Systems and methods for control of transmission and/or prime mover

Information

  • Patent Grant
  • 9878717
  • Patent Number
    9,878,717
  • Date Filed
    Monday, June 13, 2016
    7 years ago
  • Date Issued
    Tuesday, January 30, 2018
    6 years ago
Abstract
Methods of controlling a prime mover and a continuously variable transmission (CVT) are described. The CVT has a group of spherical power adjusters. Each power adjuster has a tiltable axis of rotation. The methods may include optimizing a vehicle having a drive motor and a continuously variable transmission. The CVT has a plurality of spherical power adjusters, each power adjuster having a tiltable axis of rotation. The methods may include optimizing a drive system having a prime mover and a continuously variable transmission.
Description
FIELD OF THE INVENTION

The present invention relates generally to mechanical power transmission, and more specifically to systems for and methods of control of continuously variable transmissions and electric drive motors.


RELATED TECHNOLOGY

Electric vehicles are becoming more popular around the world as battery prices decline and technology and performance advance. Factors such as high fuel costs and internal combustion engine emissions are making electric vehicles more attractive to customers looking for a cost-effective commuting option. However, the performance and range of a typical electric vehicle is often inferior when compared to that of competitive gasoline-powered vehicles. Additionally, manufacturer stated maximum speed and range values are often based on idealized duty cycles that are not representative of real-world conditions.


There is a need for technology that can increase performance and range of electric vehicles to make them competitive with gasoline-powered vehicles; hence, providing quiet, clean, and efficient transportation for commuters worldwide. By way of example, as described herein below in relation to inventive embodiments, integrating a continuously variable drivetrain (for example, employing a continuously variable transmission and suitable control strategies) in electric vehicles yields numerous advantages.


SUMMARY OF THE INVENTION

The systems and methods herein described have several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope as expressed by the claims that follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Inventive Embodiments” one will understand how the features of the system and methods provide several advantages over traditional systems and methods.


One aspect of the invention relates to a method of controlling a prime mover and a continuously variable transmission (CVT). The CVT has a group of spherical power adjusters. Each power adjuster has a tiltable axis of rotation. In one embodiment, the method includes the steps of disabling operation of the prime mover. The method has the step of performing an auto-zero routine on the CVT. The method includes the step of evaluating a throttle signal indicative of a command to the prime mover. The method also includes the step of activating the prime mover to enable operation of the prime mover.


Another aspect of the invention concerns a method of controlling a continuously variable transmission (CVT) that has a group of spherical power adjusters. Each power adjuster has a tillable axis of rotation. In one embodiment, the method includes the step of receiving a shift mode input from a user. The method can also include the step of performing a shifter process based at least in part on at least the shift mode input and at least one variable from a lookup table having prescribed output values of ratio of the CVT. The method includes the step of performing an actuator process based at least in part on the shifter process. In one embodiment, the actuator process is in communication with an actuator of the CVT. The method also includes the step of adjusting the tiltable axes of the CVT based at least in part on the actuator process.


Yet another aspect of the invention concerns a control system for a drive system having a drive motor and a continuously variable transmission (CVT). The CVT has a group of spherical power adjusters. Each power adjuster has a tiltable axis of rotation. In one embodiment, the control system has an actuator configured to operably couple to the CVT to thereby adjust a ratio of the CVT. The control system includes a microcomputer in communication with the actuator. The microcomputer is in communication with the drive motor. The microcomputer is programmed to perform a shifter process. In one embodiment, the shifter process receives a shift mode input from a user of the CVT.


One aspect of the invention relates to a method of optimizing a vehicle having a drive motor and a continuously variable transmission (CVT). The CVT has a group of spherical power adjusters. Each power adjuster has a tiltable axis of rotation. In one embodiment, the method includes the steps of receiving a desired vehicle speed and receiving a desired motor current draw. The method includes the step of determining a motor speed based at least in part on the desired motor current draw. The method has the step of receiving a sprocket ratio of the vehicle. The sprocket ratio corresponds to a coupling between the CVT and the drive motor. The method also includes the step of determining an input speed to the CVT based at least in part on the motor speed and the sprocket ratio to achieve the desired vehicle speed.


Another aspect of the invention concerns a method of optimizing a drive system having a drive motor and a continuously variable transmission (CVT). The CVT has a group of spherical power adjusters. Each power adjuster has a tiltable axis of rotation. In one embodiment, the method includes the step of receiving a first variable indicative of a desired speed of the drive system. The method includes receiving a second variable indicative of a desired current draw of the drive motor. The method has the step of determining a drive motor speed based at least in part on the desired current draw. In one embodiment, the method includes the step of receiving a third variable indicative of a gear ratio of the drive system. The method includes determining an input speed of the CVT based at least in part on the drive motor speed. The method has the step of determining a desired CVT ratio based at least in part on the input speed of the CVT and the desired vehicle speed. The method also includes the step of determining a shift actuator position based at least in part on the desired CVT ratio.


Yet another aspect of the invention relates to a method of optimizing a drive system having a prime mover and a continuously variable transmission (CVT). The CVT has a group of spherical power adjusters. Each power adjuster has a tiltable axis of rotation. In one embodiment, the method includes the step of selecting a desired range of current of the prime mover. The method includes the step of selecting a predetermined speed of a vehicle equipped with the drive system. The method has the step of applying a load to the CVT and the prime mover and operating the CVT and the prime mover at the predetermined speed. In one embodiment, the method includes the step of monitoring the current draw of the prime mover. The method includes the step of comparing the current draw to the desired range of current. The method also includes the step of adjusting a ratio of the CVT based at least in part on the comparison.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a drive system that can implement the control systems and methods disclosed here.



FIG. 2 is a block diagram of one embodiment of a control system that can be used with the drive system of FIG. 1.



FIG. 3 is a block diagram of a drive control system having an integrated controller.



FIG. 4 is a perspective view of a drive system as implemented in a vehicle.



FIG. 5 is a second perspective view of the drive system of FIG. 4.



FIG. 6 is a perspective view of one embodiment of a user interface device that can be used with the control system of FIG. 2.



FIG. 7A is a flowchart describing one embodiment of a control process that can be used with the drive system of FIG. 1.



FIG. 7B is a flowchart of an initialization routine that can be performed in the control process of FIG. 7A.



FIG. 8 is a flowchart of a transmission and/or prime mover control subprocess that can be used with the process of FIG. 7A.



FIG. 9 is a flowchart of a transmission control subprocess that can be used with the subprocess of FIG. 8.



FIG. 10 is a flowchart of a subprocess for determining a speed ratio of a CVT, which subprocess can be used with the transmission control subprocess of FIG. 9.



FIG. 11 is a flowchart of a subprocess for controlling a shift actuator of a CVT, which subprocess can be used with the transmission control subprocess of FIG. 9.



FIG. 12 is a chart of actuator position versus vehicle speed that can be used with the subprocess of FIG. 10 for determining a speed ratio of a CVT.



FIG. 13 is a data table having data associated with the chart of FIG. 12.



FIG. 14 is a chart depicting certain operating characteristics of a drive motor that can be used in the drive system of FIG. 4.



FIG. 15 is a chart depicting a relationship between a shift actuator position and a CVT ratio that can be used with the process of FIG. 10.



FIG. 16 is a chart of a speed ratio of a CVT versus vehicle speed; the chart can be used with the subprocesses of FIG. 10 for determining speed ratio of a CVT.



FIG. 17 is a data table relating a desired vehicle speed to a desired motor current draw.



FIG. 18 is a chart representing a relationship between a motor speed and a motor current.



FIG. 19 is a table of exemplary data of a map of predetermined vehicle speed and current draw, the map related to motor speed and CVP input speed.



FIG. 20 is a chart of actuator position of a CVT versus vehicle speed that can be used with the subprocess of FIG. 10 for determining a speed ratio of a CVT.



FIG. 21 is a flowchart of an exemplary process having certain inventive features for generating a calibration map relating a desired vehicle speed to a desired motor current draw.



FIG. 22 is a flowchart of another exemplary process having certain inventive features for generating a calibration map relating a desired vehicle speed to a desired motor current draw.





DETAILED DESCRIPTION OF CERTAIN INVENTIVE EMBODIMENTS

The preferred embodiments will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. Inventive embodiments may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described. The CVT/IVT embodiments described here are generally related to transmissions and variators disclosed in U.S. Pat. Nos. 6,241,636; 6,419,608; 6,689,012; 7,011,600; U.S. patent application Ser. Nos. 11/243,484, 11/543,311, 60/887,767; 60/895,713; 60/914,633; and Patent Cooperation Treaty Patent Application PCT/US2008/052685. The entire disclosure of each of said patents and patent applications is hereby incorporated herein by reference.


A typical powertrain of an electric vehicle (EV) includes a power source for example, a battery), an electric drive (for example, a drive motor and a drive motor controller), and a fixed-gear transmission device (for example, sprockets, chain, gearing, etc.). Usually an EV uses a direct-drive configuration where the operating speed of the EV is linked directly to the speed of the electric drive motor by a fixed gear ratio (or, in other words, a fixed transmission speed ratio). This is a simple configuration, and no variable transmission speed ratios are implemented, usually at the expense of efficiency and/or performance (for example, limiting acceleration and maximum speed of the EV).


However, an EV system can be improved by incorporating a continuously variable transmission (CVT) into the EV drivetrain. When a CVT is used in an EV, vehicle performance can be improved because the drivetrain can be optimized at particular operational speeds and load conditions. A CVT also improves the efficiency of an EV. The efficiency of the electric motor is a function of operating speed and load, and battery and/or vehicle range is a function of current draw. A CVT and a suitable controller allow the drivetrain to operate at speeds of the drive motor, and with selected drive motor current management, such that overall efficiency and range can be improved. In one embodiment, the CVT is a NuVinci® CVT, which is a compact, high torque-density unit that uses a planetary configuration based on spheres and traction to provide continuously variable speed ratio control. A NuVinci® CVT can provide a continuously variable speed ratio by tilting a rotating axis of each of the spheres. In some embodiments, a NuVinci® CVT is provided with a shift rod to facilitate the tilting of the rotating axes. Exemplary embodiments of NuVinci-type CVTs are described generally in U.S. patent application Ser. No. 11/543,311.


