The present invention relates to improved aerosolizing devices, particularly but not exclusively for atomizing liquid medicaments to be inhaled, and to a method of constructing such devices.
A wide variety of procedures have been proposed to deliver a drug to a patient. Of particular interest to the present invention are drug delivery procedures where the drug is a liquid and is dispensed in the form of fine liquid droplets for inhalation by a patient. A variety of devices have been proposed for forming the dispersion, including air jet nebulizers, ultrasonic nebulizers and metered dose inhalers (MDIs). Air jet nebulizers usually utilize a high pressure air compressor and a baffle system that separates the large particles from the spray. Ultrasonic nebulizers generate ultrasonic waves with an oscillating piezoelectric crystal to produce liquid droplets. Another type of ultrasonic nebulizer is described in U.S. Pat. Nos. 5,261,601 and 4,533,082. Typical MDIs usually employ a gas propellant, such as a CFC, which carries the therapeutic substance and is sprayed into the mouth of the patient.
The present applicant has also proposed a variety of aerosolization devices for atomizing liquid solutions. For example, one exemplary atomization apparatus is described in U.S. Pat. No. 5,164,740, the complete disclosure of which is herein incorporated by reference. The atomization apparatus comprises an ultrasonic transducer and an aperture plate attached to the transducer. The aperture plate includes tapered apertures which are employed to produce small liquid droplets. The transducer vibrates the plate at relatively high frequencies so that when the liquid is placed in contact with the rear surface of the aperture plate and the plate is vibrated, liquid droplets will be ejected through the apertures. The apparatus described in U.S. Pat. No. 5,164,740 has been instrumental in producing small liquid droplets without the need for placing a fluidic chamber in contact with the aperture plate. Instead, small volumes of liquid are delivered to the rear surface of the aperture plate and held in place by surface tension forces.
Modified atomization apparatus are described in U.S. Pat. Nos. 5,586,550 and 5,758,637, the complete disclosures of which are herein incorporated by reference. The two references describe a liquid droplet generator which is particularly useful in producing a high flow of droplets in, a narrow size distribution. As described in U.S. Pat. No. 5,586,550, the use of a dome shaped aperture plate is advantageous in allowing more of the apertures to eject liquid droplets.
One requirement of such aerosolization devices is the need to supply liquid to the aperture plate. In some applications, such as when delivering aerosolized medicaments to the lungs, it may be desirable to regulate the supply of the liquid to the aperture plate so that proper pulmonary delivery of the drug may occur. For example, if too much liquid is supplied, the aerosol generator may be unable to aerosolize fully all of the delivered liquid. On the other hand, if too little liquid is supplied, the user may not receive a sufficient dosage. Further, a metering process may be needed to ensure that a unit dosage amount of the liquid is delivered to the aerosol generator. This may be challenging if the user requires several inhalations in order to inhale the unit dose amount.
The present invention is related to liquid feed systems and methods for delivering liquids to the aerosol generator to facilitate aerosolization of the liquid.
The invention provides exemplary aerosolization devices and methods for aerosolizing liquids. In one embodiment, an aerosolization device comprises a liquid supply system that is adapted to hold a supply of liquid, and an aerosol generator that is configured to aerosolize liquid supplied from the liquid supply system. In one aspect, the aerosol generator may comprise a plate having a plurality of apertures and a vibratable element disposed to vibrate the plate. The aerosolization device further comprises a sensor configured to sense an amount of unaerosolized liquid supplied to the aerosol generator, and a controller to control operation of the liquid supply system based on information received from the sensor. In this way, during aerosolization the amount of unaerosolized liquid supplied to the aerosol generator remains within a certain range. In this manner, the device is configured to prevent either too much or too little liquid from being supplied to the aerosol generator at any one time.
In one aspect, the sensor comprises a strain gauge coupled to the aerosol generator for detecting variations in strain caused by varying amounts of unaerosolized liquid adhering to the aerosol generator. The strain gauge may comprise a piezoelectric element coupled to the aerosol generator such that variations in an electrical characteristic (e.g. impedance) are representative of unaerosolized liquid adhering to the aerosol generator. The piezoelectric element may also act as a transducer disposed to vibrate an aperture plate in the aerosol generator.
In another aspect, the sensor may comprise an optical sensor. The optical sensor may be configured to sense the presence or absence of unaerosolized liquid at a certain location on the aerosol generator. The certain location may be spaced from where liquid is supplied to the aerosol generator.
