The subject matter disclosed herein relates generally to gas turbine systems, and more particularly, to systems and methods for reducing combustion dynamics, and more specifically, for reducing modal coupling of combustion dynamics within a gas turbine engine.
Gas turbine systems generally include a gas turbine engine having a compressor section, a combustor section, and a turbine section. The combustor section may include one or more combustors (e.g., combustion cans), each combustor having a primary combustion system and a secondary combustion system (e.g., late lean injection (LLI) system) downstream from the primary combustion system. A fuel and/or air mixture may be routed into the primary and secondary combustion systems through fuel nozzles, and each combustion system may be configured to combust the mixture of the fuel and air to generate hot combustion gases that drive one or more turbine stages in the turbine section.
The generation of the hot combustion gases can create a variety of combustion dynamics, which occur when the combustor acoustic oscillations interact with the flame dynamics (also known as the oscillating component of the heat release), to result in a self-sustaining pressure oscillation in the combustor. Combustion dynamics can occur at multiple discrete frequencies or across a range of frequencies, and can travel both upstream and downstream relative to the respective combustor. For example, the pressure waves may travel downstream into the turbine section, e.g., through one or more turbine stages, or upstream into the fuel system. Certain components of the turbine system can potentially respond to the combustion dynamics, particularly if the combustion dynamics generated by the individual combustors exhibit an in-phase and coherent relationship with each other, and have frequencies at or near the natural or resonant frequencies of the components. In the context of combustion dynamics, “coherence” refers to the strength of the linear relationship between two dynamic signals, and is strongly influenced by the degree of frequency overlap between them. In the context of combustion dynamics, “coherence” is a measure of the modal coupling, or combustor-to-combustor acoustic interaction, exhibited by the combustion system.
Accordingly, a need exists to control the combustion dynamics, and/or modal coupling of the combustion dynamics, to reduce the possibility of any unwanted sympathetic vibratory response (e.g., resonant behavior) of components in the turbine system.
Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
In a first embodiment, a system includes a gas turbine engine. The gas turbine engine includes a first combustor having a first fuel injector and a second combustor having a second fuel injector. The gas turbine engine further includes a first fuel conduit extending from a first orifice to a first fuel outlet of the first fuel injector. The first fuel conduit has a first acoustic volume between the first orifice and the first fuel outlet. The gas turbine engine further includes a second fuel conduit extending from a second orifice to a second fuel outlet of the second fuel injector. The second fuel conduit has a second acoustic volume between the second orifice and the second fuel outlet, and the first acoustic volume and the second acoustic volume are different from one another.
In a second embodiment, a system includes a first combustor of a gas turbine system. The first combustor includes a first fuel injector having a first fuel outlet and a second fuel injector having a second fuel outlet. The first combustor further includes the first fuel conduit extending from a first orifice to the first fuel outlet of the first fuel injector. The first fuel conduit has a first conduit geometry between the first orifice and the first fuel outlet and the first orifice has a first orifice geometry. The first combustor further includes a second fuel conduit extending from a second orifice to the second fuel outlet of the second fuel injector. The second fuel conduit has a second conduit geometry between the second orifice and the second fuel outlet and the second orifice has a second orifice geometry. The first conduit geometry and the second conduit geometry are different from one another, or the first orifice geometry and the second orifice geometry are different from one another, or a combination thereof.
