Systems and methods for continuous adjustment of reference signal to control chip

Information

  • Patent Grant
  • 9578703
  • Patent Number
    9,578,703
  • Date Filed
    Friday, August 12, 2016
    8 years ago
  • Date Issued
    Tuesday, February 21, 2017
    7 years ago
Abstract
The present disclosure is directed to a solution that provides for continuous adjustment of a reference signal to a control chip to facilitate controlling the average output power. In some aspects, a system may facilitate continuous adjustment of power provided to a device by providing a reference signal with a slope to a control pin (e.g., current control pin) of a control chip (e.g., power regulator or LED driver). Providing a reference signal with a slope (e.g., a triangle or a sinusoidal wave) can increase the control range of the control chip and improve control chip performance. For example, systems and methods of the present disclosure may increase the dimming range of an LED from less than 0.1% to 100%.
Description
FIELD OF THE DISCLOSURE

The present application is generally related to providing a continuously adjusted reference signal to a control chip.


BACKGROUND

The intensity level of a light emitting diode (LED) may be reduced using duty-cycle adjustment (e.g., pulse width modulation or “PWM”) as an on/off signal to an on/off input of an LED driver driving the LED. Varying the duty cycle of the signal being input to the on/off input of the LED driver may turn the LED driver on/off for a percentage of time, thus lower the average power provided to the LED.


SUMMARY

The present disclosure is directed to systems and methods for managing the average power supplied to a device. In some aspects, the system may facilitate continuous adjustment of power provided to a device by providing a reference signal having a slope to a control pin (e.g., current control pin) of a control chip (e.g., power regulator or LED driver). Providing a reference signal with a slope (e.g., a triangle or a sinusoidal wave) can increase the control range of the control chip and improve control chip performance. For example, providing a relatively slow changing signal to an LED driver may facilitate smooth control of the current provided to an LED. Smooth control of the current may facilitate controlling surge currents on supply wires or reduce the frequency of harmonics generated by the wires.


In some embodiments, the system includes a power regulator that provides power to a device. The power regulator can include a first output that is coupled to a power input of the device, and be configured to control one of a voltage or a current provided to the device. The system can include a wave shape generator having an output coupled to a control input of the power regulator. The wave shape generator can be configured to generate a wave with a wave shape having a slope. The wave may also include a first portion that is above a minimum threshold that turns on the power regulator. The power regulator can control an intensity level of the device based on the wave shape and the first portion of the wave.


In some embodiments, the wave includes a second portion that is below the minimum threshold to turn off the power regulator. The power regulator can be configured to reduce the intensity level of the device responsive to the second portion of the wave that is below the minimum threshold to turn off the power regulator. In some embodiments, the power regulator, responsive to the second portion of the wave, can stop sending current to the device.


In some embodiments, the wave shape includes a voltage changing slower than the rise-time of the wave. In some embodiments, at least one of the slope, first portion, and second portion is predetermined based on a desired intensity level.


In some embodiments, the control input of the power regulator includes a current control input. In some embodiments, the system includes a current feedback output coupled to the control input of the power regulator, where a signal of the current feedback output is summed with the wave.


In some embodiments, the power regulator includes a light emitting diode (LED) driver, the device includes an LED, and the intensity level includes a dimming level of the LED. In some embodiments, the device includes an electric motor.


In some embodiments, the wave shape generator is configured to generate at least one of a triangle wave and a sine wave. In some embodiments, the wave shape generator includes a digital-to-analog convertor configured to generate the wave shape with multiple steps.


In some embodiments, the wave shape generator can include an interface. The wave shape generator can be configured to receive a wave from a wave source and condition the received wave such that the conditioned wave includes a slope. In some embodiments, the interface is configured to round at least one edge of the received wave. The interface can include at least one of: a transistor push-pull with a resistor and capacitor; a transistor push up with a resistor pull-down with a resistor and capacitor; a constant-current source and constant-current sink with a capacitor; a constant-current source with a resistor pull-down with a capacitor; a constant-current sink with a resistor pull-up with a capacitor; an inductor; and a capacitor.


In some embodiments, the system is configured to control the intensity level of the device from 1% to 100%. In some embodiments, the system is configured to control the intensity level of the device from 0.1% to 100%.


In some embodiments, the system includes multiple power regulators and devices. For example, a first power regulator may be coupled to a first device and a second power regulator may be coupled to a second device. The output of the wave shape generator may be coupled to the control input of the first power regulator and the second power regulator. In some embodiments, a third device is coupled to the first device and first power regulator in series, and a fourth device is coupled to the second device and the second power regulator in series.


In some embodiments, the system includes a direct current (DC) source coupled to the control input. The DC source can be configured to move the second portion of the wave above the minimum threshold


In one aspect, the present disclosure is directed to a system for managing a light emitting diode (LED). In some embodiments, the system includes a wave shape generator in communication with a dimming controller. The wave shape generator can receive an indication of a desired dimming level for the LED. The wave shape generator may receive the desired dimming level from the dimming controller. Responsive to the indication, the system can generate a wave. The wave can include a wave shape with a slope, and at a least a portion of the wave can be above a threshold. The system can transmit the wave to an LED driver via a current control input of the LED driver. The wave can control a dimming level of the LED.


In one aspect, the present disclosure is directed to a method for managing an LED. The method can include a dimming controller receiving an indication of a desired dimming level for the LED. The method can include generating a wave responsive to the indication. The wave can have a wave shape with a slope, and at least a portion of the wave can be above a threshold to turn on the LED driver. The method can include transmitting the wave to an LED driver via a current control input. The wave can control a dimming level of the LED.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and advantages of the present invention will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a block diagram that depicts an embodiment of a system for providing continuous adjustment of a reference signal to a control chip;



FIG. 2A is an illustrative example of an circuit diagram in accordance with an embodiment for providing continuous adjustment of a reference signal to a control chip;



FIG. 2B is an illustrative example of block diagram in accordance with an embodiment for providing continuous adjustment of a reference signal to a control chip;



FIG. 3A is an illustrative example of an embodiment of a triangle wave used to provide continuous adjustment of a reference signal to a control chip;



FIG. 3B is an illustrative example of an embodiment of a source wave and corresponding conditioned wave used to provide continuous adjustment of a reference signal to a control chip;



FIG. 4 is a flow chart illustrating steps of a method for providing continuous adjustment of a reference signal to a control chip.





The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout.


DETAILED DESCRIPTION

Apparatus, systems and methods of the present invention provide continuous adjustment of a reference signal to a control chip. The control chip may be coupled to a device and provide power to the device. By continuously adjusting the reference signal to a control chip, the system may facilitate modulating the power provided to the device. In an illustrative example, the control chip may include an LED driver and the device may include an LED. By providing a continuously changing reference signal to the current control pin of an LED driver, such as a wave with a portion that slopes (e.g., a triangle wave or a sinusoidal wave), the system may be configured to reduce the intensity level of an LED to relatively low levels such as, e.g., 1%, 0.5%, or 0.1%. Further to this example, the triangle wave may include a portion that is above a minimum threshold to turn on an LED driver, and the intensity level of the LED may be proportional to the ratio of the area of the wave above the minimum threshold to the area of the wave below the minimum threshold. In another example, the control chip may include a power regulator that regulates voltage or current, and the power regulator may be coupled to a device, such as an electric motor, to manage the power level provided to the device.


