Systems and methods for configuring access control devices

Information

  • Patent Grant
  • 8351350
  • Patent Number
    8,351,350
  • Date Filed
    Wednesday, May 21, 2008
    16 years ago
  • Date Issued
    Tuesday, January 8, 2013
    12 years ago
Abstract
Described herein are systems and methods for configuring access control devices. In overview, some embodiments provide for a method whereby a smartcard is used to configure a disconnected access control device. A user presents this smartcard to a connected access control device which, in response to the presentation of this card, allows the user to download to the smartcard one or more aspects of configuration data for a specified disconnected access control device. The user subsequently presents the smartcard to the relevant disconnected access control device, which uploads and selectively applies the one or more aspects of configuration data.
Description
FIELD OF THE INVENTION

The present invention relates to access control, and more particularly to systems and methods for configuring access control devices. Embodiments of the invention have been particularly developed for configuring access control devices by way of smartcards, and the present disclosure is primarily focused accordingly. Although the invention is described hereinafter with particular reference to such applications, it will be appreciated that the invention is applicable in broader contexts.


BACKGROUND

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.


It is known to use a large number of access control devices in an access control environment. It is also known for such an environment to include:

    • Connected access control devices, which are connected to a network and communicate with a central administration server over that network.
    • Disconnected access control devices, which are not connected to the network. For example, in some cases an access control device, due to its location, cannot be provided with a network connection (either wired or wireless).


Typically, there is a need to periodically provide modified configuration data to access control devices. This is a relatively straightforward process in the case of a connected access control device—the modified configuration data is delivered by the administration server to the device over the network. However, providing modified configuration data to disconnected access control devices presents practical difficulties. One option is to transport the disconnected device to a location where it can receive the configuration data from a computational device, or where it can access an available network connection. However, in many instances, the device is not easily transportable. As such, a more appropriate technique is to transport a portable computational platform to the disconnected device.


Perhaps the most common approach for providing modified configuration data to a disconnected access control device involves physically connecting a computational platform (such as a laptop computer or PDA) to the disconnected access control device, and uploading the modified configuration data from the computational platform to the disconnected access control device. However, this requires a readily accessible connection interface (such as a serial port, USB port, or a parallel port), and typically further requires a reasonable degree of technical expertise to implement. Additionally, there remain significant limitations on the currency of configuration data able to be maintained on the disconnected reader at a given point in time.


It follows that there is a need in the art for improved systems and methods for configuring access control devices.


SUMMARY

It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.


One aspect of the invention provides a method, performable by a connected access control device, for providing one or more aspects of configuration data for a disconnected access control device, the method including the steps of:

    • (a) receiving, whilst in a first mode of operation, data indicative of an instruction to adopt a second mode of operation;
    • (b) being responsive to the data received at (a) for adopting a second mode of operation;
    • (c) receiving data indicative of the disconnected access control device;
    • (d) obtaining first data indicative of the one or more aspects of configuration data for the disconnected access control device;
    • (e) writing to one or more carrier substrates collectively second data indicative of the one or more aspects of configuration data for the disconnected access control device, wherein the disconnected access control device is configured for reading the one or more carrier substrates and selectively applying the one or more aspects of configuration data
    • (f) resuming the first mode of operation.


One embodiment provides a computer-readable carrier medium carrying a set of instructions that when executed by one or more processors cause the one or more processors to carry out a method, performable by a connected access control device, for providing one or more aspects of configuration data for a disconnected access control device, the method including the steps of:

    • (a) receiving, whilst in a first mode of operation, data indicative of an instruction to adopt a second mode of operation;
    • (b) being responsive to the data received at (a) for adopting a second mode of operation;
    • (c) receiving data indicative of the disconnected access control device;
    • (d) obtaining first data indicative of the one or more aspects of configuration data for the disconnected access control device;
    • (e) writing to one or more carrier substrates collectively second data indicative of the one or more aspects of configuration data for the disconnected access control device, wherein the disconnected access control device is configured for reading the one or more carrier substrates and selectively applying the one or more aspects of configuration data;
    • (f) resuming the first mode of operation.


Another aspect of the present invention provides a method, performable by a disconnected access control device, for selectively applying one or more aspects of configuration data, the method including the steps of:

    • (a) receiving, whilst in a first mode of operation, data indicative of an instruction to adopt a second mode of operation;
    • (b) being responsive to the data received at (a) for adopting a second mode of operation;
    • (c) reading from one or more carrier substrates collectively data indicative of the one or more aspects of configuration data;
    • (d) selectively applying the one or more aspects of configuration data;
    • (e) resuming the first mode of operation.


One embodiment provides a computer-readable carrier medium carrying a set of instructions that when executed by one or more processors cause the one or more processors to carry out a method, performable by a disconnected access control device, for selectively applying one or more aspects of configuration data, the method including the steps of:

    • (a) receiving, whilst in a first mode of operation, data indicative of an instruction to adopt a second mode of operation;
    • (b) being responsive to the data received at (a) for adopting a second mode of operation;
    • (c) reading from one or more carrier substrates collectively data indicative of the one or more aspects of configuration data;
    • (d) selectively applying the one or more aspects of configuration data;
    • (e) resuming the first mode of operation.


Another embodiment of the invention provides a method for providing one or more aspects of configuration data to a disconnected access control device, the method including the steps of:

    • (a) presenting a first predetermined access card to a connected access control device such that the connected access control device progresses from a first mode of operation to a second mode of operation;
    • (b) downloading the one or more aspects of configuration data to one or more carrier substrates collectively;
    • (c) presenting a second predetermined access card to the disconnected access control device such that the disconnected access control device progresses from a first mode of operation to a second mode of operation;
    • (d) uploading the one or more aspects of configuration data from the one or more carrier substrates collectively to the disconnected access control device such that the disconnected access control device selectively applies the one or more aspects of configuration data.


