This application relates to control systems and methods for controlling flatness of a metal substrate with low pressure rolling in a finishing line.
Metal rolling can be used for forming metal strips (e.g., plates, sheets, foils, slabs, etc.) (hereinafter “metal substrates”) from stock, such as ingots or thicker metal strips. An important characteristic of a metal substrate is the substrate's flatness, or the ability of the substrate to lay flat when placed on a level surface with no externally applied loads. Off-flatness, or deviations from flatness, is caused by internal stresses in the metal substrate, and may come in various forms such as edge waves, center waves, buckling, near-edge pockets, etc. Metal substrates with poor flatness are difficult to process at high speeds, may cause steering problems during processing, are difficult to trim and/or slit, and may be generally unsatisfactory for various customer or downstream processes. Currently, metal sheets are flattened during coil-to-coil finishing operations using tension-controlled sheet levelling set-ups. However, the equipment needed for tension-controlled sheet levelling generally prevents the finishing line from being compact.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various embodiments of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings, and each claim.
Certain aspects and features of the present disclosure relate to a method of applying a texture on a substrate. In some examples, the substrate may be a metal substrate (e.g., a metal sheet or a metal alloy sheet) or a non-metal substrate. For example, the substrate may include aluminum, aluminum alloys, steel, steel-based materials, magnesium, magnesium-based materials, copper, copper-based materials, composites, sheets used in composites, or any other suitable metal, non-metal, or combination of materials.
In some aspects, the substrate is a metal substrate. Although the following description is provided with reference to the metal substrate, it will be appreciated that the description is applicable to various other types of metal or non-metal substrates. According to various examples, a method of controlling the flatness of a metal substrate includes directing a metal substrate to a work stand of a finishing line and between a pair of vertically aligned work rolls. The method includes applying, by a first work roll of the pair of work rolls, a plurality of localized work roll pressures to the metal substrate across a width of the metal substrate. Each localized work roll pressure is applied by a corresponding flatness control zone of the first work roll, and the work roll pressure applied by each flatness control zone is controlled by a corresponding actuator. The method includes measuring an actual flatness profile of the metal substrate with a flatness measuring device. In some examples, the method includes comparing, by a controller, the actual flatness profile with a desired flatness profile, and adjusting, by the controller, at least one of the actuators. The actuators are adjusted such that the localized work roll pressures modify the actual flatness profile to achieve the desired flatness profile and an overall thickness and a length of the metal substrate remain substantially constant when the metal substrate exits the work stand. Compared to conventional flatness control on a rolling mill, the disclosed method does not significantly change the overall nominal gauge of the strip during this operation, and only the localized areas that were under higher relative incoming tension are reduced very slightly. The localized thickness change required to correct flatness is a tiny fraction of a percentage of nominal thickness, typically less than 0.2%, and is less than the thickness change imparted by typical tension leveling operations.
According to various examples, a flatness control system includes a work stand of a finishing line, a plurality of actuators, a flatness measuring device, and a controller. The work stand includes a pair of vertically aligned work rolls. A first work roll of the pair of work rolls includes a plurality of flatness control zones across a width of the first work roll, and each flatness control zone is configured to apply a localized work roll pressure to a corresponding region on a metal substrate. Each actuator of the plurality of actuators corresponds with one of the plurality of flatness control zones and is configured to cause the corresponding flatness control zone to apply the localized work roll pressure. The flatness measuring device is configured to measure an actual flatness profile of the metal substrate. The controller is configured to adjust the plurality of actuators such that the localized work roll pressures modify the actual flatness profile to achieve the desired flatness profile while an overall thickness and a length of the metal substrate remain substantially constant when the metal substrate exits the work stand. As noted above, a difference between conventional flatness control on a rolling mill and the disclosed method is that the overall nominal gauge of the strip does not change significantly during this operation. Rather, only the localized areas that were under higher relative incoming tension are reduced very slightly. The localized thickness change required to correct flatness is a tiny fraction of a percentage of nominal thickness, typically less than 0.2%. This is less than the thickness change imparted by typical tension leveling operations.
Various implementations described in the present disclosure can include additional systems, methods, features, and advantages, which cannot necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures can be designated by matching reference characters for the sake of consistency and clarity.
The subject matter of examples of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
Certain aspects and features of the present disclosure relate to a method of applying a texture on a substrate. In some examples, the substrate may be a metal substrate (e.g., a metal sheet or a metal alloy sheet) or a non-metal substrate. For example, the substrate may include aluminum, aluminum alloys, steel, steel-based materials, magnesium, magnesium-based materials, copper, copper-based materials, composites, sheets used in composites, or any other suitable metal, non-metal, or combination of materials.
In some aspects, the substrate is a metal substrate. Although the following description is provided with reference to the metal substrate, it will be appreciated that the description is applicable to various other types of metal or non-metal substrates.
Disclosed are flatness control systems for controlling a flatness profile of a metal substrate processed by a finishing line.
The finishing line includes at least one work stand having a pair of vertically-aligned work rolls. During processing, a metal substrate is fed between the work rolls in a processing direction. Each work roll includes a width that extends transversely to the processing direction. Each work roll has a certain amount of stiffness such that, across its width, actuators of the flatness control system may cause localized bending of the work roll by applying a force to localized regions of the work roll. These regions of localized bending are flatness control zones of the work roll, and across its width, each work roll includes a plurality of flatness control zones. Localized bending in the flatness control zones causes the work roll to apply localized work roll pressures that can vary across the surface of the metal substrate to control flatness of the metal substrate. In other words, each work roll has a certain amount of stiffness such that the work roll can be bent, shaped or otherwise deformed as desired through the actuators to ultimately impart a desired flatness profile (e.g., substantially flat, curved, wavy, etc.) on the metal substrate as it exits the work stand.