In some embodiments, systems and methods of the present disclosure may facilitate reducing flickering of an LED or sputtering of an electric motor. For example, by providing a wave that ramps up and down instead of a wave that steps from a low value to a high value (e.g., a square wave), flicker that may otherwise have been noticeable when the peak-to-peak levels are between two low level currents instead of full on and full off may not be noticeable. Furthermore, and in some embodiments, a minimum threshold to turn on an LED may not need to be identified in advance, or it may drift or vary over time, so long as the wave generated by systems and methods of the present disclosure can have portions above and below the minimum threshold to turn on the LED.


Referring to FIG. 1, a block diagram that depicts an embodiment of a system for managing power provided to a device by continuously adjusting a reference signal to a control chip is shown. In brief overview, and in some embodiments, the system includes a wave shape generator 115 configured to generate or modify a wave that includes a wave shape. In some implementations, the system may include a dimming controller 105 that may receive input from a user indicating a dimming level and indicate, to a wave shape generator 115, a desired dimming level. In some implementations, the system can include one or more power regulators 120a-n that includes a control input 125a-n. An output of the wave shape generator 115 may be coupled to a control input 125a-n of the power regulator 120. In some implementations, the system can include one or more devices 130a-n, 132a-n, 134a-n coupled to the power regulators 120a-n.


The dimming controller 105, wave shape generator 115, and/or power regulator 120 may comprise hardware, software or a combination of hardware (e.g., a processor, memory, cache, and/or input/output devices) and software for controlling the power provided to a device. The dimming controller 105, wave shape generator 115, and/or power regulator 120 may comprise memory and storage for storing information, processor, processing units and logic units, logical circuitry as well as analog and digital circuitry for implementing any functionality described herein. For example, the dimming controller 105 may include any logic circuitry that responds to and processes instructions fetched from a memory unit. The power regulator 120 may comprise functionality to monitor or respond to input signals and regulate an output signal.


In further detail, the system 100 can include a wave shape generator 115. The wave shape generator 115 can comprise one or more circuit components (e.g., resistors, capacitors, inductors, operational amplifiers, wires, transistors, etc.) configured to generate a wave that includes a sloping portion or to modify/condition an incoming signal so it includes a sloping portion. In some implementations, the wave shape generator 115 includes a digital-to-analog convertor or microcontroller, (e.g., a PIC microcontroller) configured to generate a wave that includes a sloping portion. In some implementations, the wave shape generator 115 may include one or more inputs to receive power. In some implementations, the wave shape generator 115 may include one or more outputs to output the generated wave.


In some embodiments, the wave shape generator 115 can generate one or more wave shapes with a sloping portion using one or more techniques. For example, and as illustrated in FIG. 3B, the wave shape generator 115 may generate a wave without any flat portions (e.g., triangle wave 345), or the wave shape generator 115 may generate a wave that includes at least one portion with a slope and at least one flat portion (e.g., waves 340 and 350). In both embodiments, the wave can include a portion with a slowly changing voltage or current relative to the rise-time of the edges of a square wave. In some implementations, the wave shape generator 115 includes a digital-to-analog converter configured to output a wave whose sloping portion includes a plurality of steps corresponding to the digital to analog conversion.


In some embodiments, the wave shape generator 115 can include an interface 110 configured to condition an incoming signal by, e.g., rounding the edges of a square wave or otherwise modifying an input wave to generate a wave with a wave shape having a slope. In some embodiments, generating a wave with a wave shape having a slope may refer to modifying a source wave via an interface 110. In some embodiments, the interface 110 of the wave shape generator 115 can include at least one of a: transistor push-pull with a Resistor-Capacitor (“R-C”); a transistor “push up” with a resistor pull-down with an R-C; a transistor “pull down” with a resistor pull-up with a Resistor+Capacitor; a constant-current source/constant-current sink with a Capacitor; a constant-current source with a resistor pull-down with a Capacitor; a constant-current sink with a resistor pull-up with a Capacitor; and an inductor and/or a capacitor configured to slow the edges of a square wave. An illustrative example of a push-pull with an R-C filter interface 110 is shown in FIG. 2A, and an illustrative example of a digital-to-analog convertor interface is shown in FIG. 2B.


In some embodiments, the wave shape generator 115 may be pre-configured to output a wave with a predetermined wave shape. In some embodiments, the system 100 can include a dimming controller 105 configured to receive input indicating a desired dimming level and communicate the desired dimming level to a wave shape generator 115. For example, the dimming controller 105 may include a dial, switch, knob or other element a user may interact with to indicate a dimming level. In some embodiments, the dimming controller 105 may include digital circuitry to receive an indication of a desired dimming level and facilitate generation of a corresponding wave.


In some implementations, the dimming controller 105 may be configured to alter the frequency of the wave generated by the wave shape generator 115, increase or decrease the slope of the wave, change the wave shape, or change the DC level of the wave. For example, the dimming controller 105 may alter a source wave provided to the wave shape generator 115 such that it has a higher DC level or shorter/longer duty cycle. For example, a DC source may be coupled to the control input 125 of the power regulator 120 to adjust the area of the wave that is above and below the minimum threshold. In some embodiments, the DC source may be coupled to an input of the wave shape generator 115 to adjust the area of the of the wave that is above and below the minimum threshold.


In some embodiments, the dimming controller 105 or wave shape generator 115 can adjust an aspect of the wave or wave shape based on system feedback and a target intensity level. The system feedback may include, e.g., an aspect of the load (e.g., resistance, power use, current use), the amount of power used by device 130a-n, device 132a-n, the amount of power used by power regulator, power loss, etc. For example, the system 100 may receive an indication of a target intensity level for device 130, or otherwise be pre-configured with a target intensity level for device 130. The wave shape generator 115 can then generate a wave with a corresponding slope, DC offset, or frequency such that the average power provided by power regulator 120 to device 130 is sufficient to realize the target intensity level. The system 100 may observe the effect of the waveform generated by wave shape generator 115; e.g., the system 100 may determine that the intensity level of device 130 is below, above, or at the target intensity level, or that the device 130 is flickering, sputtering, or otherwise not operating in a desired manner. For example, the system 100 may determine the power use of the one or more components of the system 100, determine the intensity of an LED based on light measurements, determine the energy output of an electric motor, or identify another intensity metric of device 130 or average power output by power regulator 120. Further to this example, if the system 100 determines that the intensity level of device 130 is below the desired intensity level, the wave shape generator 115 can increase the DC offset of the waveform, adjust the slope of the waveform, or adjust the frequency of the waveform. In another example, if the intensity level of device 130 is above the target intensity level, the wave shape generator 115 can reduce the DC offset of the waveform, adjust the slope of the waveform, or adjust the frequency of the waveform. For example, the power regulator 120 may provide less current to device 130 responsive to a reduced DC offset in the waveform generated by wave shape generator 115 and provided to the control input 125.


The system feedback may include one or more analog or digital circuitry components. For example, a differential operational amplifier may be configured to determine the difference between an output power, intensity level, or current and a target level. The system 100 can, responsive to the feedback, generate a corresponding waveform.