In a third embodiment, a system includes a first fuel conduit extending from a first orifice to a first fuel outlet of a first fuel injector of a gas turbine engine. The first fuel conduit has a first conduit geometry between the first orifice and the first fuel outlet, and the first orifice has a first orifice geometry. The system further includes a second fuel conduit extending from a second orifice to a second fuel outlet of a second fuel injector of the gas turbine engine. The second fuel conduit has a second conduit geometry between the second orifice and the second fuel outlet. The second orifice has a second orifice geometry different from the first orifice geometry, or the second conduit geometry is different from the first conduit geometry.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
The present disclosure is directed towards reducing combustion dynamics and/or modal coupling of combustion dynamics, to reduce unwanted vibratory responses in downstream components of a gas turbine system and/or the combustors themselves. A gas turbine combustor (or combustor assembly) may generate combustion dynamics due to the combustion process, characteristics of intake fluid flows (e.g., fuel, oxidant, diluent, etc.) into the combustor, and various other factors. The combustion dynamics may be characterized as pressure fluctuations, pulsations, oscillations, and/or waves at certain frequencies. The fluid flow characteristics may include velocity, pressure, fluctuations in velocity and/or pressure, variations in flow paths (e.g., turns, shapes, interruptions, etc.), or any combination thereof. Collectively, the combustion dynamics can potentially cause vibratory responses and/or resonant behavior in various components upstream and/or downstream from the combustor, as well as the combustors themselves. For example, the combustion dynamics (e.g., at certain frequencies, ranges of frequencies, amplitudes, combustor-to-combustor phases, etc.) can travel both upstream and downstream in the gas turbine system. If the gas turbine combustors, upstream components, and/or downstream components have natural or resonant frequencies that are driven by these pressure fluctuations (i.e. combustion dynamics), then the pressure fluctuations can potentially cause vibration, stress, fatigue, etc. The components may include combustor liners, combustor flow sleeves, combustor caps, fuel nozzles, turbine nozzles, turbine blades, turbine shrouds, turbine wheels, bearings, fuel supply assemblies, or any combination thereof. The downstream components are of specific interest, as they are more sensitive to combustion tones that are in-phase and coherent. Thus, reducing coherence, altering phase and/or reducing the amplitudes of the combustion dynamics specifically reduces the possibility of unwanted vibrations in downstream components. One way to reduce the coherence of the combustion dynamics among the combustors is to alter the frequency relationship between two or more combustors, diminishing any combustor-to-combustor coupling. As the combustion dynamics frequency in one combustor is driven away from that of the other combustors, modal coupling of combustion dynamics is reduced, which, in turn, reduces the ability of the combustor tone to cause a vibratory response in downstream components. An alternate method of reducing modal coupling is to reduce the constructive interference of the fuel nozzles within the same combustor, by introduction of a phase delay between the fuel nozzles, reducing the amplitudes in each combustor, and potentially preventing or reducing combustor-to-combustor coupling. Furthermore, introducing a phase lag between the combustors, or otherwise altering the phase relationship between two or more combustors may also help to prevent or reduce unwanted vibrations in the gas turbine system.
As discussed in detail below, the disclosed embodiments may vary the physical characteristics of a pre-orifice within a fuel line of a fuel supply assembly (e.g., late lean injection (LLI) fuel circuit) to modify the fuel system acoustic impedance, which may lead to combustion dynamics frequencies in one or more combustors that are different, phase shifted, smeared or spread out over a greater frequency range, or any combination thereof, relative to any resonant frequencies of the components in the gas turbine system. As noted above, a gas turbine system may include one or more combustor assemblies (e.g., combustor cans, combustors, etc.), and each combustor may be configured with a primary combustion zone and a secondary combustion zone. Specifically, in some embodiments, the secondary combustion zone may include an LLI fuel circuit configured to route a secondary fuel into a secondary combustion zone for combustion. In certain embodiments, each LLI fuel circuit includes one or more fuel lines extending along either the liner or the flow sleeve of the combustor, and each fuel line is configured to provide a secondary fuel to one or more fuel injectors that route the secondary fuel into the secondary combustion zone. In particular, each of the one or more LLI fuel lines may include one or more pre-orifices through which the fuel flows in the LLI fuel circuit prior to arriving at the LLI fuel nozzles, where the fuel is injected into the combustor through one or more post-orifices. The fuel system acoustic impedance of the fuel nozzles is defined by the geometry of the pre-orifice, the geometry of the post-orifice and the volume between the pre and post-orifice. Accordingly, varying the position of the pre-orifice within the LLI fuel circuit adjusts the volume between the pre and post orifice, to adjust the fuel system acoustic impedance of one or more fuel nozzles. In addition, altering the size, shape and/or number of holes in the pre-orifice may also alter the fuel system acoustic impedance of one or more fuel nozzles.
In certain embodiments, the physical characteristics (e.g., position, sizing, shape, location, effective area, etc.) of the pre-orifice of each fuel line within the LLI fuel circuit of a single combustor may be different from the physical characteristics of the pre-orifice of another fuel line within the same LLI fuel circuit. For example, the location of the pre-orifice along the LLI fuel line may be shifted, so that it is closer or further away from the post-orifice, thus changing the acoustic volume between the pre and post orifices, thereby altering the fuel system impedance. By further example, the location of the pre-orifice relative to the post-orifice may be shifted relative to other fuel lines of the same combustor, thus changing the acoustic volume between the pre and post orifices and thereby altering the fuel system impedance. Further, in certain embodiments, the physical characteristics of the pre-orifices of the one or more fuel lines within a single combustor may be different from the physical characteristics of the pre-orifices of one or more fuel lines within another (e.g., adjacent, alternating) combustor within the gas turbine system. For example, the location of the pre-orifice relative to the post-orifice along the LLI fuel lines of a first combustor may be shifted when compared to the location of the pre-orifice relative to the post-orifice of another combustor (e.g., an adjacent combustor), thereby changing the acoustic volume between the pre and post orifices and thus altering the fuel system impedance between different combustors within the gas turbine system.