The force applied to the work rolls by each actuator is a force such that the average load applied by the work roll across the width of the metal substrate (i.e., the average pressure applied by each flatness control zone of the work roll) is close to or below a yield strength of the metal substrate. The yield strength of the metal substrate refers to an amount of strength or pressure at which plastic deformation occurs through a portion of the thickness or gauge of the metal substrate (e.g., an amount of strength or pressure that can cause a substantially permanent change in a portion of the thickness or gauge of the metal substrate). The forces applied to the work rolls can cause the work rolls to impart an average work roll pressure on the metal substrate that is close to or below the yield strength of the metal substrate as the metal substrate passes between the work rolls. Because the average work roll pressure imparted by the work rolls on the metal substrate is below the yield strength of the metal substrate, the thickness of the metal substrate can remain substantially constant (e.g., there is substantially no reduction in the thickness of the metal substrate). In this same way, a length of the metal substrate can remain substantially constant.
In some examples, while the average work roll pressure is below the yield strength of the metal substrate, individual flatness control zones may apply forces that cause the work roll to apply localized work roll pressures above the yield strength of the metal substrate at localized regions on the surface of the metal substrate. At these localized areas, because the work roll pressure is greater than the yield strength of the metal substrate, the work roll can create localized regions of plastic deformation on the surface of the metal substrate and create localized strand elongation while leaving the remainder of the metal substrate un-deformed (e.g., the work roll causes plastic deformation at a particular location on the surface of the metal substrate while the thickness and length of the metal substrate remains substantially constant along the remainder of the metal substrate). For example, one flatness control zone may apply a work roll pressure that is significantly below the yield strength and another flatness control zone may apply a work roll pressure that is above the yield strength, but the average work roll pressure is less than the yield strength of the metal substrate. In some examples, the work roll pressure applied in one flatness control zone is greater than the yield strength such that portions of the metal substrate have localized strand elongation in the localized regions, but the work roll pressure is not sufficient to cause a substantial reduction in a thickness of the metal substrate at the localized regions. As an example, the work rolls may apply work roll pressures to the metal substrate such that a thickness of the metal substrate exiting the work stand is reduced by less than about 1.0%. For example, the thickness of the metal substrate exiting the work stand may be reduced from about 0.0% to about 1.0%. As one example, the thickness of the metal substrate may be reduced by less than about 0.2%. As another example, the thickness of the metal substrate may be reduced by less than about 0.1%.
In some examples, the average work roll pressure applied by the work rolls is such that a length of the metal substrate remains substantially constant (e.g., there is substantially no elongation or increase in the length of the metal substrate) as the metal substrate passes through a gap between the pair of work rolls. As an example, the work roll pressures applied to the metal substrate by the work rolls may cause the length of the metal substrate to increase between about 0.0% and about 1.0%. For example, the length of the metal substrate may increase by less than about 0.5% as the metal substrate passes through the gap. As an example, the length of the metal substrate may increase by less than about 0.2% or about 0.1%.
The flatness control system includes a controller, one or more flatness measuring devices, and the plurality of actuators. The flatness measuring device may be any device suitable for measuring a flatness profile of the metal substrate across its width. A multi-zone flatness measuring roll is one non-limiting example of a suitable flatness measuring device, although various other types of devices and sensors may be used. The one or more flatness measuring devices measure the flatness profile of the metal substrate at various locations within the finishing line relative to a work stand of the finishing line. For example, in some cases, the one or more flatness measuring devices measures the flatness profile before the metal substrate enters the work stand. In other examples, the one or more flatness measuring devices measures the flatness profile after the metal substrate exits the work stand. The controller is in communication with the flatness measuring device and the plurality of actuators. The controller receives the measured flatness profile from the one or more flatness measuring devices and adjusts one or more of the plurality of actuators such that the flatness profile of the metal substrate achieves a desired flatness profile (which may be predetermined or input by a user or based on modeling).
In various examples, the finishing line is configured to both provide the metal substrate with the desired flatness profile and apply a texture to the surface of the metal substrate. In some examples where the finishing line includes one work stand, each work roll may have a surface roughness that is close to the surface roughness of the metal substrate to provide the metal substrate with the desired flatness profile and uniform surface topography. In other examples, the finishing line may include more than one work stand, such as two or more work stands. In such cases, the first work stand and the second work stand may be substantially similar except for the surfaces of the work rolls. For example, the work rolls of the first work stand may have a relatively smooth outer surface such that the first stand may simultaneously provide the desired flatness profile and can smooth the topography of the metal substrate (i.e., to have a surface roughness lower than about 0.4-0.6 μm). The work rolls of the second work stand may have a textured surface such that the work rolls can impress various textures, features, or patterns on the surface of the metal substrate without reducing the overall thickness of the metal substrate. In additional or alternative examples, the multiple work rolls can impress the various textures, features, or patterns on the surface of the metal substrate while maintaining the thickness of the metal substrate (e.g., the multiple work rolls may not reduce the thickness of the metal substrate while impressing the textures, features, or patterns), which can sometimes be referred to as zero reduction texturing.