By way of example, a NuVinci® CVT and a suitable control system (such as those inventive embodiments described herein) can provide smooth, seamless shifts of the transmission speed ratio across the full range of speed ratios. In addition, since there are no fixed gear ratios, the control system is able to control component speeds precisely, allowing them to operate substantially at their optimal speed for a given operating condition. In some embodiments, the control logic also allows programming for different conditions, allowing the user (or manufacturer) to decide when performance or range is ultimately desired. Certain configurations of the NuVinci® CVT are easily packaged on an EV, and do not significantly affect the cost or the weight of the EV.


Additionally, users demand different operating characteristics from EVs. Some users are concerned with maximum range, while other users care more about performance factors (for example, vehicle launch, maximum speed, and hill climbing at speed). In the case of an inexperienced user, desiring maximum efficiency and range, the user might operate the EV in a fashion that provides better performance (for example, a quicker launch and/or higher maximum speed of the EV), but ultimately causes the maximum range to suffer dramatically because of high current draw and operation of the electric drive motor at an inefficient speed. However, when combined with a suitable control system for optimal drivetrain operation, a CVT can allow the EV to operate in a desired mode, such as a performance mode or an efficiency mode. In performance mode, range and efficiency are less important than outright performance, and the transmission control system optimizes for acceleration, maximum speed of the EV, and hill climbing at speed, for example. In economy mode, range is the priority, so the control system keeps the drive motor at its most efficient speed and imposes limits on current draw from the battery, for example.


In one embodiment, a control strategy uses data for motor efficiency versus motor speed and motor torque, as well as battery life versus current draw, to improve performance and efficiency of the overall system. Analysis models, such as those inventive embodiments described herein, indicate that there are benefits of using a CVT in EVs, and the results of the analysis have been confirmed by empirical testing of CVT-equipped EVs that were compared to benchmark stock vehicles having fixed-gear ratios.


The typical duty cycle of an EV is highly dynamic because it involves numerous stops and starts, uneven terrain, and variable wind resistance. A drivetrain with a CVT can benefit an EV that operates over these dynamic speed and load conditions by allowing the drive motor to operate closer to its peak power or peak efficiency over a broad range of a given duty cycle. Generally, when coupled to a CVT a propulsion source is capable of generating more torque and more speed than when coupled with a fixed gear ratio transmission. As compared to a fixed-gear ratio configuration, a CVT lower gear ratio can allow for better launch feel and better hill climb ability, while a CVT higher gear ratio can allow for higher maximum speeds. Additionally, in certain circumstances, increased acceleration of the EV is possible because the CVT changes the effective inertia seen at the drive motor.


Referencing FIG. 1 now, a drive system 10 includes a prime mover 12 coupled to a continuously variable transmission (CVT) 14, which is coupled to a load 16. In one embodiment, a control system 18 is adapted to receive information from the prime mover 12, CVT 14, and/or load 16. The control system 18 can also be adapted to provide commands to, or actuate, the prime mover 12 and the CVT 14 together or independently. The prime mover 12 can be any source of power, such as an electric motor, internal combustion engine, wind turbine, a combination thereof, etc. The electric motor can be, for example, a brushed DC motor, a brushless DC motor, a permanent magnet motor, or any other type of electric motor. The load 16 can be a tractive load, which can include the weight of vehicle and/or an operator and/or cargo and passengers. The CVT can be a ball planetary CVT, a toroidal CVT, or a belt-and-pulley CVT, for example. In one embodiment, a drive system 10 includes a NuVinci® continuously variable planetary, and a drive mechanism between the prime mover and the CVT. The drive mechanism can be, for example, a chain and sprocket drive, a direct gear drive, or any other type of power transmission gearing. In some embodiments, the control system 18 includes sensors, actuators, and control hardware, firmware, and logic as described further below.


The system, or subassemblies thereof shown in FIG. 1 can be adapted for use in any ground, air, or water transportation machine, industrial or agricultural equipment, aerospace vehicles and equipment, and household machines, to name a few applications.



FIG. 2 illustrates one embodiment of a control system 18 that includes a controller 20 in communication with sensors 22, a data display and user interface 24, a mechanical actuator 26, and the prime mover 12. In one embodiment, the controller 20 includes electronic hardware 28 in communication with control logic 30. In some embodiments, the sensors 22 are adapted to sense conditions of the prime mover 12, load 16, and a battery 32, which can be configured to provide power to the prime mover 12. The battery 32 can be, for example, a 36V battery.


Referencing FIG. 3 now, in one embodiment a control system 300 can include a controller 302 configured to control the CVT 14 and the prime mover 12 to maximize the performance and efficiency of a vehicle. This embodiment can be referred to as an integrated control in that most or all of the control components and functionality used to control the CVT 14 and the prime mover 12 can be integrated in a single controller 302, which in some embodiments include a single electronic board. In one embodiment, the controller 302 can be adapted to receive a throttle input (which can be a voltage source).


In one embodiment, the control system 300 can include an actuator motor 304 to actuate a shift (that is, an adjustment) of the speed ratio of the CVT 14. The CVT 14 can be coupled to the drive wheel assembly of a vehicle, for example. In one embodiment, the system includes sensors. These can include a wheel speed sensor 306 for sensing wheel speed and/or a motor speed sensor 308 for sensing the speed of a drive motor. The sensors 306, 308 can be any type of speed sensor, for example an active magnetic sensor, passive magnetic sensor, or encoder of any type. In some embodiments, the speed of the drive motor can be sensed directly in the controller 302 by measuring the frequency of electric current supplied to the drive motor 12. Similarly, there can be an actuator position sensor 310 that can be, for example, an encoder or a potentiometer. In some embodiments, the actuator position can be derived from the measured speed ratio of the CVT 14. The speed ratio of the CVT 14 can be calculated from the wheel speed, speed of the drive motor, and any gear ratios in the system. The system 300 can additionally include a throttle position sensor 312, a battery fuse switch and/or sensor 314, and a brake cut-off switch and/or sensor 316, any of which can be configured to provide signals to the controller 302.


Passing now to FIGS. 4 and 5, in one embodiment a drive system 400 can include a frame 402 of a vehicle (a scooter, electric bicycle, or motorcycle, for example) configured to support a drive motor 404 that is coupled to a CVT 406 via a pinion 408, a chain 410, and a sprocket 412. In some embodiments, the CVT 406 is integrated in the rear wheel huh of the vehicle and can be configured to transfer a drive torque or power to a rim 414 via a number of radially extending spokes 416. A shift actuator 418 can be coupled to the CVT 406. The shift actuator 418 can include a shift actuator motor (for example, shift actuator motor 304) and suitable gearing (such as reduction gears, for example).


Referencing FIGS. 1 and 6 now, in one embodiment, the control system 18 includes a user interface device 502. The interface device 502 can display at least some of the operating parameters of the system 10, for example, battery voltage, speed of the prime mover 12, speed of the vehicle 506, throttle position, speed ratio of the CVT 14, or mileage. Mileage can be displayed in terms of Watt-hrs/mile or some other units. The interface device 502 can be equipped with input buttons 504 to allow selection of different modes of operation while stopped or driving. The interface device 502 can be integral with the vehicle 506. Alternatively, the interface device 502 can be removable, with attachment hardware that allows easy removal of the interface device 502. The interface device 502 can be configured to record data of any signal generated or derived from the controller 302. Data can be recorded at periodic frequency, for example, a reading of all measured or derived signals every 50 ms. In some embodiments, the input buttons 504 can be remotely mounted from the display. In other embodiments, the input buttons 504 can be mounted on a handgrip of the vehicle 506.


Turning to FIG. 7A now, an exemplary process 2700 of controlling a prime mover 12 and/or a CVT 14 is illustrated. The process 2700 starts at a state 2702. The process 2700 moves to an initialization state 2704, wherein an initialization routine runs a number of processes further described below. In one embodiment, the process 2700 performs various subprocesses within a main control loop 2705 upon completion of the initialization state 2704. The subprocesses within the main control loop 2705 include an analog-to-digital converter subprocess 2706, a memory read/write subprocess 2708, a display IO subprocess 2710, a test subprocess 2712, a motor control and throttle subprocess 2714, and a road speed calculation subprocess 2716.


Referring to FIG. 7B, in one embodiment, the initialization state 2704 can be a process that begins at state 27041 and proceeds to a subprocess 27042, wherein the initialization of hardware and/or software is performed in preparation for operating the drive system 10, for example. The initialization state 2704 then proceeds to a subprocess 27043 where the prime mover (for example, the drive motor 404) is disabled. The initialization state 2704 proceeds to a state 27044 where an auto-zero routine is performed. The auto-zero routine can adjust the CVT 14 to a desired configuration. For example, the tilt angle of the spheres, or power adjusters, of a NuVinci® CVT can be adjusted to an underdrive configuration to begin a drive cycle. In one embodiment, the CVT 14 is adjusted towards underdrive, while reading the position of the shift actuator 418, for example. When the reading stops changing (for example, when the shift actuator 418 has rotated until an internal shifter assembly of the CVT 14 runs up against a stop), the shift actuator 418 stops. In one embodiment, an actuator control process 3104 (see FIG. 11) can be used to control the shift actuator 418 and read the initial shift position parameter to complete the auto-zero routine. In one embodiment, the initialization state 2704 proceeds to a decision state 27045. At the decision state 27045 the throttle signal is evaluated, for example from the throttle position sensor 312 (FIG. 3). In some embodiments, upon completion of subprocess 27044 the prime mover can become active once the throttle signal is at a zero level threshold, which can prevent unexpected or runaway conditions of the vehicle. The initialization state 2704 proceeds to a subprocess 27046 to activate the prime mover, for example, the drive motor 12. At a state 27047, the initialization state 2704 ends and the process 2700 can proceed to enter the main control loop 2705.


Referencing FIG. 8 now, in one embodiment the motor control and throttle subprocess 2714 can be configured as a loop that repeats every 5-milliseconds (200 Hz refresh), for example. In one embodiment, the motor control and throttle subprocess 2714 includes a drive motor control module 2802 and a transmission control module 2804. The drive motor control module 2802, in some embodiments, can be any suitable pulse width modulation motor control scheme. In one embodiment, the transmission control module 2804 includes a position control servo feedback loop. Hence, the motor control and throttle subprocess 2714 can provide drive motor control and shift actuator position control.