Another embodiment of the invention provides an access control device configured to perform a method for providing one or more aspects of configuration data for a disconnected access control device, the method including the steps of

    • (a) receiving, whilst in a first mode of operation, data indicative of an instruction to adopt a second mode of operation;
    • (b) being responsive to the data received at (a) for adopting a second mode of operation;
    • (c) receiving data indicative of the disconnected access control device;
    • (d) obtaining first data indicative of the one or more aspects of configuration data for the disconnected access control device;
    • (e) writing to one or more carrier substrates collectively second data indicative of the one or more aspects of configuration data for the disconnected access control device, wherein the disconnected access control device is configured for reading the one or more carrier substrates and selectively applying the one or more aspects of configuration data
    • (f) resuming the first mode of operation.


Another embodiment of the invention provides an access control device configured for performing a method for selectively applying one or more aspects of configuration data, the method including the steps of:

    • (a) receiving, whilst in a first mode of operation, data indicative of an instruction to adopt a second mode of operation;
    • (b) being responsive to the data received at (a) for adopting a second mode of operation;
    • (c) reading from one or more carrier substrates collectively data indicative of the one or more aspects of configuration data;
    • (d) selectively applying the one or more aspects of configuration data;
    • (e) resuming the first mode of operation.


Reference throughout this specification to “one embodiment” or “an embodiment” or “some embodiments” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” or “in some embodiments” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:



FIG. 1 schematically illustrates an access control environment according to one embodiment.



FIG. 2 schematically illustrates a method according to one embodiment.



FIG. 2A schematically illustrates a method according to one embodiment.



FIG. 3 schematically illustrates an access control device according to one embodiment.



FIG. 3A schematically illustrates an access control device according to one embodiment.



FIG. 4 schematically illustrates a method according to one embodiment.



FIG. 4A schematically illustrates a method according to one embodiment.



FIG. 5 schematically illustrates a method according to one embodiment.





DETAILED DESCRIPTION

Described herein are systems and methods for configuring access control devices. In overview, some embodiments provide for a method whereby a smartcard is used to configure a disconnected access control device. A user presents this smartcard to a connected access control device which, in response to the presentation of this smartcard, allows the user to download to the smartcard one or more aspects of configuration data for a specified disconnected access control device. The user subsequently presents the smartcard to the relevant disconnected access control device, which uploads and selectively applies the one or more aspects of configuration data.


In the context of the present disclosure, the term “system” is used to describe a hardware device. The term, as used in the context of a “system” for configuring access control devices, in some embodiments, describes an access control device. Methods for configuring access control devices are, in some embodiments, performable by software executable on a computing platform, this platform being, at least is in some cases, provided by an access control device.



FIG. 1 schematically illustrates an access control environment 101 according to one embodiment. Environment 101 includes connected access control devices 102 to 104 and disconnected access control devices 105 to 107. The primary point of difference between the connected access control devices and the disconnected access control devices is that the former are connected to a network 108, (such as a TCP/IP or other network) whilst the latter are not. An administration server 110 is also connected to network 108, and the connected access control devices are able to communicate with this administration server over the network. Administration server 110 includes a database 115 for maintaining configuration data.


In the present embodiment, database 115 includes, for each access control device, up-to-date configuration data. This configuration data is “up-to-date” in the sense that it defines that data a particular device should ideally be applying at a give point in time, based on information available in the database. However, it will be appreciated that the configuration data applied at a given time by a particular disconnected access control device might not be up-to-date, and therefore should ideally be updated for compliance with database 115. For each access control device, the configuration data is made up of one or more aspects of configuration data. Notionally, the total configuration data for an access control device is able to be broken down into individual aspects. For example, in some embodiments the aspects include, but are not limited to, the following:

    • Access configuration data. For example, in some embodiments this aspect of configuration data includes data indicative of access permissions for various users/cards, and so on.
    • Hardware configuration data, such as firmware and/or other hardware drivers.
    • Scheduling data. In some embodiments an access control device is scheduled such that it behaves differently at different times. For example, in one scenario the level of access permission required on a weekday is different to that required on a weekend or public holiday. In some cases, access control devices are scheduled on a seven-day cycle, and scheduling data concerning public holidays or other unusual days needs to be provided on a periodic basis.


Although server 110 is schematically illustrated as a single component, in some cases it is defined by a plurality of distributed networked components.


For the sake of the present disclosure, it is assumed that each of access control devices 102 to 107 include similar hardware and software components, and that each device is configured to progress between a connected state and a disconnected state depending on whether or not a connection to network 108 and central administration server 110 is available. However, in other embodiments a variety of different access control devices are used. For example, in some embodiments the access control devices are designed, from a hardware perspective, to allow/deny control to a variety of different locations or functionalities.


In the context of the present disclosure, the term “access control device” refers generally to any device having an “access control” functionality. That is, any device with which a user interacts to gain access to a physical region or virtual functionality. Common examples include devices that control locking mechanisms on doors or other barriers. However, access control devices are also used for purposes such as activating lighting in a room. An access control device includes hardware and software components.


Administration server 110 is used to deliver configuration data for access control devices 102 to 107, however, it will be appreciated that the server is only able to deliver such information to connected access control devices 102 to 104 via network 108. As such, other methods are required to allow the provision of configuration data to disconnected access control devices 105 to 107, and some embodiments of the present invention provide such methods. For example, FIG. 2 illustrates a method 200 for providing one or more aspects of configuration data to a disconnected access control device, as discussed below.


Step 201 includes providing an instruction to adopt a configuration mode. In the present example, prior to step 201, access control device 102 adopts a “normal” mode of operation, whereby it is generally responsive to the presentation of access cards for selectively either allowing or denying access to a location or functionality. In response to the provision of the instruction to adopt the configuration mode, access control device 102 progresses from the normal mode to the configuration mode.


In many of the embodiments considered herein, the instruction to adopt the configuration mode is provided by the presentation to the connected access control device (device 102 for the sake of the present example) of a “special” access card, in the form of a configuration control card. However, this should not be regarded as limiting, and in other embodiments the instruction is provided by alternate means. For example, rather than providing a configuration control card, a password or other form of authorization/authentication is provided to the access control device. Additionally, in further embodiments, an option exists to progress an access control device from the normal mode to the configuration mode by way of an instruction provided via the administration server. For example, the administration server is used to identify a controller from which configuration information will be written to one or more smartcards. Additionally, in further embodiments an alternate mode of interaction with access control device 102 allows that device to be progressed to the configuration mode.


The configuration control card need not be different from any other access card in a physical sense. In some embodiments the configuration control card additionally performs conventional access control functionalities.