In some embodiments, by varying the physical characteristics of the pre-orifice (e.g., location, size, position, shape, effective area, etc.) of one or more fuel lines within the LLI fuel circuit of the combustor, the magnitude and phase of the fuel system impedance for the fuel nozzle will be changed, which affects the fluctuating component of the heat release, and therefore the combustion dynamics of the combustor. Varying the fuel system impedance between two or more fuel lines within a combustor by varying the physical characteristics of two or more pre-orifices results in different fuel system acoustic impedance magnitudes and phases for the different fuel nozzles. The difference in the phase of the fuel system impedance between the fuel nozzles results in destructive interference of the heat release fluctuations associated with each of the fuel nozzles, reducing the amplitude of the combustion dynamics, and potentially smearing the frequency content of the combustion dynamics across a broader frequency range.
In some embodiments, the physical characteristics of the pre-orifice (e.g., location, size, position, shape, effective area, etc.) of each fuel line within a particular combustor may be the same, but may be varied compared to the pre-orifices of fuel lines within other combustors within the system. Varying the physical characteristics of the pre-orifices among the fuel lines of various combustors may vary the fuel system acoustic impedance and therefore, combustion dynamics, from combustor to combustor in a manner to reduce the combustion dynamics amplitudes, alter the combustion dynamics frequency, alter the phase of the combustion dynamics, and/or reduce modal coupling of the combustion dynamics among the plurality of gas turbine combustors. In some embodiments, the physical characteristics of the pre-orifice may be varied within a particular combustor, as well as among one or more combustors of the system in order to reduce dynamic amplitudes as well as coherence within and/or among the combustors of the system. For example, the physical characteristics of the pre-orifices among the combustors may be varied according to various patterns or groupings, as further explained below. Indeed, such variations may help reduce the amplitudes of the combustion dynamics and/or reduce the possibility of modal coupling of the combustors, particularly at frequencies that are aligned with resonant frequencies of the components of the gas turbine system.
With the forgoing in mind,
The gas turbine system 10 includes the one or more combustors 12 having the fuel line systems 18, a compressor 26, and a turbine 28. The combustors 12 include primary fuel nozzles 30 which route a primary fuel 32 (e.g., liquid fuel and/or a gas fuel, a first fuel, etc.) into the combustors 12 for combustion within the primary combustion zone. Likewise, the combustors 12 include secondary fuel nozzles 64 (as illustrated in
In an embodiment of the turbine system 10, compressor blades are included as components of the compressor 26. The blades within the compressor 26 are coupled to the shaft 36, and will rotate as the shaft 36 is driven to rotate by the turbine 28, as described above. The rotation of the blades within the compressor 26 compresses air 43 from an air intake 42 into pressurized air 44. The pressurized air 44 is then fed into the primary fuel nozzles 30 of the combustors 12. The primary fuel nozzles 30 mix the pressurized air 44 and fuel to produce a suitable mixture ratio for combustion (e.g., a combustion that causes the fuel to more completely burn) so as not to waste fuel or cause excess emissions.
As discussed in further detail below, the physical characteristics (e.g., position, size, location, shape, effective area, etc.) of the pre-orifice 20 may vary between different fuel conduits 22 of the same combustor 12 (as shown in
In some embodiments, changes in the physical characteristics of the pre-orifice 20 for a specific fuel nozzle may change the effective area and/or the pressure ratio for that fuel nozzle, which in turn may result in variations of the mass flow of the secondary fuel 16 entering the combustor 12. For example, the shape of the pre-orifice 20 (e.g., round, oval, square, polygonal, etc.) may be varied between and/or among different combustors 12 to vary the effective area and/or the pressure ratio of the pre-orifice 20 which would vary the mass flow of secondary fuel 16 entering the combustor 12. As a further example, shifting the location of the pre-orifice 20 relative to the post-orifice 24 (e.g., closer to the post-orifice 24 or away from the post-orifice 24) may increase or decrease the acoustic volume between the pre-orifice 20 and the post-orifice 24, thereby resulting in a phase delay between one or more secondary fuel nozzles 64, and causing destructive interference of the equivalence ratio fluctuations generated by the fuel nozzles 64. In this manner, changing the physical characteristics may result in variations between the heat release of the LLI injectors within the combustor, thereby increasing the amount of temporal variation in the dynamic frequency content in the flame region, and/or increasing the destructive interference of the dynamic frequency content in the flame region, which may result in reducing the amplitude of the combustor tones and/or the coherence of the combustion dynamics.