In some embodiments, the motor control and throttle subprocess 2714 starts at a state 2800. The process 2714 then substantially simultaneously executes the drive motor control module 2808 and the transmission control module 2804. At a decision state 2806, the subprocess 2714 determines whether the subprocess 2714 should continue to be executed in its loop. If the decision is to continue, the subprocess 2714 resumes execution of the modules 2802, 2804. If the decision is not to continue, the subprocess ends at a state 2808. In some instances, at the decision state 2806 it is determined not to continue the subprocess 2714 because, for example, an off signal or a brake signal has been issued by the system.


Referring to FIGS. 9-11, in some embodiments, the transmission control process 2804, which begins at a starting state 2900, determines a required CVT ratio (for example, the tilt angle of the spheres of a NuVinci® CVT) from a shifter process 2902 that handles the current state of inputs and from a lookup table with prescribed output values of ratio of the CVT 406. The transmission control process 2804 then passes the output set point to an actuator process 2904, which applies power, via an actuator motor drive module 2906, to the shift actuator 418 until the set point is reached.


In one embodiment, the transmission control process 2804 receives a set of inputs to describe a state of the vehicle. In some instances, these inputs include vehicle speed, drive motor current, and other parameters that describe the state of the vehicle. In some embodiments, the mode of the controller is also determined. The mode can be selected manually via a toggle switch or a button. In some embodiments, the mode can be a performance (sport) mode or an economy mode. Yet in other embodiments, the mode can be a simulated 4-speed transmission “sawtooth” mode. The controller can store mode tables in a memory. A mode table is a set of data that includes input parameters (for example, vehicle speed, motor current, etc.) as well as a desirable ratio of the CVT 406 as the output parameter. Input values can be used to reference a table and produce an output value. The output value is then passed over to the actuator process 2904.


The actuator process 2904 can be a proportional control feedback loop using the set point for the ratio of the CVT 406 as an input, with the actuator shaft encoder as a feedback signal. The actuator motor drive module 2906 can include a bi-directional (reversing) routine 2908, a motor drive routine 2910, and a suitable pulse width modulation (PWM) routine 2912. The transmission control process 2804 then ends at a state 2914.



FIG. 10 depicts one embodiment of a shifter process 2902. The shifter process 2902 starts at state 3000. Vehicle speed 3002, drive motor current 3004, and/or other parameters 3006 are received in a monitor vehicle status module 3008. The shifter process 2902 then moves to a mode select state 3010, wherein a shift mode input 3012 can be received. The shifter process 2902, then proceeds to a decision state 3014, wherein the shifter process 2902 determines which shift mode to use. If the shift mode selected is the sport mode, at a state 3016 the shifter process 2902 takes as input the sport mode lookup tables 3018. If the shift mode selected is the economy mode, at a state 3020 the shifter process 2902 takes as input the economy mode lookup tables 3022. If the shift mode selected is another mode, at a state 3024 the shifter process 2902 takes as input the appropriate lookup tables 3026 for the selected mode. In one embodiment, the shift mode input 3012 can be based at least in part on a signal received from a user interface (not shown) having a twist grip actuated by a user's hand. In some embodiments, the shift mode input 3012 can be based at least in part on a signal received from the user interface device 502, for example.


Based on the vehicle status and the mode selected, the shifter process 2902 determines an optimal ratio for the CVT 406 at a state 3028. In one embodiment, determining the optimal speed ratio for the CVT 406 includes determining a position for a shift rod of the CVT 406. In some embodiments, determining the optimum speed ratio for the CVT 406 includes determining a number of encoder counts for actuating a shifter mechanism of the CVT 406, which shifter mechanism can be a shift rod operably coupled to, for example, the shift actuator 418. The position of the shift actuator 418 can correspond to a ratio of the CVT 406, which is described below in reference to FIG. 15.


Referencing FIG. 11 now, an embodiment of the actuator process 2904 can start at a state 3100 and proceed to execute an actuator control process 3104. The actuator process 2904 then executes an actuator hardware and drive module 3106. The actuator process 2904 can then end, if an actual CVT position 3108 is substantially the same as the optimum CVT position determined by the shifter process 2902.


Passing to FIG. 12 now, a lookup table that can be used by the shifter process 2902 can be exemplified by each of the curves graphed on the chart shown. Depending on the speed of the vehicle, a speed ratio of the CVT 406 is selected (which is similar to selecting a position of a shifting mechanism of the CVT 406, such as a position of a shift rod; the position can be expressed in terms of encoder counts). A curve 3202 represents a lookup table for a “drag race” or fast acceleration mode. A curve 3204 represents a lookup table for an economy (“econ”) mode. A curve 3206 represents a lookup table for a fixed ratio simulation (or “stepped”) mode. A curve 3208 represent a lookup table for a performance or “hill climb”) mode. FIG. 13 is a data table used to derive the chart of FIG. 12. “MPH” refers to vehicle speed; “RPM” refers to drive motor speed; “GR” refers to speed ratio of a CVT 406. “Act Pos” refers to the position of the shift rod in encoder counts.


In one embodiment, a method of controlling a drivetrain of an EV provides for an economy mode and a performance mode. In economy mode, the control system 18 is configured to control a prime mover, for example the drive motor 404, in the following manner. The control system 18 allows the current to the drive motor 404 to have an initial maximum current peak (that is, current limit), for example 30-Amps. This initial maximum current peak can be held for a predetermined amount of time (for example 2-seconds), which amount of time, in some cases, is preferably sufficient to allow the drive motor 404 to achieve its base speed, said base speed being the speed of the drive motor 404 above which the drive motor 404 produces constant power at increasing drive motor speed and decreasing drive motor torque, a state wherein the drive motor 404 typically operates at higher efficiency than at lower drive motor speeds. Thereafter, the control system 18 manages current to the drive motor 404 such that the current is delivered to the drive motor 404 only up to a predetermined current limit (for example, 25-Amps), which can be sustained as long as required by, for example, throttle command (or user input). In some embodiments, the power (or current) supplied to the drive motor 404 is a function of throttle position and battery voltage. In economy mode, the control system 18 is configured to control the CVT 406 in a fashion that allows the drive motor 404 to arrive at its base speed as quickly as possible, and then the control system controls the CVT 406 to maintain the CVT 406 at a ratio of peak efficiency for the given operating conditions (for example, in certain CVTs the peak efficiency is found at a speed ratio of 1:1).


In one embodiment, the control system 18 is configured to optimize the overall efficiency of the drivetrain of the EV. The drivetrain overall efficiency is a function of the efficiency of the drive motor 404, the efficiency of the CVT 406, the efficiency of the control system 18 itself, and/or an indication of how battery life is affected at certain operating conditions. Hence, in some embodiments, the control system 18 is configured to modulate power (or current) to the drive motor 404 and to modulate the ratio of the CVT 406 (preferably in conjunction with the power modulation) based upon certain inputs, which can include one or more of the following: throttle position, throttle position rate of change (with respect to time), control system mode (for example, economy, performance, manual, simulation of stepped transmission, etc.), average or instantaneous battery voltage, average or instantaneous state of charge of the battery, data indicative of battery life versus current draw over time, average or instantaneous drive motor current draw, average or instantaneous speed of the vehicle, ratio of the CVT 406, data indicative of the efficiency of the CVT 406 versus speed of the EV and/or CVT 406 speed ratio, speed of the drive motor 404, data indicative of the efficiency of the drive motor 404 versus torque and/or speed of the drive motor 404, and efficiency of the control system 18 (such as data indicative of power use by the control circuitry for the shift actuator 418 and/or the drive motor 404). In certain embodiments, the control system 18 is configured to control the ratio of the CVT 406 as a function of one or more of the speed of the EV, speed of the drive motor 404, battery voltage, and current draw (that is current provided to the drive motor 404, which can in some cases be based on throttle position).


Referring now to FIGS. 14-16, in one embodiment a method for optimizing the overall efficiency of a drive system, for example the drive system 400, can include calibrating the economy mode shift curve 3204 of the shifter process 2902. The method can utilize the characteristic performance of the drive motor 404, an example of which is depicted in the chart of FIG. 14. In this embodiment, the drive motor 404 is a 36V DC brushed motor having peak efficiency at relatively high speeds and low torques, for example between 2625 rpm and 2800 rpm and between 1 and 4.5 Nm. The characteristic efficiency of the drive motor 404 can be represented by curve 1400 in the chart of FIG. 14. Also shown in FIG. 14 are a characteristic speed curve 1402 and a characteristic current curve 1404. The chart of FIG. 14 shows that the drive motor 404 achieves an optimum efficiency in a current range between 12 A and 46 A. However, the battery and/or vehicle range may decrease for current draw above 28A. Therefore, it is desirable to calibrate the economy mode shift curve 3204 so that the drive motor 404 operates in this current range of 12A-28A.


As previously discussed, the ratio of the CVT 406 (FIG. 5) can be controlled by the shift actuator 418. An exemplary relationship between the ratio of the CVT 406 and a position of the shift actuator 418 can be represented by a curve 1500 in FIG. 15. The curve 1500 can be approximated with the equation: y=80.841 Ln(x)+52.998, where y is the position of the shift actuator 418 and x is the ratio of the CVT 406. Of course, a person of ordinary skill in the relevant technology will recognize that the specific, preceding equation is associated with a particular set of hardware (such as a particular vehicle, a particular drive motor 404, a particular shift actuator 418, etc.). However, the person of ordinary skill in the relevant technology will also recognize that a general relationship between CVT ratio and shift actuator position can be generally described by a logarithmic equation of the form y=ALn(x)+B, with the coefficients A and B having values determined by the particular hardware of a given application. The curve 1500 and corresponding equation can be used to generate a relationship between the position of the shift actuator 418, for example encoder counts, and the current draw from the drive motor 404. Moreover, because the speed of the drive motor 404 is directly linked to the current draw of the drive motor 404, and because the speed of the drive motor 404 is related to the vehicle speed, or the wheel speed, it is possible to determine the current draw for given a wheel speed.