Step 202 includes downloading configuration data collectively to one or more carrier substrates. In particular, this configuration data is obtained from database 215, and includes one or more aspects of configuration data relating to a particular disconnected access control device 205.


In the presently considered embodiments, the carrier substrates take the form of smartcards. The term carrier substrate should be read broadly to include any media capable of carrying digital information that is able to be read, modified or deleted. The term smartcard is used to describe a carrier substrate in card form. Smartcards carry digital information in a variety of ways, including by way of flash memory, magnetic strips, RFID chips, and the like.


The one or more aspects of configuration data are downloaded to the one or more smartcards “collectively” in the sense that, where the amount of data exceeds the storage capacity of a single smartcard, multiple smartcards are used. Where multiple smartcards are used, the data is distributed across those smartcards such that the data is written to the multiple smartcards collectively. In some cases only a single smartcard is used.


In some embodiments, the configuration control card is a smartcard (that is, it is a configuration control smartcard), and in some such embodiments it defines one of the smartcards to which configuration data is written. Indeed, in some instances it defines the single smartcard to which configuration data is written, such as in the example of FIG. 2A.


In some embodiments one or more of the smartcards are defined by access cards that are otherwise used for access control purposes.


Step 203 includes presenting a configuration control card (which is typically the same card presented at step 201) to a disconnected access control device. The intention is to configure that disconnected access control device using the configuration data downloaded at step 202. In the present example, this concerns disconnected access control device 105. In response to the presentation of the configuration control card, access control device 105 progresses from the normal mode to the configuration mode. In some embodiments disconnected access control devices adopt a different configuration mode as compared with connected access control devices.


Step 204 includes uploading the configuration data from the one or more smartcards collectively to access control device 105. Access control device 105 then selectively applies none or more aspects of the configuration data uploaded.


Method 200 will be more fully understood on the basis of disclosure below, which describes methods performed by connected and disconnected access control devices.



FIG. 3 schematically illustrates an access control device according to one embodiment, in the form of access control device 301. Access control device 301 is configured to operate as a connected access control device or a disconnected access control device, depending on whether a connection to a central administration server is available. Device 301 is additionally configurable for integration into an access control environment such as environment 101 of FIG. 1.


Access control device 301 includes a processor 302 coupled to a memory module 303. Memory module 303 carries software instructions 304 which, when executed on processor 302, allow access control device 301 to perform various methods and functionalities described herein.


In the present example, access control device 301 is configured for selectively granting access through a door 308. In particular, processor 301 is coupled to a locking mechanism 309 which, when in a locked state, prevents access through door 308, and when in an unlocked state, permits access through door 308. The locked state is default. A user wishing to gain access through door 308 presents an access card to a card reader 310, which is also coupled to processor 301. Upon presentation of an access card, processor 301 performs an authorization/authentication process to determine whether or not access should be granted. In the event that the authorization/authentication process is successful, mechanism 309 is progressed to the unlocked state for a predefined period of time, typically the order of a few seconds, before returning to the locked state. If the process is unsuccessful, mechanism 309 remains in the locked state, and access is denied.


The nature of card reader present varies between embodiments depending on the nature of access card that is used in a given access control environment. In the embodiment of FIG. 3, access cards are in the form of smartcards, and reader 310 is a smartcard reader. That is, a configuration control smartcard is readable in substantially the same manner as an access card configured for use with the access control device. However, in the alternate embodiment of FIG. 3A, access card are in the form of proximity cards, and a proximity card reader 310A is provided. In that case, a smartcard reader 310C is also provided for allowing smartcard reading/writing functionalities described herein. In further embodiments access codes are used rather than access cards, in which case the reader includes an interface for entering an access code. In some embodiments a combination of these approaches are used.


In the present embodiment, device 301 includes a network interface 312 (such as a Ethernet or other wired/wireless network interface) coupled to processor 302 for allowing access control device 301 to communicate over a network (such as network 108 of FIG. 1). In the present embodiment access control device 301 is configured for operation in either a connected state (with connection to the network and administration server) or a disconnected state (without connection to the network and server).



FIG. 4 illustrates a method 400 according to one embodiment. Method 400 is performable by an access control device, such as access control device 301, when that device is connected to a network and central administration server.


Method 400 commences with the access control device in the normal mode. Step 401 includes receiving data indicative of the presentation of a card, such as an access card. In some embodiments step 401 alternately includes receiving data indicative of an alternate identifier, such as a password. At decision 402 it is determined whether this card is a normal access card (used for access control purposes), or a configuration control card (used to access the configuration mode). In the event that the presented card is a normal access card, the method progresses to an access control authorization/authentication procedure at step 403, and access is either granted or denied at steps 403A and 403B respectively. In the event that the presented card is a configuration control card, the method progresses to a configuration mode authorization/authentication procedure at step 404. In the case that the result of the authorization/authentication procedure is successful, the method progresses to step 410. Otherwise, the method progresses to step 406, where the method terminates in a rejection, and the user is not permitted to progress the device to the configuration mode.


As context, authentication is a process by which a user verifies his/her identity, for example by presenting an access card (such as a smartcard), optionally in combination with other information (such as biometric information). Authorization is a process whereby access rights corresponding to the authenticated user are queried, for example to determine a level of security clearance.


Disclosure herein of access cards should not be read as limiting. In other embodiments, users interact with access control devices by other techniques, such as by way of biometric information, entry-codes entered by way of a keypad, spoken passwords, and so on. These various approaches are used in alternate embodiments. For example, in one embodiment a user enters a configuration entry code as an alternative to presenting a configuration control card.


In some embodiments, the configuration control card is used both for access control purposes and to access the configuration mode, and the user is permitted to select which of these is desired upon presentation of the card.


Step 410 adopting the configuration mode. Upon adopting the configuration mode, the access control device provides the user with an interface for prompting the user to select between options or perform various tasks, and for allowing the user to select between presented options and/or provide information. In some cases this interface is provided by a screen and keypad, or alternately a touch-screen.


Step 412 includes prompting the user to identify a disconnected access control device for which configuration data is sought. In the present embodiment, the disconnected access control device is identified by way of a unique identifier assigned to that access control device during an earlier commissioning process. Data indicative of this unique identifier is received at step 413.


