SYSTEMS AND METHODS FOR CONTROLLING A PROSTHETIC HAND

Information

  • Patent Application
  • 20190216618
  • Publication Number
    20190216618
  • Date Filed
    January 16, 2019
    6 years ago
  • Date Published
    July 18, 2019
    5 years ago
Abstract
A method of controlling a prosthetic hand having at least one motorized component is provided. The method comprises the steps of providing the hand with a first wireless transceiver and a controller in communication with one another, storing at least one manipulation instruction relating to the at least one component, and assigning a code relating to the at least one manipulation instruction to at least one second wireless transceiver. The at least one second transceiver is placed in a location at which the at least one manipulation instruction is to be given, and the controller manipulates the at least one component in accordance with the at least one manipulation instruction when the first transceiver communicates to the controller that the at least one second transceiver is within a predetermined distance of the first transceiver. Related methods and systems for controlling a prosthetic hand are also provided.
Description
FIELD OF THE INVENTION

The present invention is directed to the field of prosthetics, and more particularly prosthetic hands. Specifically, the present invention provides systems and methods for controlling a motorized prosthetic hand.


BACKGROUND OF THE INVENTION

Motorized prosthetic hands are known, in which one or more digits of the hand are each provided with an individual electric motor in order to manipulate the respective digits into desired positions and grips. Each drive motor may be controlled by means of switches which are actuated by known means such as residual digit movement or wrist movement. Alternatively or in addition, control of each digit motor may be by means of pressure sensitive resistors or signals derived from the electromyographic (EMG) activity of residual muscle actions. Whichever control method is used, repeated muscle actions or movements of the wrist or residual digits will result in fatigue and discomfort for the hand wearer after a relatively short period of time.


It is therefore an aim of the present invention to obviate or mitigate this disadvantage with existing systems and methods for controlling prosthetic hands.


SUMMARY OF THE INVENTION

According to a first aspect of the invention there is provided a method of controlling a prosthetic hand having at least one motorized component, the method comprising the steps of:

    • providing the hand with a first wireless transceiver and a controller in communication with one another;
    • storing at least one manipulation instruction relating to the at least one component;
    • assigning a code relating to the at least one manipulation instruction to at least one second wireless transceiver;
    • placing the at least one second transceiver in a location at which the at least one manipulation instruction is to be given; and
    • the controller manipulating the at least one component in accordance with the at least one manipulation instruction when the first transceiver communicates to the controller that the at least one second transceiver is within a predetermined distance of the first transceiver.


The step of storing the at least one manipulation instruction may comprise:

    • the wearer of the hand sending one or more control signals to the controller to manipulate the at least one component into a desired position; and
    • storing the at least one manipulation instruction based upon the desired position of the component.


The manipulation of the at least one component in accordance with the manipulation instruction may only take place following an instruction signal sent from the wearer of the hand to the controller.


A plurality of manipulation instructions may be stored and respective codes are assigned to a corresponding plurality of second transceivers, each of the second transceivers is placed at a location at which its assigned manipulation instruction is to be given, and the controller manipulates the at least one component in accordance with the manipulation instruction assigned to a particular second transceiver when that particular second transceiver is within the predetermined distance of the first transceiver.


Alternatively, a pair of sequential manipulation instructions may be stored and a respective pair of codes are assigned to a pair of second transceivers, the pair of second transceivers are placed at locations at which the sequential manipulation instructions are to be given, and the controller manipulates the at least one component in accordance with a first manipulation instruction assigned to a first of the pair of second transceivers when that particular second transceiver is within the predetermined distance of the first transceiver, and the controller manipulates the at least one component in accordance with a second manipulation instruction assigned to a second of the pair of second transceivers when that particular second transceiver is within the predetermined distance of the first transceiver.


The first and second transceivers may be Bluetooth transceivers.


The first transceiver may search for the at least one second transceiver at predetermined time intervals of between 200 ms and 500 ms.


The predetermined distance between the first and second transceivers may be less than or equal to 18 cm.


