Programming guides, such as television programming guides for display on a television and the like, are common. These guides usually allow access to hour-by-hour programming information over an extended period of time, often on the order of weeks. In light of this fact, as well as the fact that many conventional television services providers provide an extensive number of channels for viewing, it is apparent that television programming guides, when considered in total, may contain a significant amount of information regarding programming schedules. In addition, many guides now make available detailed information about specific programs, thereby multiplying the total amount of information available through a program guide.
Designers of program guides and guide display schemes are faced with the challenge of creating systems and displays through which a user might easily manage and access the vast amounts of available information. A common method is to associate the information with a time and channel, and to display the information within a two-dimensional array with channels running serially along one (usually horizontal) axis and time running sequentially along a perpendicular (usually vertical) axis. However, the amount of intelligible information that can feasibly be displayed on a television screen is primarily determined by the minimum font size that can be reasonably viewed at a normal viewing distance, and in many applications cannot be smaller than 18 points (as a basis for comparison, the average font size of printed content is usually between 9 and 11 points). For a conventional television, this factor restricts the content that can be displayed to approximately 40 text characters per line and not more than 25 lines per display. Generally, this is significantly less display capability than what is required to display all of the information contained in a program guide at any one time. As such, only a limited portion of the array is typically displayed at any one time, thereby allowing the displayed portion to be of a magnitude reasonably sufficient for viewing.
In order to access the undisplayed portions of the guide, guide users are typically provided with a remote control device that includes four directional buttons for scrolling horizontally and vertically through the array. This system might be visualized as shown in
a-5d are schematic perspective views of display systems, the systems being configured in accordance with exemplary embodiments.
a is a schematic perspective view of a television including an exemplary map for locating the position of displayed data within data available for display.
a-9d are schematic perspective views of display control systems being integrated with existing display systems in accordance with exemplary embodiments.
Exemplary embodiments now will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments and examples are shown. Like numbers refer to like elements throughout.
Referring again to
Referring to
In one embodiment, the motion sensor 304 includes one or more gyroscopes. The gyroscope can be used to measure the movement of the remote control 202, such as by measuring the angular velocity/rotation of the remote control 202 about one or more axes. In general, the gyroscope or gyroscopes can be arranged, for example, to form a gyro-compass, an inertial navigation system, or some other arrangement that allows position to be detected based on gyroscope movement. The gyroscope may be combined, in some cases, with a distance sensor.
Remote control 202 may also include a transmitter 306. The transmitter 306 can be configured to receive, either directly from motion sensor 304 or indirectly via other components (such as signal conditioners and/or a processor) indications of one or more types of movement of remote control 202. Transmitter 306 may then transmit a signal, based on the detected movement of the remote control 202, that is configured to initiate display changes in data displayed in a remote display device, such as a television 208, as described in more detail below. Remote control 202 may also include a user interface 210, possibly including a keypad or other dedicated buttons (e.g., volume buttons) and the like.
Remote control 202 may satisfy a variety of functional needs via movement based controls. For example, remote control 202 can be configured to transmit a signal that causes television 208, say, to turn off when remote control 202 is turned sideways. Alternatively, remote control may emit a signal that, for example, causes the channel of the television 208 to change to the next higher channel when, say, remote control 202 is flipped upward. Other functions of television 208 (or some other display device) may be controlled via movement of remote control 202, such as modifying the volume or modifying the brightness or contrast of the image. In each of these cases, motion sensor 304 may detect the movement and send a signal representative thereof to, say, a processor 318. The processor 318 may receive the signal and send it (or a representative thereof) to transmitter 306 for transmission to a television/television controller. The processor 318 may be configured to condition or adjust the signal received from the sensor 304 before passing such signal to transmitter 306 in a way that renders the signal appropriate for the transmitter 306, the external device (e.g., such as television 208) that will receive the signal transmitted from the transmitter 306, or both.