In some embodiments, the size and/or shape of the pre-orifice 20 may vary between different fuel conduits 22 of the same combustor 12 (as shown in
The combustor 12 includes a head end 50 having an end cover 52, a combustor cap assembly 54, and a primary combustion zone 56. The end cover 52 and the combustor cap assembly 54 may be configured to support the primary fuel nozzles 30 in the head end 50. In the illustrated embodiment, the primary fuel nozzles 30 route the primary fuel 32 to the primary combustion zone 56. The combustor 12 includes an outer wall (e.g., flow sleeve 68) disposed circumferentially about an inner wall (e.g., combustion liner 66). The inner wall may also include a transition piece 69, which generally converges towards a first stage of the turbine 28. An impingement sleeve 67 is disposed circumferentially about the transition piece 69. Further, the primary fuel nozzles 30 receive the pressurized air 44 from the annulus 58 (e.g., between transition piece 69 and impingement sleeve 67 and between liner 66 and flow sleeve 68) of the combustor 12 and combine the pressurized air 44 with the primary fuel 32 to form an air/fuel mixture that is ignited and combusted in the primary combustion zone 56 to form combustion gases (e.g., exhaust).
The combustion gases flow in a direction 60 to a secondary combustion zone 62. The LLI fuel circuit 14 provides the secondary fuel 16 which flows through the pre-orifice 20 in the fuel conduit 22 to the post-orifice 24. In particular, the post-orifice 24 in the secondary fuel nozzles 64 receive the secondary fuel 16 from the fuel conduit 22, and route the secondary fuel 16 into the secondary combustion zone 62 to the stream of combustion gases. Further, the secondary fuel nozzles 64 may receive the pressurized air 44 from the annulus 58 of the combustor 12 and combine the pressurized air 44 with the secondary fuel 16 to form an air/fuel mixture that is ignited and combusted in the secondary combustion zone 62 to form the combustion gases. More specifically, the pressurized air 44 flows through the annulus 58 between a transition piece 69 and an impingement sleeve 67, and then between a liner 66 and a flow sleeve 68 of the combustor 12 to reach the head end 50. The combustion gases flow in the direction 60 through the transition piece 69 of the combustor 12, and pass into the turbine 28, as noted above.
As described above, combustion dynamics (e.g., generation of hot combustion gases) within the primary combustion zone 56 and the secondary combustion zone 62 may lead to unwanted vibratory responses within the combustor 12. In may be helpful to reduce combustion dynamics within or among the combustors 12 to help reduce unwanted vibratory responses. Accordingly, in some embodiments, varying the physical characteristics of the pre-orifice within and/or among the combustors 12 may help reduce vibratory responses in the gas turbine system 10, and minimize vibrational stress, wearing, performance degradation, or other undesirable impacts to the components of the gas turbine system 10 (e.g., turbine blades, turbine shrouds, turbine nozzles, exhaust components, combustor transition piece, combustor liner, etc.).
In some embodiments, the position of the pre-orifice 20 relative to the post-orifice 24 (and thus the intermediate distance and volume) may be varied between the fuel supply systems 18 of the combustor 12, such that the pre-orifice 20 is shifted along the fuel conduit 22 to be closer to or further away from the post-orifice 24 and the secondary fuel nozzles 64. For example, a first distance 72 between the pre-orifice 20 and the post-orifice 24 of the first fuel supply system 17 may be different (e.g., longer, shorter, greater, smaller, etc.) than a second distance 74 between the pre-orifice 20 and the post-orifice 24 of the second fuel supply system 19. Indeed, the distances may vary or may be configured to vary based on the location where the pre-orifice 20 is disposed along the fuel conduit 22. In certain embodiments, varying the distance 72, 74 between the pre-orifice 20 and the post-orifice 24 may be done by increasing or decreasing the length of the fuel conduit 22 upstream and downstream of the pre-orifice via one or more sections of flanged tubing. In certain embodiments, the length of the fuel conduits 22 may be the same between the fuel supply systems 18, but the location of the pre-orifices 20 disposed along the fuel conduit 22 may vary between the fuel supply systems 28. Indeed, varying the distance (e.g., the first distance 72 and the second distance 74 of the pre-orifice 20 relative to the post-orifice 24) between the fuel supply systems 18 may result in phase delays between the fuel supply systems 18, leading to destructive interference of the heat release fluctuations of the fuel nozzles 64 associated with each fuel supply system 18, thereby reducing the amplitude of the combustor tones and possibly the coherence of the combustion dynamics.