According to a second aspect of the present invention there is provided a method of controlling a prosthetic hand having at least one motorized component, the method comprising the steps of:

    • providing the hand with a first wireless transceiver and a controller in communication with one another;
    • storing a plurality of manipulation instructions relating to the at least one component;
    • assigning a code relating to a subset of the plurality of stored manipulation instructions to at least second wireless transceiver;
    • placing the at least one second transceiver in a location at which the subset of manipulation instructions are desired; and
    • the controller manipulating the at least one component in accordance with one of the subset of manipulation instructions when the first transceiver communicates to the controller that it is at the location, wherein the manipulation instruction executed by the controller is selected from the subset of instructions based upon a control signal from the wearer of the hand.


There may be one second transceiver, and the first transceiver communicates to the controller that it is at the location when the first transceiver is within a predetermined distance of the second transceiver.


The predetermined distance between the first and second transceivers may be less than or equal to 18 cm.


Alternatively, there may be three second transceivers which between them define the location, and the first transceiver communicates to the controller that is at the location when the position of the first transceiver is triangulated to the location by the second transceivers.


The first and second transceivers may be Bluetooth transceivers.


The first transceiver may search for the at least one second transceiver at predetermined time intervals of between 200 ms and 500 ms.


According to a third aspect of the invention there is provided a system for controlling a prosthetic hand having at least one motorized component, the system comprising:

    • a first wireless transceiver located on the hand;
    • a controller in communication with the first transceiver and the motorized component;
    • an operator interface having at least one manipulation instruction stored thereon, and being in communication with the controller; and
    • at least one second wireless transceiver which is assigned a code relating to the at least one manipulation instruction by the operator interface and is located in a location at which the at least one manipulation instruction is to be given;
    • wherein the controller manipulates the at least one component in accordance with the at least one manipulation instruction when the first transceiver communicates to the controller that the at least one second transceiver is within a predetermined distance of the first transceiver.


The operator interface may store at least one manipulation instruction relating to a desired position of the component following the manipulation of the component into the desired position by the wearer of the hand.


The system may further comprise a plurality of second transceivers which are each assigned a code relating to a manipulation instruction by the operator interface and are each located in a location at which each respective manipulation instruction is to be given, and wherein the controller manipulates the at least one component in accordance with the manipulation instruction assigned to a particular second transceiver when that particular second transceiver is within the predetermined distance of the first transceiver.


The first and second transceivers may be Bluetooth transceivers.


The predetermined distance between the first and second transceivers may be less than or equal to 18 cm.


There may be three second transceivers which communicate with the operator interface such that the interface can triangulate the position of the first transceiver.


The operator interface may be a mobile application provided upon a mobile communications device.





BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:



FIG. 1 is a schematic diagram showing a system for controlling a prosthetic hand having at least one motorized component;



FIG. 2 illustrates the system of FIG. 1 in operation;



FIG. 3 illustrates how a number of transceivers from the system of FIGS. 1 and 2 may be located within a room;



FIG. 4 illustrates how the location of the wearer of the prosthetic hand may be established using a number of transceivers;



FIG. 5 is a flow chart showing a procedure for setting up the system;



FIG. 6 is a flow chart showing operating procedures for the system when in first and second operating modes; and



FIG. 7 is a flow chart showing operating procedures for the system when in a third operating mode.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates the components of a system for controlling a prosthetic hand having at least one motorized component. The motorized component(s) of the hand may be one or more digits, or a rotatable wrist component, for example. The system comprises a first transceiver 10 and an electronic controller 12 which is in two-way communication with the first transceiver 10. The controller 12 is also in two-way communication with an electric motor 14 which drives the motorized component when an appropriate signal is received from the controller 12. The system also comprises at least one second transceiver, referred to from now on as a locator, 16 which can wireles sly communicate with the first transceiver 10. The first and second transceivers 10, 16 may be Radio Frequency Identification (RFID) transceivers, but are preferably Bluetooth transceivers and most preferably Bluetooth Low Energy (BLE) transceivers.


The system further comprises an operator interface 18 which is in wireless communication with the first transceiver 10 and hence the controller 12. The operator interface 18 may be a personal computer running a control and set up program for the system, but is preferably a mobile communications device such as a smart phone or tablet which is running a mobile application through which the user sets up and controls the system. The operator interface preferably communicates with the first transceiver via Bluetooth.