In yet another aspect, the sensor may be a conductivity sensor that is configured to sense electrical conductivity between at least two points across a surface of the aerosol generator on which unaerosolized liquid may adhere. At least one of the points may be spaced from where liquid is supplied to the aerosol generator. Further, at least one of the points may be closer to where liquid is supplied to the aerosol generator than another one of the points. In this way, sensing electrical conductivity may give an indication of unaerosolized liquid distribution across the aerosol generator.
In one particular embodiment, the amount of unaerosolized liquid on the aerosol generator remains within the range from about 0 to about 20 microliters, and more preferably from about 2 microliters to about 20 microliters.
The device may further comprise a housing having a mouthpiece, with the aerosol generator disposed in the housing for delivery of aerosolized liquid through the mouthpiece. In this way, a drug may be aerosolized and ready for pulmonary delivery upon patient inhalation.
In another particular aspect, the liquid supply system may comprise a dispenser for dispensing a certain amount of liquid upon receipt of an appropriate signal from the controller. In this way, a predetermined amount of liquid may be chosen to ensure the aerosol generator is not overloaded at any one time. The device may further comprise a meter for limiting the number of times the dispenser is activated during operation of the aerosol generator. In this way, the total liquid delivered by the aerosol generator in any one period of operation may be accurately controlled, thereby limiting the risk of delivering below or above a recommended dose.
In yet another particular embodiment, the device may further comprise a heater for heating unaerosolized liquid supplied to the aerosol generator. The heater may be adapted to heat the aerosol generator to vaporize or burn off residual unaerosolized liquid after aerosol generator cessation. In this way, residual unaerosolized liquid may be removed to prevent interference with a subsequent aerosolization event. The heater may comprise an electrical resistance heater and an electrical power supply (e.g. battery) for energizing resistance heating.
In another embodiment of the invention, a method for aerosolizing a liquid utilizes an aerosol generator that is operable to aerosolize a liquid. According to the method, a liquid is supplied to the aerosol generator from a liquid supply system at an initial flow rate. During aerosolization, the amount of supplied liquid remaining unaerosolized is sensed and the rate of liquid supply regulated based upon the sensed amount. The rate of liquid supply may be decreased if the sensed amount exceeds a certain value, and the rate of liquid supply may be increased if the sensed amount falls below a critical level. In this way, it is possible to prevent or to reduce the extent of supplying too much or too little liquid being supplied to the aerosol generator at any one time.
In one aspect, the method further comprises providing a heater for heating unaerosolized liquid supplied to the aerosol generator. By sensing whether any of the supplied liquid remains unaerosolized after cessation of the liquid supply, the heater may be operated to vaporize or burn-off such supplied liquid remaining on the aerosol generator.
In yet another embodiment of the invention, an aerosolization device comprises a liquid supply system that is adapted to hold a supply of liquid, and an aerosol generator comprising a plate having a plurality of apertures and an electric transducer disposed to vibrate the plate when energized. A sensor is configured to sense an electrical characteristic of the electrical transducer that is dependent upon an amount of unaerosolized liquid adhering to the plate. A controller is provided to regulate operation of the liquid supply in order to maintain the amount of unaerosolized liquid adhering to the plate within a certain range during aerosolization.
In a still further embodiment, a method is provided for controlling the supply of a liquid to an aerosol generator. According to the method, a liquid supply system is operated to supply a liquid to a vibratable aperture plate of an aerosol generator. An amount of liquid adhering to the vibratable plate is sensed and is used to control the amount of liquid supplied to the plate. By controlling operation of the liquid supply system, the amount of liquid adhering to the vibratable aperture plate may be regulated.
The invention provides exemplary aerosolization devices and methods for controlling the supply of a liquid to an aerosol generator. The invention is applicable to essentially any aerosolizer where liquid delivered to the aerosolizer may accumulate leading to variation in device performance. Merely by way of example, the invention may be used with atomizers such as those described in U.S. Pat. Nos. 5,140,740, 5,938,117, 5,586,550, and 6,014,970, incorporated herein by reference. However, it will be appreciated that the invention is not intended to be limited only to these specific atomizers.
Aerosolization devices embodying the present invention conveniently sense the amount of unaerosolized liquid which has accumulated at the aerosol generator. This information is used to modify the rate of supply of liquid to the aerosol generator to maintain the amount of liquid adhering to the aerosol generator within certain limits. In this way, the aerosol generator is neither oversupplied nor under supplied with liquid, and is able to operate efficiently and effectively.