The work stand 102 includes a pair of vertically aligned work rolls 104A-B. In various examples, the work stand 102 includes more than one pair of vertically aligned work rolls 104A-B (see
The work rolls 104A-B are generally cylindrical and can be driven by a motor or other suitable device for driving the work rolls 104A-B and causing the work rolls 104A-B to rotate. Each work roll 104A-B has an outer surface 114 that contacts the surfaces 110 and 112 of the metal substrate 108 during processing. In some examples, the outer surface 114 of one or both work rolls 104A-B is of the same roughness or smoother than the incoming strip (i.e., having a surface roughness lower than about 0.4-0.6 μm), such that during processing, the outer surface(s) 114 of the work rolls 104A-B smooth a topography of the surfaces 110 and/or 112 of the metal substrate 108. In other examples, the outer surface(s) 114 of the work rolls 104A-B includes one or more textures that are at least partially transferred onto one or both of the surfaces 110 and 112 of the metal substrate 108 as the metal substrate 108 passes through the gap 106. In some examples, the texture on the outer surface(s) 114 of the work rolls 104A-B matches or closely approximates a surface roughness of the surfaces 110 and/or 112 of the metal substrate 108 to provide a uniform surface topography to the metal substrate 108. Surface roughness can be quantified using optical interferometry techniques or other suitable methods. In some examples, the textured sheet may have a surface roughness from about 0.4 μm to about 6.0 μm. In some examples, the textured sheet may have a surface roughness from about 0.7 μm to about 1.3 μm. In various examples, one or both work rolls 104A-B may be textured through various texturing techniques including, but not limited to, electro-discharge texturing (EDT), electrodeposition texturing, electron beam texturing (EBT), laser beam texturing, electrofusion coatings and various other suitable techniques.
The rolls and roll stacks 104A-B, 119A-B, 116A-B (intermediate rolls 119A-B and actuators 116A-B are described in detail below) each have a certain amount of stiffness (or flexibility). The stiffness property of these items 104A-B, 119A-B, 116A-B is generally described by the following equation (1):
In the above equation (1), L is the length of the roll, and C is a coefficient that varies based on the loading applied. E is the elastic modulus of the rolls, and I is the area moment of inertia of the rolls and the roll stacks 104A-B, 119A-B, 116A-B. A roll stack refers to the combination of work rolls 104A-B and intermediate rolls 119A-B. The area moment of inertia I for the rolls (or Istack for the roll stack) is generally described by the following equation (2):
In the above equation (3), IWR is the area moment of inertia of each respective work roll 104A-B, AWR is the cross-sectional area of each respective work roll 104A-B, dWR is the distance of the centroid of the roll from the x axis in they axis direction (see
In various examples, the roll stack has an area moment of inertia to bending about the x-axis of from about 7.85E-08 m to about 0.0105 m4. In certain examples, the roll stack has an area moment of inertia to bending about the x-axis of from about 9.69E-06 m to about 1.55E-04 m4. In various cases, the roll stack has an area moment of inertia to bending about the x-axis of from about 1.49E-05 m to about 1.13E-04 m4.
In some examples, the length of these rolls may be from about 5 mm to about 3000 mm, although in some examples, the length may be more than 3000 mm. In some examples, the stiffness of at least one of the rolls 104A-B, 119A-B, 116A-B may be controlled by adjusting any of the aforementioned variables or arranging the rolls in a different pattern. As one non-limiting example, the diameter of the rolls 104A-B, 119A-B, and/or 116A-B and the spatial pattern these rolls are arranged in may be adjusted to achieve the desired stiffness. In various examples, each work roll 104A-B, 119A-B, and/or 116A-B may have a diameter of from about 0.020 m to about 0.200 m. In some examples, the diameter is from about 0.030 m to about 0.060 m. In some examples, the diameter may be about 0.045 m. As described in detail below, the stiffness of at least one of the rolls 104A-B, 119A-B, and/or 116A-B is below a predetermined amount to allow for localized work roll pressure control by the roll stack 104A-B, 119A-B, and/or 116A-B.
In various examples, the work roll pressures applied by the work rolls 104A-B to the metal substrate 108 allow the thickness of the metal substrate 108 and the length of the metal substrate 108 to remain substantially constant (e.g., there is substantially no reduction in the overall thickness of the metal substrate 108 and substantially no increase in the length of the metal substrate 108). As an example, the work roll pressures applied by the work rolls 104A-B may cause the thickness of the metal substrate 108 to decrease from about 0.0% and about 1.0%. For example, the thickness of the metal substrate 108 may decrease by less than about 0.5% as the metal substrate 108 passes through the gap 106. As an example, the thickness of the metal substrate 108 may decrease by less than about 0.2% or about 0.1%.
More specifically, the work rolls 104A-B apply work roll pressures such that the average work roll pressure applied across the width of the metal substrate 108 is close to or below a yield strength of the metal substrate 108, which can prevent the thickness of the metal substrate 108 from being substantially reduced (e.g., reduced by more than about 1.0%) as the metal substrate 108 passes through the gap 106. The yield strength of a substrate refers to an amount of strength or pressure at which plastic deformation occurs through substantially the entire thickness or gauge of the substrate 108 (e.g., an amount of strength or pressure that can cause a substantially permanent change in substantially the entire thickness or gauge of the substrate 108). During processing, to prevent the thickness of the metal substrate from being reduced, the forces imparted to the work rolls 104A-B by the actuators are such that the work rolls 104A-B impart an average work roll pressure on the metal substrate 108 that is close to or below the yield strength of the metal substrate 108 as the metal substrate 108 passes through the gap 106. Because the average work roll pressure imparted by the work rolls 104A-B on the metal substrate 108 is close to or below the yield strength of the metal substrate 108, the thickness of the metal substrate 108 remains substantially constant (e.g., the thickness of the metal substrate 108 remains substantially constant and there is substantially no reduction in the thickness of the metal substrate 108).
While the average work roll pressure applied by the work rolls 104A-B is below the yield strength of the metal substrate 108, localized work roll pressure control by the work rolls 104A-B may create localized regions on the metal substrate 108 where the work roll pressure applied by the work rolls 104A-B is above the yield strength of the metal substrate 108 as the metal substrate 108 passes between the work rolls 104A-B. At these localized regions, because the work roll pressure is greater than the yield strength of the metal substrate 108, localized regions of partial plastic deformation are formed for localized strand elongation to improve flatness that leaves the remainder of the metal substrate 108 un-deformed (e.g., the localized work roll pressure causes plastic deformation at a particular location on the metal substrate 108 while the overall thickness of the metal substrate 108 remains substantially constant along the remainder of the metal substrate 108). Thus, in some examples, the work rolls 104A-B can be used to cause localized regions of plastic deformation on the metal substrate 108 without changing the overall thickness of the metal substrate 108 (e.g., without reducing the thickness of the entire metal substrate 108).