Optionally, the system may also comprise one or more input devices 20 which can communicate control signals to the controller 12 in response to inputs from the wearer of the hand. The input device(s) 20 may be switches which are actuated by known means such as residual digit movement or wrist movement. Alternatively or in addition, the input device(s) 20 may be pressure sensitive resistors or other sensors which derive signals from the electromyographic (EMG) activity of the wearer's residual muscle actions.


The hand uses a known drive arrangement in order to manipulate the motorized component(s). An example of one such arrangement which is suited to the purpose is that disclosed in the same applicant's earlier publication WO2007/063266. Further description of the specific drive arrangement will therefore not be provided herein.



FIG. 2 illustrates the various components of the system when in operational use. Detailed description of the operational procedures employed by the system will be set out below, but FIG. 2 shows a prosthetic hand 22 which comprises a motor 14 for each of the four finger digits 24 on the hand. The hand 22 also has a thumb digit 23 which has a first motor 14 to pivot the thumb in the same manner as the fingers, and a second motor 15 for rotational movement of the thumb. Also located on the hand 22 are the first transceiver 10 and the controller 12, and in the illustrated embodiment the controller is also connected to a pair of input devices 20 in the form of EMG sensors located upon the muscles in the wearer's forearm 26.


The hand 22 is mounted on a base 21 which is attached to the stump of the forearm 26. The hand 22 may be provided with a first wrist motor 27 which rotates the hand relative to the base 21, and/or a second wrist motor 29 which pivots the hand relative to the base 21. Where present, the or each wrist motor 27,29 is connected to the controller 12 so that the controller 12 can control the motor 27,29 in the same manner as it controls the digit motors 14,15.


A mobile communications device in the form of a smart phone provides the operator interface 18. At least one locator 16 is located upon a surface 28 so as to identify a given location to the first transceiver 10. In the illustrated embodiment of FIG. 2 there are a pair of locators 16, which are intended to provide sequential and separate identification of their respective locations to the first transceiver. Further details on how the system employs the location information from the, or each, locator will be set out below.



FIG. 3 provides an example of how a plurality of locators may be placed in a space or room, in order to identify various locations. In the illustrated example, the room is a kitchen and locators 16 have been located proximate a toaster 30, a kettle 32 and the taps of the kitchen sink 34, as well as on the kitchen table 36 and a wall adjacent the entrance door 38 into the kitchen. As will be explained further below, the purpose of locating locators 16 at selected locations is that it allows the system to switch the components of the prosthetic hand of a wearer between various predetermined positions to form specific grips or the like for when the wearer wishes to turn on the taps or hold cutlery to eat a meal, for example. The wearer brings the hand, and first transceiver, within a predetermined distance of a locator with the result that the components of the hand take on a specific position related to that particular location, as identified by the locator.


Alternatively, or in addition, one or more of the locators 16 located in the space may be provided in order to establish when the wearer has entered the space rather than to automatically instruct the hand to form a specific grip. For example, in the kitchen shown in FIG. 3 the locator by the entrance door 38 may be provided simply to inform the first transceiver and controller on the hand when the hand has entered the kitchen space. The benefit of this particular arrangement will be set out in more detail below.



FIG. 4 shows a further arrangement of locators 16 which may be employed to determine when the wearer is in a given location. In this arrangement there are three locators provided, each on a different wall of an office space. By placing the three transceivers 16 in this arrangement it is possible for the position of the first transceiver 10 and hand 22 to be triangulated as an alternative to the single locator located adjacent the door in FIG. 3.



FIG. 5 shows a flow chart of how the system is initially set up using the operator interface. As described above, this is preferably done via a mobile application running on a smart phone or tablet but may alternatively be done via a program on a personal computer. The mobile application is launched in the smart phone or tablet and the user is then asked to select the prosthetic hand for which the setup is being performed at step 100. Typically, this is done by the first transceiver located in the hand transmitting data to the smart phone and allowing the user to identify their prosthetic hand or hands. Once the hand is identified the settings menu for that hand is accessed at step 102. Within the settings menu is a “locator set up” option which is then accessed at step 104. At this point the locator, otherwise known as the locator, is activated so that it may be detected by the smart phone at step 106. Once detected, the detected locator is selected at step 108 so that it may then be assigned an identifier code corresponding with a manipulation instruction for one or more of the motorized components of the hand to move into a given position or grip.


