems With Covariance Feedback,” IEEE Workshop on Signal Processing Advances in Wireless Communications, Jun. 2003, pp. 556-560. |
Kannan T.P., et al., “Separation of Cochannel Signals Under Imperfect Timing and Carrier Synchronization,” IEEE Trans. Veh. Technol, 2001, vol. 50 (1), pp. 79-96. |
Karakayali M.K., et al. “Network Coordination for Spectrally Efficient Communications in Cellular Systems,” IEEE Wireless Communications Magazine, 2006, vol. 13 (4), pp. 56-61. |
Karakayali M.K., et al., “On the Maximum Common Rate Achievable in a Coordinated Network,” Proceedings of the International Conference on Communications (ICC'06), Mar. 3, 2006, vol. 9, pp. 1-6. |
Kayama H., et al., “Demodulation Reference Signal Design and Channel Estimation For LTE-Advanced Uplink,” Advances in Vehicular Networking Technologies, 2011, pp. 418-432. |
Kellerman F C., “LDPC OFDM Space-Time Multipath Fading Channel Results,” Proceedings SPIE, Digital Wireless Communications, XP-002672064, Jul. 2003, vol. 5100, pp. 19-30. |
Kermoal J.P., et al., “A Stochastic MIMO Radio Channel Model with Experimental Validation,” IEEE Journal on Selected Areas in Communications, 2002, vol. 20 (6), pp. 1211-1226. |
Knievel C., et al., “On Particle Swarm Optimization for MIMO Channel Estimation”, Article ID 614384, Journal of Electrical and Computer Engineering, 2012, vol. 2012, 10 pages. |
Knievel C, Low Complexity Receiver for Large-MIMO Space Time Coded Systems, in Proc. IEEE VTC-Fall'2011, Sep. 2011, 5 pages. |
Kouassi B. et al., “Reciprocity-Based Cognitive Transmissions using a MU Massive MIMO Approach”, 2013, pp. 1331-1335. |
Kountouris M., et al., “HetNets and Massive MIMO: Modeling, Potential Gains, and Performance Analysis,” in Proc. IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Sep. 2013, 5 pages. |
Krim H., et al., “Two Decades of Array Signal Processing Research,” IEEE Signal Proceedings Magazine, 1996, pp. 67-94. |
Krishnan N., et al., “Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination,” in Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing, 2012, pp. 1220-1224. |
Kumagawa S., et al., “A Study of Introducing Distributed Transmit Power Control to Distributed Antenna System,” 2011, 30 pages. |
Kumar K.R., et al. “Asymptotic Performance of Linear Receivers in MIMO Fading Channels,” IEEE Information Theory Workshop, Feb. 19, 2009, 48 pages. |
Lang S., et al., “Design and development of a 5.25 GHz software defined wireless OFDM communication platform,” IEEE Communications Magazine, 2004, vol. 42 (6), 7 pages. |
Lau H.K., et al., “Insecurity of Position-Based Quantum-cryptography Protocols against Entanglement Attacks,” Physical Review A, 2010, vol. 83, 13 pages. |
Lee C, Network Massive MIMO for Cell-Boundary Users: From a Precoding Normalization Perspective, IEEE Goblecom Workshops, 2012, 5 pages. |
Lee D., et al., “Coordinated Multipoint Transmission and Reception in LTE-Advanced: Deployment Scenarios and Operational Challenges,” IEEE Communications Magazine, Feb. 2012, pp. 148-155. |
Lee J., et al., “A Compressed Analog Feedback Strategy for Spatially Correlated Massive MIMO Systems,” in Proceedings IEEE Vehicular Technology Conference (VTC), Quebec, Canada, Sep. 2012, pp. 1-6. |
Lee J., et al., “MIMO Technologies in 3GPP LTE and LTE-Advanced,” EURASIP Journal on Wireless Communications and Networking, 2009, 10 pages. |
Lee J., “Introduction of LTE-Advanced DL/UL MIMO,” Samsung Electronics, Sep. 2009, 18 pages. |
Lee K., et al., “Frequency-offset estimation for MIMO and OFDM systems using orthogonal training sequences,” IEEE Trans. Veh. Technol, 2007, vol. 56 (1), pp. 146-156. |
Letter Restarting Period for Response from U.S. Appl. No. 13/233,006, dated Apr. 15, 2016, 9 pages. |
Li P., et al., Multiple Output Selection-LAS Algorithm in Large MIMO Systems, IEEE Commun., 2010, vol. 14 (5), pp. 399-401. |
Liang et al., “Asymptotic Performance of MMSE Receivers for Large Systems Using Random Matrix Theory,” IEEE Transactions on Information Theory, 2007, vol. 53(11), pp. 4173-4190. |
Liang Y., et al., “Interference Suppression in Wireless Cellular Networks through Picocells,” Annual Conference on Social Studies Communication and Education, 2007, vol. 2007, pp. 1041-1045. |
Liang Y., et al., “On the Relationship Between MMSE-SIC and BI-GDFE Receivers for Large Multiple-Input Multiple-Output Channels,” IEEE Transactions on Signal Processing, 2008, vol. 56 (8), pp. 3627-3637. |
Liang Y.C., et al., “Block-iterative Generalized Decision Feedback Equalizers (BI-GDFE) for Large MIMO Systems: Algorithm Design and Asymptotic Performance Analysis,” IEEE Transactions on Signal Processing, 2006, vol. 54(6), pp. 2035-2048. |
Like deck chairs on the Titanic: why spectrum reallocation won't avert the coming data crunch but technology might keep the wireless industry afloat, Feb. 2012, pp. 705-719. |
Lindstrom M., (Ericsson), “LTE-Advanced Radio Layer 2 and RRC Aspects,” 3GPP TSG-RAN WG2, Dec. 17-18, 2009, 38 pages. |
Liu G., “Time and frequency offset estimation for distributed multiple-input multiple-output orthogonal frequency division multiplexing system,” Institute of Engineering and Technology Communications, 2010, vol. 4 (6), pp. 708-715. |
Love D J., et al., “An Overview of Limited Feedback in Wireless Communication Systems,” Special Issue on Exploiting Limited Feedback in Tomorrow's Wireless Communication Networks, IEEE Journal on Sel. Areas in Comm., 2008, vol. 26 (8), pp. 1341-1365. |
Love D J., et al.,“Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems”, IEEE Trans. on Info. Theory special issue on MIMO Communication, 2003, vol. 49, pp. 2735-2747. |
Lozano A., et al., “Fundamental Limits of Cooperation”, Mar. 2012, 27 pages. |
Luise M., et al., “Carrier frequency acquisition and tracking for OFDM systems,” IEEE, 1996, vol. 44(11), pp. 1590-1598. |
Luise M., et al., “Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels,” IEEE Transactions. Communications, 2002, vol. 50 (7), pp. 1182-1188. |
Lunghi T., et al., “Experimental Bit Commitment Based on Quantum Communication and Special Relativity,” Physical review letters, 2013, vol. 111 (18), pp. 1-16. |
Malaney R.A., et al. “Location-Dependent Communications Using Quantum Entanglement,” Physical Review A, 2010, vol. 81 (4), 11 pages. |
Marek S., “AT&T's Rinne talks about carrier aggregation trials, small cells and more”, Retrieved from the Internet: URL: http:www.fiercebroadbandwireless.comstoryatts-rinne-talks-about-carrieraggregation- trials-small-cells-and-more2012-11-08, 3 pages. |
Martinez A.O., et al., “Energy Detection Using Very Large Antenna Array Receivers”, 48th Asilomar Conference on Signals, Systems, and Computers Proceedings, 2014, 5 pages. |
Martinez A.O., et al. “Very Large Aperture Massive MIMO: a Measurement Based Study”, 2014, 6 pages. |
Marzetta L.A., et al., “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas,” IEEE Transactions on Wireless Communications, 2010, vol. 9(11), pp. 3590-3600. |
Masouros C., et al., “Large-Scale MIMO Transmitters in Fixed Physical Spaces: The Effect of Transmit Correlation and Mutual Coupling”, IEEE Trans. Commun., 2013, vol. 61 (7), pp. 2794-2804. |
Matthaiou M., et al. “Sum Rate Analysis of ZF Receivers in Distributed MIMO Systems,” IEEE Journal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 180-191. |
Matthaiou M., et al., “Sum Rate Analysis of ZF Receivers in Distributed MIMO Systems with Rayleigh/Lognormal Fading,” 2012 IEEE International Conference on Communications, ICC 2012, Ottawa, Jun. 10-15 pp. 3857-3861. |
Mattheijssen P., “Antenna-Pattern Diversity versus Space Diversity for use at Handhelds,” IEEE Trans. on Veh. Technol, 2004, vol. 53 (4), pp. 1035-1042. |
Mayers D., “Unconditionally Secure Quantum Bit Commitment is Impossible,” Physical Review Letters, APS, 1997, vol. 78 (17), pp. 1-5. |
Mazrouei-Sebdani M., “Vector Perturbation Precoding and User Scheduling for Network MIMO,” IEEE WCNC, ISBN 978-1-61284-254-7, 2011, pp. 203-208. |
McKay M R., et al., “A throughput-based adaptive MIMO BICM approach for spatially-correlated channels,” IEEE to appear in Proc. ICC, 2006, 5 pages. |
McKay M R., et al., “Multiplexing/beamforming switching for coded MIMO in spatially correlated channels based on Closed-Form BER Approximations,” IEEE Transactions on Vehicular Technology, 2007, vol. 56 (5), pp. 2555-2567. |
McLean J S., et al., “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Transactions on Antennas and Propagation, 1996, vol. 44 (5), pp. 672-676. |
MikroTik, “Routerboard,” [online], 2015, 30 pages, Retrieved from the Internet: URL: http:routerboard.com. |
MIMO System uses SDMA for IEEE802.11n, Electronicstalk, 2004, pp. 1-3, http://www.electronicstalk.com/news/ime/ime149.html. |
Minn., et al., “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun, 2003, vol. 2 (4), pp. 822-839. |
Miyakawa H., et al., “A Method of Code Conversion for Digital Communication Channels with Intersymbol Interference,” Transactions of the Institute of Engineers of Japan, vol. 52-A (6), 1969, pp. 272-273. |
Mohammed S.K., et al., “A Low-Complexity Precoder for Large Multiuser MISO Systems”, IEEE Vehicular Technology Conference, 2008, pp. 797-801. |
Mohammed S.K., et al., “Constant-Envelope Multi-User Precoding for Frequency-Selective Massive MIMO Systems,” IEEE Wireless Communications Letters, 2013, vol. 2(5), pp. 1-10. |
Mohammed S.K., et al., “Single-User Beamforming in Large-Scale MISO Systems with Per-Antenna Constant-Envelope Constraints,” IEEE Transactions on Wireless Communications, Sep. 2012, vol. 2012, pp. 3992-4005. |
Mohammed S.K., et al., “Per-Antenna Constant Envelope Precoding for Large Multi-User MIMO Systems,” IEEE Transactions on Communications, Jan. 2012, vol. 61(3), pp. 1-24. |
Molisch et al., “MIMO Systems with Antenna Selection”, IEEE Microwave Magazine, vol. 5 (1), Mar. 2004, pp. 46-56. |
Montgomery B.G., “Analog RF-over-fiber technology, Syntonics LLC,” 2008, pp. 2-51, http:chesapeakebayaoc.orgdocumentsSyntonics_AOC_RF_over-Fiber_19_Jan_08.pdf. |
Monziano R. A., et al., “Introduction to Adaptive Arrays,” New York, Wiley, 1980, Table of Contents 21 pages. |
Moose P H., et al., “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun, 1994, vol. 42 (10), pp. 2908-2914. |
Morelli M., et al., “An improved frequency offset estimator for OFDM applications,” IEEE Commun. Lett., 1999, vol. 3 (3), pp. 106-109. |
Morelli M., et al., “Frequency ambiguity resolution in OFDM systems,” IEEE Commun. Lett, 2000, vol. 4 (4), pp. 134-136. |
Morris M. L., et al., “The Impact of Array Configuration on MIMO Wireless Channel Capacity,” Proc. IEEE Antennas and Propagation Symposium, Jun. 2002, vol. 3, pp. 214-217. |
Morris M.L., et al., “Network model for MIMO systems with coupled antennas and noisy amplifiers,” IEEE Transactions on Antennas and Propagation, 2005, vol. 53, pp. 545-552. |
Motorola, “Long Term Evolution (LTE): A Technical Overview,” 2007, Retrieved from the Internet: http:business.motorola.comexperienceltepdfLTETechnicalOverview.pdf, 15 pages. |
Moustakas A., et al., “MIMO Capacity through Correlated Channels in the Presence of Correlated Interferers and Noise: A (Not so) Large N Analysis”, Institute of Electrical and Electronics Engineers Transformations and Information Theory, 2003, vol. 49 (10), pp. 2545-2561. |