In some examples, the average work roll pressure applied by the work rolls 104A-B is such that a length of the metal substrate 108 remains substantially constant (e.g., there is substantially no elongation or increase in the length of the metal substrate 108) as the metal substrate 108 passes through the gap 106. As an example, the work roll pressure applied by the work rolls 104A-B may cause the length of the metal substrate 108 to increase between about 0.0% and about 1.0%. For example, the length of the metal substrate 108 may increase by less than about 0.5% as the metal substrate 108 passes through the gap 106. As an example, the length of the metal substrate 108 may increase by less than about 0.2% or about 0.1%.
As described above, off-flatness, or deviations from flatness, across the width of the metal substrate 108 is caused by internal stresses or tensions in the metal substrate 108. During processing within the finishing line 100, one or both of the work rolls 104A-B may apply localized work roll pressures above the yield strength of the metal substrate 108 at regions of high tension on the metal substrate 108 to cause localized strand elongation in the regions of high tension (i.e., the length will increase in the locally yielded location only). Localized strand elongation reduces tension in those regions, which in turn improves the overall strip flatness. Therefore, by providing localized work roll pressure control, the finishing line 100 is able to substantially maintain the thickness and length of the metal substrate 108 while selectively applying work roll pressures to particular regions of the metal substrate 108 with high tension to cause localized strand elongation that improves flatness.
The finishing line 100 may also include a flatness control system 120. As illustrated in
The controller 118 is in communication with the flatness measuring device 122 and the plurality of actuators 116A-B. As described below, based on various sensor data sensed from the flatness measuring device 122, the controller 118 is configured to adjust one or more of the plurality of actuators 116A-B such that the metal substrate 108 achieves the desired flatness profile.
The flatness measuring device 122 measures an actual flatness profile of the metal substrate 108 as it is processed. In the illustrated example, the flatness measuring device 122 is a multi-zone flatness measuring roll. However, in other examples, the flatness measuring device 122 may be one or more various suitable devices or sensors. The location of the flatness measuring device 122 relative to the work stand 102 should not be considered limiting on the current disclosure. For example, in some examples, the flatness measuring device 122 is upstream of the work stand 102 such that the actual flatness profile of the metal substrate 108 is measured before the metal substrate 108 enters the work stand 102. In other examples, the flatness measuring device 122 is downstream of the work stand 102 such that the actual flatness profile of the metal substrate 108 is measured after metal substrate 108 exits the work stand 102.
The plurality of actuators 116A-B are provided to impart localized forces on the respective work rolls 104A-B, sometimes through intermediate rolls 119A-B, respectively. As illustrated in
In various examples, the actuators 116A are provided to impart the forces on the work roll 104A and the actuators 116B are provided to impart the forces on the work roll 104B. The number and configuration of the actuators 116A-B should not be considered limiting on the current disclosure as the number and configuration of the actuators 116A-B may be varied as desired. In various examples, the actuators 116A-B are oriented substantially perpendicular to the processing direction 101. In some examples, each actuator 116A-B has a profile with a crown or chamfer across a width of the respective actuator 116A-B, where crown generally refers to a difference in diameter between a centerline and the edges of the actuator (e.g., the actuator is barrel-shaped). The crown or chamfer may be from about 0 μm to about 50 μm in height. In one non-limiting example, the crown is about 30 μm. In another non-limiting example, the crown is about 20 μm. In some examples, the crown of the actuators 116A-B may be controlled to further control the forces imparted on the work rolls 104A-B, respectively. In some examples, the actuators 116A-B are individually controlled through a controller 118. In other examples, two or more actuators 116A-B may be controlled together.
As illustrated in
By bending or deforming different regions of the work roll 104A during processing of the metal substrate 108, some regions of the metal substrate 108 may have a reduced work roll pressure such that there is little to no tension reduction, while other regions of the metal substrate have increased work roll pressures such that there is tension reduction.
As one non-limiting example, referring to
Another non-limiting example is illustrated in
Referring back to
In various examples, a method of controlling a flatness of the metal substrate 108 with the finishing line 100 (or finishing line 600) includes directing the metal substrate 108 between the work rolls 104A-B of the work stand 102 of the finishing line 100. The flatness measuring device 122 of the flatness control system 120 measures an actual flatness profile of the metal substrate 108. In some examples, the flatness measuring device 122 measures the actual flatness profile upstream from the work stand 102. In other examples, the flatness measuring device 122 measures the actual flatness profile downstream from the work stand 102.
The controller 118 of the flatness control system 120 receives the sensed data from the flatness measuring device 122, and compares the actual flatness profile to a desired flatness profile. In some examples, the desired flatness profile may be predetermined or input by an operator of the finishing line 100 or may be based on modeling. The desired flatness profile may be any flatness profile of the metal substrate 108 as desired, including, but not limited to, substantially flat, curved or bowed, wavy, etc.
Based on the comparison of the actual flatness profile to the desired flatness profile, the controller 118 may adjust at least one of the actuators 116A-B to adjust a force applied by the actuators 116A-B on at least one of the work rolls 104A-B. As described above, each actuator 116A-B corresponds with a particular flatness control zone along the width of the respective work rolls 104A-B. By adjusting one or more of the actuators, the localized forces applied by the actuators 116A-B to the work rolls 104A-B cause some flatness control zones of the work rolls 104A-B to apply a work roll pressure at one region of the metal substrate 108 that is different that the work roll pressure applied by another flatness control zone at another region of the metal substrate 108. Thus, the actuators 116A-B cause the work rolls 104A-B to apply localized work roll pressures such that the actual flatness profile can be adjusted to achieve the desired flatness profile.