The sensor may take a variety of forms. For example, the sensor may be a piezoelectric device for sensing strains induced on the aerosol generator by liquid loads. Alternatively, the sensor may be an optical sensor, a conductivity sensor, or the like for sensing amounts of unaerosolized liquid on the aerosol generator. Another feature is the potential ability to vaporize or burn off unwanted unaerosolized liquid from the aerosol generator. The requisite heat may be applied by an electrical resistance heater, or the like.
In one embodiment, the supply of liquid to the aerosol generator is delivered in predetermined quantities. Each predetermined quantity may be a fraction of a total dose, and thus each delivery of the predetermined delivery may be counted. When the number of deliveries matches the quantity of the total dose, the liquid supply is interrupted.
Referring now to
Aerosolization device 10 further includes a liquid feed system 24 having a supply of liquid that is to be aerosolized by aerosol generator 16. Liquid feed system 24 may be configured to place metered amounts of liquid onto aperture plate 20. Although not shown, a button or the like may be employed to dispense the liquid when requested by the user. Conveniently, feed system 24 may be configured to supply a unit dose of liquid over time to aperture plate 20. As described hereinafter, a variety of sensors may be used to monitor and control the amount of liquid supplied to aperture plate 20 so that the amount of unaerosolized liquid remains within a certain range.
Housing 12 includes an electronics region 26 for holding the various electrical components of aerosolization device 10. For example, region 26 may include a printed circuit board 28 which serves as a controller to control operation of the aerosol generator 16. More specifically, circuit board 28 may send (via circuitry not shown) an electrical signal to piezoelectric element 22 to cause aperture plate 20 to be vibrated. A power supply P, such as one or more batteries, is electrically coupled to circuit board 28 to provide aerosolization device 10 with power. Optionally, a flow sensor may be used to sense patient inhalation and to operate aerosol generator 16 only when a threshold flow rate has been produced by the user. One example of such a flow sensor is described in copending U.S. patent application Ser. No. 09/149,246, filed Sep. 8, 1998, the complete disclosure of which is herein incorporated by reference.
The aerosol generator 30 is in the form of a cantilevered beam 32 on which a piezoelectric oscillator 38 is mounted. The free end 37 of the beam 32 is provided with a planar surface through which there are microscopic tapered apertures. Fluid 42 in contact with the free end 37 is ejected through the tapered apertures producing droplets 44 when the beam is oscillated at high frequency by the piezoelectric oscillator 38. The fluid supply system 50 continuously transports fluid 51 to wet the oscillating surface 37 via a supply tube 53 ending at a supply nozzle 54. The fluid 51 is transported to the surface 37 at a rate which is lower than the maximum ejection rate of the apertures 40 to prevent overflow of fluid 42 from the supply side of the oscillating surface 37. A pinch valve 56 controls delivery of the fluid 51 to the oscillating surface 37. The fluid supply system 50 is connected to an electronic flow control valve 52 which is connected to an electronic circuit that detects the amount of liquid 42 on the oscillating surface 37. In the event of excessive delivery of fluid, the oscillation amplitude decreases and the current draw by the piezoelectric element 38 decreases. This is because as the load changes, there is a corresponding change in the impedance of the piezoelectric element. A current sensor circuit 39 senses the current draw and transmits an overflow signal 41 to the flow control valve 52 to reduce the delivery rate of the liquid 51 to the surface 37 until the amount of fluid returns to normal level.
The arrangement described in
In another embodiment, the conductive sensor 70 may be replaced with an optical sensor which, for example, senses the present or absence of unaerosolized liquid in a certain location, or series of discrete locations on the aperture plate. If the presence of unaerosolized liquid is sensed at an outer location spaced from the point of liquid delivery to the aerosol generator, the flow rate of liquid supply may be reduced. If the absence of unaerosolized liquid is sensed in another location spaced inwardly from the outer location, the flow rate of liquid supply may be increased.