The assignation of the identifier code begins with the operator choosing a particular grip option at step 110. In the illustrated example there are three grip options offered, but the invention is not limited to the specific options listed herein. Instead, there may be at least one grip option provided at step 110. From the three options in the illustrated example, the user can selected from a group of default grips and positions for the components via step 112, a “favorite” subset of the default grips at step 114, or a custom grip created and saved by the user at step 116.


When saving a custom grip, the user accesses a custom grip set up 103 via the settings step 102. From the set up step 103 the user selects a step 105 to set a custom grip. At this point the user manipulates the one or more components of the hand into a desired position using the normal manner in which they control the hand, such as via the control switches or sensors referred to above. The controller receives data back from the or each component motor regarding the run time it took for the motor to put the component in the position desired by the user. The controller then sends this data to the operator interface via the first transceiver so that the positional information may be saved at step 107 in the application as a custom grip. Then, whenever the user wishes to assign a code relating to that saved custom grip to a locator they do so via step 116 of the set up procedure.


Once the user has indicated which grip option they wish to access for the locator being set up, they then select a specific grip or grip subset via the respective selection steps 118,120,122. An identifier code for that specific grip or subset is then assigned and transmitted to the locator. Finally, the set up will ask the user at step 124 if they have finished setting up locators with grip codes. If so, the set up program will terminate at step 126. If not, it returns to locator set up step 104.



FIG. 6 illustrates the procedural steps used by the system uses to control the hand when in the presence of the system shown in either FIG. 2 or FIG. 3 for example. After starting the process at step 200 the process will check at step 202 for a signal that the wearer of the hand is wanting to switch the system in a detection mode. In the detection mode the various locators which have been set up using the process shown in FIG. 5 will become visible to the first transceiver. There are a number of ways in which the wearer can activate the detection mode, but one example is to hold an EMG signal via a forearm muscle for a particular time period, say between 0.5 and 1.5 seconds. An alternative is to hold the hand in the open position for the same time period. When such a signal is detected at step 202 the first transceiver will start actively searching at step 204 for locators which are active and have been assigned a manipulation code, as described above. The first transceiver is typically set up to search for locators every 200-500 ms. When the first transceiver detects a locator it signals the controller and at step 206 the controller signals the motor of at least one motorized component to move the component into the position dictated by the saved manipulation instruction whose code has been assigned to the detected locator. The system is preferably set up so that the first transceiver detects a locator when it comes within 18 cm of the locator. The process then terminates at step 208 or may repeat.


The process of FIG. 6 applies where one or more locators are present which have been assigned codes which relate to default grips or custom grips. One practical embodiment of this arrangement can be seen in FIG. 3, which as described above shows a kitchen environment. Each of the locators, or locators, 16 positioned in the kitchen has been assigned a code which relates to a manipulation instruction and a default or custom grip which is desired at the point at which the locator 16 is going to be placed. This may be a particular grip to hold and pour the kettle 32, which may be a different grip to that required to turn on a tap at the sink 34 or hold a knife or fork when eating at the kitchen table 36. Following the process shown in FIG. 6, the hand wearer would enter the kitchen and then give the activation signal which instructs the first transceiver to start searching for active locators. This then means that whenever the wearer brings the hand and first transceiver within 18 cm of a locator the grip whose code is assigned to that locator will be automatically formed by the hand under the instructions of the controller.


An alternative process is shown in FIG. 7 which is for use where a locator has been assigned a code relating to a particular subset of grips rather than a specific grip. This process would therefore be used in the example described above where the kitchen of FIG. 3 has a single locator on the wall adjacent the door 38 rather than a number of locators around the room. As already described with respect to FIG. 5, when setting up this arrangement the locator is assigned a code which relates to a chosen subset of the default or custom grips, preferably 4-6 grips which are all likely to be required in a particular environment such as, for example, a kitchen, an office space or when driving in a vehicle. These subsets of grips would be accessed through a “favorites” menu in the mobile application or program.


This alternative process starts at step 300 and its initial steps are identical to those of the process shown in FIG. 6. Step 302 searches for an activation signal from the wearer of the hand, which is again preferably a held EMG signal lasting between 0.5 and 1.5 seconds. Once the activation signal is given the first transceiver begins looking for active locators at step 304. As before the first transceiver is looking for a locator every 200 to 500 ms, and will find a locator when it comes within around 18 cm of it. When the locator is detected the first transceiver informs the controller and the controller then has access at step 306 to only the 4-6 grips whose codes have been assigned to the detected locator.