Further, in some embodiments, physical characteristics (e.g., position, location, size, shape, dimensions, effective area, etc.) of other components of the fuel supply system 18 may vary between different fuel supply systems 18 (e.g., the first fuel supply system 17 and the second fuel supply system 19), as further described with respect to
In addition, the physical characteristics of the fuel conduit 22 may also vary between different fuel conduits 22 of the combustor 12. For example, in addition to varying the length (e.g., the first distance 72 or the second distance 74) of the fuel conduits 22, the disclosed embodiments may also vary the diameter of the fuel conduit 22, and so forth. Indeed, one or more physical characteristics of the disclosed embodiments also may vary each component within the fuel supply system 18 between different fuel supply systems 18 of the combustor 12, such that the combustion dynamics at each secondary fuel nozzle 64 are different (in terms of phase and/or frequency) to help reduce unwanted vibratory responses within the gas turbine system 10.
In some embodiments, the dynamic amplitudes as well as coherence may be reduced between different combustors 12 of the system 10 by varying the physical characteristics of the pre-orifices among the combustors 12, as further described with respect to
In particular, the physical characteristics of the components of each fuel supply system 18 within the combustor 12 may vary, such that the size, shape, dimensions, configuration, position, location, and so forth, are different between the fuel supply systems 18 of a single combustor 12 and/or between adjacent combustors 12. For example, in the illustrated embodiment, the size of the pre-orifice 20 and the fuel conduit 22 is different for each adjacent fuel supply system 18. For example, a first diameter 78 of the fuel conduit 22 of the first fuel supply system 17 is greater than a second diameter 80 of the fuel conduit 22 of the second fuel supply system 19. It should be noted that while the illustrated embodiment depicts alternating and/or adjacent fuel supply systems 18 (e.g., the first supply system 17 and the second fuel supply system 19) having variations in the physical characteristics of the pre-orifice 20 and/or the fuel conduit 22, in other embodiments, any combination and/or pattern of fuel supply systems 18 may have variations in the physical characteristics of the components of the fuel supply systems 18. Further, there may be one or more physical characteristics variations between any two fuel supply systems 18. As noted above, the illustrated embodiment depicts fuel conduits 22 that alternate between the first diameter 78 and the second diameter 80. In other embodiments, the diameter size of the fuel conduits 22 may alternate between 2, 3, 4, 5, 6, 7, 8, 9, 10 or more different sizes, shapes, etc.
In the illustrated embodiment, the gas turbine system 10 includes four combustors 12 coupled to the turbine 28. However, in other embodiments, the gas turbine system 10 includes any number of combustors 12 (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more combustors). In particular, each combustor 12 includes the fuel circuit 14 configured to provide the secondary fuel 16 to the pre-orifice 20 positioned in the fuel conduit 22 near the head 50 of the combustor 12. Further, the secondary fuel 16 is routed through the pre-orifice 20, through the fuel conduit 22, and through the post-orifice 24. In particular, the post-orifice 24 is configured to route the secondary fuel 16 from the secondary fuel nozzle 64, into the secondary combustion zone 62. As noted above, combustors 12 ignite and combust the air-fuel mixture (e.g., the secondary fuel 16 and/or compressed air 44), and then the hot combustion gases 34 are passed into the turbine 28. As the combustion gases 34 pass through the turbine blades in the turbine 28, various combustion dynamics may produce unwanted vibratory responses.