Moustakas A.L., et al., “Optimizing Multiple-Input Single-Output (MISO) Communication Systems with General Gaussian channels: Nontrivial Covariance and Nonzero Mean”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, 2003, vol. 49, pp. 2770-2780. |
Muharar R., et al., “Downlink Beamforming with Transmit-Side Channel Correlation: A Large System Analysis,” in Proc. IEEE International Conference on Communications (ICC), Kyoto, Japan, Jun. 2011, 5 pages. |
Muller R., et al., “Vector Precoding for Wireless MIMO Systems and its Replica Analysis,” IEEE J. Sel. Areas Commun, 2008, vol. 26 (3), pp. 530-540. |
Muller R.R., et al., “Blind Pilot Decontamination,” IEEE Journal of Selected Topics in Signal Processing on Signal Processing for Large-Scale MIMO Communications, 2013, 31 pages. |
Nam J., et al., “Joint Spatial Division and Multiplexing: Realizing Massive MIMO Gains with Limited Channel State Information,” in Proceedings Conference on Information Sciences and Systems, IEEE, Mar. 2012, 6 pages. |
Narasimhan, et al.,“ M-ary Detection and q-ary Decoding in Large-Scale MIMO: A Non-Binary Belief Propagation Approach,” Oct. 16, 2013, 7 pages. |
Nec, “Self organizing networks”, White paper, Feb. 2009, 5 pages. |
Netsukuku, 8 pages, printed on Sep. 30, 2015, [online], Retrieved from the Internet: URL: http:netsukuku.freaknet.org. |
Ngo H.Q., et al., Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems, IEEE Transactions on Communications, May 21, 2012, vol. 61 (4), pp. 1436-1449. |
Ngo H.Q., et al., EVD-Based Channel Estimations for Multicell Multiuser MIMO with Very Large Antenna Arrays, IEEE International Conference on Acoustics, Speed and Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012, 5 pages. |
Ngo H.Q., et al., Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots, Proceedings in Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, Illinois, Oct. 2013, 6 pages. |
Ngo H.Q., et al., The multicell multiuser MIMO uplink with very large antenna arrays and a finite-dimensional channel, IEEE Transactions Communications, 2013, vol. 61 (6), pp. 2350-2361. |
Ngo H.Q., et al., Uplink Performance Analysis of Multicell MU-MIMO Systems with ZF Receivers, Jun. 2012, pp. 1-32. |
Nguyen, et al., “Multiuser Transmit Beamforming via Regularized Channel Inversion: A Large System Analysis” IEEE Global Communications Conference, New Orleans, LO, US, Dec. 2008, pp. 1-4. |
Nguyen S., et al., “Compressive Sensing-Based Channel Estimation for Massive Multiuser MIMO Systems” in proceeding IEEE WCNC, 2013, 6 pages. |
Nguyen S., et al., “Precoding for Multicell Massive MIMO Systems With Compressive Rank-Q Channel Approximation,” 24th IEEE International Symposium, 2013, pp. 1227-1232. |
Nicta, “InterfereX”, downloaded Jun. 22, 2015, 3 pages, http://www.interfereX.com. |
Nokia Siemens Networks, “2020: Beyond 4g, Radio Evolution for the Gigabit Experience”, White Paper, 2011, www.nokiasiemensnetworks.com, 16 pages. |
Non Final Office Action from U.S. Appl. No. 13/797,984, dated Feb. 28, 2017, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 10/817,731, dated Jan. 4, 2008, 14 pages. |
Non-Final Office Action from U.S. Appl. No. 10/817,731, dated Jan. 21, 2009, 23 pages. |
Non-Final Office Action from U.S. Appl. No. 10/817,731, dated Mar. 15, 2010, 26 pages. |
Non-Final Office Action from U.S. Appl. No. 10/817,731, dated May 18, 2007, 16 pages. |
Non-Final Office Action from U.S. Appl. No. 10/902,978, dated Apr. 10, 2008, 8 pages. |
Non-Final Office Action from U.S. Appl. No. 10/902,978, dated Nov. 6, 2007, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 11/256,478, dated Sep. 19, 2008, 14 pages. |
Non-Final Office Action from U.S. Appl. No. 11/894,362, dated Oct. 29, 2008, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 11/894,394, dated Oct. 28, 2008, 13 pages. |
Non-Finai Office Action from U.S. Appl. No. 11/894,540, dated Apr. 29, 2009, 8 pages. |
Non-Final Office Action from U.S. Appl. No. 11/894,540, dated Oct. 29, 2008, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 12/143,503, dated Dec. 9, 2010, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 12/630,627, dated Aug. 22, 2012, 23 pages. |
Non-Finai Office Action from U.S. Appl. No. 12/630,627, dated Mar. 16, 2011, 5 pages. |
Non-Final Office Action from U.S. Appl. No. 12/637,643, dated Jun. 7, 2012, 25 pages. |
Non-Final Office Action from U.S. Appl. No. 12/637,643, dated Sep. 23, 2011, 18 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Aug. 13, 2015, 22 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Jan. 16, 2018, 118 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Jun. 23, 2014, 24 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Nov. 4, 2016, 19 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,958, dated Nov. 21, 2012, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,974, dated Apr. 24, 2015, 27 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,974, dated Aug. 1, 2013, 35 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,974, dated Dec. 19, 2012, 7 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Aug. 14, 2013, 26 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Dec. 19, 2012, 16 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Jul. 1, 2016, 21 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated May 7, 2015, 25 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Sep. 14, 2017, 23 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Apr. 12, 2013, 45 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Apr. 17, 2012, 10 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Aug. 15, 2016, 19 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Jun. 26, 2015, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Mar. 24, 2014, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,988, dated Sep. 15, 2017, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,989, dated Jun. 14, 2012, 10 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,989, dated Mar. 30, 2016, 35 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,989, dated Nov. 25, 2014, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,989, dated Nov. 26, 2013, 27 pages. |
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Apr. 11, 2013, 23 pages. |
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Jun. 20, 2016, 30 pages. |
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Jun. 24, 2015, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Mar. 21, 2014, 9 pages. |
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Sep. 21, 2017, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Apr. 16, 2013, 8 pages. |
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Apr. 28, 2017, 10 pages. |
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Jun. 4, 2015, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Sep. 12, 2013, 6 pages. |
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Sep. 24, 2014, 9 pages. |
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Apr. 1, 2016, 9 pages. |
Non-Final Office Action from U.S. Appl. No. 13/461,682, dated Feb. 25, 2014, 37 pages. |
Non-Final Office Action from U.S. Appl. No. 13/464,648, dated Feb. 12, 2013, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 13/464,648, dated Feb. 14, 2014, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 13/475,598, dated Dec. 30, 2013, 16 pages. |
Non-Final Office Action from U.S. Appl. No. 13/475,598, dated Mar. 23, 2015, 14 pages. |
Non-Final Office Action from U.S. Appl. No. 13/633,702, dated Dec. 17, 2013, 21 pages. |
Non-Final Office Action from U.S. Appl. No. 13/797,950, dated Jan. 11, 2017, 65 pages. |
Non-Final Office Action from U.S. Appl. No. 13/797,950, dated May 11, 2015, 61 pages. |
Non-Final Office Action from U.S. Appl. No. 13/797,971, dated May 11, 2015, 52 pages. |
Non-Final Office Action from U.S. Appl. No. 13/797,971, dated Oct. 4, 2016, 56 pages. |
Non-Final Office Action from U.S. Appl. No. 13/797,984, dated Jan. 14, 2016, 14 pages. |
Non-Final Office Action from U.S. Appl. No. 13/797,984, dated Jan. 29, 2015, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 13/844,355, dated Apr. 18, 2016, 21 pages. |
Non-Final Office Action from U.S. Appl. No. 13/844,355, dated Jun. 30, 2017, 159 pages. |
Non-Final Office Action from U.S. Appl. No. 14/023,302, dated Jul. 17, 2014, 37 pages. |
Non-Final Office Action from U.S. Appl. No. 14/023,302, dated Jun. 11, 2015, 8 pages. |
Non-Final Office Action from U.S. Appl. No. 14/086,700, dated Apr. 2, 2015, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 14/086,700, dated Mar. 4, 2016, 10 pages. |
Non-Final Office Action from U.S. Appl. No. 14/086,700, dated May 25, 2017, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 14/156,254, dated Sep. 11, 2014, 44 pages. |
Non-Final Office Action from U.S. Appl. No. 14/611,565, dated Aug. 31, 2015, 21 pages. |
Non-Final Office Action from U.S. Appl. No. 14/611,565, dated Mar. 14, 2017, 23 pages. |
Non-Final office action from U.S. Appl. No. 15/057,002, dated Oct. 23, 2017, 60 pages. |
Non-Final Office Action from U.S. Appl. No. 15/181,383, dated May 22, 2017, 48 pages. |
Non-Final Office Action from U.S. Appl. No. 15/201,276, dated Jan. 25, 2018, 77 pages. |
Non-Final Office Action from U.S. Appl. No. 15/201,276, dated Mar. 1, 2017, 107 pages. |
Non-Final Office Action from U.S. Appl. No. 15/340,914, dated Jul. 21, 2017, 114 pages. |
Non-Final Office Action from U.S. Appl. No. 15/616,817, dated Nov. 1, 2017, 14 pages. |
Notice of Acceptance from foreign counterpart Australian Patent Application No. 2013327697, dated Feb. 15, 2017, 4 pages. |
Notice of Acceptance from foreign counterpart Australian Patent Application No. 2014248533, dated Jun. 28, 2017, 4 pages. |
Notice of Acceptance from foreign counterpart Australian Patent Application No. 20160219662, dated May 5, 2017, 3 pages. |
Notice of Acceptance from foreign counterpart Australian Patent Application No. AU20140200745, dated Sep. 19, 2016, 3 page. |
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 610463, dated Aug. 5, 2015, 1 page. |
Notice of Acceptance from Foreign Counterpart Patent Application No. 2012308632, dated Sep. 13, 2017, 4 pages. |
Notice of Allowance from U.S. Appl. No. 13/797,984, dated Jan. 17, 2018, 146 pages. |
Notice of Allowance and Search Report from foreign counterpart Taiwan Patent Application No. 102134408, dated Feb. 17, 2017, 9 pages. |
Notice of Allowance from counterpart Australian Patent Application No. 2011323559, dated May 13, 2016, 2 pages. |
Notice of Allowance from counterpart Mexican Patent Application No. MX/a/2014/002900, dated Nov. 26, 2015, 4 pages. Translation attached. |
Notice of Allowance from counterpart U.S. Appl. No. 12/917,257, dated Dec. 6, 2012, 8 pages. |
Notice of Allowance from foreign counterpart Canadian Patent Application No. 2695799, dated Feb. 9, 2016, 1 page. |
Notice of Allowance from foreign counterpart Canadian Patent Application No. P14906, dated Jun. 1, 2015, 1 page. |
Notice of Allowance from foreign counterpart Korean Patent Application No. 2015- 7002560, dated Feb. 4, 2016, 2 Pages. |
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Mar. 14, 2011, 9 pages. |