Step 414 includes prompting the user to select one or more sought after aspects of configuration data. Data indicative of this selection is received at step 415.


Step 416 includes obtaining data indicative of the selected one or more aspects of configuration data for the identified disconnected access control device from a central source, such as server 110/database 115 in the context of FIG. 1. This data, or a modified version thereof, is then written to one or more smartcards collectively at step 417. In particular, data indicative of the one or more aspects of configuration data is written to one or more smartcards collectively, in a format such that a disconnected access control device is configured for reading the one or more smartcards and selectively applying the one or more aspects of configuration data. This is discussed in more detail further below.


Step 418 includes resuming the normal mode of operation. In some embodiments, this occurs in response to the user presenting the configuration control card once again to confirm that he/she is finished with the configuration mode. However, in at least some embodiments where an alternate approach is implemented to provide an instruction to adopt the configuration mode (such as a the provision of a password), that approach is repeated to effect step 418.



FIG. 4A illustrates step 417 in more detail. As foreshadowed, data is written to one or more smartcards collectively. At step 420, the user is prompted to present a first smartcard. In some embodiments this first smartcard is the configuration control card, in which case the method progresses. A smartcard is received at step 421, and a storage capacity check is performed. At step 422, some or all of the relevant configuration data is written to the presented smartcard. The smartcard is returned to the user at step 423. At step 424 it is decided whether any further data is to be written. For example, in the event that the total amount of data to be written exceeds the available storage capacity of the presented smartcard, only partial data is written to the presented smartcard. If all relevant configuration data has been written, the user is informed of a successful writing of data at step 425. Otherwise the method loops to step 420. It will be appreciated that the method continues until all of the relevant data has been written collectively across a plurality of smartcards.


In some embodiments data indicative of the number of smartcards used is written to one of the smartcards. This later assists a disconnected reader in determining whether all relevant data has been read, regardless of whether the smartcards are presented in the same order to which they were written. In one embodiment this data is written to the final smartcard used. In another embodiment, a serial number is written to each card. For example, a serial numbers might be indicative “card 1, non-final”, “card 2, non-final” and “card 3, final” for a three card series.



FIG. 5 illustrates a method 500 according to one embodiment. Method 500 is performable by an access control device, such as access control device 301, when in the disconnected state.


Method 500 commences with the access control device in the normal mode. Step 501 includes receiving data indicative of the presentation of an access card. At decision 502 it is determined whether this card is a normal access card (used for access control purposes), or a configuration control card (used to access the configuration mode). In the event that the presented card is a normal access card, the method progresses to an access control authorization/authentication procedure at step 503, and access is either granted or denied at steps 503A and 503B respectively. In the event that the presented card is a configuration control card, the method progresses to a configuration mode authorization/authentication procedure at step 504. In the case that the result of the authorization/authentication procedure is successful, the method progresses to step 510. Otherwise, the method progresses to step 506, where the method terminates with a rejection, and the user is prevented from accessing the configuration mode.


Step 510 includes adopting the configuration mode. Upon adopting the configuration mode, the access control device provides the user with an interface for prompting the user to select between options or perform various tasks, and for allowing the user to select between presented options and/or provide information. These options and tasks in some cases differ from those provided at step 410, given that the present access control device is operating in the disconnected state.


Step 512 includes prompting the user to present a smartcard carrying some or all of the data indicative of one or more aspects of configuration data that is to be uploaded. In some embodiments where the configuration control card carries a portion of the relevant data, step 512 is omitted on a first pass, and the method progresses immediately to step 514.


In some embodiments an access control device is configured to read multiple smartcards simultaneously. In some such cases, step 512 includes prompting the user to present a single to multiple smartcards.


A smartcard carrying at least a portion of configuration data is received at step 513, and the configuration data is read by the access control device at step 514. At decision 515 it is determined whether or not complete data has been read. It will be appreciated that where multiple smartcards are used, each of these needs to be read before the complete data has been read. If there is more data to be read, the method loops to step 512. Otherwise, once all of the configuration data has been read, the method progresses to step 516.


In some embodiments the access control device erases the configuration data from a smartcard as it is read. Additionally, in some embodiments there is no restriction on the order in which smartcards are presented in instances of step 512. That is, smartcards need not be presented to the disconnected controller in the same order as they were earlier presented to the connected controller.


Step 516 includes analyzing the read configuration data to determine which of the included aspects of configuration data should be applied, if any. An aspect of configuration data is “applied” in the sense that it replaces corresponding data that is already maintained by the relevant access control device. In determining whether or not a given aspect of configuration data is to be applied, the following criteria are particularly considered:

    • Whether a corresponding aspect of configuration data maintained by the access control device is newer than the read aspect of configuration data. It will be appreciated that this avoids the application of outdated data.
    • Whether the read aspect of configuration data is compatible with the access control device. It will be appreciated that this reduces the risk of an access control device malfunctioning due to the application of incompatible configuration data.


One or more of the aspects of the read configuration data are then applied at step 517. At step 518 the access control device resumes the normal mode of operation. In some embodiments, this occurs in response to the user presenting the configuration control card once again to confirm that he/she is finished with the configuration mode.


In some embodiments, a report indicative of which (if any) aspects of configuration data are applied at step 517 is written to a smartcard (such as the configuration card or an access control smartcard subsequently presented to the disconnected access control device in the normal course of operation), and this report is propagated back to the central server when that smartcard is next presented to a connected access control device. This assists the access control device in maintaining details not only of up-to-date configuration data for each access control device, but also details of the configuration data applied by each access control device.


In some embodiments, if the central server is aware that a particular disconnected access control device is already applying up-to-date configuration data, the server prevents the writing of configuration data for that disconnected access control device to smartcards via connected readers operating in the configuration mode.


It will be appreciated that the present disclosure provides for various systems and methods for configuring access control devices, particularly disconnected access control devices, which are advantageous in light of what is known in the art. In particular, the use of smartcards for delivering configuration data to disconnected readers presents a time and cost effective approach, and this is further improved by the ability to obtain the relevant configuration data from any connected access control device.


Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining”, “analyzing” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities into other data similarly represented as physical quantities.