In one embodiment, the relationship between the current draw and the wheel speed can be determined by experimentation. The CVT 406 can be configured to be manually shifted, for example by being operated in manual mode. The vehicle can be ridden while monitoring the current draw. Adjustment of the ratio of the CVT 406 can be made manually to limit the current draw of the motor to between 15 A and 20 A. The vehicle speed and the ratio of the CVT 406 can be represented by a curve 1600. Other considerations can be taken into account when formulating the relationship between the ratio of the CVT 406 and the vehicle speed. For example, vehicle acceleration and top speed characteristics, as well as downhill operating characteristics, may be factored into the calibration of a shift curve of the shifter process 2902. When these operating conditions are taken into account, the relationship can be represented by an exemplary curve 1602 in FIG. 16. The slope of the curve 1602 at low speed (for example, 2-3 MPH) may be less steep than the curve 1600, which results in less torque transfer from the drive motor 404 for a smoother take off. The curve 1602 can have a steeper slope compared to the curve 1600 between 5 MPH and 15 MPH to achieve higher acceleration. The curve 1602 can have a steeper slope compared to the curve 1600 that begins around 14.5 mph, which can provide an increase in the top speed of the vehicle. This increase in top speed can allow the vehicle to increase speed slightly when going down hill. The curves 1600 and/or 1602 can be used in the shifter process 2902.


Referring to FIGS. 17-20, a method of determining the relationship between the current draw of the drive motor 404 and a vehicle speed can be determined analytically. The method includes establishing a relationship between the current draw of the drive motor 404 and the desired vehicle speed, such as the relationship represented in a data table 1700 shown in FIG. 17. At low speeds the current draw is relatively high to facilitate starting the drive motor 404 from a stall condition. As the vehicle speed increases from a stop, the current draw decreases from a maximum current to a current in the range of about 10-25 A. The speed of the drive motor 404 is proportional to current draw, which is shown in FIG. 18. Therefore, the speed of the drive motor 404 corresponding to the desired vehicle speed can be calculated based on the current draw. The results of an example calculation are shown in FIG. 19 in the column labeled “motor speed RPM”.


A calculation for the input speed of the CVT 406 can be made based on the ratio of the sprocket 412 and the pinion 408, which ratio is about 0.17 in one embodiment. The input speed to the CVT 406 from the drive motor 404 is listed in the column of FIG. 19 labeled “CVT Input Speed mph”. The position of the shift actuator 418 for the optimum ratio of the CVT 406 can then be determined by relating the desired speed to the input speed of the CVT 406 to derive a CVT ratio and applying the relationship illustrated in FIG. 15, which shows the position of the shift actuator 418 versus the ratio of the CVT 406. The result of performing such a derivation can be represented by the curve 2000 of FIG. 20, for example. The curve 2000 can be approximated by the expression y=−0.0003x4−0.0095x3+0.4532x2−0.5388x−0.1846, where y is the position of the shift actuator 418 and x is the vehicle speed. The curve 2000 can be used with the shifter process 2902.


Turning now to FIG. 21, in one embodiment a method for optimizing the overall efficiency of a drive system, for example the drive system 10, can include a process 2100 for generating an economy mode table that can be used in the shifter process 2902. The process 2100 can be configured to be performed at least in part on a computing device or on any microprocessor known in the relevant technology. The process 2100 begins at a state 2101 and proceeds to a state 2102, wherein a desired vehicle speed is received as an input variable. The process 2100 then proceeds to a state 2103, wherein a desired motor current draw is received as an input variable. Next, the process 2100 proceeds to a state 2104 to determine the drive motor speed based at least in part on the motor current draw. At a state 2105, a sprocket ratio of the drive system 10 is received as an input variable. The process 2100 proceeds to a state 2106 to determine the input speed of a CVT, for example the CVT 14 of the drive system 10. The input speed of the CVT 14 can be determined at least in part by the determined motor speed and the received sprocket ratio. Next, the process 2100 proceeds to a state 2107 where the desired ratio of the CVT 14 is determined based at least in part on the received desired vehicle speed and the determined input speed of the CVT 14. The process 2100 then enters a state 2108 to determine the position of a shift actuator, for example the shift actuator 418. The position of the shift actuator 418 can be based at least in part on the determined desired ratio of the CVT 14. In some embodiments, the relationship depicted in FIG. 15 between the position of the shift actuator 418 and the ratio of the CVT 14 can be used in the state 2108. The process 2100 proceeds to a decision state 2109 that evaluates the completeness of the economy mode table. If the economy mode table is incomplete, the process 2100 is repeated beginning at the state 2102. If the table is complete, the process 2100 ends at a state 2110.


Referring now to FIG. 22, optimization of the overall efficiency of the drive system 10 can include a process 2200 for generating an economy mode table that can be used in the shifter process 2902. The process 2200 can be performed experimentally using a vehicle or a test stand suitably configured to apply a load to certain components of the drive system 10. The process 2200 begins at a state 2201 and proceeds to a state 2202, wherein a desired range for the current draw of the prime mover 12 is set. The process 2200 then proceeds to a state 2203, wherein a predetermined vehicle speed is selected. For example, a vehicle speed of 14.5 mph can be selected. Next, the process 2200 enters a state 2204 where the CVT 14 and the prime mover 12 are operated under load at the predetermined vehicle speed selected in the state 2203. The process 2200 proceeds to a state 2205 where the current draw of the prime mover 12 is monitored. At a decision state 2206, the current draw observed in the state 2205 is compared to the desired range for the current draw set in the state 2202. If the current draw observed in the state 2205 is not within the desired range, the process 2200 proceeds to a state 2207 where an adjustment is made to the ratio of the CVT 14. If the current draw observed in the state 2205 is within the desired range, the process 2200 proceeds to a state 2208 where the ratio of the CVT 14 is recorded. Next, the process 2200 proceeds to the decision state 2209 to evaluate the completeness of the economy mode table. If the economy mode table is incomplete, the process 2200 is repeated beginning at the state 2203. If the economy mode table is complete, the process 2200 proceeds to an end state 2210.


Those of skill will recognize that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein, including with reference to the control system 18, for example, may be implemented as electronic hardware, software stored on a computer readable medium and executable by a processor, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention. For example, various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Software associated with such modules may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other suitable form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. For example, in one embodiment, the controller 20 comprises a processor (not shown).


The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.

Claims
  • 1. A vehicle comprising: a motor;a continuously variable transmission (CVT) coupled to the motor, the CVT having a plurality of spherical power adjusters, each power adjuster having a tiltable axis of rotation; anda processor coupled to a memory storing a data structure and a set of instructions executable by the processor to perform receiving, from a user interface, an input associated with a desired operating mode selected from a plurality of operating modes, wherein at least one operating mode allows the vehicle to operate in an efficiency mode and at least one operating mode allows the vehicle to operate in a performance mode,receiving an input associated with a motor speed,receiving information associated with the CVT, andadjusting a speed ratio of the CVT based on the operating mode and the motor speed.
  • 2. The vehicle of claim 1, wherein the set of instructions executable by the processor further comprises instructions to perform: monitoring a sensor to determine a current draw of the motor when operating the CVT and the motor;comparing the current draw of the motor to a desired range of current draw associated with the operating mode; andif the current draw of the motor is outside the desired range of current draw, adjusting the current draw of the motor to change the motor speed.
  • 3. The vehicle of claim 2, wherein monitoring a sensor to determine a current draw of the motor comprises determining a wheel speed.
  • 4. The vehicle of claim 3, wherein the set of instructions are executable to create a table indicative of the relationship between the current draw of the motor and wheel speed.
  • 5. The vehicle of claim 2, wherein the set of instructions are executable to receive an input associated with a desired vehicle speed.
  • 6. The vehicle of claim 5, wherein receiving an input associated with a desired vehicle speed comprises reading a throttle position.
  • 7. The vehicle of claim 6, wherein receiving an input associated with a desired vehicle speed comprises determining a throttle position rate of change.
  • 8. The vehicle of claim 6, wherein receiving an input associated with a desired vehicle speed comprises determining a current draw based on the throttle position.
  • 9. A method of operating a vehicle having a motor coupled to a continuously variable transmission (CVT), the CVT having a plurality of spherical power adjusters, each power adjuster having a tillable axis of rotation, the CVT comprising a controller coupled to a memory storing a set of instructions, the method comprising: receiving, from a user interface, an input associated with a desired operating mode selected from a plurality of operating modes, wherein at least one operating mode allows the vehicle to operate in an efficiency mode and at least one operating mode allows the vehicle to operate in a performance mode;receiving an input associated with a motor speed;receiving information associated with the CVT; andadjusting a speed ratio of the CVT based on the operating mode and the motor speed.
  • 10. The method of claim 9, further comprising: monitoring a sensor to determine a current draw of the motor when operating the CVT and the motor;comparing the current draw of the motor to a desired range of current draw associated with the operating mode; andif the current draw of the motor is outside the desired range of current draw, adjusting the current draw of the motor to change the motor speed.
  • 11. The method of claim 10, wherein monitoring a sensor to determine a current draw of the motor comprises determining a wheel speed.
  • 12. The method of claim 11, further comprising creating a table indicative of the relationship between the current draw of the motor and wheel speed.
  • 13. The method of claim 10, further comprising receiving an input associated with a desired vehicle speed.
  • 14. The method of claim 13, wherein receiving an input associated with a desired vehicle speed comprises reading a throttle position.
  • 15. The method of claim 14, wherein receiving an input associated with a desired vehicle speed comprises determining a throttle position rate of change.
  • 16. The method of claim 14, wherein receiving an input associated with a desired vehicle speed comprises determining a current draw based on the throttle position.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/464,245, filed Aug. 20, 2014 and scheduled to issue as U.S. Pat. No. 9,365,203 on Jun. 14, 2016, which is a continuation of U.S. patent application Ser. No. 13/054,767, filed Apr. 13, 2011 and issued as U.S. Pat. No. 8,818,661 on Aug. 26, 2014, which is a national phase application of International Patent Application No. PCT/US2009/052761, filed Aug. 4, 2009, which claims the benefit of U.S. Provisional Patent Application No. 61/086,366, filed Aug. 5, 2008. The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.