In various examples, as also mentioned above, the actuators 116A-B cause at least one of the work rolls 104A-B to apply localized work roll pressures such that the average work roll pressure applied across the width of the metal substrate is less than the yield strength of the substrate. In some examples, the work rolls 104A-B apply localized work roll pressures to the metal substrate 108 such that the thickness of the metal substrate 108 remains substantially constant. In some cases, the thickness of the metal substrate 108 is reduced by less than approximately 1%. In some cases, the work rolls 104A-B apply localized work roll pressures to the metal substrate 108 such that the length of the metal substrate 108 remains substantially constant. In various cases, the length of the metal substrate 108 increases by less than approximately 1%. In various examples, the actuators 116A-B cause the work rolls 104A-B to apply localized work roll pressures that are greater than the yield strength of the metal substrate 108 at specific regions of the metal substrate to cause localized strand elongation that reduces tension at those specific regions and increases flatness along the width of the metal substrate 108.
In some examples, the method includes applying a texture to one or more surfaces of the metal substrate. In some examples, a single stand 102 includes work rolls 104A-B having a surface roughness close to that of the metal substrate 108 such that the substrate 108 has a desired flatness profile and uniform surface topography upon exiting the stand 102. In other examples, the finishing line is a two-stand system with smooth work rolls 104A-B in the first stand 102 and textured work rolls 104A-B in the second stand 102. The first stand 102 simultaneously flattens the sheet and smooths the topography of the metal substrate 108 using a low-pressure, load profile controlled stand 102 with smooth work rolls 104A-B. The second stand 102 with textured work rolls 104A-B may then be used to texture the metal substrate 108, taking advantage of the smooth surface topography achieved by the first stand 102.
In various other examples, a finishing line may have one stand 102, two stands 102, or more than two stands 102. As one non-limiting example, a finishing line may have six stands 102. In some examples, the first stand 102 may be used to improve flatness of the metal substrate 108 by using work rolls 104A-B with equal or lower surface roughness than the incoming metal substrate 108. Subsequent stands (e.g., stands two through 6) may be used to apply a surface texture using textured work rolls 104A-B. Various other finishing line configurations may be provided.
In some examples, one side of the work stand may be frozen such that only one side of the stand is actuated (i.e., the stand is actuated only in the direction 103 or only in the direction 105). In such examples, the vertical position of the lower work roll 104B is constant, fixed, and/or does not move vertically against the metal substrate.
In some aspects where actuators are included on both the upper and lower sides of the stand, one side of the work stand may be frozen by controlling one set of actuators such that they are not actuated. For example, in some cases, the lower actuators 116B may be frozen such that the lower work roll 104B not actuated in the direction 105. In other examples, the lower actuators 116B may be omitted such that the lower work roll 104B is frozen. In other examples, various other mechanisms may be utilized such that one side of the stand is frozen. For example,
A collection of exemplary embodiments, including at least some explicitly enumerated as “ECs” (Example Combinations), providing additional description of a variety of embodiment types in accordance with the concepts described herein are provided below. These examples are not meant to be mutually exclusive, exhaustive, or restrictive; and the invention is not limited to these example embodiments but rather encompasses all possible modifications and variations within the scope of the issued claims and their equivalents.
EC 1. A method of controlling flatness of a substrate, the method comprising: directing the substrate to a work stand of a finishing line and between a pair of vertically aligned work rolls of the work stand; applying, by a first work roll of the pair of vertically aligned work rolls, a plurality of localized pressures to the substrate across a width of the substrate, wherein each of the plurality of localized pressures is applied by a corresponding flatness control zone of the first work roll, and wherein the localized pressure applied by each flatness control zone is controlled by a corresponding actuator; measuring an actual flatness profile of the substrate with a flatness measuring device; comparing, by a controller, the actual flatness profile with a desired flatness profile; and adjusting, by the controller, the actuators such that the plurality of localized pressures modify the actual flatness profile of the substrate to achieve the desired flatness profile while an overall thickness and a length of the substrate remains substantially constant as the substrate enters and exits the work stand.
EC 2. The method of any of the preceding or subsequent examples, wherein the overall thickness of the substrate is reduced from about 0.0% to about 1.0%.
EC 3. The method of any of the preceding or subsequent examples, wherein an average of the plurality of localized pressures applied by the first work roll to the substrate is less than a yield strength of the substrate.
EC 4. The method of any of the preceding or subsequent examples, wherein adjusting the actuators comprises adjusting at least one actuator such that the localized pressure at the flatness control zone corresponding to the at least one actuator is greater than a yield strength of the substrate.
EC 5. The method of any of the preceding or subsequent examples, wherein adjusting the actuators comprises adjusting a different actuator than the at least one actuator such that the localized pressure at the flatness control zone corresponding to the different actuator is less than the yield strength of the substrate.
EC 6. The method of any of the preceding or subsequent examples, wherein adjusting the actuators comprises minimizing a difference in load between flatness control zones.
EC 7. The method of any of the preceding or subsequent examples, wherein the flatness measuring device is a multi-zone flatness measuring roll.
EC 8. The method of any of the preceding or subsequent examples, wherein the roll stack has an area moment of inertia to bending about the x-axis of from about 7.9*10−8 m4 to about 0.01 m4.
EC 9. The method of any of the preceding or subsequent examples, wherein the roll stack has an area moment of inertia to bending about the x-axis of from about 9.7*10−6 m4 to about 1.6*10−4 m4.