In a similar manner, the term “processor” may refer to any device or portion of a device that processes electronic data, e.g., from registers and/or memory to transform that electronic data into other electronic data that, e.g., may be stored in registers and/or memory. A “computer” or a “computing machine” or a “computing platform” may include one or more processors.


The methodologies described herein are, in one embodiment, performable by one or more processors that accept computer-readable (also called machine-readable) code containing a set of instructions that when executed by one or more of the processors carry out at least one of the methods described herein. Any processor capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken are included. Thus, one example is a typical processing system that includes one or more processors. Each processor may include one or more of a CPU, a graphics processing unit, and a programmable DSP unit. The processing system further may include a memory subsystem including main RAM and/or a static RAM, and/or ROM. A bus subsystem may be included for communicating between the components. The processing system further may be a distributed processing system with processors coupled by a network. If the processing system requires a display, such a display may be included, e.g., an liquid crystal display (LCD) or a cathode ray tube (CRT) display. If manual data entry is required, the processing system also includes an input device such as one or more of an alphanumeric input unit such as a keyboard, a pointing control device such as a mouse, and so forth. The term memory unit as used herein, if clear from the context and unless explicitly stated otherwise, also encompasses a storage system such as a disk drive unit. The processing system in some configurations may include a sound output device, and a network interface device. The memory subsystem thus includes a computer-readable carrier medium that carries computer-readable code (e.g., software) including a set of instructions to cause performing, when executed by one or more processors, one of more of the methods described herein. Note that when the method includes several elements, e.g., several steps, no ordering of such elements is implied, unless specifically stated. The software may reside in the hard disk, or may also reside, completely or at least partially, within the RAM and/or within the processor during execution thereof by the computer system. Thus, the memory and the processor also constitute computer-readable carrier medium carrying computer-readable code.


Furthermore, a computer-readable carrier medium may form, or be includes in a computer program product.


In alternative embodiments, the one or more processors operate as a standalone device or may be connected, e.g., networked to other processor(s), in a networked deployment, the one or more processors may operate in the capacity of a server or a user machine in server-user network environment, or as a peer machine in a peer-to-peer or distributed network environment. The one or more processors may form a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


Note that while some diagrams only show a single processor and a single memory that carries the computer-readable code, those in the art will understand that many of the components described above are included, but not explicitly shown or described in order not to obscure the inventive aspect. For example, while only a single machine is illustrated, the term “machine” or “device” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


At least one embodiment of each of the methods described herein is in the form of a computer-readable carrier medium carrying a set of instructions, e.g., a computer program that are for execution on one or more processors, e.g., one or more processors that are part an information system. Thus, as will be appreciated by those skilled in the art, embodiments of the present invention may be embodied as a method, an apparatus such as a special purpose apparatus, an apparatus such as a data processing system, or a computer-readable carrier medium, e.g., a computer program product. The computer-readable carrier medium carries computer readable code including a set of instructions that when executed on one or more processors cause the processor or processors to implement a method. Accordingly, aspects of the present invention may take the form of a method, an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of carrier medium (e.g., a computer program product on a computer-readable storage medium) carrying computer-readable program code embodied in the medium.


The software may further be transmitted or received over a network via a network interface device. While the carrier medium is shown in an exemplary embodiment to be a single medium, the term “carrier medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “carrier medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by one or more of the processors and that cause the one or more processors to perform any one or more of the methodologies of the present invention. A carrier medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical, magnetic disks, and magneto-optical disks. Volatile media includes dynamic memory, such as main memory. Transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise a bus subsystem. Transmission media also may also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications. For example, the term “carrier medium” shall accordingly be taken to included, but not be limited to, solid-state memories, a computer product embodied in optical and magnetic media, a medium bearing a propagated signal detectable by at least one processor of one or more processors and representing a set of instructions that when executed implement a method, a carrier wave bearing a propagated signal detectable by at least one processor of the one or more processors and representing the set of instructions a propagated signal and representing the set of instructions, and a transmission medium in a network bearing a propagated signal detectable by at least one processor of the one or more processors and representing the set of instructions.


It will be understood that the steps of methods discussed are performed in one embodiment by an appropriate processor (or processors) of a processing (i.e., computer) system executing instructions (computer-readable code) stored in storage. It will also be understood that the invention is not limited to any particular implementation or programming technique and that the invention may be implemented using any appropriate techniques for implementing the functionality described herein. The invention is not limited to any particular programming language or operating system.


Similarly it should be appreciated that in the above description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.


Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those in the art. For example, in the following claims, any of the claimed embodiments can be used in any combination.


Furthermore, some of the embodiments are described herein as a method or combination of elements of a method that can be implemented by a processor of a computer system or by other means of carrying out the function. Thus, a processor with the necessary instructions for carrying out such a method or element of a method forms a means for carrying out the method or element of a method. Furthermore, an element described herein of an apparatus embodiment is an example of a means for carrying out the function performed by the element for the purpose of carrying out the invention.


In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.


As used herein, unless otherwise specified the use of the ordinal adjectives “first”, “second”, “third”, etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.


In the claims below and the description herein, any one of the terms comprising, comprised of or which comprises is an open term that means including at least the elements/features that follow, but not excluding others. Thus, the term comprising, when used in the claims, should not be interpreted as being limitative to the means or elements or steps listed thereafter. For example, the scope of the expression a device comprising A and B should not be limited to devices consisting only of elements A and B. Any one of the terms including or which includes or that includes as used herein is also an open term that also means including at least the elements/features that follow the term, but not excluding others. Thus, including is synonymous with and means comprising.


Similarly, it is to be noticed that the term coupled, when used in the claims, should not be interpreted as being limitative to direct connections only. The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Thus, the scope of the expression a device A coupled to a device B should not be limited to devices or systems wherein an output of device A is directly connected to an input of device B. It means that there exists a path between an output of A and an input of B which may be a path including other devices or means. “Coupled” may mean that two or more elements are either in direct physical or electrical contact, or that two or more elements are not in direct contact with each other but yet still co-operate or interact with each other.