Unlike with the previous process, the hand does not automatically form grips when employing this alternative process. Instead, the purpose of this process is to still give control of the hand to the wearer, but to reduce the number of grips available from perhaps 30 down to 4-6 which relate to the particular environment which the wearer has entered. Thus at step 308, the process awaits one or more control signals from the wearer to then form at step 310 one of the subset of grips which is selected based upon that signal or signals. The process then stops at step 312 or may loop back to step 304 or 308 as desired.


A modification to the aforementioned process is to use the triangulation arrangement shown in FIG. 4 to very accurately detect the location of the hand and wearer without the hand having to go within a predetermined distance of a locator. The difference being that at step 304 the first transceiver would not be searching for a single locator but would be instead be communicating with all three locators in order to establish when the first transceiver has entered the location covered by the locators. Then the process would proceed to step 306 and access the grip subset as described above.


The present invention provides systems and processes for controlling a prosthetic hand having at least one motorized component, in which repeated muscle actions or movements of the wrist or residual digits by the wearer are not required to control the hand, or are at least very much reduced. Thus, the present invention reduces fatigue and discomfort for the hand wearer caused by frequently having to form grips or manipulate the hand. The present invention can be set up so that the hand automatically forms a given grip or position when placed at a certain location, or else the hand only has access to a small subset of grips when in that location. The former removes the need for the wearer to control the hand at all, whilst the latter significantly reduces the amount of actions or signals which need to be produced by the wearer.


When in the set up process for assigning a manipulation code to a locator, when the locator to which the code is being assigned is detected the mobile application or program may indicate via the operator interface the remaining battery life of that locator.


The triangulation system shown in FIG. 4 will have at least three locators, or locators, but may have more than three.


The operation process shown in FIG. 6 may have a safety step whereby the hand wearer must provide an activation signal 202 before every grip change, rather than the preferred arrangement in which the grip will change as soon as the first transceiver comes within the predetermined distance of a locator. That way there are no unexpected grip changes of the hand if the wearer accidentally puts the hand within the predetermined distance of an alternative locator. However, this safety step is not essential and can be disabled. For example, a pair of locators may be placed either side of a wearer who works on an assembly or production line. Here one locator may be assigned a code to open the hand and release an item and the other assigned a code for closing the hand and picking up an item, for example. That way the grips will change automatically whenever the worker places the hand near the related locator without having to give the activation signal every time they wish the grip to change, which would not be practical in such an activity.


As seen in FIG. 2, a pair of locators may also be set up so that each is assigned a code which relates to one half of a desired hand manipulation. For example, a first locator could be assigned a code to rotate the wrist of a prosthetic hand as the hand passes the locator, and a second locator could be assigned a code for opening or closing the hand. In this way, the system could provide the hand with an automatic sequence of movements as the wearer sweeps the hand over the pair of locators. Such a set up could save time for the wearer is the desired actions are to be repeated numerous times. The system may employ more than two locators set up to provide a sequence of instruction codes to the first transceiver.


The “favorites” process illustrated in FIG. 7 may include an additional step of indicating to the wearer that the hand is now operating in the favorites mode with the reduced subset of grips available. This indicator may be a brief twitch of all of the digits on the hand, an audible beep, or one or more flashes of an LED upon the locator.


Although the preferred distance at which the first transceiver will detect a locator is 18 cm or less, it can be adjusted to suit individual situations and applications. For example, in the favorite's mode it may be sufficient for the first and locators to come within 30 cm of one another. Where Bluetooth is used for the wirelessly communicating first and locators, the predetermined activation distance can be adjusted as required via the mobile application or control program.


The mobile application or program running the process and system may be set up so that the user can review what code is assigned to a given locator, in case the user has forgotten after the locator was set up.


The locators may be set up so that they record data each time the first transceiver comes within the predetermined distance of the locator. That data may then be uploaded to the operator interface for analysis by an occupational therapist, for example.


These and other modifications and improvements may be incorporated without departing from the scope of the present invention.