US Referenced Citations (640)
Number Name Date Kind
719595 Huss Feb 1903 A
1121210 Techel Dec 1914 A
1175677 Barnes Mar 1916 A
1207985 Null et al. Dec 1916 A
1380006 Nielsen May 1921 A
1390971 Samain Sep 1921 A
1558222 Beetow Oct 1925 A
1629902 Arter et al. May 1927 A
1686446 Gilman Oct 1928 A
1774254 Daukus Aug 1930 A
1793571 Vaughn Feb 1931 A
1847027 Thomsen et al. Feb 1932 A
1850189 Weiss Mar 1932 A
1858696 Weiss May 1932 A
1865102 Hayes Jun 1932 A
1978439 Sharpe Oct 1934 A
2030203 Gove et al. Feb 1936 A
2060884 Madle Nov 1936 A
2086491 Dodge Jul 1937 A
2100629 Chilton Nov 1937 A
2109845 Madle Mar 1938 A
2112763 Cloudsley Mar 1938 A
2131158 Almen et al. Sep 1938 A
2134225 Christiansen Oct 1938 A
2152796 Erban Apr 1939 A
2196064 Erban Apr 1940 A
2209254 Ahnger Jul 1940 A
2259933 Holloway Oct 1941 A
2269434 Brooks Jan 1942 A
2325502 Auguste Jul 1943 A
RE22761 Wemp May 1946 E
2461258 Brooks Feb 1949 A
2469653 Kopp May 1949 A
2480968 Ronai Sep 1949 A
2553465 Monge May 1951 A
2586725 Henry Feb 1952 A
2595367 Picanol May 1952 A
2596538 Dicke May 1952 A
2597849 Alfredeen May 1952 A
2675713 Acker Apr 1954 A
2696888 Chillson et al. Dec 1954 A
2868038 Billeter May 1955 A
2716357 Rennerfelt Aug 1955 A
2730904 Rennerfelt Jan 1956 A
2748614 Weisel Jun 1956 A
2959070 Flinn Jan 1959 A
2873911 Perrine Feb 1959 A
2874592 Oehrli Feb 1959 A
2883883 Chillson Apr 1959 A
2891213 Kern Jun 1959 A
2901924 Banker Sep 1959 A
2913932 Oehrli Nov 1959 A
2931234 Hayward Apr 1960 A
2931235 Hayward Apr 1960 A
2949800 Neuschotz Aug 1960 A
2959063 Perry Nov 1960 A
2959972 Madson Nov 1960 A
2964959 Beck Dec 1960 A
3008061 Mims et al. Nov 1961 A
3035460 Guichard May 1962 A
3048056 Wolfram Aug 1962 A
3051020 Hartupee Aug 1962 A
3086704 Hurtt Apr 1963 A
3087348 Kraus Apr 1963 A
3154957 Kashihara Nov 1964 A
3163050 Kraus Dec 1964 A
3176542 Monch Apr 1965 A
3184983 Kraus May 1965 A
3204476 Rouverol Sep 1965 A
3209606 Yamamoto Oct 1965 A
3211364 Wentling et al. Oct 1965 A
3216283 General Nov 1965 A
3229538 Schlottler Jan 1966 A
3237468 Schlottler Mar 1966 A
3246531 Kashihara Apr 1966 A
3248960 Schottler May 1966 A
3273468 Allen Sep 1966 A
3280646 Lemieux Oct 1966 A
3283614 Hewko Nov 1966 A
3292443 Felix Dec 1966 A
3340895 Osgood, Jr. et al. Sep 1967 A
3407687 Hayashi Oct 1968 A
3430504 Dickenbrock Mar 1969 A
3439563 Petty Apr 1969 A
3440895 Fellows Apr 1969 A
3464281 Hiroshi et al. Sep 1969 A
3477315 Macks Nov 1969 A
3487726 Burnett Jan 1970 A
3487727 Gustafsson Jan 1970 A
3574289 Scheiter et al. Apr 1971 A
3661404 Bossaer May 1972 A
3695120 Titt Oct 1972 A
3707888 Schottler Jan 1973 A
3727473 Bayer Apr 1973 A
3727474 Fullerton Apr 1973 A
3736803 Horowitz et al. Jun 1973 A
3768715 Tout Oct 1973 A
3800607 Zurcher Apr 1974 A
3802284 Sharpe et al. Apr 1974 A
3810398 Kraus May 1974 A
3820416 Kraus Jun 1974 A
3866985 Whitehurst Feb 1975 A
3891235 Shelly Jun 1975 A
3934493 Hillyer Jan 1976 A
3954282 Hege May 1976 A
3987681 Keithley et al. Oct 1976 A
3996807 Adams Dec 1976 A
4023442 Woods et al. May 1977 A
4098146 McLarty Jul 1978 A
4103514 Grosse-Entrup Aug 1978 A
4159653 Koivunen Jul 1979 A
4169609 Zampedro Oct 1979 A
4177683 Moses Dec 1979 A
4227712 Dick Oct 1980 A
4314485 Adams Feb 1982 A
4345486 Olesen Aug 1982 A
4369667 Kemper Jan 1983 A
4391156 Tibbals Jul 1983 A
4459873 Black Jul 1984 A
4464952 Stubbs Aug 1984 A
4468984 Castelli et al. Sep 1984 A
4494524 Wagner Jan 1985 A
4496051 Ortner Jan 1985 A
4501172 Kraus Feb 1985 A
4515040 Takeuchi et al. May 1985 A
4526255 Hennessey et al. Jul 1985 A
4546673 Shigematsu et al. Oct 1985 A
4560369 Hattori Dec 1985 A
4567781 Russ Feb 1986 A
4569670 McIntosh Feb 1986 A
4574649 Seol Mar 1986 A
4585429 Marier Apr 1986 A
4617838 Anderson Oct 1986 A
4630839 Seol Dec 1986 A
4631469 Tsuboi et al. Dec 1986 A
4651082 Kaneyuki Mar 1987 A
4663990 Itoh et al. May 1987 A
4700581 Tibbals, Jr. Oct 1987 A
4713976 Wilkes Dec 1987 A
4717368 Yamaguchi et al. Jan 1988 A
4735430 Tomkinson Apr 1988 A
4738164 Kaneyuki Apr 1988 A
4744261 Jacobson May 1988 A
4756211 Fellows Jul 1988 A
4781663 Reswick Nov 1988 A
4838122 Takamiya et al. Jun 1989 A
4856374 Kreuzer Aug 1989 A
4869130 Wiecko Sep 1989 A
4881925 Hattori Nov 1989 A
4900046 Aranceta-Angoitia Feb 1990 A
4909101 Terry Mar 1990 A
4918344 Chikamori et al. Apr 1990 A
4964312 Kraus Oct 1990 A
4976170 Hayashi et al. Dec 1990 A
5006093 Itoh et al. Apr 1991 A
5020384 Kraus Jun 1991 A
5025685 Kobayashi et al. Jun 1991 A
5033322 Nakano Jul 1991 A
5033571 Morimoto Jul 1991 A
5037361 Takahashi Aug 1991 A
5044214 Barber Sep 1991 A
5059158 Bellio et al. Oct 1991 A
5069655 Schivelbusch Dec 1991 A
5083982 Sato Jan 1992 A
5099710 Nakano Mar 1992 A
5121654 Fasce Jun 1992 A
5125677 Ogilvie et al. Jun 1992 A
5138894 Kraus Aug 1992 A
5156412 Meguerditchian Oct 1992 A
5194052 Ueda et al. Mar 1993 A
5230258 Nakano Jul 1993 A
5236211 Meguerditchian Aug 1993 A
5236403 Schievelbusch Aug 1993 A
5267920 Hibi Dec 1993 A
5273501 Schievelbusch Dec 1993 A
5318486 Lutz Jun 1994 A
5319486 Vogel et al. Jun 1994 A
5330396 Lohr et al. Jul 1994 A
5355749 Obara et al. Oct 1994 A
5356348 Bellio et al. Oct 1994 A
5375865 Terry, Sr. Dec 1994 A
5379661 Nakano Jan 1995 A
5383677 Thomas Jan 1995 A
5387000 Sato Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5413540 Streib et al. May 1995 A
5451070 Lindsay et al. Sep 1995 A
5489003 Ohyama et al. Feb 1996 A
5508574 Vlock Apr 1996 A
5562564 Folino Oct 1996 A
5564998 Fellows Oct 1996 A
5601301 Liu Feb 1997 A
5607373 Ochiai et al. Mar 1997 A
5645507 Hathaway Jul 1997 A
5651750 Imanishi et al. Jul 1997 A
5664636 Ikuma et al. Sep 1997 A
5669845 Muramoto et al. Sep 1997 A
5683322 Meyerle Nov 1997 A
5690346 Keskitalo Nov 1997 A
5701786 Kawakami Dec 1997 A
5722502 Kubo Mar 1998 A
5746676 Kawase et al. May 1998 A
5755303 Yamamoto et al. May 1998 A
5799541 Arbeiter Sep 1998 A
5819864 Koike et al. Oct 1998 A
5823052 Nobumoto Oct 1998 A
5846155 Taniguchi et al. Dec 1998 A
5888160 Miyata et al. Mar 1999 A
5895337 Fellows et al. Apr 1999 A
5899827 Nakano et al. May 1999 A
5902207 Sugihara May 1999 A
5967933 Valdenaire Oct 1999 A
5976054 Yasuoka Nov 1999 A
5984826 Nakano Nov 1999 A
5995895 Watt et al. Nov 1999 A
6000707 Miller Dec 1999 A
6003649 Fischer Dec 1999 A
6004239 Makino Dec 1999 A
6006151 Graf Dec 1999 A
6012538 Sonobe et al. Jan 2000 A
6015359 Kunii Jan 2000 A
6019701 Mori et al. Feb 2000 A
6029990 Busby Feb 2000 A
6042132 Suenaga et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6045481 Kumagai Apr 2000 A
6053833 Masaki Apr 2000 A
6053841 Kolde et al. Apr 2000 A
6054844 Frank Apr 2000 A
6066067 Greenwood May 2000 A
6071210 Kato Jun 2000 A
6074320 Miyata et al. Jun 2000 A
6076846 Clardy Jun 2000 A
6079726 Busby Jun 2000 A
6083139 Deguchi Jul 2000 A
6086506 Petersmann et al. Jul 2000 A
6095940 Ai et al. Aug 2000 A
6099431 Hoge et al. Aug 2000 A
6101895 Yamane Aug 2000 A
6113513 Itoh et al. Sep 2000 A
6119539 Papanicolaou Sep 2000 A
6119800 McComber Sep 2000 A