Referring to
An example of the above described scheme for controlling display data is now described in conjunction with
Using the above scheme, remote control 502 may, in some cases, be used to magnify or de-magnify information displayed on television 508, and to move within the total of the data available for display when less than such amount is actually displayed, such that one or more portions of data logically adjacent to the displayed data are subsequently displayed. This scheme may be useful, for example, when using remote control 502 in conjunction with a program guide 601 that is displayed on television 508, as exemplified in
The remote control 502 and scheme for manipulating displayed data described in conjunction with
While the above embodiment has been described as involving transmission of first, second, and third signals, it is not necessary that all three be transmitted at any one time or at all. A remote control may be configured to transmit only what is referred to as the third signal, such that there is no first or second signal. Further, in some embodiments, any or all of the signals may be transmitted at once, possibly in response to composite movements of a remote control (e.g. translating and rotating a remote control at the same time). In some cases, such signals may be embedded within one another, such as by frequency multiplexing of signals transmitted via infra red light.
Referring to
Referring to
Processing device 922 may communicate directly with a television 908, with a cable/satellite television transceiver 920, or with some other device that acts as an intermediary. For example, as shown in
Processing device 922 may include a processor 1026, and may further include, or otherwise be in communication with, a memory 1024. In some embodiments, memory 1024 may store instructions executable on processor 1026 that allow processing device 922 to communicate with a variety of different televisions and/or transceivers. In other embodiments, instructions stored in memory 1024 may allow processor 1026 to receive raw signals from motion sensor 1004 and to discern movements of remote control 902 based on those signals, such that very little processing power is required within remote control 902. In general, processing may be distributed in any desired manner between remote control 902 and processing device 922.
One advantage offered by embodiments of the above described remote control and display control system is that the paradigm employed in searching data is similar to that naturally undertaken in manually browsing large areas of data for portions targeted for further examination. That is, people tend to view data broadly in order to categorize the information sufficiently to focus on the portion of most interest (e.g., when looking at a program guide in a newspaper, one might generally look at the times and dates to find the desired time, and then focus more closely to identify the desired channel). Accordingly, use of the above described embodiments is facilitated by the relationship to naturally employed searching techniques.
In the preceding specification, various embodiments of the claimed invention have been described. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the invention as set forth in the claims that follow. For example, while embodiments of the invention have been described as pertaining to a display system, other embodiments may be useful in controlling an audio system or some other type of system that may or may not disseminate content to a user. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4977455 | Young | Dec 1990 | A |