In some embodiments, the system includes a power regulator 120a-n that includes a control input 125a coupled to an output of the wave shape generator 115. In some embodiments, the system 100 may include a plurality of power regulators 120a-n coupled to the output of the wave shape generator 115. The power regulator 120 may include various inputs, including, e.g., an on/off input and a control input 125. The power regulator 120 may include an output coupled to a device 130, and may be configured to regulate voltage or current provided to device 130. In some embodiments, the power regulator 120 is constructed and designed to operate as a constant-current source. For example, the current supplied by the power regulator 120 may be based on an input reference signal, which may include the wave generated by wave shape generator 115 and received via control input 125. By slowly adjusting the reference signal provided to control input 125, the power regulator 120 may modulate the corresponding output power provided to a device 130.


The power regulator may include an on/off input. In some embodiments, the on/off input of the power regulator may be coupled to a power source that provides a signal that corresponds to “on”. In some embodiments, the power regulator 120 includes a control input 125 and is configured to turn on, or output power, responsive to receiving a signal at the control input 125 that is above a minimum threshold. When the signal is below the minimum threshold, the power regulator 120 may be configured to stop sending power to device 130, for example. While in some embodiments a high voltage or current value at the current control pin may turn “on” the power regulator and cause a high current to be output, in other embodiments a low voltage or current value at the current control pin may turn “on” the power regulator and cause a high current to be output. In some embodiments, the power regulator 120 may be configured to modulate the output power receiving a triangle wave or sinusoidal wave at a control input 125 that has a portion below the minimum threshold and a portion above the minimum threshold (as illustrated in FIG. 3A).


In some embodiments, the power regulator 120 may include a control chip, such as, e.g., and LED driver or electric motor driver. For example, the driver may include an LED driver such as a Step-Down LED driver with part number LT3474. Further to this example, the control input 125 may comprise a current control input of the LED driver.


In some embodiments, the power regulator 120 may not include a control input 125 that is not a current control input. To facilitate regulating the output wave of a power regulator 125 that does not include a current control input, the wave generated by the wave shape generator 115 may be summed or multiplied with a current feedback signal and coupled to the control input 125. The current feedback signal may be summed or multiplied with the wave using, e.g., analog circuit components.


In some embodiments, the system 100 may include one or more devices coupled to a power regulator 120. For example, multiple devices 130 may be coupled directly to the power regulator 120a or in a cascading manner. The devices 130 may include LEDs, electric motors, or any other device or fixture that may benefit from the systems and methods disclosed herein.


Referring to FIG. 2A, is an illustrative example of a push-pull output with a resistor-capacitor (“R-C”) filter interface 110 of wave shape generator 115 in accordance with an embodiment. A push-pull output, for example, may employ a pair of active devices, such as, e.g., transistors 204 and 214, configured to alternatively supply current to, or absorb current from, a connected load (e.g., resistor 212). For example, transistor 214 may be configured to dissipate or sink current from the load 212 to ground or be a negative power supply. Transistor 204 may be configured to supply or source current to the load 212 from a positive supply 208. In some implementations, the interface 110 may include a symmetrical push-pull where the transistor 204 and 214 are configured to reduce or cancel even-order harmonics to reduce distortion.


The input of interface 110 may include a square wave 200. The interface 110 may include a transistor 204 coupled to a power source 208 via a resistor 206. The gate of transistor 204 may be coupled to the square wave 200. The interface 110 may include a second transistor 214. A source of transistor 214 may be coupled to ground 202, while the drain of transistor 214 may be coupled to the source of transistor 204 via a resistor 212. The gate of transistor 214 may be coupled to a power source 218 via a load 218. Also coupled to the gate of transistor 214 may be a third transistor 216 configured to control the power supplied to gate of transistor 214 in accordance with the square wave input 200. The interface 110 may include a capacitor 210 coupled to the source of transistor 204 and ground 224. The interface 110 may include an output 222 coupled to the capacitor 210.


In operation, the interface, the square wave 200 may switch the state of transistors 204, 216, and 214 from on to off. For example, when the square wave 200 is at a high value, transistor 204 may be in the “on” state and allow current to pass from drain 208 through to the source of the transistor 204, which is coupled to a capacitor 210 and the output 222. Further to this example, a high value for square wave 200 may turn on transistor 216 so the power provided by drain 220 will flow through to source 226, thus switching the state of transistor 214. Accordingly, when transistor 204 is switched on, transistor 204 may supply power to load 212, and when transistor 204 is switched off, transistor 214 may be switched on and supply power to load 212.


The interface 110 of the wave shape generator 115 may be configured with various combinations of analog component (e.g., resistor and capacitor) values in order to generate a wave with a wave shape having a slope. In some embodiments, the wave shape generator 115 may be configured with analog component values to generate a wave with a predetermined wave shape having a slope. In the illustrative example of FIG. 2A, resistors 206, 212 and 218 have values of 10,000 Ohms, 10,000 Ohms, and 47,000 Ohms, respectively, capacitor 210 has a value of 0.1 micro Farads, and the power sources 208 and 220 include +5 Volts.


Referring to FIG. 2B, is an illustrative example of an interface 110 that includes a digital to analog convertor (“DAC”) with a microprocessor, in accordance with an embodiment. A digital signal source 252 may provide a digital signal to a DAC 254. The DAC 254 may convert the digital signal to an analog signal. The converted signal may not be smooth; e.g., the converted signal may include a plurality of steps corresponding to the granularity of the DAC 254. For example, a 16-bit DAC may be configured to generate an analog signal with a range of sixteen steps. While the wave corresponding to the converted analog signal may not be smooth, the wave may include a wave shape that corresponds to a slope. For example, the voltage level of the wave may rise from a low value to a high value slower than the rise-time. In some embodiments, the system may include a smoothing circuit coupled to the output of the DAC 254 configured to smoothen the wave.


Referring to FIG. 3A, is an illustrative example of a triangle wave 300 generated by the wave shape generator 115 in accordance with an embodiment. The triangle wave 300 may include a portion with a slope 310. A portion of the triangle wave 300 may be above a minimum threshold 305 to turn on a power regulator 120. The portion of the triangle wave 300 above the minimum threshold 305 may correspond to an area above the triangle wave 315, and the portion of the triangle wave 300 below the minimum threshold 305 may correspond to an area below the minimum threshold 320.


In some implementations, the wave shape generator 115 may increase a DC level of the triangle wave such that the area 315 above the minimum threshold is larger than the area 320 below the minimum threshold. When the triangle wave 300 is above the minimum threshold 305, the power regulator 120 may provide power to a device 130, and when the triangle wave is below the minimum threshold 305, the power regulator 120 may stop sending power to the a device 130. By decreasing the area 315 above the minimum threshold, the average power provided by the power regulator 120 to a device 130 may be reduced. For example, the average power provided to a device may correspond to the ratio of the area 315 to the area 320. For example, the dimming level of an LED 130 may be reduced by decreasing area 315 while increasing area 320, thereby reducing the ratio. In some embodiments, the decrease in minimum current provided to a device may be 10 or 100 times less than the power regulator 120 may be capable of providing based on a square wave being provided to an on/off input or a constant current control. For example, systems and methods of the present disclosure may facilitate dimming an LED from 0.1% to 100%, or even less.