6159126 Oshidari Dec 2000 A
6171210 Miyata et al. Jan 2001 B1
6174260 Tsukada et al. Jan 2001 B1
6186922 Bursal et al. Feb 2001 B1
6210297 Knight Apr 2001 B1
6217473 Ueda et al. Apr 2001 B1
6217478 Vohmann et al. Apr 2001 B1
6241636 Miller Jun 2001 B1
6243638 Abo et al. Jun 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6258003 Hirano et al. Jul 2001 B1
6261200 Miyata et al. Jul 2001 B1
6296593 Gotou Oct 2001 B1
6311113 Danz et al. Oct 2001 B1
6312358 Goi et al. Nov 2001 B1
6322475 Miller Nov 2001 B2
6325386 Shoge Dec 2001 B1
6358174 Folsom et al. Mar 2002 B1
6358178 Wittkopp Mar 2002 B1
6371878 Bowen Apr 2002 B1
6375412 Dial Apr 2002 B1
6390945 Young May 2002 B1
6390946 Hibi et al. May 2002 B1
6406399 Ai Jun 2002 B1
6414401 Kuroda et al. Jul 2002 B1
6419608 Miller Jul 2002 B1
6425838 Matsubara et al. Jul 2002 B1
6434960 Rousseau Aug 2002 B1
6440037 Takagi et al. Aug 2002 B2
6459978 Tamiguchi et al. Oct 2002 B2
6461268 Milner Oct 2002 B1
6482094 Kefes Nov 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494805 Ooyama et al. Dec 2002 B2
6499373 Van Cor Dec 2002 B2
6514175 Taniguchi et al. Feb 2003 B2
6532890 Chen Mar 2003 B2
6551210 Miller Apr 2003 B2
6575047 Reik et al. Jun 2003 B2
6659901 Sakai et al. Dec 2003 B2
6672418 Makino Jan 2004 B1
6676559 Miller Jan 2004 B2
6679109 Gierling et al. Jan 2004 B2
6682432 Shinozuka Jan 2004 B1
6689012 Miller Feb 2004 B2
6721637 Abe et al. Apr 2004 B2
6723014 Shinso et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6805654 Nishii Oct 2004 B2
6808053 Kirkwood et al. Oct 2004 B2
6839617 Mensler et al. Jan 2005 B2
6849020 Sumi Feb 2005 B2
6859709 Joe et al. Feb 2005 B2
6868949 Braford Mar 2005 B2
6931316 Joe et al. Aug 2005 B2
6932739 Miyata et al. Aug 2005 B2
6942593 Nishii et al. Sep 2005 B2
6945903 Miller Sep 2005 B2
6949049 Miller Sep 2005 B2
6958029 Inoue Oct 2005 B2
6991575 Inoue Jan 2006 B2
6991579 Kobayashi et al. Jan 2006 B2
7000496 Wessel et al. Feb 2006 B2
7011600 Miller et al. Mar 2006 B2
7011601 Miller Mar 2006 B2
7014591 Miller Mar 2006 B2
7029418 Taketsuna et al. Apr 2006 B2
7032914 Miller Apr 2006 B2
7036620 Miller et al. May 2006 B2
7044884 Miller May 2006 B2
7063195 Berhan Jun 2006 B2
7063640 Miller Jun 2006 B2
7074007 Miller Jul 2006 B2
7074154 Miller Jul 2006 B2
7074155 Miller Jul 2006 B2
7077777 Miyata et al. Jul 2006 B2
7086979 Frenken Aug 2006 B2
7086981 Ali et al. Aug 2006 B2
7094171 Inoue Aug 2006 B2
7111860 Grimaldos Sep 2006 B1
7112158 Miller Sep 2006 B2
7112159 Miller et al. Sep 2006 B2
7125297 Miller et al. Oct 2006 B2
7131930 Miller et al. Nov 2006 B2
7140999 Miller Nov 2006 B2
7147586 Miller et al. Dec 2006 B2
7153233 Miller et al. Dec 2006 B2
7156770 Miller Jan 2007 B2
7160220 Shinojima et al. Jan 2007 B2
7160222 Miller Jan 2007 B2
7163485 Miller Jan 2007 B2
7163486 Miller et al. Jan 2007 B2
7166052 Miller et al. Jan 2007 B2
7166056 Miller et al. Jan 2007 B2
7166057 Miller et al. Jan 2007 B2
7166058 Miller et al. Jan 2007 B2
7169076 Miller et al. Jan 2007 B2
7172529 Miller et al. Feb 2007 B2
7175564 Miller Feb 2007 B2
7175565 Miller et al. Feb 2007 B2
7175566 Miller et al. Feb 2007 B2
7192381 Miller et al. Mar 2007 B2
7197915 Luh et al. Apr 2007 B2
7198582 Miller et al. Apr 2007 B2
7198583 Miller et al. Apr 2007 B2
7198584 Miller et al. Apr 2007 B2
7198585 Miller et al. Apr 2007 B2
7201693 Miller et al. Apr 2007 B2
7201694 Miller et al. Apr 2007 B2
7201695 Miller et al. Apr 2007 B2
7204777 Miller et al. Apr 2007 B2
7214159 Miller et al. May 2007 B2
7217215 Miller et al. May 2007 B2
7217216 Inoue May 2007 B2
7217219 Miller May 2007 B2
7217220 Careau et al. May 2007 B2
7232395 Miller et al. Jun 2007 B2
7234873 Kato et al. Jun 2007 B2
7235031 Miller et al. Jun 2007 B2
7238136 Miller et al. Jul 2007 B2
7238137 Miller et al. Jul 2007 B2
7238138 Miller et al. Jul 2007 B2
7238139 Roethler et al. Jul 2007 B2
7246672 Shirai et al. Jul 2007 B2
7250018 Miller et al. Jul 2007 B2
7261663 Miller et al. Aug 2007 B2
7275610 Kuang et al. Oct 2007 B2
7285068 Hosoi Oct 2007 B2
7288042 Miller et al. Oct 2007 B2
7288043 Shioiri et al. Oct 2007 B2
7320660 Miller Jan 2008 B2
7322901 Miller et al. Jan 2008 B2
7343236 Wilson Mar 2008 B2
7347801 Guenter et al. Mar 2008 B2
7383748 Rankin Jun 2008 B2
7384370 Miller Jun 2008 B2
7393300 Miller et al. Jul 2008 B2
7393302 Miller Jul 2008 B2
7393303 Miller Jul 2008 B2
7395731 Miller et al. Jul 2008 B2
7396209 Miller et al. Jul 2008 B2
7402122 Miller Jul 2008 B2
7410443 Miller Aug 2008 B2
7419451 Miller Sep 2008 B2
7422541 Miller Sep 2008 B2
7422546 Miller et al. Sep 2008 B2
7427253 Miller Sep 2008 B2
7431677 Miller et al. Oct 2008 B2
7452297 Miller et al. Nov 2008 B2
7455611 Miller et al. Nov 2008 B2
7455617 Miller et al. Nov 2008 B2
7462123 Miller et al. Dec 2008 B2
7462127 Miller et al. Dec 2008 B2
7470210 Miller et al. Dec 2008 B2
7478885 Urabe Jan 2009 B2
7481736 Miller et al. Jan 2009 B2
7510499 Miller et al. Mar 2009 B2
7540818 Miller et al. Jun 2009 B2
7547264 Usoro Jun 2009 B2
7574935 Rohs et al. Aug 2009 B2
7591755 Petrzik et al. Sep 2009 B2
7632203 Miller Dec 2009 B2
7651437 Miller et al. Jan 2010 B2
7654928 Miller et al. Feb 2010 B2
7670243 Miller Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7727101 Miller Jun 2010 B2
7727106 Maheu et al. Jun 2010 B2
7727107 Miller Jun 2010 B2
7727108 Miller et al. Jun 2010 B2
7727110 Miller et al. Jun 2010 B2
7727115 Serkh Jun 2010 B2
7731615 Miller et al. Jun 2010 B2
7762919 Smithson et al. Jul 2010 B2
7762920 Smithson et al. Jul 2010 B2
7770674 Miles et al. Aug 2010 B2
7785228 Smithson et al. Aug 2010 B2
7828685 Miller Nov 2010 B2
7837592 Miller Nov 2010 B2
7871353 Nichols et al. Jan 2011 B2
7882762 Armstrong et al. Feb 2011 B2
7883442 Miller et al. Feb 2011 B2
7885747 Miller et al. Feb 2011 B2
7887032 Malone Feb 2011 B2
7909723 Triller et al. Mar 2011 B2
7909727 Smithson et al. Mar 2011 B2
7914029 Miller et al. Mar 2011 B2
7959533 Nichols et al. Jun 2011 B2
7963880 Smithson et al. Jun 2011 B2
7967719 Smithson et al. Jun 2011 B2
7976426 Smithson et al. Jul 2011 B2
8066613 Smithson et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8070635 Miller Dec 2011 B2
8087482 Miles et al. Jan 2012 B2
8123653 Smithson et al. Feb 2012 B2
8133149 Smithson et al. Mar 2012 B2
8142323 Tsuchiya et al. Mar 2012 B2
8167759 Pohl et al. May 2012 B2
8171636 Smithson et al. May 2012 B2
8230961 Schneidewind Jul 2012 B2
8262536 Nichols et al. Sep 2012 B2
8267829 Miller et al. Sep 2012 B2
8313404 Carter et al. Nov 2012 B2
8313405 Bazyn et al. Nov 2012 B2
8317650 Nichols et al. Nov 2012 B2
8317651 Lohr Nov 2012 B2
8321097 Vasiliotis et al. Nov 2012 B2
8342999 Miller Jan 2013 B2
8360917 Nichols et al. Jan 2013 B2
8376889 Hoffman et al. Feb 2013 B2
8376903 Pohl et al. Feb 2013 B2
8382631 Hoffman et al. Feb 2013 B2
8382637 Tange Feb 2013 B2
8393989 Pohl Mar 2013 B2
8398518 Nichols et al. Mar 2013 B2
8469853 Miller et al. Jun 2013 B2
8469856 Thomassy Jun 2013 B2