Claims
  • 1-21. (canceled)
  • 22. A method for adjusting instructions of a prosthetic device, the method comprising: receiving at a first wireless transceiver of a prosthetic device from a second wireless transceiver, a signal indicative of at least one first manipulation instruction to manipulate at least one motorized component of the prosthetic device into a first position that is different from a second position;wherein the prosthetic hand comprises a data store storing at least one second manipulation instruction to manipulate the at least one motorized component of the prosthetic device into the second position, wherein based at least in part on receipt of a control signal, one or more processors of the prosthetic device are configured to instruct the at least one motorized component of the prosthetic device to move in accordance with the at least one second manipulation instruction to cause the at least one motorized component of the prosthetic device to move into the second position; andreplacing the at least one second manipulation instruction stored in the data store with the at least one first manipulation instruction and associating the at least one first manipulation instruction with the control signal,wherein following said replacing and based at least in part on receipt of the control signal, the one or more processors are configured to instruct the at least one motorized component to move in accordance with the at least one first manipulation instruction to cause the at least one motorized component of the prosthetic device to move into the first position.
  • 23. The method of claim 22, wherein the prosthetic device is a prosthetic hand, wherein the at least one motorized component comprises one or more finger digits of the prosthetic hand, wherein the one or more finger digits are different from a thumb digit of the prosthetic hand.
  • 24. The method of claim 22, wherein the prosthetic device is a prosthetic hand, wherein the at least one motorized component comprises a thumb digit of the prosthetic hand.
  • 25. The method of claim 22, wherein the second wireless transceiver transmits the signal indicative of the at least one first manipulation instruction based at least in part on a determination that the first wireless transceiver is within a threshold distance from the second wireless transceiver.
  • 26. The method of claim 22, further comprising detecting the control signal from a myoelectric electrode, wherein the control signal is based at least in part on a myoelectric signal received at the myoelectric electrode from a muscle of a wearer of the prosthetic device.
  • 27. The method of claim 22, further comprising: detecting an activation signal from a myoelectric electrode, wherein the activation signal is based at least in part on a myoelectric signal received at the myoelectric electrode from a muscle of a wearer of the prosthetic device; andactivating a detection mode of the first transceiver based at least on part on said detecting the activation signal, wherein the detection mode of the first wireless transceiver allows the first wireless transceiver to receive signals from one or more other transceivers, including the second wireless transceiver.
  • 28. The method of claim 27, wherein said activating the detection mode of the first transceiver comprises changing a state of the first transceiver from an inactive-detection-mode state to an active-detection-mode state, wherein the inactive-detection-mode state prevents the first wireless transceiver from receiving the signal indicative of at least one first manipulation instruction from the second wireless transceiver.
  • 29. The method of claim 22, further comprising: detecting an activation signal from a myoelectric electrode; andbased at least in part on the activation signal, manipulating the at least one motorized component into the first position, wherein the one or more processors are configured such that it does not manipulate the at least one motorized component into the first position until the activation signal is detected.
  • 30. A prosthetic hand comprising: at least one motorized component;one or more processors;a data store storing at least one first manipulation instruction associated with a control signal, wherein based at least in part on receipt of the control signal, the one or more processors are configured to instruct the at least one motorized component to move in accordance with the at least one first manipulation instruction to cause a prosthetic hand to form a first grip that is different from a second grip; anda first wireless transceiver configured to receive a signal indicative of at least one second manipulation instruction from a second wireless transceiver;wherein the one or more processors are configured to: replace the at least one first manipulation instruction stored in the data store with the at least one second manipulation instruction, andassociate the at least one second manipulation instruction with the control signal,wherein following replacement of the at least one first manipulation instruction with the at least one second manipulation instruction and based at least in part on receipt of the control signal, the one or more processors are configured to instruct the at least one motorized component to move in accordance with the at least one second manipulation instruction to cause the prosthetic hand to form the second grip.
  • 31. The prosthetic hand of claim 30, wherein the at least one motorized component comprises at least one of a thumb digit or one or more finger digits, wherein the one or more finger digits are different from the thumb digit.