EC 10. The method of any of the preceding or subsequent examples, wherein the roll stack has an area moment of inertia to bending about the x-axis of from about 1.5*10−5 m4 to about 1.1*10−4 m4.
EC 11. The method of any of the preceding or subsequent examples, wherein the first work roll comprises an outer surface, and wherein applying the plurality of localized pressures comprises contacting the outer surface of the first work roll with a surface of the substrate.
EC 12. The method of any of the preceding or subsequent examples, wherein the outer surface of the first work roll is smooth, and wherein adjusting the actuators such that the actual flatness profile achieves the desired flatness profile further comprises smoothing a surface topography of the surface of the substrate.
EC 13. The method of any of the preceding or subsequent examples, wherein the work stand is a first work stand and the pair of vertically aligned work rolls is a first pair of vertically aligned work rolls, and wherein the method further comprises: directing the substrate to a second work stand of the finishing line and between a second pair of vertically aligned work rolls; and applying, by a first work roll of the second pair of vertically aligned work rolls, a plurality of localized pressures to the substrate across the width of the substrate, wherein each localized pressure is applied by a corresponding flatness control zone of the first work roll of the second pair of vertically aligned work rolls, wherein the load applied by each flatness control zone is controlled by a corresponding actuator, wherein an outer surface of the first work roll of the second pair of vertically aligned work rolls comprises a texture, and wherein applying the plurality of localized pressures by the first work roll of the second pair of vertically aligned work rolls comprises texturing the surface of the substrate such that the overall thickness and the length of the substrate remain substantially constant when the substrate exits the second work stand.
EC 14. The method of any of the preceding or subsequent examples, wherein the outer surface of the first work roll comprises a texture, and wherein adjusting the actuators such that the actual flatness profile achieves the desired flatness profile further comprises applying the texture to the surface of the substrate.
EC 15. The method of any of the preceding or subsequent examples, wherein the surface of the substrate comprises a surface roughness, wherein the outer surface of the first work roll comprises approximately the same surface roughness, and wherein the surface roughness is from about 0.4 μm to about 6.0 μm.
EC 16. The method of any of the preceding or subsequent examples, wherein the surface roughness is from about 0.7 μm to about 1.3 μm.
EC 17. The method of any of the preceding or subsequent examples, wherein measuring the actual flatness profile comprises determining regions on the substrate with tensile residual stress and regions on the substrate with compressive residual stress, and wherein adjusting the actuators comprises increasing the localized pressures of flatness control zones corresponding to the regions of tensile residual stress.
EC 18. The method of any of the preceding or subsequent examples, wherein increasing the localized pressures of flatness control zones corresponding to the regions of tensile residual stress comprises applying localized pressures that cause a localized elongation of from about 0.0% to about 1.0%.
EC 19. The method of any of the preceding or subsequent examples, wherein increasing the localized pressures of flatness control zones corresponding to the regions of tensile residual stress comprises applying localized pressures that cause a localized elongation of from about 0.0% to about 0.2%.
EC 20. The method of any of the preceding or subsequent examples, wherein increasing the localized pressures of flatness control zones corresponding to the regions of tensile residual stress comprises applying localized pressures that cause a localized elongation of about 0.1%.
EC 21. A flatness control system comprising: a work stand of a finishing line comprising a pair of vertically aligned work rolls, wherein a first work roll of the pair of vertically aligned work rolls comprises a plurality of flatness control zones across a width of the first work roll, and wherein each flatness control zone is configured to apply a localized pressure to a corresponding region on a substrate; a plurality of actuators, wherein each actuator corresponds with one of the plurality of flatness control zones and is configured to cause the corresponding flatness control zone to apply the localized pressure to the corresponding region on the substrate; a flatness measuring device configured to measure an actual flatness profile of the substrate; and a controller configured to adjust the plurality of actuators such that the localized pressures modify the actual flatness profile to achieve a desired flatness profile while an overall thickness and a length of the substrate remains substantially constant when the substrate exits the work stand.
EC 22. The flatness control system of any of the preceding or subsequent examples, wherein each actuator is individually controlled by the controller.
EC 23. The flatness control system of any of the preceding or subsequent examples, wherein a plurality of actuators are controlled concurrently by the controller.
EC 24. The flatness control system of any of the preceding or subsequent examples, wherein an average of the localized pressures applied by the first work roll to the substrate is less than a yield strength of the substrate.
EC 25. The flatness control system of any of the preceding or subsequent examples, wherein the controller is configured to adjust at least one actuator such that the localized pressure at the flatness control zone corresponding to the at least one actuator is greater than a yield strength of the substrate.
EC 26. The flatness control system of any of the preceding or subsequent examples, wherein the controller is configured to adjust a different actuator than the at least one actuator such that the localized pressure at the flatness control zone corresponding to the different actuator is less than the yield strength of the substrate.
EC 27. The flatness control system of any of the preceding or subsequent examples, wherein the controller is configured to minimize a difference in load between flatness control zones.
EC 28. The flatness control system of any of the preceding or subsequent examples, wherein the flatness measuring device is a multi-zone flatness measuring roll.
EC 29. The flatness control system of any of the preceding or subsequent examples, wherein the roll stack has an area moment of inertia to bending about the x-axis of from about 7.9*10−8 m4 to about 0.01 m4.
EC 30. The flatness control system of any of the preceding or subsequent examples, wherein the roll stack has an area moment of inertia to bending about the x-axis of from about 9.7*10−6 m4 to about 1.6*10−4 m4.
EC 31. The flatness control system of any of the preceding or subsequent examples, wherein the roll stack has an area moment of inertia to bending about the x-axis of from about 1.5*10−5 m4 to about 1.1*10−4 m4.
EC 32. The flatness control system of any of the preceding or subsequent examples, wherein the first work roll comprises an outer surface configured to contact a surface of the substrate during processing.