A meter 114 is coupled to the motor 108 and to the piezoelectric transducer 22. The meter 114 counts the number of times the motor 108 is activated in any period of continuous operation of the aerosol generator, i.e., while piezoelectric transducer 22 is vibrating. The meter 114 serves to prevent the motor 108 from being operated more than a predetermined number of times (e.g., 20) in any one period of use. In this way, the user may continue to use the aerosol generator 16 until an appropriate dose has been aerosolized (e.g., 20×5 microliters=100 microliters). At this time, operation of the motor 108 is temporarily stopped by the meter 114 and a corresponding signal sent to controller 104. Such a signal may enable an indication to be given to the user that a full dose has been delivered.
In some cases, the user may stop operation without aerosolizing the full dose. The controller may be configured to record the partial dosage and notify the user when attempting to continue operation.
Referring now to
The invention has now been described in detail for purposes of clarity of understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the appended claims.
This application is a continuation application of U.S. patent application Ser. No. 09/678,410, filed Oct. 2, 2000 (now U.S. Pat. No. 6,540,154), which is a continuation-in-part application of U.S. patent application Ser. No. 09/318,552, filed May 27, 1999, now U.S. Pat. No. 6,540,153 which is a continuation application of U.S. patent application Ser. No. 08/417,311, filed Apr. 5, 1995 (now U.S. Pat. No. 5,938,117), which is a continuation-in-part application of U.S. patent application Ser. No. 08/163,850 filed on Dec. 7, 1993, now U.S. Pat. No. 6,629,646 which is a continuation-in-part of U.S. patent application Ser. No. 07/726,777 filed on Jul. 8, 1991 (now abandoned), which is a continuation-in-part of U.S. patent application Ser. No. 07/691,584 filed on Apr. 24, 1991, now U.S. Pat. No. 5,164,740. The complete disclosures of all these references are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
550315 | Allen | Nov 1895 | A |
809159 | Willis et al. | Jan 1906 | A |
1680616 | Horst | Aug 1928 | A |
2022520 | Philbrick | Nov 1935 | A |
2101304 | Wright | Dec 1937 | A |
2158615 | Wright | May 1939 | A |
2187528 | Wing | Jan 1940 | A |
2223541 | Baker | Dec 1940 | A |
2266706 | Fox et al. | Dec 1941 | A |
2283333 | Martin | May 1942 | A |
2292381 | Klagges | Aug 1942 | A |
2360297 | Wing | Oct 1944 | A |
2375770 | Dahlberg | May 1945 | A |
2383098 | Wheaton | Aug 1945 | A |
2404063 | Healy | Jul 1946 | A |
2430023 | Longmaid | Nov 1947 | A |
2474996 | Wallis | Jul 1949 | A |
2512004 | Wing | Jun 1950 | A |
2521657 | Severy | Sep 1950 | A |
2681041 | Zodtner et al. | Jun 1954 | A |
2705007 | Gerber | Mar 1955 | A |
2735427 | Sullivan | Feb 1956 | A |
2764946 | Henderson | Oct 1956 | A |
2764979 | Henderson | Oct 1956 | A |
2779623 | Eisenkraft | Jan 1957 | A |
2935970 | Morse et al. | May 1960 | A |
3103310 | Lang | Sep 1963 | A |
3325031 | Singier | Jun 1967 | A |
3411854 | Rosler et al. | Nov 1968 | A |
3515348 | Coffman, Jr. | Jun 1970 | A |
3550864 | East | Dec 1970 | A |
3558052 | Dunn | Jan 1971 | A |
3561444 | Boucher | Feb 1971 | A |
3563415 | Ogle | Feb 1971 | A |
3680954 | Frank | Aug 1972 | A |
3719328 | Hindman | Mar 1973 | A |
3738574 | Guntersdorfer et al. | Jun 1973 | A |
3771982 | Dobo | Nov 1973 | A |
3790079 | Berglund et al. | Feb 1974 | A |