In some embodiments, the wave shape generator 115 may adjust the slope 310 of the triangle wave so it increases at a faster rate or a slower rate. In some embodiments, this may increase or decrease the number of times the power regulator 120 starts/stops sending power to device. In some implementations, there may be a minimum number of times the power regulator can start/stop sending power. For example, if the device is an LED, the minimum number of times the LED may stop sending power may be 100 times in a second. For example, if the LED turns on/off less than 100 times in one second, a human eye or other visual sensor may perceive this as a flicker. By slowly the reducing the intensity from a peak of the triangle wave to below the minimum threshold, the negative effects of flicker may be mitigated because the LED is at a reduced intensity level before it shuts off completely, as opposed to going from a peak intensity level to an off state.


Referring to FIG. 3B, is an illustrative example of source waves 325, 330, 335 provided to a wave shape generator 115 or an interface 110, and corresponding output waves 340, 345, and 350 with a wave shape that includes a slope. For example, source wave 325 and output wave 340 include a flat portion corresponding to the maximum output current. However, while the source wave 325 steps from a minimum off current to the maximum on current in the manner of a square wave, the conditioned output wave 340 ramps up from a low current to a maximum current, and ramps down from the high current to a low current.


Source wave 330 may include a reduced duty cycle as compared to source wave 325. As a result, the area above the minimum threshold of conditioned wave 345 is less than the area above the minimum threshold in conditioned wave 340. Therefore, the conditioned wave 345 may cause the power regulator 120 to provide a lower average power than the conditioned wave 340. In illustrative examples, this may facilitate improved dimming of an LED or control of an electric motor.


Referring to FIG. 4, is an illustrative example of a method 500 for managing an LED in accordance with an embodiment. In brief overview, the method 500 may identify a desired dimming level for an LED at step 505. At step 510, the method 500 may include generating a wave that includes a ramp or sloping portion. A portion of the wave may be above a minimum threshold to turn on an LED driver. At step 515, the method 500 may include transmitting the generated wave to an LED driver to facilitate controlling a dimming level of an LED.


In further detail, and in some embodiments, the method 500 identifies a desired dimming level at step 505. In some embodiments, the dimming level may be preconfigured, in which case, at step 510, the wave shape and slope may be predetermined. In some embodiments, the method 500 may receive an indication of a dimming level. For example, a user may provide input regarding a dimming level. In some embodiments, the desired dimming level may correspond to a percentage, number, ratio, fraction, power level, etc. For example, the dimming levels may be “high”, “medium” and “low”.


Based on the dimming level, the method 500 may include generating a wave. The wave may be generated responsive to the dimming level to include a certain wave shape, slope, frequency, or DC level. In some embodiments, at least one of the wave shape, slope, frequency or DC level may be fixed or preconfigured. For example, the wave shape may be fixed to be a triangle or a sinusoid, while the frequency may vary. In some embodiments, the slope may vary while other factors remain the same, thus changing the area under the wave that is above a minimum threshold to turn on a power regulator. Varying one or more of the frequency, slope, DC level, threshold level, or wave shape may facilitate controlling the dimming level of an LED and increasing a dimming range (e.g., 0.1% to 100%).


In some embodiments, the method 500 includes transmitting the wave to a control input to control a dimming level of the LED. For example, the wave may be transmitted to a current control pin of an LED driver. By slowly adjusting the reference signal input to the current control pin, the LED driver may be configured to reduce the average power provided to an LED to reduce the dimming level without causing the LED to flicker.


While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any inventions or of what may be claimed, but rather as descriptions of features specific to particular implementations of particular inventions. Certain features described in this specification in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated in a single software product or packaged into multiple software products.


References to “or” may be construed as inclusive so that any terms described using “or” may indicate any of a single, more than one, and all of the described terms.


Thus, particular implementations of the subject matter have been described. Other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results. In addition, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous.

Claims
  • 1. A system, comprising: an electronic chip having a current control input configured to receive a reference signal, and an output coupled to a power input of a device, the electronic chip configured to provide power to the device based on the reference signal input to the current control input; anda wave shape generator having an output coupled to the current control input of the electronic chip to provide the generated reference signal, the wave shape generator configured to generate the reference signal comprising a wave with a wave shape having a slope, a first portion of the wave above a minimum threshold to turn on the electronic chip, and a second portion of the wave below the minimum threshold to turn off the electronic chip, wherein at least one of the slope, the first portion, or the second portion is predetermined based on a desired intensity level for the device, andwherein the electronic chip, to control a level of power delivered to the device, cycles between an on state and an off state in response to the first portion of the wave and the second portion of the wave.
  • 2. The system of claim 1, wherein the wave shape generator is further configured to generate the wave with a triangular wave shape.
  • 3. The system of claim 1, wherein the wave shape generator is further configured to generate the wave with a sinusoidal wave shape comprising the slope.
  • 4. The system of claim 1, wherein the electronic chip is further configured to reduce the level of power delivered to the device responsive to the second portion.
  • 5. The system of claim 1, wherein the wave shape generator generates the wave with the wave shape comprising a voltage changing slower than a rise-time of the wave.
  • 6. The system of claim 1, further comprising a current feedback output coupled to the control input of the electronic chip, a signal of the current feedback output being summed or multiplied with the wave.
  • 7. The system of claim 1, wherein the electronic chip comprises a light emitting diode (LED) driver, the device comprises an LED, and the level of power comprises a dimming level of the LED.
  • 8. The system of claim 1, wherein the wave shape generator further comprises an interface, the wave shape generator configured to: receive an input wave from a wave source; andcondition the input wave to generate the wave such that the wave comprises the slope.
  • 9. The system of claim 8, wherein the interface is configured to round at least one edge of the input wave to generate the wave, the interface comprising at least one of: a transistor push-pull with a resistor and capacitor;a transistor push up with a resistor pull-down with a resistor and capacitor;a constant-current source and constant-current sink with a capacitor;a constant-current source with a resistor pull-down with a capacitor;a constant-current sink with a resistor pull-up with a capacitor;an inductor; anda capacitor.
  • 10. A method, comprising: generating, by a wave shape generator having an output coupled to a current control input of an electronic chip, a reference signal comprising a wave with a wave shape having a slope, a first portion of the wave above a minimum threshold to turn on the electronic chip, and a second portion of the wave below the minimum threshold to turn off the electronic chip, wherein at least one of the slope, the first portion, or the second portion is predetermined based on a desired intensity level for the device, andproviding, by the wave shape generator via the output, to the current control input of the electronic chip, the generated reference signal comprising the wave; andcycling, by the electronic chip in response to the first portion of the wave and the second portion of the wave, between an on state and an off state to control a level of power delivered to the device.
  • 11. The method of claim 10, comprising: generating, by the wave shape generator, the wave with a triangular wave shape.
  • 12. The method of claim 10, comprising: generating, by the wave shape generator, the wave with a sinusoidal wave shape comprising the slope.
  • 13. The method of claim 10, comprising: reducing, by the electronic chip, the level of power delivered to the device responsive to the second portion.
  • 14. The method of claim 10, comprising: generating, by the wave shape generator, the wave with the wave shape comprising a voltage changing slower than a rise-time of the wave.
  • 15. The method of claim 10, comprising: outputting, by a current feedback output coupled to the control input of the electronic chip, a signal of the current feedback output summed or multiplied with the wave.
  • 16. The method of claim 10, wherein the electronic chip comprises a light emitting diode (LED) driver, the device comprises an LED, and the level of power comprises a dimming level of the LED.
  • 17. The method of claim 10, comprising: receiving, by an interface of the wave shape generator, an input wave from a wave source; andconditioning, by the wave shape generator, the input wave to generate the wave such that the wave comprises the slope.
  • 18. The method of claim 17, comprising: rounding, by the interface of the wave shape generator, at least one edge of the input wave to generate the wave, the interface comprising at least one of:a transistor push-pull with a resistor and capacitor;a transistor push up with a resistor pull-down with a resistor and capacitor;a constant-current source and constant-current sink with a capacitor;a constant-current source with a resistor pull-down with a capacitor;a constant-current sink with a resistor pull-up with a capacitor;an inductor; anda capacitor.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of and claims priority to, and the benefit of, U.S. application Ser. No. 13/729,770, filed Dec. 28, 2012, which is incorporated herein by reference in its entirety.