EC 33. The flatness control system of any of the preceding or subsequent examples, wherein the outer surface of the first work roll is smooth having a surface roughness lower than about 0.4-0.6 μm, and wherein the first work roll is configured to smooth a surface topography of the surface of the substrate.
EC 34. The flatness control system of any of the preceding or subsequent examples, wherein the work stand is a first work stand and the pair of vertically aligned work rolls is a first pair of work rolls, and wherein the flatness control system further comprises: a second work stand of the finishing line comprising a second pair of vertically aligned work rolls, wherein a first work roll of the second pair of vertically aligned work rolls comprises a plurality of flatness control zones across the width of the first work roll of the second pair of work rolls, and wherein each flatness control zone is configured to apply a localized pressure to a corresponding region on a substrate, wherein the load applied by each flatness control zone of the first work roll of the second pair of vertically aligned work rolls is controlled by a corresponding actuator, wherein an outer surface of the first work roll of the second pair of vertically aligned work rolls comprises a texture, and wherein the first work roll of the second pair of work rolls is configured to texture the surface of the substrate such that the overall thickness and the length of the substrate remain substantially constant when the substrate exits the second work stand.
EC 35. The flatness control system of any of the preceding or subsequent examples, wherein the outer surface of the first work roll comprises a texture, and wherein the first work roll is configured to apply the texture to the surface of the substrate.
EC 36. The flatness control system of any of the preceding or subsequent examples, wherein the surface of the substrate comprises a surface roughness, wherein the outer surface of the first work roll comprises approximately the same surface roughness, and wherein the surface roughness is from about 0.4 μm to about 6.0 μm.
EC 37. The flatness control system of any of the preceding or subsequent examples, wherein surface roughness is from about 0.7 μm to about 1.3 μm.
EC 38. The flatness control system of any of the preceding or subsequent examples, wherein the flatness measuring device is configured to determine regions on the substrate with tensile residual stress and regions on the substrate with compressive residual stress, and wherein the controller is configured to adjust the actuators to increase the localized pressures of flatness control zones corresponding to the regions of tensile residual stress.
EC 39. The flatness control system of any of the preceding or subsequent examples, wherein the controller is configured to adjust the actuators such that the localized pressures of flatness control zones corresponding to the regions of tensile residual stress cause a localized elongation of from about 0.0% to about 1.0%.
EC 40. The flatness control system of any of the preceding or subsequent examples, wherein the controller is configured to adjust the actuators such that the localized pressures of flatness control zones corresponding to the regions of tensile residual stress cause a localized elongation of from about 0.0% to about 0.2%.
EC 41. The flatness control system of any of the preceding or subsequent examples, wherein the controller is configured to adjust the actuators such that the localized pressures of flatness control zones corresponding to the regions of tensile residual stress cause a localized elongation of about 0.1%.
EC 42. The flatness control system or method of any of the preceding or subsequent example combinations, wherein applying the plurality of localized pressures to the substrate with the first work roll comprises freezing a vertical position of a second work roll vertically aligned with the first work roll.
The above-described aspects are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Many variations and modifications can be made to the above-described example(s) without departing substantially from the spirit and principles of the present disclosure. All such modifications and variations are included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure. Moreover, although specific terms are employed herein, as well as in the claims that follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention, nor the claims that follow.
This application claims the benefit of U.S. Provisional Application No. 62/535,345, filed on Jul. 21, 2017 and entitled SYSTEMS AND METHODS FOR CONTROLLING SURFACE TEXTURING OF A METAL SUBSTRATE WITH LOW PRESSURE ROLLING; U.S. Provisional Application No. 62/535,341, filed on Jul. 21, 2017 and entitled MICRO-TEXTURED SURFACES VIA LOW PRESSURE ROLLING; U.S. Provisional Application No. 62/535,349, filed on Jul. 21, 2017 and entitled SYSTEMS AND METHODS FOR CONTROLLING FLATNESS OF A METAL SUBSTRATE WITH LOW PRESSURE ROLLING; U.S. Provisional Application No. 62/551,296, filed on Aug. 29, 2017 and entitled SYSTEMS AND METHODS FOR CONTROLLING SURFACE TEXTURING OF A METAL SUBSTRATE WITH LOW PRESSURE ROLLING; U.S. Provisional Application No. 62/551,292, filed on Aug. 29, 2017 and entitled MICRO-TEXTURED SURFACES VIA LOW PRESSURE ROLLING; and U.S. Provisional Application No. 62/551,298, filed on Aug. 29, 2017 and entitled SYSTEMS AND METHODS FOR CONTROLLING FLATNESS OF A METAL SUBSTRATE WITH LOW PRESSURE ROLLING, all of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1106172 | Wetcke | Aug 1914 | A |