5151789 | Young | Sep 1992 | A |
5253066 | Vogel | Oct 1993 | A |
5307173 | Yuen et al. | Apr 1994 | A |
5335079 | Yuen et al. | Aug 1994 | A |
5353121 | Young et al. | Oct 1994 | A |
5382983 | Kwoh et al. | Jan 1995 | A |
5479266 | Young et al. | Dec 1995 | A |
5479268 | Young et al. | Dec 1995 | A |
5499103 | Mankovitz | Mar 1996 | A |
5512963 | Mankovitz | Apr 1996 | A |
5515173 | Mankovitz et al. | May 1996 | A |
5532732 | Yuen et al. | Jul 1996 | A |
5532754 | Young et al. | Jul 1996 | A |
5539478 | Bertram et al. | Jul 1996 | A |
5541738 | Mankovitz | Jul 1996 | A |
5550576 | Klosterman | Aug 1996 | A |
5553123 | Chan et al. | Sep 1996 | A |
5559550 | Mankovitz | Sep 1996 | A |
5600711 | Yuen | Feb 1997 | A |
5619274 | Roop et al. | Apr 1997 | A |
5640484 | Mankovitz | Jun 1997 | A |
5684525 | Klosterman | Nov 1997 | A |
5701383 | Russo et al. | Dec 1997 | A |
5706145 | Hindman et al. | Jan 1998 | A |
5727060 | Young | Mar 1998 | A |
5734786 | Mankovitz | Mar 1998 | A |
5790198 | Roop et al. | Aug 1998 | A |
5793438 | Bedard | Aug 1998 | A |
5801787 | Schein et al. | Sep 1998 | A |
5808608 | Young et al. | Sep 1998 | A |
5809204 | Young et al. | Sep 1998 | A |
5812205 | Milnes et al. | Sep 1998 | A |
5828945 | Klosterman | Oct 1998 | A |
5870150 | Yuen | Feb 1999 | A |
5886746 | Yuen et al. | Mar 1999 | A |
5915026 | Mankovitz | Jun 1999 | A |
5923362 | Klosterman | Jul 1999 | A |
5940073 | Klosterman et al. | Aug 1999 | A |
5949954 | Young et al. | Sep 1999 | A |
5959688 | Schein et al. | Sep 1999 | A |
5969748 | Casement et al. | Oct 1999 | A |
5970206 | Yuen et al. | Oct 1999 | A |
5974222 | Yuen et al. | Oct 1999 | A |
5987213 | Mankovitz et al. | Nov 1999 | A |
5988078 | Levine | Nov 1999 | A |
5991498 | Young | Nov 1999 | A |
6002394 | Schein et al. | Dec 1999 | A |
6016141 | Knudson et al. | Jan 2000 | A |
6028599 | Yuen et al. | Feb 2000 | A |
6049652 | Yuen et al. | Apr 2000 | A |
6052145 | Macrae et al. | Apr 2000 | A |
6072983 | Klosterman | Jun 2000 | A |
6075551 | Berezowski et al. | Jun 2000 | A |
6075575 | Schein et al. | Jun 2000 | A |
6078348 | Klosterman et al. | Jun 2000 | A |
6091882 | Yuen et al. | Jul 2000 | A |
6118492 | Milnes et al. | Sep 2000 | A |
6133909 | Schein et al. | Oct 2000 | A |
6137950 | Yuen | Oct 2000 | A |
6144401 | Casement et al. | Nov 2000 | A |
6151059 | Schein et al. | Nov 2000 | A |
6167188 | Young et al. | Dec 2000 | A |
6177931 | Alexander et al. | Jan 2001 | B1 |
6216265 | Roop et al. | Apr 2001 | B1 |
6239794 | Yuen et al. | May 2001 | B1 |
6247176 | Schein et al. | Jun 2001 | B1 |
6262722 | Allison et al. | Jul 2001 | B1 |
6263501 | Schein et al. | Jul 2001 | B1 |
6323911 | Schein et al. | Nov 2001 | B1 |
6341195 | Mankovitz et al. | Jan 2002 | B1 |
6341374 | Schein et al. | Jan 2002 | B2 |
6380967 | Sacca | Apr 2002 | B1 |
6388714 | Schein et al. | May 2002 | B1 |
6396546 | Alten et al. | May 2002 | B1 |
6412110 | Schein et al. | Jun 2002 | B1 |
6430358 | Yuen et al. | Aug 2002 | B1 |
6430359 | Yuen et al. | Aug 2002 | B1 |
6453471 | Klosterman | Sep 2002 | B1 |
6460181 | Donnelly | Oct 2002 | B1 |
6466734 | Yuen et al. | Oct 2002 | B2 |
6469753 | Klosterman et al. | Oct 2002 | B1 |