Notice of Allowance from U.S. Appl. No. 13/232,996, dated Oct. 12, 2016, 5 pages. |
Notice of Allowance from U.S. Appl. No. 10/817,731, dated Sep. 30, 2010, 6 pages. |
Notice of Allowance from U.S. Appl. No. 10/902,978, dated Apr. 16, 2008, 7 pages. |
Notice of Allowance from U.S. Appl. No. 10/902,978, dated Jun. 27, 2008, 7 pages. |
Notice of Allowance from U.S. Appl. No. 11/256,478, dated Jan. 26, 2010, 9 pages. |
Notice of Allowance from U.S. Appl. No. 11/256,478, dated Jul. 30, 2009, 9 pages. |
Notice of Allowance from U.S. Appl. No. 11/256,478, dated Oct. 29, 2009, 16 pages. |
Notice of Allowance from U.S. Appl. No. 11/894,362, dated Mar. 23, 2009, 10 pages. |
Notice of Allowance from U.S. Appl. No. 11/894,362, dated Nov. 10, 2009, 5 pages. |
Notice of Allowance from U.S. Appl. No. 11/894,362, dated Sep. 3, 2009, 12 pages. |
Notice of Allowance from U.S. Appl. No. 11/894,394, dated Jul. 30, 2009, 14 pages. |
Notice of Allowance from U.S. Appl. No. 11/894,394, dated Jun. 26, 2009, 7 pages. |
Notice of Allowance from U.S. Appl. No. 11/894,394, dated Mar. 6, 2009, 11 pages. |
Notice of Allowance from U.S. Appl. No. 11/894,540, dated Nov. 9, 2009, 5 pages. |
Notice of Allowance from U.S. Appl. No. 11/894,540, dated Sep. 14, 2009, 13 pages. |
Notice of Allowance from U.S. Appl. No. 12/143,503, dated Apr. 11, 2011, 9 pages. |
Notice of Allowance from U.S. Appl. No. 12/143,503, dated Aug. 18, 2011, 12 pages. |
Notice of Allowance from U.S. Appl. No. 12/143,503, dated Dec. 9, 2011, 11 pages. |
Notice of Allowance from U.S. Appl. No. 12/630,627, dated Sep. 25, 2013, 11 pages. |
Notice of Allowance from U.S. Appl. No. 12/637,643, dated Jan. 17, 2013, 11 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,938, dated Apr. 4, 2013, 16 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,938, dated Dec. 6, 2012, 37 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,938, dated May 24, 2013, 10 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,938, dated Sep. 19, 2012, 8 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Sep. 29, 2016, 5 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Feb. 28, 2017, 15 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Jun. 30, 2017, 89 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Oct. 4, 2017, 17 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,974, dated Sep. 13, 2016, 43 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Apr. 14, 2011, 16 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Aug. 22, 2011, 8 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Dec. 9, 2011, 11 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,976, dated Nov. 29, 2010, 7 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,989, dated Jun. 27, 2017, 121 pages. |
Notice of Allowance from U.S. Appl. No. 12/917,257, dated May 31, 2013, 12 Pages. |
Notice of Allowance from U.S. Appl. No. 13/232,996, dated Oct. 26, 2016, 4 pages. |
Notice of Allowance from U.S. Appl. No. 13/461,682, dated Oct. 2, 2014, 10 pages. |
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Apr. 24, 2015, 23 pages. |
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Aug. 14, 2015, 21 pages. |
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Aug. 25, 2015, 4 pages. |
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Feb. 23, 2016, 15 pages. |
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Jan. 9, 2015, 11 pages. |
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Nov. 30, 2015, 12 pages. |
Notice of Allowance from U.S. Appl. No. 13/464,648, dated Sep. 19, 2014, 5 pages. |
Notice of Allowance from U.S. Appl. No. 13/475,598, dated Feb. 14, 2017, 41 pages. |
Notice of Allowance from U.S. Appl. No. 13/633,702, dated Jan. 6, 2015, 27 pages. |
Notice of Allowance from U.S. Appl. No. 13/633,702, dated Aug. 15, 2014, 11 pages. |
Notice of Allowance from U.S. Appl. No. 13/797,971, dated Jan. 29, 2018, 15 pages. |
Notice of Allowance from U.S. Appl. No. 13/797,971, dated May 4, 2017, 8 pages. |
Notice of Allowance from U.S. Appl. No. 13/797,971, dated Oct. 18, 2017, 144 pages. |
Notice of Allowance from U.S. Appl. No. 13/797,984, dated Feb. 8, 2018, 4 pages. |
Notice of Allowance from U.S. Appl. No. 13/797,984, dated Oct. 19, 2017, 10 pages. |
Notice of Allowance from U.S. Appl. No. 14/023,302, dated May 17, 2016 5 pages. |
Notice of Allowance from U.S. Appl. No. 14/023,302, dated Oct. 9, 2015, 5 pages. |
Notice of Allowance from U.S. Appl. No. 14/023,302, dated Apr. 27, 2016, 3 pages. |
Notice of Allowance from U.S. Appl. No. 14/023,302, dated Feb. 5, 2016, 27 pages. |
Notice of Allowance from U.S. Appl. No. 14/156,254, dated Feb. 26, 2016, 21 pages. |
Notice of Allowance from U.S. Appl. No. 14/156,254, dated Jul. 8, 2015, 7 pages. |
Notice of Allowance from U.S. Appl. No. 14/156,254, dated Mar. 12, 2015, 5 pages. |
Notice of Allowance from U.S. Appl. No. 14/156,254, dated Nov. 3, 2015, 29 pages. |
Notice of Allowance from U.S. Appl. No. 15/201,276, dated Nov. 27, 2017, 7 pages. |
Notice of Allowance dated for U.S. Appl. No. 12/917,257, dated Feb. 15, 2013, 18 pages. |
Notice of Grant from foreign counterpart China Patent Application No. 201210464974.6 dated Jul. 1, 2015, 3 pages. |
Notice of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 20150510498, dated Sep. 26, 2016, 21 pages. |
Notification for Granting Patent Right from foreign counterpart China Patent Application No. 201180061132.X, dated Apr. 6, 2017, 6 pages. |
Notification on Grant of Patent Right for Invention from foreign counterpart China Patent Application No. 201210466082.X, dated Jan. 26, 2017, 3 pages. |
Oberli C., et al., “Maximum likelihood tracking algorithms for MIMOOFDM, in Communications,” IEEE International Conference on Networking, Jun. 20-24, 2004, vol. 4, pp. 2468-2472. |
Oda Y., “Measured Path Loss and Multipath Propagation Characteristics in UHF and Microwave Frequency Bands for Urban Mobile Communications,” IEEE, 2001, pp. 337-341. |
Office Action and Search Report from foreign counterpart China Patent Application No. CN201380035543, dated Jan. 3, 2017, 22 pages. |
Office Action and Search Report from foreign counterpart Russian Patent Application No. 2014148791/28(078479), dated Apr. 13, 2017, 14 pages. |
Office Action and Search Report from foreign counterpart Russian Patent Application No. 2015143188/07, dated Dec. 15, 2017, 13 pages. |
Office Action for foreign counterpart China Patent Application No. 20051008867.1, dated Oct. 26, 2010, 4 pages. |
Office Action from foreign counterpart Australian Patent Application No. 2004203336, dated Jun. 5, 2009, 2 pages. |
Office Action from foreign counterpart Canada Patent Application No. 2514383, dated Jul. 26, 2012, 3 pages. |
Office Action from foreign counterpart China Patent Application No. 200510088676 dated Jan. 25, 2011, 8 pages. |
Office Action from foreign counterpart China Patent Application No. 200510088676.1 dated Feb. 5, 2010, 18 pages. |
Office Action from foreign counterpart China Patent Application No. 200510088676.1 dated Mar. 20, 2009, 24 pages. |
Office Action from foreign counterpart China Patent Application No. 201180061132.X, dated May 27, 2015, 6 pages. |
Office Action from foreign counterpart China Patent Application No. 201180061132.X, dated Oct. 10, 2016, 11 pages. |
Office Action from foreign counterpart for Japan Patent Application No. 2007- 506302, dated Jan. 11, 2011, 5 pages. |
Office Action from foreign counterpart Japan Patent Application No. 2013-537753, dated Sep. 7, 2015, 9 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 2012-057351, dated Jul. 1, 2013, 6 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 2012-057351, dated Mar. 10, 2014, 2 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 2013-156855 dated Apr. 22, 2015, 6 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 2014 -140413, dated Jun. 27, 2015, 6 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 20150162819, dated Oct. 3, 2016, 6 pages. |
Office Action from foreign counterpart Korean Patent Application No. 1020107006265, dated Jul. 29, 2014, 10 pages. |
Office Action from foreign counterpart Korean Patent Application No. 20050070079, dated Jul. 29, 2011, 3 pages. |
Office Action from foreign counterpart Korean Patent Application No. 2015-7002560, dated May 21, 2015, 10 pages. |
Office Action from foreign counterpart mailed for New Zealand Patent Application No. 610463 dated Jan. 22, 2014, 2 pages. |
Office Action from foreign counterpart Mexican Patent Application No. MX/a/2014/013377, dated Mar. 22, 2016, 20 pages. |
Office Action from foreign counterpart Mexican Patent Application No. Mx/a/2015/002992, dated Nov. 8, 2016, 4 pages. |
Office Action from foreign counterpart Mexico Patent Application No. MX/a/2014/002900, dated May 25, 2015, 7 pages. |
Office Action from foreign counterpart Russian Patent Application No. 2014151216, dated Sep. 30, 2016, 12 pages. |
Office Action from foreign counterpart Russian Patent Application No. 2016144927, dated Dec. 21, 2016, 6 pages. |
Office Action from foreign counterpart Taiwan Application No. 100139880, dated Jan. 26, 2017, 7 pages. |
Office Action from Foreign Counterpart Taiwan Patent Application No. 094125985, dated Jan. 6, 2012, 7 pages. |
Office Action from foreign counterpart Taiwan Patent Application No. 101133865, dated Oct. 28, 2016, 5 pages. |
Office Action from foreign counterpart Taiwan Patent Application No. 102116145, dated Mar. 31, 2017, 7 pages. |
Office Action from U.S. Appl. No. 13/844,355, dated Jan. 8, 2015, 23 pages. |
Onggosanusi E. N., et al., High Rate Space- Time Block Coded Scheme: Performance and Improvement in Correlated Fading Channels, Proc. IEEE Wireless Comm. and Net. Conf, Mar. 2002, vol. 1, pp. 194-199. |
Optimized Markov Chain Monte Carlo for Signal Detection in MIMO Systems: An Analysis of the Stationary Distribution and Mixing Time, Signal Processing, vol. 62, No. 17, Sep. 2014. |
Ozgur A., et al., “Spatial Degrees of Freedom of Large Distributed MIMO Systems and Wireless Ad Hoc Networks”, Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 202-214. |
Pan, et al., “Precoding and Power allocation for Cooperative MIMO systems”, International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, 2006, 4 pages. |
Papadogiannis A., et al “Efficient Selective Feedback Design for Multicell Cooperative Networks,” Institute of Electrical and Electronics Engineers Transactions on Vehicular Technology, 2010, vol. 60 (1), pp. 196-205. |
Papadopoulos H.C., et al., Achieving Large Spectral Efficiencies from MU-MIMO with Tens of Antennas: Location-Adaptive TDD MU-MIMO Design and User Scheduling, in Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers (ACSSC), Pacific Grove, CA, Nov. 2010, pp. 636-643. |
Partial Supplementary European Search Report for Application No. 15780522.7, dated Oct. 20, 2017, 7 pages. |
Parvall, et al., “LTE Advanced-Evolving LTE Towards IMT-Advanced,” IEEE VTC 2008, 978-1-4244-1722-3/08/$25.00, 5 pages. |
Paulraj A., et al., “Introduction to Space-Time Wireless Communications”, 2003, 33 Pages. |
Paulraj, “Is OFDMA, MIMO and OS the right stuff for mobile broad- band?” 63 pages, http://www.ieeevtc.org/vtc2005fall/presentations/paulraj.pdf, Sep. 2005. |