3619881 | Bills et al. | Nov 1971 | A |
4017367 | Saunders | Apr 1977 | A |
4978583 | Wakui et al. | Dec 1990 | A |
5025547 | Sheu et al. | Jun 1991 | A |
5508119 | Sheu et al. | Apr 1996 | A |
5666844 | Bieber | Sep 1997 | A |
5692407 | Kajiwara | Dec 1997 | A |
5904204 | Teraoka et al. | May 1999 | A |
6868707 | Nishi et al. | Mar 2005 | B2 |
7353681 | Ball | Apr 2008 | B2 |
7516637 | Scamans et al. | Apr 2009 | B2 |
7624609 | Ball et al. | Dec 2009 | B2 |
7797974 | Kruger | Sep 2010 | B2 |
11213870 | Shafiei et al. | Jan 2022 | B2 |
11426777 | Shafiei et al. | Aug 2022 | B2 |
20030150587 | Li et al. | Aug 2003 | A1 |
20050115295 | Pont | Jun 2005 | A1 |
20060123867 | Ball et al. | Jun 2006 | A1 |
20090004044 | Sawada et al. | Jan 2009 | A1 |
20100242559 | Saenz de Miera | Sep 2010 | A1 |
20100249973 | Bergsten | Sep 2010 | A1 |
20120253502 | Holm et al. | Oct 2012 | A1 |
20120298183 | Buresch et al. | Nov 2012 | A1 |
20130273394 | Sheu et al. | Oct 2013 | A1 |
20160052032 | Moden | Feb 2016 | A1 |
20160059283 | Breuer et al. | Mar 2016 | A1 |
20190022720 | Shafiei et al. | Jan 2019 | A1 |
20190022721 | Shafiei et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1230475 | Oct 1999 | CN |
201033332 | Mar 2008 | CN |
101288880 | Oct 2008 | CN |
202984272 | Jun 2013 | CN |
103949481 | Jul 2014 | CN |
104785541 | Jul 2015 | CN |
104870111 | Aug 2015 | CN |
106903170 | Jun 2017 | CN |
102007028823 | Dec 2008 | DE |
1368140 | Dec 2003 | EP |
1607150 | Dec 2005 | EP |
1297903 | Aug 2006 | EP |
1368140 | Aug 2006 | EP |
2292341 | Mar 2011 | EP |
2670540 | Feb 2016 | EP |
191410850 | Jul 1914 | GB |
S6286120 | Apr 1987 | JP |
63016804 | Jan 1988 | JP |
H03114601 | May 1991 | JP |
H03169403 | Jul 1991 | JP |
H03238108 | Oct 1991 | JP |
H06171261 | Jun 1994 | JP |
H0751701 | Feb 1995 | JP |
H09225555 | Sep 1997 | JP |
H10501470 | Feb 1998 | JP |
2006239744 | Sep 2006 | JP |
2007516841 | Jun 2007 | JP |
2010260074 | Nov 2010 | JP |
2012052290 | Mar 2012 | JP |
2012157899 | Aug 2012 | JP |
2012206170 | Oct 2012 | JP |
2013094820 | May 2013 | JP |
2015182107 | Oct 2015 | JP |
6171261 | Jul 2017 | JP |
2158639 | Nov 2000 | RU |
2333811 | Sep 2008 | RU |
733754 | May 1980 | SU |
931244 | May 1982 | SU |
2006002784 | Jan 2006 | WO |
2016034658 | Mar 2016 | WO |
Entry |
---|
International Patent Application No. PCT/US2018/043049 , “International Preliminary Report on Patentability”, dated Jan. 30, 2020, 10 pages. |
PCT/US2018/043049 , “International Search Report and Written Opinion”, dated Oct. 12, 2018, 13 pages. |
Suzuki et al., “Strip Shape Control System of Mitsubishi CR Mill”, Conference Record Of The IEEE Industry Applications Conference. 34th IAS Annual Meeting. Phoenix, AZ, Oct. 3, 1999, pp. 565-570. |
Australian Pat. Appl. No. 2018302336 , First Examination Report dated Oct. 20, 2020, 4 pages. |
Chinese Pat. Appl. No. 201880048599.2 , Office Action dated Nov. 5, 2020, 22 pages. |
Japanese Patent Application No. 2020-502224, Office Action dated Jan. 19, 2021, 8 pages. |
Indian Patent Application No. 202017002138 , First Examination Report dated Sep. 2, 2020, 6 pages. |
Russian Patent Application No. 2020102535 , Office Action, dated Jul. 6, 2020, 16 pages. |
Canadian Patent Application No. 3,069,981 , Office Action dated Apr. 9, 2021, 8 pages. |
Australian Patent Application No. 2018302336 , Second Examination Report dated Mar. 1, 2021, 4 pages. |
Korean Patent Application No. 10-2020-7004646 , Office Action dated Mar. 18, 2021, 17 pages. |
Canadian Application No. 3,069,981, Office Action, dated Sep. 27, 2021, 7 pages. |
Chinese Application No. 201880048599.2, Office Action, dated Sep. 7, 2021, 12 pages. |
Korean Application No. 10-2020-7004646, Office Action, dated Aug. 23, 2021, 5 pages. |
Chinese Application No. 201880048599.2, Office Action, dated May 27, 2021, 14 pages. |
Application No. CN201880048599.2 , Office Action, dated Jan. 12, 2022, 15 pages. |
Application No. CN201880048614.3 , Notice of Decision to Grant, dated Feb. 23, 2022, 6 pages. |
U.S. Appl. No. 16/041,293 , Final Office Action, dated Nov. 23, 2021, 17 pages. |
Application No. CA3,069,978 , Office Action, dated Jan. 11, 2022, 5 pages. |
Application No. KR10-2020-7004644 , Notice of Decision to Grant, dated Oct. 21, 2021, 4 pages. |
Application No. CA3,069,981 , Office Action, dated Jul. 26, 2022, 18 pages. |
Application No. EP18756515.5 , Office Action, dated Feb. 22, 2022, 5 pages. |
Brazilian Application No. BR112020001010-3, “Office Action”, dated Sep. 13, 2022, 4 pages. |
Korean Application No. 10-2021-7033316, “Notice of Decision to Grant”, dated Oct. 4, 2022, 5 pages. |
Korean Application No. 2021-7033316, “Office Action”, dated Dec. 6, 2021, 3 pages. |
European Application No. EP18756515.5, “Intension to Grant”, dated Nov. 7, 2022, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20190022724 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62551292 | Aug 2017 | US | |
62551296 | Aug 2017 | US | |
62551298 | Aug 2017 | US | |
62535349 | Jul 2017 | US | |
62535341 | Jul 2017 | US | |
62535345 | Jul 2017 | US |