6477705 | Yuen et al. | Nov 2002 | B1 |
6498895 | Young et al. | Dec 2002 | B2 |
6505348 | Knowles et al. | Jan 2003 | B1 |
6538701 | Yuen | Mar 2003 | B1 |
6549719 | Mankovitz | Apr 2003 | B2 |
6564379 | Knudson et al. | May 2003 | B1 |
6567606 | Milnes et al. | May 2003 | B2 |
6577350 | Proehl et al. | Jun 2003 | B1 |
6588013 | Lumley et al. | Jul 2003 | B1 |
6603420 | Lu | Aug 2003 | B1 |
6668133 | Yuen et al. | Dec 2003 | B2 |
6687906 | Yuen et al. | Feb 2004 | B1 |
6732369 | Schein et al. | May 2004 | B1 |
6742183 | Reynolds et al. | May 2004 | B1 |
6745391 | Macrae et al. | Jun 2004 | B1 |
6756997 | Ward et al. | Jun 2004 | B1 |
6760537 | Mankovitz | Jul 2004 | B2 |
6781638 | Hayes | Aug 2004 | B1 |
6799326 | Boylan et al. | Sep 2004 | B2 |
6799327 | Reynolds et al. | Sep 2004 | B1 |
6850693 | Young et al. | Feb 2005 | B2 |
6859799 | Yuen | Feb 2005 | B1 |
7006881 | Hoffberg et al. | Feb 2006 | B1 |
7039935 | Knudson et al. | May 2006 | B2 |
7069576 | Knudson et al. | Jun 2006 | B1 |
7487529 | Orlick | Feb 2009 | B1 |
20010029610 | Corvin et al. | Oct 2001 | A1 |
20010047298 | Moore et al. | Nov 2001 | A1 |
20010054181 | Corvin | Dec 2001 | A1 |
20020047894 | Steading et al. | Apr 2002 | A1 |
20020073424 | Ward et al. | Jun 2002 | A1 |
20020124255 | Reichardt et al. | Sep 2002 | A1 |
20030005445 | Schein et al. | Jan 2003 | A1 |
20030011636 | Feroglia et al. | Jan 2003 | A1 |
20030052921 | Ulrich et al. | Mar 2003 | A1 |
20030056219 | Reichardt et al. | Mar 2003 | A1 |
20030110495 | Bennington et al. | Jun 2003 | A1 |
20030110499 | Knudson et al. | Jun 2003 | A1 |
20030115599 | Bennington et al. | Jun 2003 | A1 |
20030115602 | Knee et al. | Jun 2003 | A1 |
20030117427 | Haughawout et al. | Jun 2003 | A1 |
20030163813 | Klosterman et al. | Aug 2003 | A1 |
20030164858 | Klosterman et al. | Sep 2003 | A1 |
20030188310 | Klosterman et al. | Oct 2003 | A1 |
20030188311 | Yuen et al. | Oct 2003 | A1 |
20030196201 | Schein et al. | Oct 2003 | A1 |
20030204847 | Ellis et al. | Oct 2003 | A1 |
20030208756 | Macrae et al. | Nov 2003 | A1 |
20040010806 | Yuen et al. | Jan 2004 | A1 |
20040045025 | Ward et al. | Mar 2004 | A1 |
20040046789 | Inanoria | Mar 2004 | A1 |
20040107437 | Reichardt et al. | Jun 2004 | A1 |
20040168189 | Reynolds et al. | Aug 2004 | A1 |
20040194138 | Boylan et al. | Sep 2004 | A1 |
20040237108 | Drazin et al. | Nov 2004 | A1 |
20040261040 | Radcliffe et al. | Dec 2004 | A1 |
20040261098 | Macrae et al. | Dec 2004 | A1 |
20050010949 | Ward et al. | Jan 2005 | A1 |
20050028201 | Klosterman et al. | Feb 2005 | A1 |
20050073497 | Kim | Apr 2005 | A1 |
20050083426 | Yoo et al. | Apr 2005 | A1 |
20050125823 | McCoy et al. | Jun 2005 | A1 |
20050125826 | Hunleth et al. | Jun 2005 | A1 |
20050149964 | Thomas et al. | Jul 2005 | A1 |
20050155056 | Knee et al. | Jul 2005 | A1 |
20050174324 | Liberty et al. | Aug 2005 | A1 |
20050216936 | Knudson et al. | Sep 2005 | A1 |
20050251824 | Thomas et al. | Nov 2005 | A1 |
20060156336 | Knudson et al. | Jul 2006 | A1 |
20060212894 | Knudson et al. | Sep 2006 | A1 |
20060277574 | Schein et al. | Dec 2006 | A1 |
20060288366 | Boylan et al. | Dec 2006 | A1 |
20070016926 | Ward et al. | Jan 2007 | A1 |
20070033613 | Ward et al. | Feb 2007 | A1 |
20070107010 | Jolna et al. | May 2007 | A1 |
20070240077 | McCarthy et al. | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080151125 A1 | Jun 2008 | US |