Payami S., et al., Channel Measurements and Analysis for Very Large Array Systems At 2.6 GHz, in Proc. 6th European Conference on Antennas and Propagation, EuCAP 2012, Prague, Czech Republic, Mar. 26, 2012, 5 pages. |
Per-Erik ., et al., “VDSL2: Next Important Broadband Technology”, Ericsson Review No. 1, 2006, pp. 36-47. |
Perlman, et al., Distributed-Input Distributed-Output (Dido), Wireless Technology: A New Approach to Multiuser Wireless, Aug. 2011, Retrieved from the Internet: http://www.rearden.com/DIDO/DIDO White Paper 110727.pdf. |
Perlman et al., “Distributed-Input Distributed-Output (Dido), Wireless Technology: A New Approach to Multiuser Wireless”, Rearden Labs White Paper, 19 pages, Jul. 2011, Retrieved from the Internet: http://www.reardenwireless.com11 0727-DIDOA %20N ew%20Approach%20to%20Multiuser%20Wireless.pdf. |
Piazza D., et al., “Design and Evaluation of a Reconfigurable Antenna Array for MIMO Systems”, IEEE Transactions on Antennas and Propagation, 2008, vol. 56 (3), pp. 869-881. |
Ping-Heng., et al., “Compressive Sensing Based Channel Feedback Protocols for Spatially-Correlated Massive Antenna Arrays”, in Proc. IEEE Wireless Communications and Networking Conference (WCNC 2012), Apr. 2012, pp. 492-497. |
Pitarokoilis A. et al., “On the Optimality of Single- Carrier Transmission in Large-Scale Antenna Systems,” IEEE Wireless Commun. Lett., Aug. 2012, vol. 1, No. 4, pp. 276-279. |
Pitarokoilis, “Effect of Oscillator Phase Noise on Uplink Performance of Large MU-MIMO Systems,” in Proc. of the 50th Annual Allerton Conference on Communication, Control, and Computing, Oct. 2012, 9 pages. |
Pohl V., et al., “Antenna spacing in MIMO indoor channels,” IEEE Proc. Veh. Technol. Conf, 2002, vol. 2, pp. 749-753. |
Pollock et al., “Antenna Saturation Effects On MIMO Capacity,” IEEE International Conference on Communications, 2003, vol. 4, pp. 2301-2305. |
Post-quantum Cryptography [Web], Retrieved on Nov. 14, 2014, 3 pages. Retrieved from the Internet: http://pqcrypto.org/. |
Preliminary Report On Patentability and Written Opinion for Application No. PCT/US2014/025105, dated Sep. 24, 2015, 10 pages. |
Proakis J., “Digital Communications Fourth edition,” 2001, pp. 9, Department of Electrical and Computer Engineering, Northeastern University, ISBN 0-07-232111-3, Cover page, Title page, Table of Contents. |
Proakis J.G., “Communication System Engineering,” Prentice Hall, Table of Contents, 1994, 11 pages. |
Propagation, 2 pages, printed Oct. 21, 2005, http://home.planet.nl/˜alphe078/propagat1.htm. |
Qian, “Partially Adaptive Beamforming for Correlated Interference Rejection”, IEEE Trans. On Sign. Proc., 1995, vol. 43 (2), pp. 506-515. |
Qibi, “A Forward Link Performance Study of the 1 xEV-DO Rev. 0 System Using Field Measurements and Simulations,” Lucent Technologies. Retrieved from the Internet: http://www.cdg.org/resources/white%5Fpapers/files/white_papers/files/Lucent%201xEV-DO%20Rev%20O%20Mar%2004.pdf, Mar. 2004, 19 pages. |
Qualcomm, “The 1000x Data Challenge, the Latest on Wireless, Voice, Services and Chipset Evolution,” 4G World, Oct. 31, 2012, 61 pages, Submitted as Parts 1-3. |
Quantum Cryptography. Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. Jul. 26, 2014 [Web], Retrieved on Nov. 14, 2014, 5 pages [online] Retrieved from the Internet: https://en.wikipedia.org/wiki/Quantum_cryptography. |
Rao R., et al., “I/Q mismatch cancellation for MIMO-OFDM systems In Personal, Indoor and Mobile Radio Communication,” PIMRC, vol. 4, 2004, pp. 2710-2714. |
Rao R.M., et al., “Multi-antenna testbeds for research and education in wireless communications,” IEEE Communications Magazine, 2004, vol. 42 (12), pp. 72-81. |
Rapajic P., et al., Information Capacity of Random Signature Multiple-Input Multiple Output Channel, IEEE Trans. Commun., 2000, vol. 48 (8), pp. 1245-1248. |
Rappaport T., “Wireless Communications Principles and Practice,” 2002, 13 pages, Prentice Hall. |
Ravindran N., et al., “MIMO Broadcast Channels with Block Diagonalization and Finite Rate Feedback,” IEEE, ICASSP Apr. 2007, pp. III-113-III-16. |
Reconfigurable Radio Systems (RRS),; Radio Base Station (RBS), Software Defined Radio (SDR), status implementations and costs aspects including future possibilities, Technical Report, ETSI, No. V1.1.1, 2009, 24 pages. |
Rejection Decision from foreign counterpart Japan Patent Application No. JP2014264325, dated Oct. 3, 2016, 7 pages. |
Riegler, et al., “Asymptotic Statistics of the Mutual Information for Spatially Correlated Rician Fading MIMO Channels with Interference”, IEEE Trans. Inform. Theory, 2010, vol. 56 (4), pp. 1542-1559. |
Robert K., et al. “Unconditional Security from Noisy Quantum Storage,” IEEE Transactions on Information Theory, Mar. 2012, vol. 58 (3), pp. 1962-1984. |
Robinson S., “Toward an Optimal Algorithm for Matrix Multiplication,” Nov. 2005, vol. 38 (9), 3 pages. |
Ruckus wireless, “Long-range 802.11n (5GHz) Wi-Fi Point-to-Point/Multipoint backhaul,” Sep. 4, 2015, 2 pages, Retrieved from the Internet: URL: http://www.ruckuswireless.com/products/ZoneFlex-outdoor7731. |
Rusek, et al., “Scaling up MIMO: Opportunities and Challenges with Very Large Arrays”, IEEE Signal Proces. Mag., Jan. 2012, vol. 30 (1), pp. 1-30. |
Rysavy P., “No silver bullets for FCC, NTIA spectrum challenge”, Daily report for executives, Bloomberg BNA, Aug. 2012, pp. 1-4, http://www.rysavy.com/Articles/2012 09 No Spectrum Silver Bullets.pdf. |
Saleh A.A.M., et al.,“A Statistical Model for Indoor Multipath Propagation”, Institute of Electrical and Electronics Engineers Journal on Selected Areas in Communications, 1987, vol. SAC-5 (2), pp. 128-137. |
Samsung: “Discussion on open-loop CoMP schemes”, 3GPP Draft; R1-093377 Open-Loop Comp, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex, France, Aug. 19, 2009, 4 pages. |
Schafhuber D et al., “MMSE and Adaptive Prediction of Time-Varying Channels for OFDM Systems”, IEEE Trans. Wireless Commun., 2005, vol. 4 (2), pp. 593-602. |
Schmidl T.M., et al., “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun, 1997, vol. 45 (12), pp. 1613-1621. |
Schubert M., et al., “Joint ‘Dirty Paper’ Pre-Coding and Downlink Beamforming,” Spread Spectrum Techniques and Applications, 2002 IEEE Seventh International Symposium, Dec. 2002, vol. 2, pp. 536-540. |
Schuchert S., et al., “A novel I/Q imbalance compensation scheme for the reception of OFDM signals,” IEEE Transaction on Consumer Electronics, 2001, pp. 313-318. |
Second Office Action and Search Report from foreign counterpart China Patent Application No. 201180061132.X dated Mar. 11, 2016, 11 pages. |
Second Office Action and Search report from foreign counterpart China Patent Application No. 201280044869.5, dated Jan. 17, 2017, 19 pages. |
Second Office Action from counterpart Mexican Patent Application No. MX/a/2014/013795, dated Feb. 3, 2016, 7 pages. |
Serpedin E., et al., “Blind channel and carrier frequency offset estimation using periodic modulation precoders,” IEEE Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2000, vol. 48 (8), pp. 2389-2405. |
Sharif M., et al., “On the capacity of MIMO broadcast channel with partial side information,” IEEE Trans. Info. Th, Feb. 2005, vol. 51 (2), pp. 506-522. |
Shen Z., et al., “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Transactions on Signal Processing, 2005, pp. 1-12. |
Shen Z., et al., “Sum capacity of multiuser MIMO broadcast channels with block diagonalization,” IEEE Trans. Wireless Comm, 2005, 5 pages. |
Shepard C., Argos: Practical Many-Antenna Base Stations, in Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), Aug. 2012, 12 pages. |
Shepard C., ArgosV2: A Flexible Many-Antenna Research Platform, Extended Abstract for demonstration in Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), Oct. 2013, 3 pages. |
Shi K., et al., “Coarse frame and carrier synchronization of OFDM systems: a new metric and comparison,” IEEE Trans. Wireless Commun, 2004, vol. 3 (4), pp. 1271-1284. |
Shiu D., et al., “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Comm, 2000, vol. 48 (3), pp. 502-513. |
Shuangqing Wei., et al., “On the Asymptotic capacity of MIMO Systems with Fixed Length Linear Antenna Arrays,” IEEE International Conference on Communications, 2003, vol. 4, pp. 2633-2637. |
Simon, M, K., et al., “Digital Communication over Fading Channels” A Unified Approach to Performance Analysis, Wiley Series in Telecommunications and Signal Processing, 2000, 10 pages. |
Simon S.H., et al., “Optimizing MIMO Antenna Systems with Channel Covariance Feedback,” IEEE Journal on Selected Areas in Communications, 2003, vol. 2003, pp. 406-417. |
Spencer Q H., et al., “Adaptive Antennas and MIMO Systems for Wireless Communications—An Introduction to the Multi-User MIMI Downlink,” IEEE Communications Magazine, 2004, pp. 60-67. |
Spencer Q H., et al., “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Sig. Proc, 2004, vol. 52, pp. 461-471. |
Srinidhi N., et al., “Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance”, IEEE Trans. Commun, 2010, 5 pages. |
Srinidhi N., et al., “Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance”, IEEE Trans. Commun, vol. 59, No. 11, pp. 2955-2963, Nov. 2011. |
Stancil D.D., et al., “Doubling wireless channel capacity using co-polarised, co-located electric and magnetic dipoles”, Electronics Letters, 2002, vol. 38 (14), pp. 746-747. |
Stanley M., “Mobile Data Wave: Who Dares to Invest, Wins,” Jun. 13, 2012, 23 pages. |
Sternad M., et al., “Channel Estimation and Prediction for Adaptive OFDM Downlinks [Vehicular Applications],” in Proceeding IEEE Vehicular Technology Conference, vol. 2, Oct. 2003, pp. 1283-1287. |
Stoytchev M., et al., “Compact antenna arrays for MIMO applications,” IEEE Proc. IEEE Antennas and Prop. Symp., 2001, vol. 3, pp. 708-711. |
Strangeways H., “Determination Of The Correlation Distance For Spaced Antennas On Multipath HF Links And Implications For Design Of SIMO And MIMO Systems,” School of Electronic and Electrical Engineering, University of Leeds, IEEE First European Conf. on Antennas and Prop., 12 pages. |
Strangways H.J., “Investigation of signal correlation for spaced and co-located antennas on multipath HF links and implications for the design of SIMO and MIMO system,” IEEE First European Conf. on Antennas and Propagation (EuCAP 2006), Nov. 2006, pp. 1-6. |
Strohmer T., “Application of Time-Reversal with MMSE Equalizer to UWB Communication,” Proc. of IEEE Globecom, 2004, vol. 5, pp. 3123-3127. |
Studer C., et al., “PAR-Aware Large-Scale Multi-User MIMO-OFDM Downlink”, IEEE J. Sel. Areas Commun., Sep. 4, 2012, vol. 31 (2), pp. 303-313. |
Sulonen K., et al. “Comparison of MIMO Antenna Configurations in Picocell and Microcell Environments,” IEEE Journal on Selected Areas in Communications, 2003, vol. 21 (5), pp. 703-712. |
Supplementary European Search Report for Application No. EP05733294 dated Apr. 5, 2012, 4 pages. |
Supplementary Partial European Search Report for Application No. EP11838640.8, dated Mar. 2, 2017, 13 pages. |
Supplementary Partial European Search Report for Application No. EP14770916, dated Oct. 21, 2016, 6 pages. |