8480529 Pohl et al. Jul 2013 B2
8496554 Pohl et al. Jul 2013 B2
8506452 Pohl et al. Aug 2013 B2
8512195 Lohr et al. Aug 2013 B2
8517888 Brookins Aug 2013 B1
8535199 Lohr et al. Sep 2013 B2
8550949 Miller Oct 2013 B2
8585528 Carter et al. Nov 2013 B2
8608609 Sherrill Dec 2013 B2
8622866 Bazyn et al. Jan 2014 B2
8626409 Vasiliotis et al. Jan 2014 B2
8628443 Miller et al. Jan 2014 B2
8641572 Nichols et al. Feb 2014 B2
8641577 Nichols et al. Feb 2014 B2
8663050 Nichols et al. Mar 2014 B2
8678974 Lohr Mar 2014 B2
8708360 Miller et al. Apr 2014 B2
8721485 Lohr et al. May 2014 B2
8738255 Carter et al. May 2014 B2
8776633 Armstrong et al. Jul 2014 B2
8784248 Murakami et al. Jul 2014 B2
8790214 Lohr et al. Jul 2014 B2
8818661 Keilers et al. Aug 2014 B2
8827864 Durack Sep 2014 B2
8845485 Smithson et al. Sep 2014 B2
8852050 Thomassy Oct 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8900085 Pohl et al. Dec 2014 B2
8920285 Smithson et al. Dec 2014 B2
8924111 Fuller Dec 2014 B2
8996263 Quinn et al. Mar 2015 B2
9017207 Pohl et al. Apr 2015 B2
9022889 Miller May 2015 B2
9046158 Miller et al. Jun 2015 B2
9074674 Nichols et al. Jul 2015 B2
9086145 Pohl et al. Jul 2015 B2
9121464 Nichols et al. Sep 2015 B2
9182018 Bazyn et al. Nov 2015 B2
9239099 Carter et al. Jan 2016 B2
9249880 Vasiliotis et al. Feb 2016 B2
9273760 Pohl et al. Mar 2016 B2
9279482 Nichols et al. Mar 2016 B2
9291251 Lohr et al. Mar 2016 B2
9328807 Carter et al. May 2016 B2
9341246 Miller et al. May 2016 B2
9360089 Lohr et al. Jun 2016 B2
9365203 Keilers et al. Jun 2016 B2
9371894 Carter et al. Jun 2016 B2
9676391 Carter et al. Jun 2017 B2
9709138 Miller et al. Jul 2017 B2
20010008192 Morisawa Jul 2001 A1
20010023217 Miyagawa et al. Sep 2001 A1
20010041644 Yasuoka et al. Nov 2001 A1
20010044358 Taniguchi Nov 2001 A1
20010044361 Taniguchi et al. Nov 2001 A1
20020019285 Henzler Feb 2002 A1
20020028722 Sakai et al. Mar 2002 A1
20020037786 Hirano et al. Mar 2002 A1
20020045511 Geiberger et al. Apr 2002 A1
20020049113 Watanabe et al. Apr 2002 A1
20020117860 Man et al. Aug 2002 A1
20020128107 Wakayama Sep 2002 A1
20020169051 Oshidari Nov 2002 A1
20020179348 Tamai et al. Dec 2002 A1
20020189524 Chen Dec 2002 A1
20030015358 Abe et al. Jan 2003 A1
20030015874 Abe et al. Jan 2003 A1
20030022753 Mizuno et al. Jan 2003 A1
20030036456 Skrabs Feb 2003 A1
20030132051 Nishii et al. Jul 2003 A1
20030135316 Kawamura et al. Jul 2003 A1
20030144105 O'Hora Jul 2003 A1
20030160420 Fukuda Aug 2003 A1
20030216216 Inoue et al. Nov 2003 A1
20030221892 Matsumoto et al. Dec 2003 A1
20040038772 McIndoe et al. Feb 2004 A1
20040051375 Uno Mar 2004 A1
20040058772 Inoue et al. Mar 2004 A1
20040067816 Taketsuna et al. Apr 2004 A1
20040082421 Wafzig Apr 2004 A1
20040092359 Imanishi et al. May 2004 A1
20040119345 Takano Jun 2004 A1
20040171457 Fuller Sep 2004 A1
20040204283 Inoue Oct 2004 A1
20040231331 Iwanami et al. Nov 2004 A1
20040254047 Frank et al. Dec 2004 A1
20050037876 Unno et al. Feb 2005 A1
20050085979 Carlson et al. Apr 2005 A1
20050181905 Ali et al. Aug 2005 A1
20050184580 Kuan et al. Aug 2005 A1
20050227809 Bitzer et al. Oct 2005 A1
20050229731 Parks et al. Oct 2005 A1
20060000684 Agner Jan 2006 A1
20060006008 Brunemann et al. Jan 2006 A1
20060052204 Eckert et al. Mar 2006 A1
20060084549 Smithson Apr 2006 A1
20060108956 Clark May 2006 A1
20060111212 Ai et al. May 2006 A9
20060154775 Ali et al. Jul 2006 A1
20060172829 Ishio Aug 2006 A1
20060180363 Uchisasai Aug 2006 A1
20060223667 Nakazeki Oct 2006 A1
20060234822 Morscheck et al. Oct 2006 A1
20060234826 Moehlmann et al. Oct 2006 A1
20060276299 Imanishi Dec 2006 A1
20070004552 Matsudaira et al. Jan 2007 A1
20070004556 Rohs et al. Jan 2007 A1
20070099753 Matsui et al. May 2007 A1
20070149342 Guenter et al. Jun 2007 A1
20070155552 De Cloe Jul 2007 A1
20070155567 Miller et al. Jul 2007 A1
20070155580 Nichols Jul 2007 A1
20070193391 Armstrong et al. Aug 2007 A1
20070228687 Parker Oct 2007 A1
20080009389 Jacobs Jan 2008 A1
20080032852 Smithson et al. Feb 2008 A1
20080032854 Smithson et al. Feb 2008 A1
20080039269 Smithson et al. Feb 2008 A1
20080039273 Smithson et al. Feb 2008 A1
20080039276 Smithson et al. Feb 2008 A1
20080081728 Faulring et al. Apr 2008 A1
20080139363 Williams Jun 2008 A1
20080149407 Shibata et al. Jun 2008 A1
20080183358 Thomson et al. Jul 2008 A1
20080200300 Smithson et al. Aug 2008 A1
20080228362 Muller et al. Sep 2008 A1
20080284170 Cory Nov 2008 A1
20080305920 Nishii et al. Dec 2008 A1
20090023545 Beaudoin Jan 2009 A1
20090082169 Kolstrup Mar 2009 A1
20090107454 Hiyoshi et al. Apr 2009 A1
20090251013 Vollmer et al. Oct 2009 A1
20100093479 Carter et al. Apr 2010 A1
20100145573 Vasilescu Jun 2010 A1
20100181130 Chou Jul 2010 A1
20110127096 Schneidewind Jun 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110237385 Parise Sep 2011 A1
20110291507 Post Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120035011 Menachem et al. Feb 2012 A1
20120035015 Ogawa et al. Feb 2012 A1
20120258839 Smithson et al. Oct 2012 A1
20130035200 Noji et al. Feb 2013 A1
20130053211 Fukuda et al. Feb 2013 A1
20130337971 Kostrup Dec 2013 A1
20140148303 Nichols et al. May 2014 A1
20140206499 Lohr Jul 2014 A1
20140274536 Versteyhe Sep 2014 A1
20140329637 Thomassy et al. Nov 2014 A1
20140335991 Lohr et al. Nov 2014 A1
20150018154 Thomassy Jan 2015 A1
20150039195 Pohl et al. Feb 2015 A1
20150051801 Quinn et al. Feb 2015 A1
20150080165 Pohl et al. Mar 2015 A1
20150226323 Pohl et al. Aug 2015 A1
20150233473 Miller et al. Aug 2015 A1
20150260284 Miller et al. Sep 2015 A1
20150337928 Smithson Nov 2015 A1
20150345599 Ogawa Dec 2015 A1
20150369348 Nichols et al. Dec 2015 A1
20150377305 Nichols et al. Dec 2015 A1
20160003349 Kimura et al. Jan 2016 A1
20160040763 Nichols et al. Feb 2016 A1
20160061301 Bazyn et al. Mar 2016 A1
20160146342 Vasiliotis et al. May 2016 A1
20160178037 Pohl Jun 2016 A1
20160186847 Nichols et al. Jun 2016 A1
20160201772 Lohr et al. Jul 2016 A1
20160281825 Lohr et al. Sep 2016 A1
20160290451 Lohr Oct 2016 A1
20160298740 Carter et al. Oct 2016 A1
20170072782 Miller et al. Mar 2017 A1
20170103053 Nichols et al. Apr 2017 A1
20170159812 Pohl et al. Jun 2017 A1
20170163138 Pohl Jun 2017 A1
20170204948 Thomassy et al. Jul 2017 A1
20170204969 Thomassy et al. Jul 2017 A1
20170211698 Lohr Jul 2017 A1
Foreign Referenced Citations (216)
Number Date Country
118064 Dec 1926 CH
1054340 Sep 1991 CN
2245830 Jan 1997 CN
1157379 Aug 1997 CN
1167221 Dec 1997 CN
1178573 Apr 1998 CN
1178751 Apr 1998 CN
1204991 Jan 1999 CN
1283258 Feb 2001 CN
1300355 Jun 2001 CN
1412033 Apr 2003 CN
1434229 Aug 2003 CN
1474917 Feb 2004 CN
1483235 Mar 2004 CN
1568407 Jan 2005 CN
1654858 Aug 2005 CN
2714896 Aug 2005 CN
1736791 Feb 2006 CN
1847702 Oct 2006 CN
1860315 Nov 2006 CN
1940348 Apr 2007 CN
101016076 Aug 2007 CN
498 701 May 1930 DE
1171692 Jun 1964 DE
2 310880 Sep 1974 DE
2 136 243 Jan 1975 DE
2436496 Feb 1975 DE
39 40 919 Jun 1991 DE