  • 32. The prosthetic hand of claim 30, wherein the second wireless transceiver transmits the signal indicative of the at least one first manipulation instruction based at least in part on a determination that the first wireless transceiver is within a threshold distance from the second wireless transceiver.
  • 33. The prosthetic hand of claim 30, wherein the one or more processors are further configured to receive the control signal from a myoelectric electrode, wherein the control signal is based at least in part on a myoelectric signal received at the myoelectric electrode from a muscle of a wearer of the prosthetic hand.
  • 34. The prosthetic hand of claim 30, wherein the one or more processors are further configured to: detect an activation signal from a myoelectric electrode, wherein the activation signal is based at least in part on a myoelectric signal received at the myoelectric electrode from a muscle of a wearer of the prosthetic hand; andactivate a detection mode of the first transceiver based at least on part on detection of the activation signal, wherein the detection mode of the first wireless transceiver allows the first wireless transceiver to receive signals from one or more other transceivers, including the second wireless transceiver.
  • 35. The prosthetic hand of claim 34, wherein to activate the detection mode of the first transceiver, the one or more processors are further configured to change a state of the first transceiver from an inactive detection mode state to an active detection mode state, wherein the inactive detection mode state prevents the first wireless transceiver from receiving the signal indicative of at least one first manipulation instruction from the second wireless transceiver.
  • 36. The prosthetic hand of claim 30, wherein the one or more processors are further configured to: detect an activation signal from a myoelectric electrode; andbased at least in part on the activation signal, manipulate the at least one motorized component in accordance with the at least one first manipulation instruction such that the prosthetic hand forms the second grip, wherein the one or more processors are configured such that it does not manipulate the at least one motorized component in accordance with the at least one second manipulation instruction until the activation signal is detected.
  • 37. A system for adjusting instructions of a prosthetic hand, the system comprising: at least one motorized component;one or more processors;a data store storing at least one first manipulation instruction associated with a control signal, wherein based at least in part on receipt of the control signal, the one or more processors are configured to instruct the at least one motorized component to move in accordance with the at least one first manipulation instruction to cause a prosthetic hand to form a first grip that is different from a second grip; anda first wireless transceiver configured to receive a signal indicative of at least one second manipulation instruction from a second wireless transceiver;wherein the one or more processors are configured to:replace the at least one first manipulation instruction stored in the data store with the at least one second manipulation instruction, andassociate the at least one second manipulation instruction with the control signal,wherein following replacement of the at least one first manipulation instruction with the at least one second manipulation instruction and based at least in part on receipt of the control signal, the one or more processors are configured to instruct the at least one motorized component to move in accordance with the at least one second manipulation instruction to cause the prosthetic hand to form the second grip.
  • 38. The system of claim 37, wherein the at least one motorized component comprises at least one of a thumb digit or one or more finger digits, wherein the one or more finger digits are different from the thumb digit.
  • 39. The system of claim 37, wherein the first wireless transceiver transmits the signal indicative of the at least one first manipulation instruction based at least in part on a determination that the second wireless transceiver is within a threshold distance from the first wireless transceiver.
  • 40. The system of claim 37, wherein the one or more processors are further configured to receive the control signal from a myoelectric electrode, wherein the control signal is based at least in part on a myoelectric signal received at the myoelectric electrode from a muscle of a wearer of the prosthetic hand.
  • 41. The system hand of claim 37, wherein the one or more processors are further configured to: detect an activation signal from a myoelectric electrode, wherein the activation signal is based at least in part on a myoelectric signal received at the myoelectric electrode from a muscle of a wearer of the prosthetic hand; andactivate a detection mode of the second transceiver based at least on part on the detection of the activation signal, wherein the detection mode of the second wireless transceiver allows the second wireless transceiver to receive signals from one or more other transceivers, including the first wireless transceiver.
Priority Claims (1)
Number Date Country Kind
1408253.1 May 2014 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/307385, filed on Oct. 28, 2016, entitled “Systems And Methods For Controlling A Prosthetic Hand,” which claims priority benefit and is a National Stage Entry of International Patent Application No. PCT/GB2015/051356, filed on May 8, 2015, entitled “Systems And Methods For Controlling A Prosthetic Hand,” which claims priority benefit to G.B. App. No. 1408253.1, filed May 9, 2014, entitled “Systems And Methods For Controlling A Prosthetic Hand,” each of which is hereby incorporated herein by reference in its entirety.

Continuations (1)
Number Date Country
Parent 15307385 Oct 2016 US
Child 16249696 US