US Referenced Citations (340)
Number Name Date Kind
4139770 Beyersdorf Feb 1979 A
5264997 Hutchisson et al. Nov 1993 A
5465199 Bray et al. Nov 1995 A
5561346 Byrne Oct 1996 A
5659582 Kojima et al. Aug 1997 A
5783909 Hochstein Jul 1998 A
5803579 Turnbull et al. Sep 1998 A
5909429 Satyanarayana et al. Jun 1999 A
5947587 Keuper et al. Sep 1999 A
6013988 Bucks et al. Jan 2000 A
6016038 Mueller et al. Jan 2000 A
6040663 Bucks et al. Mar 2000 A
6094014 Bucks et al. Jul 2000 A
6127783 Pashley et al. Oct 2000 A
6147458 Bucks et al. Nov 2000 A
6150774 Mueller et al. Nov 2000 A
6157093 Giannopoulos et al. Dec 2000 A
6166496 Lys et al. Dec 2000 A
6194839 Chang Feb 2001 B1
6201353 Chang et al. Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6234645 Borner et al. May 2001 B1
6234648 Borner et al. May 2001 B1
6236331 Dussureault May 2001 B1
6238065 Jones May 2001 B1
6249088 Chang Jun 2001 B1
6250774 Begemann et al. Jun 2001 B1
6253530 Price et al. Jul 2001 B1
6288497 Chang et al. Sep 2001 B1
6292901 Lys et al. Sep 2001 B1
6299329 Mui et al. Oct 2001 B1
6304464 Jacobs et al. Oct 2001 B1
6305818 Lebens et al. Oct 2001 B1
6340864 Wacyk Jan 2002 B1
6340868 Lys et al. Jan 2002 B1
6384545 Lau May 2002 B1
6411046 Muthu Jun 2002 B1
6441558 Muthu et al. Aug 2002 B1
6443592 Unger et al. Sep 2002 B1
6445139 Marshall et al. Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6489731 Bruning et al. Dec 2002 B1
6495964 Muthu et al. Dec 2002 B1
6507158 Wang Jan 2003 B1
6507159 Muthu Jan 2003 B2
6510995 Muthu et al. Jan 2003 B2
6513949 Marshall et al. Feb 2003 B1
6528954 Lys et al. Mar 2003 B1
6552495 Chang Apr 2003 B1
6576881 Muthu et al. Jun 2003 B2
6577080 Lys et al. Jun 2003 B2
6577512 Tripathi et al. Jun 2003 B2
6580309 Jacobs et al. Jun 2003 B2
6586890 Min et al. Jul 2003 B2
6596977 Muthu et al. Jul 2003 B2
6608453 Morgan et al. Aug 2003 B2
6609813 Showers et al. Aug 2003 B1
6617795 Bruning Sep 2003 B2
6621235 Chang Sep 2003 B2
6630801 Schuurmans Oct 2003 B2
6636003 Rahm et al. Oct 2003 B2
6639368 Sheoghong Oct 2003 B2
6676284 Wynne Willson Jan 2004 B1
6692136 Marshall et al. Feb 2004 B2
6720745 Lys et al. Apr 2004 B2
6724159 Gutta et al. Apr 2004 B2
6734639 Chang et al. May 2004 B2
6741351 Marshall et al. May 2004 B2
6762562 Leong Jul 2004 B2
6777891 Lys et al. Aug 2004 B2
6788011 Mueller et al. Sep 2004 B2
6796680 Showers et al. Sep 2004 B1
6796686 Jacob et al. Sep 2004 B2
6801003 Schanberger et al. Oct 2004 B2
6806659 Mueller et al. Oct 2004 B1
6831569 Wang et al. Dec 2004 B2
6853150 Clauberg et al. Feb 2005 B2
6853151 Leong et al. Feb 2005 B2
6859644 Wang Feb 2005 B2
6922022 Bucks et al. Jul 2005 B2
6930452 De Krijger et al. Aug 2005 B2
6932477 Stanton Aug 2005 B2
6933685 Gutta et al. Aug 2005 B2
6933767 Bucks et al. Aug 2005 B2
6965205 Piepgras et al. Nov 2005 B2
6969954 Lys Nov 2005 B2
6972525 Bucks et al. Dec 2005 B2
6975079 Lys et al. Dec 2005 B2
6992803 Chang Jan 2006 B2
6998594 Gaines et al. Feb 2006 B2
7014336 Ducharme et al. Mar 2006 B1
7030572 Nijhof et al. Apr 2006 B2
7031920 Dowling et al. Apr 2006 B2
7038398 Lys et al. May 2006 B1
7038399 Lys et al. May 2006 B2
7064498 Dowling et al. Jun 2006 B2
7067992 Leong et al. Jun 2006 B2
7071762 Xu et al. Jul 2006 B2
7113541 Lys et al. Sep 2006 B1
7118248 Wynne Willson Oct 2006 B2
7132804 Lys et al. Nov 2006 B2
7135824 Lys et al. Nov 2006 B2
7139617 Morgan et al. Nov 2006 B1
7140752 Ashdown Nov 2006 B2
7161311 Mueller et al. Jan 2007 B2
7161313 Piepgras et al. Jan 2007 B2
7161556 Morgan et al. Jan 2007 B2
7178941 Roberge et al. Feb 2007 B2
7180252 Lys et al. Feb 2007 B2
7186003 Dowling et al. Mar 2007 B2
7202608 Robinson et al. Apr 2007 B2
7202613 Morgan et al. Apr 2007 B2
7202641 Claessens et al. Apr 2007 B2
7204622 Dowling et al. Apr 2007 B2
7221104 Lys et al. May 2007 B2
7228190 Dowling et al. Jun 2007 B2
7231060 Dowling et al. Jun 2007 B2
7233115 Lys Jun 2007 B2
7233831 Blackwell Jun 2007 B2
7242152 Dowling et al. Jul 2007 B2
7253566 Lys et al. Aug 2007 B2
7255457 Ducharme et al. Aug 2007 B2
7255458 Ashdown Aug 2007 B2
7256554 Lys Aug 2007 B2
7262559 Tripathi et al. Aug 2007 B2
7267461 Kan et al. Sep 2007 B2
7274160 Mueller et al. Sep 2007 B2
7276861 Shteynberg Oct 2007 B1
7300192 Mueller et al. Nov 2007 B2
7308296 Lys et al. Dec 2007 B2
7309965 Dowling et al. Dec 2007 B2
7314289 Montagne Jan 2008 B2
7319298 Jungwirth et al. Jan 2008 B2
7323676 Duijve Jan 2008 B2
7329998 Jungwirth Feb 2008 B2
7350936 Ducharme et al. Apr 2008 B2
7352138 Lys et al. Apr 2008 B2
7352339 Morgan et al. Apr 2008 B2
7353071 Blackwell et al. Apr 2008 B2
7354172 Chemel et al. Apr 2008 B2
7358679 Lys et al. Apr 2008 B2
7358681 Robinson et al. Apr 2008 B2
7358706 Lys Apr 2008 B2
7358929 Mueller et al. Apr 2008 B2
7358961 Zwanenburg Apr 2008 B2
7387405 Ducharme et al. Jun 2008 B2
7388665 Ashdown Jun 2008 B2
7394210 Ashdown Jul 2008 B2
7420335 Robinson et al. Sep 2008 B2
7423387 Robinson et al. Sep 2008 B2
7432668 Zwanenburg et al. Oct 2008 B2
7443209 Chang Oct 2008 B2
7449847 Schanberger et al. Nov 2008 B2
7453217 Lys et al. Nov 2008 B2