Suraweera H.A., et al., Multi-Pair Amplify-and-Forward Relaying with Very Large Antenna Arrays, Proceedings in IEEE International Conference on Communications (ICC), Budapest, Hungary, Jun. 2013, 7 pages. |
Suthisopapan P., et al., “Near Capacity Approaching Capacity of Large MIMO Systems by Non-Binary LDPC Codes and MMSE Detection”, in Proc. of the IEEE International Symposium on Information Theory, Mar. 2012, 7 pages. |
Suzuki H., et al., Highly Spectrally Efficient Ngara Rural Wireless Broadband Access Demonstrator, Proceedings in IEEE International Symposium on Communications and Information Technologies (ISCIT), Oct. 2012, 6 pages. |
Suzuki H., et al., Large-scale multiple antenna fixed wireless systems for rural areas, Proceedings in IEEE PIMRC, Sep. 2012, 6 pages. |
Svac P., et al., Soft-Heuristic Detectors for Large MIMO Systems, IEEE Trans. Signal Processing, 2013, vol. 61 (18), pp. 4573-4586. |
Svantesson T., et al., “Analysis of Electromagnetic Field Polarizations in Multiantenna Systems”, IEEE Transactions on Wireless Communications, vol. 3 (2), Mar. 2004, pp. 641-646. |
Svantesson T., et al., “On Capacity and Correlation of Multi-Antenna Systems Employing Multiple Polarizations,” IEEE Antennas and Propagation Society, 2002, vol. 3, pp. 202-205. |
Takeuchi K., et al. “On an Achievable Rate of Large Rayleigh Block-Fading MIMO Channels with No CSI,” IEEE Transactions on Information Theory, 2011, 47 pages. |
Taluja P S., et al., Diversity Limits of Compact Broadband Multi-Antenna Systems, IEEE J. Sel. Areas Communication, 2013, vol. 31 (2), pp. 326-337. |
Tang T., et al., “Joint frequency offset estimation and interference cancellation for MIMO-OFDM systems [mobile radio],” 2004 IEEE 60th Vehicular Technology Conference, VTC2004-Fal, 2004, vol. 3, pp. 1553-1557. |
Tanumay Datta., et al., “A Novel Monte-Carlo-Sampling-Based Receiver for Large-Scale Uplink Multiuser MIMO Systems,” IEEE Transactions on Vehicular Technology, 2013, vol. 62(7), pp. 3019-3038. |
Taricco G., et al., “Asymptotic Mutual Information Statistics of Separately-Correlated Rician Fading MIMO Channels,” IEEE Trans. Inform. Theory, Aug. 2008, vol. 54 (8), pp. 3490-3504. |
Tarighat A., et al., “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Signal Processing, Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2005, vol. 53, pp. 3257-3268. |
Tarighat, et al., “MIMO OFDM receivers for systems with IQ imbalances,” IEEE Trans. Sig. Pro, for orthogonal space-time block codes (OSTBC), 2005, vol. 53, pp. 3583-3596. |
Tarokh V., et al., “Space-time block codes from orthogonal designs,” IEEE Trans. Info, 1999, vol. 45, pp. 1456-1467. |
Tarokh V., et al., “Space-Time Codes For High Data Rate Wireless Communication: Performance Criterion and Code Construction,” IEEE Transactions on Information Theory, 1998, vol. 44, pp. 744-765. |
Teletar I.E., “Capacity of Multi-antenna Gaussian Channels”, European Transactions on Telecommunications, vol. 10, Nov. 1999, pp. 1-28. |
The White House, “Presidential Memorandum: Unleashing the Wireless Broadband Revolution”, [retrieved on Jun. 28, 2010] Retrieved from the Internet: URL: http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution. |
Third Office Action from counterpart Mexican Patent Application No. MX/a/2014/013795 dated Jul. 27, 2016, 6 pages. |
Third Office Action from foreign counterpart China Patent Application No. 201280044869.5, dated Aug. 31, 2017, 15 pages. |
Tomlinson M., “New Automatic Equaliser Employing Modulo Arithmetic,” Electronics Letters, 1971, vol. 7 (5/6), pp. 138-139. |
Tran L.N., et al. “A Conic Quadratic Programming Approach to Physical Layer Multicasting for Large-Scale Antenna Arrays,” IEEE Signal Processing Letters, 2014, vol. 21 (1), pp. 114-117. |
Truong K.T., et al., “The Viability of Distributed Antennas for Massive MIMO Systems,” Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 3-6, 2013, pp. 1318-1323. |
Tsakalaki E. P., et al., On the Beamforming Performance of Large-Scale Antenna Arrays , Proc. Loughborough Antennas and Propagation Conference (LAPC), Nov. 12-13, 2012, 4 pages. |
Tse D et al., “Diversity-multiplexing tradeoff in multiple-access channels”, IEEE Trans. Info. Th., Mar. 2004, vol. 50 (9), pp. 1859-1874. |
Tse et al., “Performance Tradeoffs between Maximum Ratio Transmission and Switched-Transmit Diversity”, in Proc. 11.sup.th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, vol. 2, Sep. 2000, pp. 1485-1489. |
Tureli U., et al., “OFDM blind carrier offset estimation: ESPRIT,” IEEE Trans. Common, 2000, vol. 48 (9), pp. 1459-1461. |
Tyler N., et al., “Adaptive antennas: the Calibration Problem”, IEEE Comm. Mag., pp. 114-122, Dec. 2004. |
Ubuquiti, “airFiber”, downloaded from http://www.ubnt.com/airfiber on Sep. 4, 2015, 10 pages. |
Ubuquiti, “airMAX”, [online], Retrieved from the Internet: http:www.ubnt.comairmax, 2015, 10 pages. |
Uthansakul P., et al., MIMO antenna selection using CSI from reciprocal channel, Int. Journal Of Elect. and Info. Eng., 2010, vol. 4 (10), pp. 482-491. |
Valkama M., et al., “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Transactions On Signal Processing, vol. 49, No. 10, 2001, pp. 2335-2344. |
Vallet P., et al., Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signals Case, IEEE Trans. Inform. Theory, Feb. 2012, vol. 58 (2), pp. 1043-1068. |
Van B.D. et al.,“Beamforming: A Versatile Approach to Spatial Filtering,” IEEE ASSP Magazine, 1988, pp. 4-24. |
Van De Beek J., et al., “ML estimation of time and frequency offset in OFDM systems,” IEEE Transactions, Signal Processing, 1997, vol. 45 (7), pp. 1800-1805. |
Vance, “Steve Perlman's wireless fix”, BusinessWeek, Jul. 2011, 10 pages [online], retrieved from the Internet: URL:http://www.businessweek.com/magazine/the-edison-of-silicon-valley-07272011.html. |
Vaughan R.G., “On Optimum Combining at the Mobile,” IEEE Transactions on Vehicular Technology, Nov. 1988, vol. 37(4), pp. 181-188. |
Vaughn R., et al., “Switched parasitic elements for antenna diversity,” IEEE Transactions on Antennas and Propagation, 1999, vol. 47, pp. 399-405. |
Venkatesan et al., “Network MIMO: Overcoming InterCell Interference In Indoor Wireless Systems,” Asilomar Conference On Signals, 2007, vol. 2007, pp. 83-87. |
Venkatesan S., et al., “A WiMAX-Based Implementation of Network MIMO for Indoor Wireless Systems,” EURASIP Journal on Advances in Signal Processing, 2009, vol. 2009, 11 pages. |
Vieira J., et al., “A flexible 100-antenna testbed for Massive MIMO,” in Proc IEEE Globecom 2014 Workshop—Massive MIMO: From Theory to Practice, Austin, Texas, USA, Dec. 2014, pp. 287-293. |
Vishwanath S., “Duality, Achievable Rates, and Sum-Rate Capacity Of Gaussian MIMO Broadcast Channels,” IEEE Trans. Info. Th, 2003, vol. 49 (10), pp. 2658-2668. |
Visotsky E., et al., “Space-Time Transmit Precoding with Imperfect Feedback,” IEEE Transactions on Information Theory, 2001, vol. 47, pp. 2632-2639. |
Visuri et al “Colocated Antenna Arrays: Design Desiderata for Wireless Communications,” 2002, vol. 2002, pp. 580-584. |
Viswanath P., et al., “Opportunistic beamforming using dump antennas,” IEEE Transactions On Information Theory, 2002, vol. 48, pp. 1277-1294. |
Viswanath, “Sum Capacity of the Vector Gaussian Broadcast Channel and Uplink-Downlink Duality,” IEEE Transactions On Information Theory, 2003, vol. 49 (8), pp. 1912-1921. |
VIVATO—Homepage, http://www.vivato.net/, printed Apr. 9, 2004, 1 page. |
Wagner et al., “Large System Analysis of Linear Precoding in MISO Broadcast Channels with Limited Feedback,” IEEE Transactions on Information Theory, 2012, vol. 58(7), pp. 4509-4537. |
Waldschmidt C., et al., “Compact MIMO-arrays based on polarisation-diversity”, Proc. IEEE Antennas and Prop. Symp., 2003, vol. 2, pp. 499-502. |
Waldschmidt C., et al., “Complete RF system model for analysis of compact MIMO arrays,” IEEE Trans. on Vehicular Technologies, 2004, vol. 53, pp. 579-586. |
Wallace J W., et al., “Termination-dependent diversity performance of coupled antennas: Network theory analysis,” IEEE Transactions on Antennas and Propagation, 2004, vol. 52, pp. 98-105. |
Wallace J.W., et al., “Statistical Characteristics of Measured MIMO Wireless Channel Data and Comparison to Conventional Models,” Proceedings IEEE Vehicular Technology Conference, Oct. 2001, vol. 2 (7-11), pp. 1078-1082. |
Wang Z., et al., “Enhanced downlink MU-Comp schemes for TD-LTE-Advanced,” Wireless Communications and Networking Conference (WCNC), IEEE, 2010, 6 pages. |
Wang Z., Performance of uplink multiuser massive MIMO system, International Conference on Acoustics Speech, and Signal Processing, Florence, Italy, 2014, 5 pages. |
Wannstrom J., “Carrier Aggregation Explained,” 3GPP, Jun. 2013, 6 pages. Retrieved from the Internet: URL: http://www.3gpp.org/Carrier-Aggregation-explained. |
Warrington et al., “Measurement and Modeling of HF Channel Directional Spread Characteristics for Northerly Path,” Radio Science, RS2006, 2006, vol. 41, pp. 1-13. |
Watrous, et al., “Zero-Knowledge against Quantum Attacks,” SIAM Journal on Scientific Computing, 2009, vol. 2009, pp. 25-58. |
Webpass, Buildings online, printed on Sep. 4, 2015, Retrieved from the Internet: http://www.webpass.net/buildings?city=san+francisco&column=address&order=asc, 3 pages. |
Weedon W.H., et al., “MEMS--switched reconfigurable antennas”, IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), vol. 3, 2001, pp. 654-657. |
Wen C K., et al., “Asymptotic Mutual Information for Rician MIMO-MA Channels with Arbitrary Inputs: A Replica Analysis”, IEEE Trans. Commun., 2010, vol. 58 (10), pp. 2782-2788. |
Wen C K., et al., “On the Sum-Rate of Multiuser MIMO Uplink Channels with Jointly-Correlated Rician fading”, IEEE Trans. Commun., 2011, vol. 59 (10), pp. 2883-2895. |
Wennestrom et al., “An Antenna Solution for MIMO Channels: The Switched Parasitic Antenna”, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 1, 2001, pp. 159-163. |
Wheeler H A., et al., “Small antennas,” IEEE Transactions on Antennas and Propagation, 1975, vol. AP-23 (4), pp. 462-469. |
Wi-Fi alliance, homepage, pp. 1-3, printed on Aug. 14, 2014, Retrieved from the Internet: URL: www.wi-fi.org. |
Wi-Fi alliance, “Wi-Fi certified makes it Wi-Fi” 2009, http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf, 1 page. |
Wi-Fi alliance, “Wi-Fi certified makes it Wi-Fi: What Retailers and Consumers Need to Know” pp. 1-8, Sep. 2009, Retrieved from the Internet: URL: http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf. |
Wikipedia, 2014, 6 pages [online], “IS-95” Retrieved from the Internet: URL: http:en.wikipedia.orgwikiIS-95. |
Wikipedia, Advanced Mobile Phone System. 2014, 6 pages [online]. Retrieved from the Internet: URL: https://en.wikipedia.org/wiki/AdvancedMobilePhoneSystem. |
Wikipedia, “List of ad hoc routing protocols”, printed on Mar. 8, 2011, 1 page, http://en.wikipedia.org/wiki/List_of_ad-hoc_routing_protocols. |
Wikipedia, “Mobile ad hoc network,” 2011, pp. 1-3, https://en.wikipedia.org/wiki/Mobile_ad_hoc_network. |
WiMAX forum, 1 page, Aug. 14, 2014 http://www.wimaxforum.org/. |
Wired, Has OnLive's Steve Perlman Discovered Holy Grail of Wireless?, Jun. 30, 2011 Retrieved from the Internet: http:www.wired.comepicenter201106perlman-holy-grail-wireless. |