Thus, while there has been described what are believed to be the preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto without departing from the spirit of the invention, and it is intended to claim all such changes and modifications as fall within the scope of the invention. For example, any formulas given above are merely representative of procedures that may be used. Functionality may be added or deleted from the block diagrams and operations may be interchanged among functional blocks. Steps may be added or deleted to methods described within the scope of the present invention.

Claims
  • 1. A method for configuring access control devices via a central server that maintains configuration data, a first plurality of connected access control devices, and a second plurality of disconnected access control devices, wherein the disconnected access control devices are access control devices with no connection to the central server, the method comprising configuring a given one of the first plurality of connected access control devices to perform the following steps: (a) receiving, whilst in a first mode of operation wherein the given one of the connected access control devices is configured to perform an access control functionality, data indicative of an instruction to adopt a second mode of operation;(b) being responsive to the data received at (a) for adopting the second mode of operation;(c) receiving data indicative of a user selection of a specified one of the disconnected access control devices, selected from a set of disconnected access control devices in respect of which the central server maintains configuration data;(d) obtaining, from the central server, first data indicative of one or more aspects of configuration data for the specified disconnected access control device and, on the basis of that first data, defining second data indicative of the one or more aspects of configuration data for the specified disconnected access control device; and(e) writing to one or more carrier substrates collectively the second data indicative of the one or more aspects of configuration data for the specified disconnected access control device, wherein the specified disconnected access control device is configured for reading the one or more carrier substrates and selectively applying the one or more aspects of configuration data.
  • 2. The method according to claim 1 wherein the one or more carrier substrates include one or more smartcards.
  • 3. The method according to claim 2 wherein the data indicative of an instruction to adopt a second mode of operation is provided by one of the smartcards.
  • 4. The method according to claim 1 wherein, in the first mode of operation, the given one of the connected access control devices performs an access control functionality and, in the second mode of operation, the given one of the connected access control devices performs a configuration download functionality.
  • 5. The method according to claim 1 including the steps of: (f) providing an interface for allowing user selection of the one or more aspects of configuration data from a list of available aspects of configuration data; and(g) receiving data indicative of user-selection of the one or more aspects of configuration data.
  • 6. The method according to claim 1 wherein the first data indicative of the one or more aspects of configuration data is substantially identical to the second data indicative of the one or more aspects of configuration data.
  • 7. The method according to claim 1 including the step of writing to at least one of the carrier substrates data indicative of how many carrier substrates are written to at step (e), and wherein a plurality of carrier substrates are written to at step (e).
  • 8. The method according to claim 1 including the step of determining how many carrier substrates to which the second data indicative of the one or more aspects of configuration data is to be collectively written.
  • 9. The method according to claim 1 wherein the one or more aspects of configuration data include any one or more of the following: access configuration data;hardware configuration data; andscheduling data.
  • 10. An access control device configured to operate in an access control environment, the access control environment including a central server that maintains configuration data, a first plurality of connected access control devices, and a second plurality of disconnected access control devices, wherein the disconnected access control devices are access control devices with no connection to the central server, the access control device having hardware that is configured to: (a) receive, whilst in a first mode of operation wherein the access control device is configured to perform an access control functionality, data indicative of an instruction to adopt a second mode of operation;(b) in response to the data received at (a), adopting the second mode of operation;(c) obtaining, from the central server, first data indicative of one or more aspects of configuration data for one or more of the disconnected access control devices and, on the basis of that first data, defining second data indicative of the one or more aspects of configuration data for the one or more of the disconnected access control devices;(d) writing to one or more carrier substrates collectively the second data indicative of the one or more aspects of configuration data for the one or more of the disconnected access control devices, wherein the one or more of the disconnected access control devices is/are configured for reading the one or more carrier substrates and selectively applying the one or more aspects of configuration data; and(e) after writing to one or more carrier substrates, resuming the first mode of operation where the access control devices returns to performing access control functionality.