7459864 Lys Dec 2008 B2
7462997 Mueller et al. Dec 2008 B2
7463070 Wessels Dec 2008 B2
7482565 Morgan et al. Jan 2009 B2
7482760 Jungwirth et al. Jan 2009 B2
7490953 Holten et al. Feb 2009 B2
7490957 Leong et al. Feb 2009 B2
7495671 Chemel et al. Feb 2009 B2
7502034 Chemel et al. Mar 2009 B2
7505395 Ashdown et al. Mar 2009 B2
7507001 Kit Mar 2009 B2
7511436 Xu Mar 2009 B2
7511437 Lys et al. Mar 2009 B2
7515128 Dowling Apr 2009 B2
7520634 Ducharme et al. Apr 2009 B2
7521872 Bruning Apr 2009 B2
7525254 Lys et al. Apr 2009 B2
7538499 Ashdown May 2009 B2
7542257 McCormick et al. Jun 2009 B2
7550931 Lys et al. Jun 2009 B2
7550935 Lys et al. Jun 2009 B2
7557521 Lys Jul 2009 B2
7569807 Matheson Aug 2009 B2
7572028 Mueller et al. Aug 2009 B2
7573209 Ashdown et al. Aug 2009 B2
7573210 Ashdown et al. Aug 2009 B2
7573729 Elferich et al. Aug 2009 B2
7598681 Lys et al. Oct 2009 B2
7598684 Lys et al. Oct 2009 B2
7598686 Lys et al. Oct 2009 B2
7619370 Chemel et al. Nov 2009 B2
7652236 Cortenraad et al. Jan 2010 B2
7654703 Kan et al. Feb 2010 B2
7656366 Ashdown Feb 2010 B2
7658506 Dowling Feb 2010 B2
7659673 Lys Feb 2010 B2
7659674 Mueller et al. Feb 2010 B2
7665883 Matheson Feb 2010 B2
7667409 Geerts et al. Feb 2010 B2
7675238 Cortenraad et al. Mar 2010 B2
7687753 Ashdown Mar 2010 B2
7688002 Ashdown et al. Mar 2010 B2
7689130 Ashdown Mar 2010 B2
7703951 Piepgras et al. Apr 2010 B2
7710369 Dowling May 2010 B2
7712926 Matheson May 2010 B2
7714521 Qian May 2010 B2
7731387 Cortenraad et al. Jun 2010 B2
7731389 Draganov et al. Jun 2010 B2
7731390 Van Gorkom et al. Jun 2010 B2
7737643 Lys Jun 2010 B2
7738002 Ashdown et al. Jun 2010 B2
7740375 Zou et al. Jun 2010 B2
7766489 Duine et al. Aug 2010 B2
7766518 Piepgras et al. Aug 2010 B2
7772787 Ashdown et al. Aug 2010 B2
7777427 Stalker, III Aug 2010 B2
7781979 Lys Aug 2010 B2
7802902 Moss et al. Sep 2010 B2
7806558 Williamson Oct 2010 B2
7808191 Wu Oct 2010 B2
7809448 Lys et al. Oct 2010 B2
7810974 Van Rijswick et al. Oct 2010 B2
7845823 Mueller et al. Dec 2010 B2
7850347 Speier et al. Dec 2010 B2
7854539 Van Duijneveldt Dec 2010 B2
7868562 Salsbury et al. Jan 2011 B2
7878683 Logan et al. Feb 2011 B2
7878688 Paulussen et al. Feb 2011 B2
7893631 Speier Feb 2011 B2
7893661 Ackermann et al. Feb 2011 B2
7894050 Ashdown et al. Feb 2011 B2
7906917 Tripathi et al. Mar 2011 B2
7911151 Xu Mar 2011 B2
7914173 Paulussen et al. Mar 2011 B2
8022632 Schulz et al. Sep 2011 B2
8026673 Lys Sep 2011 B2
20020074559 Dowling et al. Jun 2002 A1
20030132721 Jacobs et al. Jul 2003 A1
20030133292 Mueller et al. Jul 2003 A1
20040052076 Mueller et al. Mar 2004 A1
20040090191 Mueller et al. May 2004 A1
20040178751 Mueller et al. Sep 2004 A1
20050236998 Mueller et al. Oct 2005 A1
20050275626 Mueller et al. Dec 2005 A1
20060002110 Dowling et al. Jan 2006 A1
20060076908 Morgan et al. Apr 2006 A1
20060114201 Chang Jun 2006 A1
20060152172 Mueller et al. Jul 2006 A9
20060221606 Dowling Oct 2006 A1
20060262521 Piepgras et al. Nov 2006 A1
20060274526 Weston et al. Dec 2006 A1
20060290624 Ashdown Dec 2006 A1
20070063658 Van Der Veeken Mar 2007 A1
20070086912 Dowling et al. Apr 2007 A1
20070115658 Mueller et al. May 2007 A1
20070145915 Roberge et al. Jun 2007 A1
20070153514 Dowling et al. Jul 2007 A1
20070230159 Cortenraad et al. Oct 2007 A1
20070258240 Ducharme et al. Nov 2007 A1
20070273290 Ashdown et al. Nov 2007 A1
20080042599 Ashdown Feb 2008 A1
20080043464 Ashdown Feb 2008 A1
20080048582 Robinson Feb 2008 A1
20080062413 Ashdown et al. Mar 2008 A1
20080089060 Kondo et al. Apr 2008 A1
20080094005 Rabiner et al. Apr 2008 A1
20080122386 De Brouwer et al. May 2008 A1
20080136331 Schmeikal Jun 2008 A1
20080136796 Dowling Jun 2008 A1
20080140231 Blackwell et al. Jun 2008 A1
20080164826 Lys Jul 2008 A1
20080164854 Lys Jul 2008 A1
20080167734 Robinson et al. Jul 2008 A1
20080183081 Lys et al. Jul 2008 A1
20080239675 Speier Oct 2008 A1
20080265797 Van Doorn Oct 2008 A1
20080278092 Lys et al. Nov 2008 A1
20080278941 Logan et al. Nov 2008 A1
20080290251 Deurenberg et al. Nov 2008 A1
20080297066 Meijer et al. Dec 2008 A1
20080298330 Leitch Dec 2008 A1
20080315798 Diederiks et al. Dec 2008 A1
20090002981 Knibbe Jan 2009 A1
20090021175 Wendt et al. Jan 2009 A1
20090021182 Sauerlaender Jan 2009 A1
20090072761 Wessels Mar 2009 A1
20090128059 Joosen et al. May 2009 A1
20090134817 Jurngwirth et al. May 2009 A1
20090160364 Ackermann et al. Jun 2009 A1
20090168415 Franciscus Deurenberg et al. Jul 2009 A1
20090179587 Van Der Veen et al. Jul 2009 A1
20090179596 Willaert et al. Jul 2009 A1
20090189448 Verschueren Jul 2009 A1
20090224695 Van Erp et al. Sep 2009 A1
20090230884 Van Doorn Sep 2009 A1
20090243507 Lucero-Vera et al. Oct 2009 A1
20090278473 Van Erp Nov 2009 A1
20090284174 Sauerlander et al. Nov 2009 A1
20090321666 Hilgers Dec 2009 A1
20100007600 Deurenberg et al. Jan 2010 A1
20100026191 Radermacher et al. Feb 2010 A1
20100045478 Schulz et al. Feb 2010 A1
20100072901 De Rijck et al. Mar 2010 A1
20100072902 Wendt et al. Mar 2010 A1