Wong I., et al., “Long Range Channel Prediction for Adaptive OFDM Systems,” Proceedings IEEE Asilomar Conf. on Signals, Systems, and Computers, vol. 1 ,pp. 723-736, Pacific Grove, CA, USA, Nov. 7-10, 2004. |
Wong I.C., et al., “Exploiting Spatia-Temporal Correlations in MIMO Wireless Channel Prediction,” Dec. 2006, IEEE Globecom Conference, 5 pages. |
Wong, I.C., et al., “Joint Channel Estimation and Prediction for OFDM Systems,” Proceedings in IEEE Global Telecommunications Conference, St. Louis, MO, 2005, pp. 2255-2259. |
Wong K., et al., “A Joint-Channel Diagonalization for Multiuser MIMO Antenna Systems,” IEEE Transactions on Wireless Communications, 2003, vol. 2 (4), pp. 773-786. |
Wong, “Performance Enhancement of Multiuser MIMO Wireless Communication Systems,” IEEE Transactions On Communications, 2002, vol. 50 (12), pp. 1960-1970. |
Wu M., et al., “Approximate Matrix Inversion for High-Throughput Data Detection in the Large-scale MIMO Uplink,” IEEE International Symposium on Circuits and Systems (ISCAS), May 2013, pp. 2155-2158. |
Xiao L., et al., “A Comparative Study of MIMO Capacity with Different Antenna Topologies,” IEEE ICCS'02, vol. 1, Nov. 2002, pp. 431-435. |
Xu J., “LTE-Advanced Signal Generation and Measurements using SystemVue,” Agilent Technologies, Dec. 23, 2010, 46 pages. |
Yang W., et al., “On the Capacity of Large-MIMO Block-Fading Channels,” IEEE Journal on Selected Areas in Communications, Sep. 30, 2012, vol. 31(2), pp. 1-16. |
Yin B., et al., “Full-Duplex in Large-Scale Wireless System,” Proceeding of the Asilomar Conference on Signals, Systems and Computers, 2013, 5 pages. |
Yin B., et al., “Implementation trade-offs for linear detection in large-scale MIMO systems,” Proceeding Institute of Electrical and Electronics Engineers International Conference on Acoustics Speech, and Signal Processing, 2013, 5 pages. |
Yin H., et al., A Coordinated Approach to Channel Estimation in Large-scale Multiple-antenna Systems, IEEE Journal on Selected Areas in Communications, Sep. 2, 2012, vol. 31 (2), pp. 1-10. |
Yoo, et al., “Multi-antenna broadcast channels with limited feedback and user selection,” Draft Version, 36 pages, dated Jun. 8, 2006 of IEEE Journal on Sel. Areas in Communications, vol. 25, pp. 1478-1491, Jul. 2007. |
Yoo, “Multi-Antenna Downlink Channels with Limited Feedback and User Selection,” IEEE Journal On Selected Areas In Communications, Sep. 2007, vol. 25 (7), pp. 1478-1491. |
Yu, “Sum Capacity of Gaussian Vector Broadcast Channels,” IEEE Transactions On Information Theory, 2004, vol. 50 (9), pp. 1875-1892. |
Yu W., et al., “Trellis Precoding for the Broadcast Channel,” IEEE Globecom, 2001, vol. 2, pp. 1344-1348. |
Zaidel B., et al., “Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking”, Institute of Electrical and Electronics Engineers Transactions on Information Theory, Mar. 2012, vol. 58 (3), pp. 1413-1440. |
Zakhour R., et al., “Min-Max Fair Coordinated Beamforming via Large Systems Analysis,”, in Proc. of the IEEE International Symposium on Information Theory, St. Petersburg, Jul. 2011. |
Zamir R ., et al., “Capacity and lattice-strategies for cancelling known interference,” Proceedings of International Symposium on Information Theory, Honolulu, Hawaii, Nov. 2000, pp. 1-32. |
Zetterberg P., “Experimental Investigation of TDD Reciprocity based Zero-Forcing Transmit Precoding”, EURASIP, Jun. 2010. |
Zhang, “Coordinated Multi-Cell MIMO Systems with Cellular Block Diagonalization,” IEEE, 2007, pp. 1669-1673. |
Zhang H., et al., Cochannel Interference Mitigation and Cooperative Processing in Downlink Multicell Multiuser MIMO Networks, EURASIP Journal on Wireless Communications and Networking, vol. 2004 (2), Jul. 2004, pp. 222-235. |
Zhang J., et al., “Hermitian Precoding for Distributed MIMO Systems with Individual Channel State Information,” IEEE Journal on Selected Areas in Communications, 2013, vol. 31 (2), pp. 241-250. |
Zhang J., et al. “On Capacity of Large-Scale MIMO Multiple Access Channels with Distributed Sets of Correlated Antennas,” IEEE Journal on Selected Areas in Communications, Sep. 26, 2012, vol. 31 (2), pp. 1-52. |
Zhang, “Networked MIMO with Clustered Linear,” IEEE Transactions on Wireless Communications, 2009, vol. 8 (4), pp. 1910-1921. |
Zhang R., et al. Electromagnetic Lens-focusing Antenna Enabled Massive MIMO, Jun. 6, 2013, pp. 1-7. |
Zheng L., et al., “Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels,” IEEE Trans. Info. Th., 2003, vol. 49 (5), pp. 1073-1096. |
Zhou Q., et al., “An Improved LR-aided K-Best Algorithm for MIMO Detection,” in Proc. IEEE International Conference on Wireless Communications and Signal Processing (WCSP), Oct. 2012, 5 pages. |
Zhuang X., et al., “Channel models for link and system level simulations,” IEEE 802.16 Broadband Wireless Access Working Group, 2004, 15 pages. |
Zogg, “Multipath Delay Spread in a Hilly Region at 210 MHz,” IEEE Transactions on Vehicular Technology, 1987, vol. VT-36 (4), pp. 184-187. |
Zou R., et al., “Li Reducing the Complexity of Quasi-Maximum-Likelihood Detectors Through Companding for Coded MIMO Systems,” IEEE Transactions on Vehicular Technology, Mar. 2012, vol. 2012, pp. 1109-1123. |
Zyren J., “Overview on the 3GPP Long Term Evolution Physical Layer,” Freescale White Paper, Jul. 2007, 27 pages. |
Advisory Action from U.S. Appl. No. 13/844,355, dated Jul. 17, 2019, 3 pages. |
Advisory Action, U.S. Appl. No. 14/611,565, dated Feb. 7, 2020, 3 pages. |
Choi J., et al., “Interpolation Based Unitary Precoding for Spatial Multiplexing MIMO-OFDM with Limited Feedback,” Global Telecommunications Conference 2004 (GLOBECOM '04), IEEE, Dec. 3, 2004, pp. 214-218. |
Communication pursuant to Article 94(3) EPC for Application No. 10184659.0, dated Dec. 21, 2018, 4 pages. |
Communication pursuant to Article 94(3) EPC for Application No. EP13856705.2, dated Mar. 13, 2018, 6 pages. |
Communication pursuant to Article 94(3) EPC, EP App. No. 05254757.7, dated Dec. 21, 2018, 4 pages. |
Communication pursuant to Article 94(3) EPC, EP App. No. 05254757.7, dated Nov. 11, 2019, 5 pages. |
Communication pursuant to Article 94(3) EPC, EP App. No. 10184659, dated Nov. 11, 2019, 5 pages. |
Communication pursuant to Article 94(3) EPC, EP App. No. 10184659, dated Dec. 4, 2017, 5 pages. |
Communication Pursuant to Article 94(3) EPC, EP App. No. 13784690.3, dated Aug. 23, 2018, 6 pages. |
Communication pursuant to Article 94(3) EPC, EP App. No. 18186156.8, dated Jul. 30, 2019, 5 pages. |
Corrected Notice of Allowability from U.S. Appl. No. 15/057,002, dated Jun. 3, 2019, 11 pages. |
Corrected Notice of Allowance from U.S. Appl. No. 13/797,950, dated Nov. 13, 2018, 16 pages. |
Corrected Notice of Allowance from U.S. Appl. No. 14/086,700, dated Nov. 8, 2018, 104 pages. |
Corrected Notice of Allowance, U.S. Appl. No. 13/797,984, dated Apr. 5, 2018, 12 pages. |
Decision of Grant, RU App. No. 2016144927, dated Nov. 29, 2019, 8 pages of Original Document Only. |
Decision to grant a European patent, EP App. No. 11838640.8, dated Feb. 7, 2019, 2 pages. |
Decision to Grant a Patent, JP App. No. 2017-082862, dated Dec. 10, 2018, 7 pages. |
Decision to Grant a patent, JP App. No. 2017-110950, dated Nov. 15, 2017, 6 pages. |
European Search Report and Search Opinion, EP App. No. 17844265.3, dated Feb. 21, 2020, 12 pages. |
European Search Report, EP App. No. 19159810.1, dated Sep. 25, 2019, 8 pages. |
Examination report from foreign counterpart Indian Patent Application No. 3496/CHENP/2013, dated Oct. 29, 2018, 7 pages. |
Examination report No. 1, AU App. No. 2015214278, dated Jun. 5, 2018, 4 pages. |
Examination report No. 1, AU App. No. 2015248161, dated Jul. 2, 2018, 5 pages. |
Examination report No. 1, AU App. No. 2018253582, dated Jun. 3, 2019, 3 pages. |
Examination report No. 2, AU App. No. 2017210619, dated May 31, 2019, 4 pages. |
Examination report, AU App. No. 2018241100, dated Sep. 27, 2019, 2 pages. |
Examiner's Report, AU App. No. 2010256510, dated Apr. 16, 2015, 3 pages. |
Extended European Search Report for Application No. 15746217.7, dated Jan. 22, 2018, 18 pages. |
Extended European Search Report for Application No. 15780522.7, dated Feb. 6, 2018, 13 pages. |
Extended European Search Report, EP App. No. 18186156.8, dated Nov. 26, 2018, 7 pages. |
Federal Communications Commission, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields,” OET Bulletin 65, Ed. 97-01, Aug. 1997, 84 pages. |
Final Office Action from U.S. Appl. No. 12/802,975, dated Jun. 22, 2018, 27 pages. |
Final Office Action from U.S. Appl. No. 13/232,996, dated Mar. 21, 2018, 20 pages. |
Final Office Action from U.S. Appl. No. 13/844,355, dated Feb. 21, 2019, 34 pages. |
Final Office Action from U.S. Appl. No. 14/611,565, dated Oct. 25, 2018, 20 pages. |
Final Office Action from U.S. Appl. No. 15/057,002, dated Jul. 16, 2018, 13 pages. |
Final Office Action from U.S. Appl. No. 15/340,914, dated Jan. 3, 2019, 67 pages. |
Final Office Action from U.S. Appl. No. 13/233,006, dated Nov. 13, 2018, 9 pages. |
Final Office Action from U.S. Appl. No. 13/844,355, dated Jun. 3, 2019, 26 pages. |
Final Office Action, U.S. Appl. No. 12/802,975, dated Oct. 18, 2019, 21 pages. |
Final Office Action, U.S. Appl. No. 15/682,076, dated Oct. 30, 2019, 26 pages. |
Final Office Action, U.S. Appl. No. 14/611,565, dated Dec. 4, 2019, 19 pages. |
Final Office Action, U.S. Appl. No. 15/792,610, dated Dec. 16, 2019, 8 pages. |
First Exam Report from foreign counterpart New Zealand Application No. 701691, dated Feb. 10, 2016, 4 pages. |
First Examination Report from foreign counterpart Australian Patent Application No. AU2017245425, dated May 9, 2018, 9 pages. |
First Examination Report from foreign counterpart New Zealand Application No. 742186, dated Jun. 28, 2018, 4 pages. |
First Examination Report from foreign counterpart New Zealand Application No. 743604, dated Jul. 10, 2018, 5 pages. |
First Examination Report, for counterpart Australian Patent Application No. AU2011323559, dated Sep. 30, 2015, 3 pages. |
First Examination Report, NZ App. No. 751530, dated Oct. 18, 2019, 3 pages. |
First Examination Report, NZ App. No. 757995, dated Nov. 1, 2019, 2 pages. |
First Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201480016091.6, dated Apr. 25, 2018, 17 pages. |
First Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201580007666.2, dated Jan. 11, 2019, 13 pages. |
First Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201580019760.X, dated Jun. 5, 2019, 12 pages. |
First Office Action from counterpart European Patent Application No. 10 784 126.4 dated Dec. 17, 2015, 7 pages. |
Fourth Office Action, CN App. No. 201480016091.6, dated Dec. 10, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document). |
Huawei, et al., “CoMP Clarification of definitions and TP,” R1-084351, Nov. 10-14, 2008, 3GPP TSG RAN WG1 Meeting #55, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/023436, dated Oct. 27, 2016, 6 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2017/047963, dated Mar. 7, 2019, 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2017/058291, dated May 9, 2019, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/US2017/058291, dated Mar. 8, 2018, 12 pages. |