  • 11. The access control device of claim 10 wherein the data indicative of an instruction to adopt the second mode of operation is provided by one of the smartcards.
  • 12. The access control device of claim 10 wherein, in the first mode of operation, the access control device is configured to perform an access control functionality and, in the second mode of operation, the access control device is configured to perform a configuration upload functionality.
  • 13. The access control device of claim 10 wherein the one or more aspects of configuration data include any one or more of the following: access configuration data;hardware configuration data; andscheduling data.
  • 14. The access control device of claim 10 wherein the one or more carrier substrates include one or more smartcards.
  • 15. An access control device configured to operate in an access control environment including a plurality of connected access control devices, being access control devices configured to communicate with a central server that maintains configuration data, and a plurality of disconnected access control devices, being access control devices with no connection to the central server, the access control device comprising: a processor for receiving, whilst in a first mode of operation wherein the access control device is configured to perform an access control functionality, data indicative of an instruction to adopt a second mode of operation, and in response, adopting the second mode of operation, and once in the second mode of operation, obtain, from the central server, a set of configuration data for one of the disconnected access control devices; anda substrate writer for writing to a carrier substrate the set of configuration data in a format that the disconnected access control device can read from the carrier substrate, and then apply during subsequent operation of the disconnected access control device in the access control environment.
  • 16. The access control device of claim 15, wherein after the substrate writer writes to the carrier substrate, the processor resuming the first mode of operation where the access control device returns to performing access control functionality.
  • 17. The method of claim 1, further comprising the step of: (f) after writing to one or more carrier substrates, resuming the first mode of operation where the given one of the connected access control devices returns to performing access control functionality.
Priority Claims (1)
Number Date Country Kind
2007902846 May 2007 AU national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/AU2008/000716 5/21/2008 WO 00 5/19/2010
Publishing Document Publishing Date Country Kind
WO2008/144803 12/4/2008 WO A
US Referenced Citations (232)
Number Name Date Kind
3753232 Sporer Aug 1973 A
3806911 Pripusich Apr 1974 A
3857018 Stark et al. Dec 1974 A
3860911 Hinman et al. Jan 1975 A
3866173 Moorman et al. Feb 1975 A
3906447 Crafton Sep 1975 A
4095739 Fox et al. Jun 1978 A
4146085 Wills Mar 1979 A
4148012 Baump et al. Apr 1979 A
4161778 Getson, Jr. et al. Jul 1979 A
4213118 Genest et al. Jul 1980 A
4283710 Genest et al. Aug 1981 A
4298946 Hartsell et al. Nov 1981 A
4332852 Korklan et al. Jun 1982 A
4336902 Neal Jun 1982 A
4337893 Flanders et al. Jul 1982 A
4353064 Stamm Oct 1982 A
4373664 Barker et al. Feb 1983 A
4379483 Farley Apr 1983 A
4462028 Ryan et al. Jul 1984 A
4525777 Webster et al. Jun 1985 A
4538056 Young et al. Aug 1985 A
4556169 Zervos Dec 1985 A
4628201 Schmitt Dec 1986 A
4646964 Parker et al. Mar 1987 A
4685615 Hart Aug 1987 A
4821177 Koegel et al. Apr 1989 A
4847839 Hudson, Jr. et al. Jul 1989 A
5070468 Niinomi et al. Dec 1991 A
5071065 Aalto et al. Dec 1991 A
5099420 Barlow et al. Mar 1992 A
5172565 Wruck et al. Dec 1992 A
5204663 Lee Apr 1993 A
5227122 Scarola et al. Jul 1993 A
5259553 Shyu Nov 1993 A
5271453 Yoshida et al. Dec 1993 A
5361982 Liebl et al. Nov 1994 A
5404934 Carlson et al. Apr 1995 A
5420927 Micali May 1995 A
5449112 Heitman et al. Sep 1995 A
5465082 Chaco Nov 1995 A
5479154 Wolfram Dec 1995 A
5481481 Frey et al. Jan 1996 A
5526871 Musser et al. Jun 1996 A
5541585 Duhame et al. Jul 1996 A
5591950 Imedio-Ocana Jan 1997 A
5604804 Micali Feb 1997 A
5610982 Micali Mar 1997 A
5631825 van Weele et al. May 1997 A
5640151 Reis et al. Jun 1997 A
5644302 Hana et al. Jul 1997 A
5663957 Dent Sep 1997 A
5666416 Micali Sep 1997 A
5717757 Micali Feb 1998 A
5717758 Micall Feb 1998 A
5717759 Micali Feb 1998 A
5732691 Maiello et al. Mar 1998 A
5774058 Henry et al. Jun 1998 A
5778256 Darbee Jul 1998 A
5793868 Micali Aug 1998 A
5914875 Monta et al. Jun 1999 A
5915473 Ganesh et al. Jun 1999 A
5927398 Maciulewicz Jul 1999 A
5930773 Crooks et al. Jul 1999 A
5960083 Micali Sep 1999 A
5973613 Reis et al. Oct 1999 A
5992194 Baukholt et al. Nov 1999 A
6072402 Kniffin et al. Jun 2000 A
6097811 Micali Aug 2000 A
6104963 Cebasek et al. Aug 2000 A
6119125 Gloudeman et al. Sep 2000 A
6141595 Gloudeman et al. Oct 2000 A
6149065 White et al. Nov 2000 A
6154681 Drees et al. Nov 2000 A
6167316 Gloudeman et al. Dec 2000 A
6233954 Mehaffey et al. May 2001 B1
6241156 Kline et al. Jun 2001 B1
6249755 Yemini et al. Jun 2001 B1
6260765 Natale et al. Jul 2001 B1
6292893 Micali Sep 2001 B1
6301659 Micali Oct 2001 B1
6318137 Chaum Nov 2001 B1
6324854 Jayanth Dec 2001 B1
6334121 Primeaux et al. Dec 2001 B1
6347374 Drake et al. Feb 2002 B1
6366558 Howes et al. Apr 2002 B1
6369719 Tracy et al. Apr 2002 B1
6374356 Daigneault et al. Apr 2002 B1
6393848 Roh et al. May 2002 B2
6394359 Morgan May 2002 B1