20100079085 Wendt et al. Apr 2010 A1
20100079091 Deixler et al. Apr 2010 A1
20100084995 Baaijens et al. Apr 2010 A1
20100091488 Ijzerman et al. Apr 2010 A1
20100094439 Van De Meulenhof et al. Apr 2010 A1
20100102732 Peeters et al. Apr 2010 A1
20100117543 Van Der Veen et al. May 2010 A1
20100117656 Snelten May 2010 A1
20100118531 Montagne May 2010 A1
20100127633 Geerts et al. May 2010 A1
20100134041 Radermacher et al. Jun 2010 A1
20100134042 Willaert Jun 2010 A1
20100148689 Morgan et al. Jun 2010 A1
20100164399 Radermacher et al. Jul 2010 A1
20100165618 Vissenberg et al. Jul 2010 A1
20100171771 Otte et al. Jul 2010 A1
20100181936 Radermacher et al. Jul 2010 A1
20100188007 Deppe et al. Jul 2010 A1
20100194293 Deurenberg et al. Aug 2010 A1
20100231133 Lys Sep 2010 A1
20100231363 Knibbe Sep 2010 A1
20100244707 Gaines et al. Sep 2010 A1
20100244734 Van Herpen et al. Sep 2010 A1
20100259182 Man et al. Oct 2010 A1
20100264834 Gaines et al. Oct 2010 A1
20100271843 Holten et al. Oct 2010 A1
20100289532 Wendt et al. Nov 2010 A1
20100301780 Vinkenvleugel Dec 2010 A1
20100308745 Delnoij Dec 2010 A1
20110025205 Van Rijswick et al. Feb 2011 A1
20110025230 Schulz et al. Feb 2011 A1
20110035404 Morgan et al. Feb 2011 A1
20110042554 Hilgers et al. Feb 2011 A1
20110090684 Logan et al. Apr 2011 A1
20110095694 Justel et al. Apr 2011 A1
20110140626 Aurongzeb et al. Jun 2011 A1
20110285292 Mollnow et al. Nov 2011 A1
20110291812 Verbrugh Dec 2011 A1
20120019670 Chang et al. Jan 2012 A1
20120230073 Newman, Jr. Sep 2012 A1
20130241441 Myers Sep 2013 A1
Foreign Referenced Citations (1)
Number Date Country
WO-03017733 Feb 2003 WO
Non-Patent Literature Citations (72)
Entry
“1-Wire Products Deliver a Powerful Combination . . . ”, Mixed-Signal Design Guide, Dallas Semiconductor Maxim, 2005, 7 pages.
“Conductivity with the BS2/OWL2”, EME Systems, 2002, pp. 1-3.
“Dimmable Fluorescent Ballast”, ATAVRFBKIT/EVLB001, User Guide, ATMEL, 2007, 35 pages.
“Understanding Boost Power Stages in Switchmode Power Supplies”, Application Report, Texas Instruments, Mixed Signal Products, Mar. 1999, 32 pages.
“Understanding Buck Power Stages in Switchmode Power Supplies”, Application Report, Texas Instruments, Mixed Signal Products, Mar. 1999, 36 pages.
Barberis, C. “Precision current sink costs less than $20”, EDN Design Ideas, 43(6), 1998, 2 pages.
Bellcomb Technologies Incorporated, “Edges, Joiners, Attachments”, Web Address: http://www.bellcomb.com/caps/edges.htm, Apr. 22, 2007, pp. 1-3.
Bookmarks Menu—Controllers/Wireless—Deisgn Ideas, dated Dec. 6, 2012, 1 pg.
Bowling, S. “Buck-Boost LED Driver Using the PIC16F785 MCU”, Microchip, AN1047, 2006, pp. 1-12.
By Staff, DALI Delivers Control and Cost Savings, Headaches Too, Consulting-Specifying Engineer, Jun. 2002, 2 pages.
Canny, D. “Controlling slew times tames EMI in offline supplies”, EDN Design Ideas, Nov. 14, 2002.
Control Freak Addict Data Sheet, Copyright 2008, Creative Lighting, 5 pages.
Curtis, K. “High Power IR LED Driver Using the PIC16C781/782”, Microchip, TB062, 2002, pp. 1-8.
CybroTech, Managing Lights with Dali, TN-012, rev 2, Cybrotech Ltd., 2007, 11 pgs.
Cypress Perform, Implementing an Integrated DMX512 Receiver, Item ID: 39762, Dec. 16, 2009, 1 pg.
Cypress Semiconductor Corporation, PowerPSoC (R) Intelligent LED Driver, Document No. 001-46319, Rev. *G, 2009, 52 pages.
Dali-AG website, Dali at work, 1 pg., last update Apr. 8, 2010.
Davidovic, et al., Lead-Acid Battery Charger Becomes a Subfuction in a Microcontroller, The Authority on Emerging Technologies for Design Solutions, Mar. 2007, 2 pages.
DAVMARK Ltd., Dali-Protocol, 2007, 6 pages.
Di Jasio, “A Technique to Increase the Frequency Resolution of PlCmicro MCU PWM Modules”, Microchip, AN1050, 2006, pp. 1-10.
Dietz, et al. “Very Low-Cost Sensing and Communication Using Bidirectional LEDs”, Mitsubishi Electric Research Laboratories, Jul. 2003, 19 pgs.
Distler, T. “LED Effects Stream TM v2.0 Protocol (Revision C)”, Jun. 2, 2005, pp. 1-5.
Dunn, J. “Matching MOSFET Drivers to MOSEFTs”, Microchip, AN799, 2004, pp. 1-10.
Fosler, R. “The RS-232/DALI Bridge Interface”, Microchip, AN811, 2002, pp. 1-8.
Fosler, R. “Use a microcontroller to design a boost converter”, EDN design ideas, Mar. 4, 2004, pp. 74-75.
Fosler, R., et al. “Digitally Addressable DALI Dimming Ballast”, Microchip, AN809, 2002, pp. 1-18.
Ghulyani, L. “Simple MPPT-Based Lead Acid Charger Using bq2031”, Texas Instruments, Dec. 2009, pp. 1-5.
Goder, D. “Scheme provides high-side current sensing for white-LED drivers”, EDN, 1 page, Feb. 19, 2004.
Google Search Results for dali query group, search completed on Apr. 8, 2010, accessed at google.com, http://www.google.com/search?hl=en&c1ient=firefox-a&rls=org.mozilla:en-, 2 pages.
Hardwick, M. “DC power wire also carries clock or data”, EDN Design Ideas, Mar. 13, 1998, 1 page.
Hexcel Composites, “Sandwich Panel Fabrication Technology”, Web Address: http://www.hexcel.com/NR/rdonlyres/B4574C2C-0644-43AC-96E2-CC15967A4b)5/4547 Sandwich Fabrication.pdf, Jan. 1997, pp. 1-16.