In some embodiments, the components of the fuel supply system 18 within the combustor 12 have variability among other components of the fuel supply system 18 within the same combustor 12. For example, in a first combustor 75, the first distance 72 (and thereby the acoustic volume) between the pre-orifice 20 and the post-orifice 24 of the first fuel supply system 17 is greater than a second distance 74 (and thereby the acoustic volume) between the pre-orifice 20 and the post-orifice 24 of the second fuel supply system 19. Particularly, in the illustrated example, the pre-orifice 20 is shifted along the fuel conduit 22 so that it is closer or further away from the post-orifice 24. As noted above, varying the distance between the pre-orifice 20 and the post-orifice 24 varies the acoustic volume between the pre-orifice 20 and the post orifice 24, and may be done by increasing or decreasing the length (and/or diameter) of one or more sections of tubing (e.g. flanged tubing), making up the fuel conduit 22. The pre-orifice 20 can be contained between the flanges (e.g. sandwich plate), or embedded as part of one of the sections of tubing. By varying the length of the sections of fuel conduit 22 positioned upstream and downstream of the pre-orifice 20, the distance (and/or diameter) between the pre-orifice and the post-orifice can be varied between fuel supply systems 18. Further, varying the acoustic volume among different fuel supply systems 18 (e.g., first fuel supply system 17 and the second fuel supply system 19) within the same combustor (e.g., the first combustor 75) may help to vary the fuel system impedance between the combustors 12. It should be noted that in other embodiments, as shown in
In some embodiments, the components of the fuel supply system 18 within the combustor 12 may have variability compared to the components of the fuel supply systems 18 among other combustors 12 within the system 10 (as shown in
In some embodiments, as shown in
In some embodiments, other variations between the fuel supply systems 18 (e.g., the third fuel supply system 21 and the fourth fuel supply system 23) may exist. In certain embodiments, the width of the pre-orifice 20 may vary between different fuel supply systems 18. For example, a first width 86 (or diameter, cross-sectional area, shape, etc.) of the pre-orifice 20 in the third fuel supply system 21 may be greater than a second width 88 (or diameter, cross-sectional area, shape, etc.) of the pre-orifice 20 in the fourth fuel supply system 23. Similarly, a third width 90 (or diameter, cross-sectional area, shape, etc.) of the post-orifice 24 of the third fuel supply system 21 may be greater than a fourth width 92 (or diameter, cross-sectional area, shape, etc.) of the post-orifice 24 of the fourth fuel supply system 23. Further, the width of the pre-orifice 20 (e.g., the first width 86 and/or the second width 88) may be different than the width of the post-orifice 24 (e.g., the third width 90 and/or the fourth width 92) within and/or between the fuel supply systems 18 (e.g., between the fuel supply systems 21 and 23).
In yet other embodiments, the pre-orifices 20 and/or the post-orifices 24 may have physical characteristics (e.g., shape, dimensions, holes, thickness, material, arrangement, pattern, hole shape, hole size, etc.) that are different within and/or between combustors 12. For example, a first pre-orifice 94 of the third fuel supply system 21 may be different than a second pre-orifice 96 of the fourth fuel supply system 23, as explained further with respect to
In some embodiments, as shown in