Khaled N., et al., “Interpolation Based Multi-Mode Precoding for MIMO-OFDM Systems with Limited Feedback,” IEEE Transactions on Wireless Communications, vol. 6 (3), Mar. 2007, pp. 1003-1013. |
Mitsubishi Electric, “Leakage-based Precoding for CoMP in LTE-A,” 3GPP RAN1 #56, R1-090596, Feb. 9-13, 2009, 14 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Jan. 14, 2019, 112 pages. |
Non-Final Office Action from U.S. Appl. No. 13/232,996, dated Nov. 5, 2018, 36 pages. |
Non-Final Office Action from U.S. Appl. No. 13/844,355, dated Aug. 27, 2018, 39 pages. |
Non-Final Office Action from U.S. Appl. No. 14/611,565, dated Apr. 19, 2018, 141 pages. |
Non-Final Office Action from U.S. Appl. No. 15/181,383, dated Jun. 25, 2018, 7 pages. |
Non-Final Office Action from U.S. Appl. No. 12/802,975, dated Aug. 1, 2013, 27 pages. |
Non-Final Office Action from U.S. Appl. No. 13/233,006, dated Jul. 11, 2018, 29 pages. |
Non-Final office action from U.S. Appl. No. 13/844,355, dated Aug. 12, 2019, 14 pages. |
Non-final Office Action from U.S. Appl. No. 13/844,355, dated Mar. 21, 2019, 31 pages. |
Non-Final Office Action from U.S. Appl. No. 14/611,565, dated Apr. 4, 2019, 35 pages. |
Non-Final Office Action from U.S. Appl. No. 15/340,914, dated Apr. 25, 2018, 15 pages. |
Non-Final office action from U.S. Appl. No. 15/340,914, dated Aug. 8, 2019, 27 pages. |
Non-Final Office Action from U.S. Appl. No. 15/792,610, dated Apr. 18, 2019, 147 pages. |
Non-Final Office Action from U.S. Appl. No. 16/208,895, dated Apr. 26, 2019, 7 pages. |
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Mar. 25, 2020, 5 pages. |
Non-Final Office Action, U.S. Appl. No. 15/340,914, dated Mar. 25, 2020, 15 pages. |
Non-Final Office Action, U.S. Appl. No. 15/682,076, dated Jan. 28, 2019, 20 pages. |
Non-Final Office Action, U.S. Appl. No. 16/188,841, dated Jan. 22, 2020, 9 pages. |
Non-Final Office Action, U.S. Appl. No. 16/208,895, dated Jan. 3, 2020, 7 pages. |
Non-Final Office Action, U.S. Appl. No. 16/253,028, dated Oct. 18, 2019, 10 pages. |
Non-Final Office Action, U.S. Appl. No. 16/436,864, dated Mar. 4, 2020, 6 pages. |
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 717370, dated Jan. 10, 2018, 1 page. |
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 729017, dated Jun. 28, 2018, 1 page. |
Notice of Acceptance from foreign counterpart New Zealand Patent Application No. 738000, dated Jun. 4, 2019, 1 page. |
Notice of acceptance, AU App. No. 2017210619, dated Oct. 14, 2019, 4 pages. |
Notice of acceptance, AU App. No. 2018201553, dated Nov. 14, 2019, 4 pages. |
Notice of Acceptance, AU App. No. 2018253582, dated Nov. 18, 2019, 3 pages. |
Notice of Allowance for Patent from foreign counterpart Korean Patent Application No. 10-2017-7002596, dated Feb. 27, 2019, 3 pages. |
Notice of Allowance from U.S. Appl. No. 13/797,950, dated Apr. 16, 2018, 117 pages. |
Notice of Allowance from U.S. Appl. No. 13/797,950, dated Aug. 2, 2018, 23 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,988, dated Nov. 15, 2018, 11 pages. |
Notice of Allowance from U.S. Appl. No. 12/802,988, dated Sep. 25, 2018, 96 pages. |
Notice of Allowance from U.S. Appl. No. 13/232,996, dated Jan. 9, 2019, 11 pages. |
Notice of Allowance from U.S. Appl. No. 13/232,996, dated Mar. 20, 2019, 10 pages. |
Notice of Allowance from U.S. Appl. No. 13/233,006, dated Apr. 3, 2019, 19 pages. |
Notice of Allowance from U.S. Appl. No. 13/233,006, dated Jul. 12, 2019, 12 pages. |
Notice of Allowance from U.S. Appl. No. 13/233,006, dated May 30, 2019 12 pages. |
Notice of Allowance from U.S. Appl. No. 13/475,598, dated Oct. 19, 2015, 29 pages. |
Notice of Allowance from U.S. Appl. No. 14/086,700, dated Feb. 28, 2018, 5 pages. |
Notice of Allowance from U.S. Appl. No. 14/086,700, dated May 18, 2018, 21 pages. |
Notice of Allowance from U.S. Appl. No. 14/086,700, dated Sep. 28, 2018, 21 pages. |
Notice of Allowance from U.S. Appl. No. 15/057,002, dated Apr. 16, 2019, 11 pages. |
Notice of Allowance from U.S. Appl. No. 15/181,383, dated Jan. 25, 2019, 87 pages. |
Notice of Allowance from U.S. Appl. No. 15/181,383, dated Mar. 20, 2019, 10 pages. |
Notice of Allowance from U.S. Appl. No. 15/201,276, dated Jan. 23, 2019, 29 pages. |
Notice of Allowance from U.S. Appl. No. 15/201,276, dated Oct. 11, 2018, 5 pages. |
Notice of Allowance from U.S. Appl. No. 15/201,276, dated May 28, 2019, 4 pages. |
Notice of Allowance from U.S. Appl. No. 15/616,817, dated Jun. 26, 2018, 131 pages. |
Notice of Allowance from U.S. Appl. No. 15/616,817, dated Oct. 22, 2018, 21 pages. |
Notice of Allowance from U.S. Appl. No. 15/616,817, dated Apr. 25, 2018, 10 pages. |
Notice of Allowance, KR App. No. 10-2014-7009876, dated Oct. 4, 2019, 3 pages (1 page of English Translation and 2 pages of Original Document). |
Notice of Allowance, KR App. No. 10-2018-7035654, dated Oct. 2, 2019, 4 pages (2 pages of English Translation and 2 pages of Original Document). |
Notice of Allowance, TW App. No. 107123446, dated Nov. 20, 2019, 3 pages of Original Document Only. |
Notice of Allowance, U.S. Appl. No. 13/844,355, dated Oct. 21, 2019, 8 pages. |
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Dec. 27, 2019, 10 pages. |
Notice of Allowance, U.S. Appl. No. 13/844,355, dated Dec. 16, 2019,2 pages. |
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Feb. 25, 2020, 7 pages. |
Notice of Allowance, U.S. Appl. No. 16/253,028, dated Mar. 12, 2020, 7 pages. |
Notice of Allowancefrom U.S. Appl. No. 12/802,958, dated Sep. 19, 2018, 22 pages. |
Notice of Allowancefrom U.S. Appl. No. 15/057,002, dated Dec. 19, 2018, 68 pages. |
Notice of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 2016-234908, dated May 30, 2019, 5 pages. |
Notice of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 2016-234908, dated Nov. 22, 2018, 10 pages. |
Notice of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 2016-501744, dated Mar. 5, 2018, 15 pages. |
Notice of Reasons for Rejection from foreign counterpart Korean Patent Application No. 10-2014-7009876, dated Mar. 25, 2019, 11 pages. |
Notice to File a Response from foreign counterpart Korean Patent Application No. 10-2018-7035654, dated Dec. 14, 2018, 10 pages. |
Notification of Reason for Refusal from foreign counterpart Korean Patent Application No. 2019-7014768, dated Jun. 27, 2019, 10 pages. |
Notification of Reasons for Refusal from foreign counterpart Japanese Patent Application No. 2017-112639, dated Aug. 13, 2018, 4 pages. |
Notification of the 1st Substantive requirement, MX App. No. MX/A/2017/002906, dated Sep. 13, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document). |
Office Action and Examination Search Report from foreign counterpart Canadian Patent Application No. 2904981, dated May 3, 2019, 6 pages. |
Office Action and Examination Search Report, CA App. No. 2885817, dated Jul. 16, 2019, 4 pages. |
Office Action and Search Report from foreign counterpart Russian Patent Application No. 2016144927/08(072072), dated Oct. 30, 2018, 12 pages. |
Office Action and Search Report from foreign counterpart Taiwan Patent Application No. 105143637, dated Jan. 19, 2018, 12 pages. |
Office Action and Search Report from foreign counterpart Taiwan Patent Application No. 107123446, dated Aug. 8, 2019, 27 pages. |
Office Action and Search Report, TW App. No. 103107541, dated Dec. 6, 2017, 15 pages. |
Office Action from foreign counterpart Canadian Patent Application No. 2816556, dated May 30, 2019, 3 pages. |
Office Action from foreign counterpart Chinese Patent Application No. 201380061515.6, dated Apr. 23, 2019, 2 pages. |
Office Action from foreign counterpart Israel Patent Application No. 235518, dated Apr. 7, 2019, 4 pages. |
Office Action from foreign counterpart Israel Patent Application No. 248265, dated Oct. 25, 2018, 6 pages. |
Office Action from foreign counterpart Israel Patent Application No. 253541, dated Nov. 29, 2018, 4 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 2016-550718, dated Jan. 10, 2019, 4 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 2019-039195, dated Jun. 17, 2019, 8 pages. |
Office Action from foreign counterpart Mexican Patent Application No. MX/a/2014/013377, dated Nov. 30, 2017, 4 pages. |
Office Action from foreign counterpart Taiwan Patent Application No. 102117728, dated Nov. 29, 2016, 6 pages. |
Office Action, EP App. No. 13790935, dated Oct. 23, 2019, 8 pages. |
Office Action, EP App. No. 13790935.4, dated Feb. 4, 2019, 11 pages. |
Office Action, IL App. No. 241319, dated Nov. 26, 2019, 6 pages (3 pages of English Translation and 3 pages of Original Document). |
Office Action, IL App. No. 248265, dated Feb. 26, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document). |
Office Action, JP App. No. 2016-562961, dated Feb. 3, 2020, 7 pages (4 pages of English Translation and 3 pages of Original Document). |
Office Action, KR App. No. 10-2014-7035524, dated Oct. 21, 2019, 11 pages (6 pages of English Translation and 5 pages of Original Document). |
Office Action, TW App. No. 103107541, dated Sep. 28, 2018, 7 pages. |
Panasonic, “Target scenarios for new carrier types,” 3GPP TSG-RAN WGI#72, R1-130684, Jan. 28, 2013-Feb. 1, 2013, 7 pages. |
Requirement for Restriction/Election from U.S. Appl. No. 15/792,610, dated Jun. 11, 2018, 6 pages. |
Requirement for Restriction/Election from U.S. Appl. No. 15/792,610, dated Nov. 29, 2018, 7 pages. |
Rusek et al., “Scaling up MIMO: Opportunities and Challenges with Very Large Arrays”, IEEE Signal Proces. Mag., Jan. 2012, vol. 30, No. 1, pp. 1-30. |
S. Nguyen and A. Ghrayeb, Precoding for Multicell MIMO Systems with Compressive Rank-q Channel Approximation, in Proc. IEEE PIMRC, Fundamentals and Phy Track, London, UK, Sep. 2013, pp. 1227-1232. |
Second Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201580007666.2, dated Jul. 30, 2019, 8 pages. |
Srinidhi et al., “Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance,” IEEE Trans. Commun, 2010, 5 pages. |
Summons to attend oral proceedings pursuant to rule 115(1) EPC for Application No. 10156954.9, dated Jan. 30, 2019, 8 pages. |
Supplemental Notice of Allowance from U.S. Appl. No. 12/802,958, dated Dec. 3, 2018, 11 pages. |
Teukolsky S. A., Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992, 949 pages. |
Texas Instruments, “Aspects of Coordinated Multi-Point Transmission for Advanced E-UTRA,” Nov. 11-15, 2008, 3GPP TSG RAN WG1 #55, R1-084444, 5 pages. |
Third Office Action from foreign counterpart Chinese Patent Application No. 201480016091.6, dated Jul. 10, 2019, 5 pages. |
Truong K.T., et al. “Effects of Channel Aging in Massive MIMO Systems,” Journal of Communications and Networks, Special Issue on Massive MIMO, 2013, vol. 15 (4), pp. 338-351. |
Qualcomm Incorporated, “Definition of Virtual Antenna Mapping (VAM) and Applicability of S-CPICH Power Accuracy Requirement”, 3GPP TSG-WG4 Meeting 58Ad hoc #1-2011, R4-112408, Apr. 11-15, 2011, 6 pages. |
Second Office Action, CN App. No. 201780066182.4, dated May 7, 2021, 13 pages (9 pages of English Translation and 4 pages of Original Document). |
Stevanovic et al., “Smart Antenna Systems for Mobile Communications”, Final Report, Laboratoire d'Electromagnetisme et d'Acoustique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne Suisse, dated Jan. 2003, 120 pages. |