High-Side Current Monitor, ZETEX, Apr. 2001, ZXCT1009, Issue 3, pp. 1-8.
Implementing Infrared Object Detection, http://web.archive.org/web/20080528042614rejwww.seattlerobotics.org/guide/infrared.html, original publication date known, retrieved Apr. 7, 2010, seattlerobotics.org, 4 pages.
Jackson, S. “Circuit protects bus from 5V swings”, EDN Design Ideas, Nov. 14, 2002, pp. 102.
Klepin, K. “Temperature Compensation for High Brightness LEDs using EZ-Color (TM) and PSoC Express”, Cypress Perform, AN14406, Aug. 10, 2007, pp. 1-4.
Kremin, V. et al. “Multichannel LED Dimmer with CapSense Control—AN13943”, Cypress Perform, Jul. 20, 2007, 5 pages.
Kropf, B. “Firmware—RGB Color Mixing Firmware for EZ-Color (TM)—AN16035”, Cypress Perform, Jun. 13, 2007, pp. 1-7.
Lager, A. “Use a 555 timer as a switch-mode power supply”, EDN Design Ideas, Nov. 14, 2002, 1 page.
Lee, M. Shunt Battery Charger Provides 1A Continuous Current, EDN Magazine, 1997.
Locher, R. “Introduction to Power MOSEFETs and their Applications”, Fairchild Semiconductor (TM), Application Note 558, Rev B, Oct. 1998, 15 pgs.
McArthur, R., “Making Use of Gate Charge to Design the Gate Drive Circuit for Power MOSEFETs and IGBTs data sheets”, International Rectifier, Application Note AN-944, Advanced Power Technology, 5 pgs., 2001.
Miller, R. “Digital addressable lighting interface protocol fosters systems interoperability for lower costs and greater design flexibility”, RNM Engineering, Inc., Apr. 2003, pp. 1-20.
Nell, S. “VCO uses programmable logic”, EDN Design Ideas, Nov. 14, 2002, 1 page.
News & Events DALI Digital addressable lighting interface lamp luminaire control, accessed at http://www.dali-ag.org/ on Apr. 8, 2010, original publication date unknown, updated Apr. 8, 2010, 1 pg.
O'Loughlin, M. “350-W, Two-Phase Interleaved PFC Pre-regulator Design Review”, Texas Instruments, Application Report, Revised Mar. 2007, 21 pages.
O'Loughlin, M., PFC Pre-Regulator Frequency Dithering Circuit, Texas Instruments, May 2007, pp. 1-8.
Perrin, R. Inexpensive Relays Form Digital Potentiometer, EDN Design Ideas, 1998, 2 pages.
Petersen, A. “Harness solar power with smart power-conversion techniques”, EDN, Green Electronics designfeature, Feb. 4, 1999, pp. 119-124.
Prendergast, P. “How to Design a Three-Channel LED Driver”, Cypress Perform, Jan. 2008, pp. 1-9.
Renesas, R8C/25 Demonstration Example for DALI Lighting Protocol Stack, REU05BOO77-0100/Rev. 1.00, Jul. 2008, 14 pgs.
Richardson, C., Matching Driver to LED, National Semiconductor, Jan. 2008, 5 pgs.
Richardson. C., LM3404 Driving a Seoul Semi Zpower P4 1A LED-RD-I34, National Semiconductor, Apr. 2007, 6 pages.
Shanmugam, S. “Design of a linear Fresnel lens system for solar photovoltaic electrical power source”, Proc. SPIE 4572, Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and Active Vision, 556, Oct. 5, 2001, 8 pages.
Shill, M. “Simple logic probe uses bicolor LED”, EDN Design Ideas, Mar. 13, 1998, 2 pages.
Software Design Specification, Z-Wave Protocol Overview, Z wave the wireless language, Zensys A/S, May 9, 2007, 20 pages.
Soundlight, Operating Manual, DALI and DMX Dekoder 7064A-H Mk1, 2008, 8 pgs.
Takahashi A., Methods and Features of LED Drivers, National Semiconductor, Mar. 2008, 3 pgs.
Universal Powerline Bus Communication Technology, Overview, PCS Powerline Control Systems UPB (Universal Powerline Bus), Jan. 8, 2002, pp. 1-13.
UPB Technology Description, PCS—Powerline Control Systems, UPB (Universal Powerline Bus), Version 1.4, Apr. 16, 2007, 68 pages.
US Notice of Allowance on U.S. Appl. No. 13/729,770 DTD Apr. 19, 2016.
US Office Action on 099076-0045 DTD Nov. 18, 2015.
US Office Action on 099076-0045 DTD Jun. 19, 2015.
US Office Action on U.S. Appl. No. 13/729,770 dated Feb. 17, 2015.
Van Dorsten, Arian, A Low Cost Step-up Converter by IC 555, posted Jul. 21, 2007, http://www.eleccircuit.comla-low-cost-step-up-converter-by-ic-5551, retrieved Apr. 7, 2010, 2 pages.
Walma, K., DALI: Forerunner of Today's Breakthrough Lighting Technology, Feb. 2007, 2 pages.
Wikipedia, Digital Addressable Lighting Interface, original publication date unknown, Retrieved from:Retrieved from “http://en.wikipedia.org/wikiJDigital—Addressable—Lighting—Interface” accessed on Apr. 8, 2010, 3 pages.
Witt, J. “Switched-capacitor regulator provides gain”, EDN Design Ideas, Mar. 13, 1998, 2 pages.
Wojslaw, C. “DPP adds versatility to VFC”, EDN, design ideas, Nov. 14, 2002, 1 page.
Young, R. “Power circuit terminates DDR DRAMs”, EDN Design Ideas, Nov. 14, 2002, 1 page.
Zarr, R. Driving High-Power LEDs, Machine Design, Oct. 2007, 3 pages.
Zensys ASCII Interface, VIZIA, 2007, 12 pages.
Z-Wave Vizia Etc thread, retrieved at http://groups.google.com/group/comp.home.automation/browse—thread/thread/449c2c66934dfSfb/fSI12116a8231aa1?Ink=st&q=z-wave&rnum=98#fSI12116a8231aa1, www.ztech.com, 18 pages, 2007.
Related Publications (1)
Number Date Country
20160353536 A1 Dec 2016 US
Continuations (1)
Number Date Country
Parent 13729770 Dec 2012 US
Child 15235851 US