As illustrated, the first fuel supply system 17 of the first combustor 75 has components that are different from the third fuel supply system 21 of the third combustor 79 (e.g., in number of orifices, width/size of pre-orifice, thickness of pre-orifice, diameter of fuel conduit, and/or width of post-orifice), even though the distance 72 between the pre-orifice 20 and the post-orifice 24 is the same. Additionally, or alternately, the second fuel supply system 19 of the first combustor 75 has components that are different from the fourth fuel supply system 23 of the third combustor 79 (e.g., in number of orifices, width/size of pre-orifice, thickness of pre-orifice, diameter of fuel conduit, and/or width of post-orifice), even though the distance 74 between the pre-orifice 20 and the post-orifice 24 is the same. The differences in the number of orifices and the width/size of the pre-orifices is shown schematically in
Technical effects of the invention include reducing unwanted vibratory responses associated with combustion dynamics within or among combustors 12 of the gas turbine system 10 by varying the physical characteristics of the pre-orifice 20 within the one or more fuel supply systems 18 of the combustor 12 to adjust the fuel system acoustic impedance (magnitude and phase) within the system 10. For example, from one fuel conduit 22 to another, the position of the pre-orifice 20 may be shifted along the fuel conduit 22, so that it is closer or further away from the post-orifice 24, thereby changing the acoustic volume between the pre-orifice 20 and the post-orifice 24. In other embodiments, the physical characteristics of other components of the fuel supply systems 18 (e.g., the post-orifice 24, the fuel conduit 22, and the pre-orifice 20) may be varied within or among the combustors 12. For example, the dimensions (e.g., length, width, diameter, volume) of the fuel conduit 22, the size and/or shape (e.g., width, length, diameter, effective area) of the pre-orifice 20 and/or the post-orifice 24, the patterns or configurations of the pre-orifice 20 or the post-orifice 24 (e.g., holes, arrangements of the holes, etc.), the shape of the fuel conduit 22, the inner surface of the fuel conduit 22, and so forth, may vary between one or more fuel supply systems 18 within the same combustor 12 or among different combustors 12.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2072826 | Riley | Mar 1937 | A |
4044553 | Vaught | Aug 1977 | A |
4620414 | Christ | Nov 1986 | A |
4677822 | Iizuka et al. | Jul 1987 | A |
4724670 | Greer | Feb 1988 | A |
4901694 | Sakita | Feb 1990 | A |
5159807 | Forestier | Nov 1992 | A |
5211004 | Black | May 1993 | A |
5319931 | Beebe et al. | Jun 1994 | A |
5345758 | Bussing | Sep 1994 | A |
5575144 | Brough et al. | Nov 1996 | A |
5657631 | Androsov | Aug 1997 | A |
5809769 | Richards et al. | Sep 1998 | A |
5943866 | Lovett et al. | Aug 1999 | A |
6016658 | Willis et al. | Jan 2000 | A |
6164055 | Lovett et al. | Dec 2000 | A |
6625569 | James et al. | Sep 2003 | B2 |
6820431 | McManus et al. | Nov 2004 | B2 |
7278266 | Taware et al. | Aug 2007 | B2 |
7320222 | Flohr et al. | Jan 2008 | B2 |
7331182 | Graf et al. | Feb 2008 | B2 |
7337057 | Norman et al. | Feb 2008 | B2 |
7451601 | Taware et al. | Nov 2008 | B2 |
7503177 | Bland et al. | Mar 2009 | B2 |
7523614 | Tanimura et al. | Apr 2009 | B2 |
7578130 | Kraemer et al. | Aug 2009 | B1 |
7620461 | Frederick, II et al. | Nov 2009 | B2 |
7693147 | Williams et al. | Apr 2010 | B2 |
7739999 | Kang et al. | Jun 2010 | B2 |
7743599 | Taware et al. | Jun 2010 | B2 |
7805922 | Bland | Oct 2010 | B2 |
7886545 | Lacy et al. | Feb 2011 | B2 |
7908072 | Tonno et al. | Mar 2011 | B2 |
7997083 | Meadows et al. | Aug 2011 | B2 |
8112216 | Davis, Jr. et al. | Feb 2012 | B2 |
8113000 | Laster et al. | Feb 2012 | B2 |
8322140 | Kim et al. | Dec 2012 | B2 |
8966909 | Crothers et al. | Mar 2015 | B2 |
9027349 | Miura et al. | May 2015 | B2 |
9845732 | Crothers | Dec 2017 | B2 |
20030144787 | Davis, Jr. et al. | Jul 2003 | A1 |
20040083738 | McManus et al. | May 2004 | A1 |
20050278108 | Norman et al. | Dec 2005 | A1 |
20060041368 | Williams et al. | Feb 2006 | A1 |
20060042261 | Taware et al. | Mar 2006 | A1 |
20060107666 | Kothnur | May 2006 | A1 |
20060254279 | Taware et al. | Nov 2006 | A1 |