6424068 Nakagishi Jul 2002 B2
6453426 Gamache et al. Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
6483697 Jenks et al. Nov 2002 B1
6487658 Micali Nov 2002 B1
6490610 Rizvi et al. Dec 2002 B1
6496575 Vasell et al. Dec 2002 B1
6516357 Hamann et al. Feb 2003 B1
6518953 Armstrong Feb 2003 B1
6546419 Humpleman et al. Apr 2003 B1
6556899 Harvey et al. Apr 2003 B1
6574537 Kipersztok et al. Jun 2003 B2
6604023 Brown et al. Aug 2003 B1
6615594 Jayanth et al. Sep 2003 B2
6628997 Fox et al. Sep 2003 B1
6647317 Takai et al. Nov 2003 B2
6647400 Moran Nov 2003 B1
6658373 Rossi et al. Dec 2003 B2
6663010 Chene et al. Dec 2003 B2
6665669 Han et al. Dec 2003 B2
6667690 Durej et al. Dec 2003 B2
6741915 Poth May 2004 B2
6758051 Jayanth et al. Jul 2004 B2
6766450 Micali Jul 2004 B2
6789739 Rosen Sep 2004 B2
6796494 Gonzalo Sep 2004 B1
6801849 Szukala et al. Oct 2004 B2
6801907 Zagami Oct 2004 B1
6826454 Sulfstede Nov 2004 B2
6851621 Wacker et al. Feb 2005 B1
6871193 Campbell et al. Mar 2005 B1
6886742 Stoutenburg et al. May 2005 B2
6895215 Uhlmann May 2005 B2
6910135 Grainger Jun 2005 B1
6967612 Gorman et al. Nov 2005 B1
6969542 Klasen-Memmer et al. Nov 2005 B2
6970070 Juels et al. Nov 2005 B2
6973410 Seigel Dec 2005 B2
6983889 Alles Jan 2006 B2
6989742 Ueno et al. Jan 2006 B2
7004401 Kallestad Feb 2006 B2
7019614 Lavelle et al. Mar 2006 B2
7032114 Moran Apr 2006 B1
7055759 Wacker et al. Jun 2006 B2
7130719 Ehlers et al. Oct 2006 B2
7183894 Yui et al. Feb 2007 B2
7203962 Moran Apr 2007 B1
7205882 Libin Apr 2007 B2
7216007 Johnson May 2007 B2
7216015 Poth May 2007 B2
7218243 Hayes et al. May 2007 B2
7222800 Wruck May 2007 B2
7233243 Roche et al. Jun 2007 B2
7243001 Janert et al. Jul 2007 B2
7245223 Trela Jul 2007 B2
7250853 Flynn Jul 2007 B2
7274676 Cardei et al. Sep 2007 B2
7313819 Burnett et al. Dec 2007 B2
7321784 Serceki et al. Jan 2008 B2
7337315 Micali Feb 2008 B2
7343265 Andarawis et al. Mar 2008 B2
7353396 Micali et al. Apr 2008 B2
7362210 Bazakos et al. Apr 2008 B2
7379997 Ehlers et al. May 2008 B2
7380125 Di Luoffo et al. May 2008 B2
7383158 Krocker et al. Jun 2008 B2
7397371 Martin et al. Jul 2008 B2
7408925 Boyle et al. Aug 2008 B1
7505914 McCall Mar 2009 B2
7542867 Steger et al. Jun 2009 B2
7574734 Fedronic et al. Aug 2009 B2
7586398 Huang et al. Sep 2009 B2
7600679 Kshirsagar et al. Oct 2009 B2
7661603 Yoon et al. Feb 2010 B2
7735145 Kuehnel et al. Jun 2010 B2
7797459 Roy et al. Sep 2010 B1
7818026 Hartikainen et al. Oct 2010 B2
7853987 Balasubramanian et al. Dec 2010 B2
7861314 Serani et al. Dec 2010 B2
7907753 Wilson et al. Mar 2011 B2
7937669 Zhang et al. May 2011 B2
7983892 Anne et al. Jul 2011 B2
7995526 Liu et al. Aug 2011 B2
8045960 Orakkan Oct 2011 B2
8095889 DeBlaey et al. Jan 2012 B2
20020011923 Cunningham et al. Jan 2002 A1
20020022991 Sharood et al. Feb 2002 A1
20020046337 Micali Apr 2002 A1
20020118096 Hoyos et al. Aug 2002 A1
20020121961 Huff Sep 2002 A1
20020163999 Farris et al. Nov 2002 A1
20020165824 Micali Nov 2002 A1
20030028814 Carta et al. Feb 2003 A1
20030033230 McCall Feb 2003 A1
20030174049 Beigel et al. Sep 2003 A1
20030208689 Garza Nov 2003 A1
20030233432 Davis et al. Dec 2003 A1
20040062421 Jakubowski et al. Apr 2004 A1
20040064453 Ruiz et al. Apr 2004 A1
20040087362 Beavers May 2004 A1
20040190489 Palaez et al. Sep 2004 A1
20040205350 Waterhouse et al. Oct 2004 A1
20050138380 Fedronic et al. Jun 2005 A1
20060059557 Markham et al. Mar 2006 A1
20060065730 Quan et al. Mar 2006 A1
20070109098 Siemon et al. May 2007 A1
20070132550 Avraham et al. Jun 2007 A1
20070171862 Tang et al. Jul 2007 A1
20070268145 Bazakos et al. Nov 2007 A1
20070272744 Bantwal et al. Nov 2007 A1
20080086758 Chowdhury et al. Apr 2008 A1
20080173709 Ghosh Jul 2008 A1
20080272881 Goel Nov 2008 A1
20090018900 Waldron et al. Jan 2009 A1
20090080443 Dziadosz Mar 2009 A1
20090086692 Chen Apr 2009 A1
20090121830 Dziadosz May 2009 A1
20090167485 Birchbauer et al. Jul 2009 A1
20090168695 Johar et al. Jul 2009 A1
20090258643 McGuffin Oct 2009 A1
20090266885 Marcinowski et al. Oct 2009 A1
20090292524 Anne et al. Nov 2009 A1
20090292995 Anne et al. Nov 2009 A1
20090292996 Anne et al. Nov 2009 A1
20090328152 Thomas et al. Dec 2009 A1
20090328203 Haas Dec 2009 A1
20100036511 Dongare Feb 2010 A1
20100148918 Gerner et al. Jun 2010 A1
20100164720 Kore Jul 2010 A1
20100220715 Cherchali et al. Sep 2010 A1
20100269173 Srinivasa et al. Oct 2010 A1
20110038278 Bhandari et al. Feb 2011 A1
20110071929 Morrison Mar 2011 A1
20110115602 Bhandari et al. May 2011 A1
20110133884 Kumar et al. Jun 2011 A1
20110153791 Jones et al. Jun 2011 A1
20110167488 Roy et al. Jul 2011 A1
20110181414 G. et al. Jul 2011 A1
20120096131 Bhandari et al. Apr 2012 A1
20120106915 Palmer May 2012 A1
20120121229 Lee May 2012 A1
20120133482 Bhandari et al. May 2012 A1
Foreign Referenced Citations (36)
Number Date Country
2240881 Dec 1999 CA
1265762 Sep 2000 CN
19945861 Mar 2001 DE
0043270 Jan 1982 EP
0122244 Oct 1984 EP
0152678 Aug 1985 EP
0629940 Dec 1994 EP
0858702 Apr 2002 EP
1339028 Aug 2003 EP
1630639 Mar 2006 EP
2251266 Jul 1992 GB
2390705 Jan 2004 GB
6019911 Jan 1994 JP
2003074942 Mar 2003 JP
2003240318 Aug 2003 JP
WO 8402786 Jul 1984 WO
WO 9419912 Sep 1994 WO
9627858 Sep 1996 WO
9627858 Sep 1996 WO
WO 0011592 Mar 2000 WO
0076220 Dec 2000 WO
WO 0142598 Jun 2001 WO
WO 0157489 Aug 2001 WO
WO 0160024 Aug 2001 WO
WO 0232045 Apr 2002 WO
02091311 Nov 2002 WO
WO 03090000 Oct 2003 WO
WO 2004092514 Oct 2004 WO
WO 2005038727 Apr 2005 WO
WO 2006021047 Mar 2006 WO
2006126974 Nov 2006 WO
2007043798 Apr 2007 WO
WO 2008045918 Apr 2008 WO
WO 2008144803 Dec 2008 WO
WO 2010039598 Apr 2010 WO
WO 2010106474 Sep 2010 WO
Related Publications (1)
Number Date Country
20110038278 A1 Feb 2011 US