4120540 Nov 1992 DE
19851738 May 2000 DE
10155372 May 2003 DE
10261372 Jul 2003 DE
102011016672 Oct 2012 DE
102012023551 Jun 2014 DE
102014007271 Dec 2014 DE
0 432 742 Dec 1990 EP
0 528 381 Feb 1993 EP
0 528 382 Feb 1993 EP
0 635 639 Jan 1995 EP
0 638 741 Feb 1995 EP
0 831 249 Mar 1998 EP
0 832 816 Apr 1998 EP
0 976 956 Feb 2000 EP
1 010 612 Jun 2000 EP
1 136 724 Sep 2001 EP
1 251 294 Oct 2002 EP
1 366 978 Mar 2003 EP
1 362 783 Nov 2003 EP
1 433 641 Jun 2004 EP
1 452 441 Sep 2004 EP
1 518 785 Mar 2005 EP
1 624 230 Feb 2006 EP
2 893 219 Jul 2015 EP
620375 Apr 1927 FR
2460427 Jan 1981 FR
2590638 May 1987 FR
391448 Apr 1933 GB
592320 Sep 1947 GB
906002 Sep 1962 GB
919430 Feb 1963 GB
1132473 Nov 1968 GB
1165545 Oct 1969 GB
1376057 Dec 1974 GB
2031822 Apr 1980 GB
2035482 Jun 1980 GB
2080452 Aug 1982 GB
38-025315 Nov 1963 JP
41-3126 Feb 1966 JP
42-2843 Feb 1967 JP
42-2844 Feb 1967 JP
44-1098 Jan 1969 JP
47-000448 Jan 1972 JP
47-207 Jun 1972 JP
47-20535 Jun 1972 JP
47-00962 Nov 1972 JP
47-29762 Nov 1972 JP
48-54371 Jul 1973 JP
49-012742 Mar 1974 JP
49-013823 Apr 1974 JP
49-041536 Nov 1974 JP
50-114581 Sep 1975 JP
51-25903 Aug 1976 JP
51-150380 Dec 1976 JP
52-35481 Mar 1977 JP
53-048166 Jan 1978 JP
55-135259 Oct 1980 JP
56-047231 Apr 1981 JP
56-101448 Aug 1981 JP
56-127852 Oct 1981 JP
58-065361 Apr 1983 JP
59-069565 Apr 1984 JP
59-144826 Aug 1984 JP
59-190557 Oct 1984 JP
60-247011 Dec 1985 JP
61-031754 Feb 1986 JP
61-053423 Mar 1986 JP
61-144466 Jul 1986 JP
61-173722 Oct 1986 JP
61-270552 Nov 1986 JP
62-075170 Apr 1987 JP
63-219953 Sep 1988 JP
63-160465 Oct 1988 JP
01-039865 Nov 1989 JP
01-286750 Nov 1989 JP
01-308142 Dec 1989 JP
02-130224 May 1990 JP
02-157483 Jun 1990 JP
02-271142 Jun 1990 JP
02-182593 Jul 1990 JP
03-149442 Jun 1991 JP
03-223555 Oct 1991 JP
04-166619 Jun 1992 JP
04-272553 Sep 1992 JP
04-327055 Nov 1992 JP
04-351361 Dec 1992 JP
05-087154 Apr 1993 JP
06-050169 Feb 1994 JP
06-050358 Feb 1994 JP
07-42799 Feb 1995 JP
07-133857 May 1995 JP
07-139600 May 1995 JP
07-259950 Oct 1995 JP
08-135748 May 1996 JP
08-170706 Jul 1996 JP
08-247245 Sep 1996 JP
08-270772 Oct 1996 JP
09-024743 Jan 1997 JP
09-089064 Mar 1997 JP
10-061739 Mar 1998 JP
10-078094 Mar 1998 JP
10-089435 Apr 1998 JP
10-115355 May 1998 JP
10-115356 May 1998 JP
10-194186 Jul 1998 JP
10-511621 Nov 1998 JP
11-063130 Mar 1999 JP
11-091411 Apr 1999 JP
11-257479 Sep 1999 JP
2000-46135 Feb 2000 JP
2000-177673 Jun 2000 JP
2001-027298 Jan 2001 JP
2001-071986 Mar 2001 JP
2001-107827 Apr 2001 JP
2001-165296 Jun 2001 JP
2001-328466 Nov 2001 JP
2002-147558 May 2002 JP
2002-250421 Jun 2002 JP
2002-291272 Oct 2002 JP
2002-307956 Oct 2002 JP
2002-533626 Oct 2002 JP
2002-372114 Dec 2002 JP
2003-028257 Jan 2003 JP
2003-56662 Feb 2003 JP
2003-161357 Jun 2003 JP
2003-194206 Jul 2003 JP
2003-194207 Jul 2003 JP
2003-320987 Nov 2003 JP
2003-336732 Nov 2003 JP
2004-011834 Jan 2004 JP
2004-162652 Jun 2004 JP
2004-189222 Jul 2004 JP
2004-526917 Sep 2004 JP
2004-301251 Oct 2004 JP
2005-003063 Jan 2005 JP
2005-096537 Apr 2005 JP
2005-188694 Jul 2005 JP
2005-240928 Sep 2005 JP
2005-312121 Nov 2005 JP
2006-015025 Jan 2006 JP
2006-283900 Oct 2006 JP
2006-300241 Nov 2006 JP
2007-085404 Apr 2007 JP
2007-321931 Dec 2007 JP
2008-002687 Jan 2008 JP
2008-133896 Jun 2008 JP
2010-069005 Apr 2010 JP
2012-225390 Nov 2012 JP
2015-227690 Dec 2015 JP
2015-227691 Dec 2015 JP
10-2002-0071699 Sep 2002 KR
98467 Jul 1961 NE
74007 Jan 1984 TW
175100 Dec 1991 TW
218909 Jan 1994 TW
227206 Jul 1994 TW
275872 May 1996 TW
360184 Jun 1999 TW
366396 Aug 1999 TW
401496 Aug 2000 TW
510867 Nov 2002 TW
512211 Dec 2002 TW
582363 Apr 2004 TW
590955 Jun 2004 TW
I225129 Dec 2004 TW
I225912 Jan 2005 TW
I235214 Jan 2005 TW
M294598 Jul 2006 TW
200637745 Nov 2006 TW
200821218 May 2008 TW
WO 9908024 Feb 1999 WO
WO 9920918 Apr 1999 WO
WO 0173319 Oct 2001 WO
WO 03086849 Oct 2003 WO
WO 03100294 Dec 2003 WO
WO 05083305 Sep 2005 WO
WO 05108825 Nov 2005 WO
WO 05111472 Nov 2005 WO
WO 06091503 Aug 2006 WO
WO 07077502 Jul 2007 WO
WO 08078047 Jul 2008 WO
WO 10135407 Nov 2010 WO
WO 11101991 Aug 2011 WO
WO 11121743 Oct 2011 WO
WO 12030213 Mar 2012 WO
WO 14186732 Nov 2014 WO
WO 16062461 Apr 2016 WO
Non-Patent Literature Citations (24)
Entry
Office Action dated Aug. 23, 2006 from Japanese Patent Application No. 2000-517205.
Supplementary European Search Report dated Apr. 1, 2009, for European Application No. 04715691.4, filed Feb. 7, 2004.
Office Action dated Feb. 17, 2010 from Japanese Patent Application No. 2009-294086.
Extended European Search Report dated Feb. 7, 2012 for European Patent Application No. 11184545.9.
Japanese Office Action dated Jun. 19, 2012 for Japanese Patent Application No. 2009-294348.
Office Action dated Sep. 6, 2011 for Japanese Patent Application No. 2007-535715.
Taiwan Search Report and Preliminary Notice of First Office Action dated Oct. 30, 2008 for Taiwanese Patent Application No. 094134761.
International Search Report and Written Opinion dated Dec. 20, 2006 from International Patent Application No. PCT/US2006/033104, filed on Aug. 23, 2006.
Office Action dated Aug. 12, 2013 for Taiwanese Patent Application No. 095143152.
Office Action dated Jun. 28, 2011 from Japanese Patent Application No. 2009-518168.
Office Action dated Feb. 18, 2014 in Japanese Patent Application No. 2012-095839.
International Search Report and Written Opinion dated Apr. 16, 2008, for PCT Application No. PCT/US2007/023315, filed Nov. 6, 2007.
Preliminary Notice of First Office Action dated Sep. 14, 2013 in Taiwan Patent Application No. 96142183.
International Search Report and Written Opinion dated Feb. 2, 2010 from International Patent Application No. PCT/US2008/068929, filed on Jan. 7, 2008.
International Search Report and Written Opinion dated Aug. 6, 2009 for PCT Application No. PCT/US2009/035540.
Office Action dated Aug. 14, 2013 for U.S. Appl. No. 13/054,767.
Office Action dated Jan. 8, 2014 for U.S. Appl. No. 13/054,767.
International Search Report and Written Opinion dated Jan. 25, 2010 from International Patent Application No. PCT/US2009/052761, filed on Aug. 4, 2009.
Office Action dated Jul. 24, 2015 in Canadian Patent Application No. 2,732,668.
Japanese Office Action dated Aug. 6, 2013 for Japanese Patent Application No. 2011-524950.
International Preliminary Report on Patentability dated Oct. 27, 2013 for PCT Application No. PCT/US2012/031884.
Thomassy: An Engineering Approach to Simulating Traction EHL. CVT-Hybrid International Conference Mecc/Maastricht/The Netherlands, Nov. 17-19, 2010, p. 97.
Office Action dated Oct. 16, 2015 in U.S. Appl. No. 14/464,24.
Office Action dated Dec. 19, 2016 in Canadian Patent Application No. 2,732,668.
Related Publications (1)
Number Date Country
20160362108 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
61086366 Aug 2008 US
Continuations (2)
Number Date Country
Parent 14464245 Aug 2014 US
Child 15180347 US
Parent 13054767 US
Child 14464245 US