20070180831 | Bland | Aug 2007 | A1 |
20070199328 | Shah et al. | Aug 2007 | A1 |
20080010966 | Taware et al. | Jan 2008 | A1 |
20080264033 | Lacy | Oct 2008 | A1 |
20090005951 | Frederick et al. | Jan 2009 | A1 |
20090005952 | Tonno et al. | Jan 2009 | A1 |
20090063003 | Meadows et al. | Mar 2009 | A1 |
20090320483 | Storey et al. | Dec 2009 | A1 |
20100170254 | Venkataraman | Jul 2010 | A1 |
20100192578 | Singh et al. | Aug 2010 | A1 |
20100232930 | Gregory | Sep 2010 | A1 |
20100236214 | Wiedenhoefer et al. | Sep 2010 | A1 |
20100313568 | Davis, Jr. et al. | Dec 2010 | A1 |
20110048021 | Slobodyanskiy et al. | Mar 2011 | A1 |
20110048022 | Singh et al. | Mar 2011 | A1 |
20110072826 | Narra et al. | Mar 2011 | A1 |
20110162370 | Kim et al. | Jul 2011 | A1 |
20110179795 | Johnson et al. | Jul 2011 | A1 |
20110308654 | Bothien et al. | Dec 2011 | A1 |
20120006029 | Bilbao et al. | Jan 2012 | A1 |
20120131923 | ELKady et al. | May 2012 | A1 |
20120144832 | Herbon et al. | Jun 2012 | A1 |
20120180487 | Uhm | Jul 2012 | A1 |
20130000312 | Kodukulla et al. | Jan 2013 | A1 |
20130014514 | Romig et al. | Jan 2013 | A1 |
20140053258 | Crothers et al. | Feb 2014 | A1 |
20140053528 | Crothers et al. | Feb 2014 | A1 |
20140060063 | Boardman et al. | Mar 2014 | A1 |
20140109587 | Crothers et al. | Apr 2014 | A1 |
20140137561 | Crothers et al. | May 2014 | A1 |
20140238026 | Boardman et al. | Aug 2014 | A1 |
20140238033 | Crothers et al. | Aug 2014 | A1 |
20140238041 | Crothers et al. | Aug 2014 | A1 |
20140260299 | Boardman et al. | Sep 2014 | A1 |
20140338341 | Abreu | Nov 2014 | A1 |
20150219337 | Crothers et al. | Aug 2015 | A1 |
20150260407 | Crothers et al. | Sep 2015 | A1 |
20150285508 | Olson | Oct 2015 | A1 |
20150292744 | Ziminsky et al. | Oct 2015 | A1 |
20160169520 | Davis et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1605205 | Dec 2005 | EP |
1632718 | Mar 2006 | EP |
2031192 | Mar 2009 | EP |
881935 | Nov 1961 | GB |
2009281720 | Dec 2009 | JP |
2012102733 | May 2012 | JP |
Entry |
---|
Burner Basics, Oct. 17, 2013, Purdue, https://engineering.purdue.edu/˜propulsi/propulsion/jets/basics/burner.html. |
GB Search and Examination Report issued in connection with corresponding GB Application No. 1606510.4 dated Sep. 29, 2016. |
Richards, Geo et al., “Effect of Fuel System Impedance Mismatch on Combustion Dynamics,” ASME Turbo Expo 2005: Power for Land, Sea, and Air, vol. 2, Paper No. GT2005-68386, Reno, Nevada, Jun. 6-9, 2005, 11 pgs. |
Spoor et al., “Mode-locking of acoustic resonators and its application to vibration cancellation in acoustic heat engines,” Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, Feb. 10, 1999, 10 pgs. |
U.S. Appl. No. 14/171,001, filed Feb. 3, 2014, Crothers et al. |
U.S. Appl. No. 14/192,687, filed Feb. 27, 2014, Crothers et al. |
U.S. Appl. No. 14/207,041, filed Mar. 12, 2014, Crothers et al. |
U.S. Appl. No. 14/276,700, filed May 13, 2014, Crothers et al. |
U.S. Appl. No. 14/249,158, filed Apr. 9, 2014, Ziminsky et al. |
U.S. Appl. No. 14/248,194, filed Apr. 8, 2014, Stevenson et al. |
U.S. Appl. No. 14/288,875, filed May 28, 2014, Crothers et al. |
U.S. Appl. No. 14/288,974, filed May 28, 2014, Crothers et al. |
U.S. Appl. No. 14/316,616, filed Jun. 26, 2014, Crothers et al. |
U.S. Appl. No. 14/659,399, filed Mar. 16, 2015, DiCintio et al. |
U.S. Appl. No. 14/048,252, filed Oct. 8, 2013, Crothers et al. |
U.S. Appl. No. 14/170,702, filed Feb. 3, 2014, Day et al. |
U.S. Appl. No. 14/170,710, filed Feb. 3, 2014, Carnell Jr. et al. |
U.S. Appl. No. 14/170,716, filed Feb. 3, 2014, Crothers et al. |
U.S. Appl. No. 14/170,729, filed Feb. 3, 2014, Crothers et al. |
U.S. Appl. No. 14/170,738, filed Feb. 3, 2014, Crothers et al. |
U.S. Appl. No. 14/154,925, filed Jan. 14, 2014, Aphale et al. |
GB Office Action dated Aug. 29, 2017, in connection with the corresponding GB Application No. 1606510.4. |
Number | Date | Country | |
---|---|---|---|
20160305337 A1 | Oct 2016 | US |