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 12762167.0, Nov. 29, 2017, 8 pages. |
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13784690.3, Jul. 6, 2020, 5 pages. |
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13843203.4, Dec. 21, 2020, 9 pages. |
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 13856705.2, Nov. 5, 2018, 7 pages. |
Summons to attend oral proceedings pursuant to Rule 115(1) EPC, EP App. No. 14779084.4, Nov. 29, 2019, 9 pages. |
Supplemental Notice of Allowability, U.S. Appl. No. 12/802,975, dated Oct. 28, 2020, 2 pages. |
Supplemental Notice of Allowability, U.S. Appl. No. 15/340,914, dated Jan. 13, 2021, 5 pages. |
Supplementary Partial European Search Report and Search Opinion, EP App No. 17864744.2, dated May 13, 2020, 16 pages. |
Written Opinion, BR App. No. 112014027631-5, dated Jun. 18, 2020, 4 pages of Original document only. |
Written Opinion, BR App. No. 112015022911-5, dated Jul. 22, 2020, 4 pages of Original Document Only. |
Written Opinion, BR App. No. 112015023223-0, dated Jul. 22, 2020, 5 pages of Original Document Only. |
Yoshida, Susumu, “Coherent Coordinated Multipoint Transmission Techniques for Wireless Distributed Networks”, Kyoto University, Available Online at <www.soumu.go.jp/main_content/000256555.pdf>, 2013, 5 pages (3 pages of English Translation and 2 pages of Original Document). |
Advisory Office Action, U.S. Appl. No. 14/611,565, dated Nov. 10, 2020, 3 pages. |
CMCC, “Discussion on CQI definition for non-PMI/RI reporting”, 3GPP TSG-RAN WG1 #70, R1-123739, Aug. 13-17, 2012, 6 pages. |
Corrected Notice of Allowability, U.S. Appl. No. 16/188,841, dated Oct. 28, 2020, 7 pages. |
Corrected Notice of Allowability, U.S. Appl. No. 16/436,864, dated Jul. 22, 2020, 2 pages. |
Corrected Notice of Allowance, U.S. Appl. No. 15/792,610, dated Oct. 6, 2020, 4 pages. |
Decision of Refusal, JP App. No. 2016-562961, dated Oct. 28, 2020, 5 pages (4 pages of English Translation and 1 page of Original Document). |
Decision to grant a European patent, EP App. No. 10156950.7, dated May 8, 2020, 2 pages. |
Decision to Grant a Patent, EP App. No. 13790935.4, dated Sep. 24, 2020, 2 pages. |
Decision to Grant, EP App. No. 14770916.6, dated May 28, 2021,2 pages. |
Divisional Notification, CN App. No. 201710491990.7, dated Jul. 13, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document). |
European Search Report and Search Opinion, EP App. No. 17864744.2, dated Aug. 14, 2020, 15 pages. |
Examination Report No. 1, AU App. No. 2019203120, dated Jul. 3, 2020, 4 pages. |
Examination Report No. 1, AU App. No. 2020200070, dated Sep. 8, 2020, 4 pages. |
Examination Report No. 2, NZ App. No. 761315, dated Aug. 5, 2020, 3 pages. |
Examination Report No. 3, AU App. No. 2019200838, dated Aug. 4, 2020, 5 pages. |
Examination Report, AU App. No. 2020201409, dated Apr. 16, 2021, 6 pages. |
Examiner Report, CA App. No. 2885817, dated Jul. 17, 2020, 5 pages. |
Examiner's Report, CA App. No. 2892555, dated Sep. 15, 2020, 2 pages. |
Final Office Action, U.S. Appl. No. 14/611,565, dated May 10, 2021, 7 pages. |
Final Office Action, U.S. Appl. No. 14/611,565, dated Sep. 3, 2020, 7 pages. |
Final Office Action, U.S. Appl. No. 16/188,841, dated Jul. 7, 2020, 17 pages. |
Final Office Action, U.S. Appl. No. 16/208,895, dated Apr. 6, 2021, 8 pages. |
Final Office Action, U.S. Appl. No. 17/317,856, dated Aug. 20, 2021, 33 pages. |
Intention to Grant, EP App. No. 13790935.4, dated Jun. 24, 2020, 8 pages. |
Intention to Grant, EP App. No. 14770916.6, dated Apr. 28, 2021, 8 pages. |
International Search Report and Written Opinion, PCT App. No. PCT/US2021/026431, dated Jun. 29, 2021, 6 pages. |
Li et al., “MIMO techniques in WiMAX and LTE: a feature overview”, IEEE Communications Magazine, May 2010, pp. 86-92. |
Non Final Office Action, U.S. Appl. No. 16/505,593, dated Sep. 10, 2020, 12 pages. |
Non-Final Office Action, U.S. Appl. No. 14/611,565, dated Feb. 26, 2021, 11 pages. |
Non-Final Office Action, U.S. Appl. No. 15/682,076, dated May 27, 2020, 8 pages. |
Non-Final Office Action, U.S. Appl. No. 15/792,610, dated Apr. 29, 2020, 7 pages. |
Non-Final Office Action, U.S. Appl. No. 15/792,610, dated Jan. 13, 2021, 8 pages. |
Non-Final Office Action, U.S. Appl. No. 16/208,895, dated Jul. 28, 2020, 7 pages. |
Non-Final Office Action, U.S. Appl. No. 16/578,265, dated May 12, 2020, 8 pages. |
Non-Final Office Action, U.S. Appl. No. 16/719,169, dated Feb. 4, 2021, 15 pages. |
Non-Final Office Action, U.S. Appl. No. 17/234,699, dated Jul. 15, 2021, 9 pages. |
Non-Final Office Action, U.S. Appl. No. 17/308,031, dated Jul. 15, 2021, 12 pages. |
Non-Final Office Action, U.S. Appl. No. 17/317,856, dated Jul. 19, 2021, 39 pages. |
Notice of Acceptance, NZ App. No. 751530, dated May 1, 2020, 2 pages. |
Notice of Allowance, CA App. No. 2,848,355, dated Apr. 3, 2020, 1 page. |
Notice of Allowance, CA App. No. 2816556, dated May 18, 2021, 1 page. |
Notice of Allowance, CN App. No. 201480016091.6, dated Apr. 24, 2020, 8 pages (3 pages of English Translation and 5 pages of Original Document). |
Notice of Allowance, IL App. No. 248265, dated May 7, 2020, 3 pages. |
Notice of Allowance, IL App. No. 269145, dated Aug. 23, 2020, 3 pages of Original Document Only. |
Notice of Allowance, KR App. No. 10-2015-7014235, dated Oct. 28, 2020, 3 pages (1 pages of English Translation and 2 page of Original Document). |
Notice of Allowance, KR. App. No. 10-2014-7035524, dated Oct. 14, 2020, 4 pages (1 page of English Translation and 3 pages of Original Document). |
Notice of Allowance, U.S. Appl. No. 16/578,265, dated Jan. 28, 2021, 7 pages. |
Notice of Allowance, U.S. Appl. No. 12/802,975, dated Apr. 17, 2020, 12 pages. |
Notice of Allowance, U.S. Appl. No. 12/802,975, dated Aug. 26, 2020, 14 pages. |
Notice of Allowance, U.S. Appl. No. 15/340,914, dated Dec. 2, 2020, 9 pages. |
Notice of Allowance, U.S. Appl. No. 15/340,914, dated Mar. 15, 2021, 4 pages. |
Notice of Allowance, U.S. Appl. No. 15/682,076, dated Jan. 14, 2021, 11 pages. |
Notice of Allowance, U.S. Appl. No. 15/682,076, dated Mar. 24, 2021, 11 pages. |
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Jul. 13, 2021, 10 pages. |
Notice of Allowance, U.S. Appl. No. 15/792,610, dated Oct. 2, 2020, 7 pages. |
Notice of Allowance, U.S. Appl. No. 16/188,841, dated Sep. 10, 2020, 9 pages. |
Notice of Allowance, U.S. Appl. No. 16/436,864, dated Jun. 11, 2020, 5 pages. |
Notice of Allowance, U.S. Appl. No. 16/578,265, dated Mar. 31, 2021, 7 pages. |
Notice of Allowance, U.S. Appl. No. 16/719,169, dated Jun. 17, 2021, 8 pages. |
Notice of Allowance, U.S. Appl. No. 16/719,169, dated Jun. 30, 2021, 2 pages. |
Notice of Allowance, U.S. Appl. No. 17/234,699, dated Jul. 28, 2021, 7 pages. |
Notice of Allowance, U.S. Appl. No. 17/308,031, dated Aug. 4, 2021, 7 pages. |
Notice of Final Rejection, KR App. No. 10-2020-7002077, dated Oct. 15, 2020, 8 pages (4 pages of English Translation and 4 pages of Original Document). |
Notice of Reasons for Refusal, JP App. No. 2019-074024, dated Aug. 3, 2020, 10 pages (6 pages of English Translation and 4 pages of Original Document). |
Notice of Reasons for Refusal, JP App. No. 2019-093904, dated May 27, 2021, 5 pages (3 pages of English Translation and 2 pages of Original Document). |
Notice of Reasons for Refusal, JP App. No. 2019-109413, dated Sep. 10, 2020, 8 pages (5 pages of English Translation and 3 pages of Original Document). |
Notification of Reason for Refusal, KR App. No. 10-2021-7002823, dated Apr. 14, 2021, 06 pages (03 pages of English Translation and 03 pages of Original Document). |
Notification of Reason for Refusal, KR. App. No. 10-2016-7031260, dated Dec. 4, 2020, 12 pages (7 pages of English Translation and 5 pages of Original Document). |
Notification of the 2nd Substantive requirement, MX App. No. MX/A/2017/002906, dated Jul. 15, 2020, 10 pages (5 pages of English Translation and 5 pages of Original Document). |
Office Action, AU App. No. 2019202296, dated May 12, 2020, 5 pages. |
Office Action, CA App. No. 2816556, dated May 19, 2020, 3 pages. |
Office Action, CA App. No. 2945987, dated Apr. 13, 2021, 3 pages. |
Office Action, CA App. No. 3025857, dated Dec. 8, 2020, 5 pages. |
Office Action, EP App. No. 05254757.7, dated Sep. 2, 2020, 5 pages. |
Office Action, EP App. No. 10156950.7, dated Dec. 12, 2017, 9 pages. |
Office Action, EP App. No. 10156950.7, dated Jan. 7, 2020, 6 pages. |
Office Action, EP App. No. 10184659.0, dated Sep. 2, 2020, 5 pages. |
Office Action, EP App. No. 12762167.0, dated Sep. 30, 2016, 6 pages. |
Office Action, EP App. No. 13784690.3, dated Apr. 15, 2019, 4 pages. |
Office Action, EP App. No. 13843203.4, dated Feb. 25, 2019, 6 pages. |
Office Action, EP App. No. 13843203.4, dated Mar. 23, 2018, 5 pages. |
Office Action, EP App. No. 14770916.6, dated Mar. 13, 2018, 5 pages. |
Office Action, EP App. No. 15746217.7, dated Feb. 1, 2021, 10 pages. |
Office Action, EP App. No. 15780522.7, dated Mar. 19, 2020, 6 pages. |
Office Action, EP App. No. 17844265.3, dated May 10, 2021, 9 pages. |
Office Action, EP App. No. 18186156.8, dated Jun. 12, 2020, 6 pages. |
Office Action, IL App. No. 269145, dated Jun. 16, 2020, 4 pages (2 pages of English Translation and 2 pages of Original Document). |
Office Action, IL App. No. 270106, dated May 19, 2020, 8 pages (4 pages of English Translation and 4 pages of Original Document). |
Office Action, JP App No. 2019-168511, dated Dec. 24, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document). |
Office Action, JP App. No. 2018-222367, dated Jun. 8, 2020, 7 pages (4 pages of English Translation and 3 pages of Original Document). |
Office Action, JP App. No. 2019-093904, dated Jul. 6, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document). |
Office Action, JP App. No. 2019-238040, dated Feb. 25, 2021, 7 pages (4 pages of English Translation and 3 pages of Original Document). |
Office Action, KR App. No. 10-2015-7028298, dated Jul. 27, 2020, 14 pages (8 pages of English Translation and 6 pages of Original Document). |
Office Action, KR App. No. 10-2015-7029455, dated Jul. 27, 2020, 14 pages (8 pages of English Translation and 6 pages of Original Document). |
Office Action, RU App. No. 2019104259, dated Aug. 20, 2020, 14 pages (7 pages of English Translation and 7 pages of Original Document). |
Office Action, TW App. No. 108118765, dated Apr. 16, 2020, 6 pages (3 pages of English Translation and 3 pages of Original Document). |
Office Action, TW App. No. 108130461, dated Oct. 30, 2020, 16 pages (7 pages of English Translation and 9 pages of Original Document). |
Office Action, TW App. No. 108148122, dated Jul. 8, 2020, 19 pages (8 pages of English Translation and 11 pages of Original Document). |
Office Action, TW App. No. 109105764, dated Sep. 9, 2020, 47 pages (21 pages of English Translation and 26 pages of Original Document). |
Ponnampalam et al. “On DL Precoding for 11ac”, IEEE 802.11-10/01119r0, Mediatek, Sep. 2010, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20150304855 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61980479 | Apr 2014 | US |