3804329 | Martner | Apr 1974 | A |
3812854 | Michaels et al. | May 1974 | A |
3838686 | Szekely | Oct 1974 | A |
3842833 | Ogle | Oct 1974 | A |
3865106 | Palush | Feb 1975 | A |
3903884 | Huston et al. | Sep 1975 | A |
3906950 | Cocozza | Sep 1975 | A |
3908654 | Lhoest et al. | Sep 1975 | A |
3950760 | Rauch et al. | Apr 1976 | A |
3951313 | Coniglione | Apr 1976 | A |
3958249 | DeMaine et al. | May 1976 | A |
3970250 | Drews | Jul 1976 | A |
3983740 | Danel | Oct 1976 | A |
3993223 | Welker, III et al. | Nov 1976 | A |
4005435 | Lundquist et al. | Jan 1977 | A |
4030492 | Simburner | Jun 1977 | A |
4052986 | Scaife | Oct 1977 | A |
4059384 | Holland et al. | Nov 1977 | A |
D246574 | Meierhoefer | Dec 1977 | S |
4076021 | Thompson | Feb 1978 | A |
4083368 | Freezer | Apr 1978 | A |
4094317 | Wasnich | Jun 1978 | A |
4101041 | Mauro, Jr. et al. | Jul 1978 | A |
4106503 | Rsenthal et al. | Aug 1978 | A |
4109174 | Hodgson | Aug 1978 | A |
4113809 | Abair et al. | Sep 1978 | A |
D249958 | Meierhoefer | Oct 1978 | S |
4119096 | Drews | Oct 1978 | A |
4121583 | Chen | Oct 1978 | A |
4159803 | Cameto et al. | Jul 1979 | A |
4207990 | Weiler et al. | Jun 1980 | A |
4210155 | Grimes | Jul 1980 | A |
4226236 | Genese | Oct 1980 | A |
4240081 | Devitt | Dec 1980 | A |
4240417 | Holever | Dec 1980 | A |
4248227 | Thomas | Feb 1981 | A |
4261512 | Zierenberg | Apr 1981 | A |
D259213 | Pagels | May 1981 | S |
4268460 | Boiarski et al. | May 1981 | A |
4294407 | Reichl et al. | Oct 1981 | A |
4298045 | Weiler et al. | Nov 1981 | A |
4299784 | Hense | Nov 1981 | A |
4300546 | Kruber | Nov 1981 | A |
4301093 | Eck | Nov 1981 | A |
4319155 | Makai et al. | Mar 1982 | A |
4334531 | Reichl et al. | Jun 1982 | A |
4336544 | Donald et al. | Jun 1982 | A |
4338576 | Takahashi et al. | Jul 1982 | A |
4368476 | Uehara et al. | Jan 1983 | A |
4368850 | Szekely | Jan 1983 | A |
4374707 | Pollack | Feb 1983 | A |
4389071 | Johnson, Jr. et al. | Jun 1983 | A |
4408719 | Last | Oct 1983 | A |
4428802 | Kanai et al. | Jan 1984 | A |
4431136 | Janner et al. | Feb 1984 | A |
4454877 | Miller et al. | Jun 1984 | A |
4465234 | Maehara et al. | Aug 1984 | A |
4474251 | Johnson, Jr. | Oct 1984 | A |
4474326 | Takahashi | Oct 1984 | A |
4475113 | Lee et al. | Oct 1984 | A |
4479609 | Maeda et al. | Oct 1984 | A |
4512341 | Lester | Apr 1985 | A |
4530464 | Yamamoto et al. | Jul 1985 | A |
4533082 | Maehara et al. | Aug 1985 | A |
4539575 | Nilsson | Sep 1985 | A |
4544933 | Heinzl | Oct 1985 | A |
4546361 | Brescia et al. | Oct 1985 | A |
4550325 | Viola | Oct 1985 | A |
4566452 | Farr | Jan 1986 | A |
4591883 | Isayama | May 1986 | A |
4593291 | Howkins | Jun 1986 | A |
4605167 | Maehara | Aug 1986 | A |
4613326 | Szwarc | Sep 1986 | A |
4620201 | Heinzl et al. | Oct 1986 | A |
4628890 | Freeman | Dec 1986 | A |
4632311 | Nakane et al. | Dec 1986 | A |
4658269 | Rezanka | Apr 1987 | A |
4659014 | Soth et al. | Apr 1987 | A |
4677975 | Edgar et al. | Jul 1987 | A |
4678680 | Abowitz | Jul 1987 | A |
4679551 | Anthony | Jul 1987 | A |
4681264 | Johnson, Jr. | Jul 1987 | A |
4693853 | Falb et al. | Sep 1987 | A |
4702418 | Carter et al. | Oct 1987 | A |
4722906 | Guire | Feb 1988 | A |
4753579 | Murphy | Jun 1988 | A |
4790479 | Matsumoto et al. | Dec 1988 | A |
4793339 | Matsumoto et al. | Dec 1988 | A |
4796807 | Bendig et al. | Jan 1989 | A |
4799622 | Ishikawa et al. | Jan 1989 | A |
4805609 | Roberts et al. | Feb 1989 | A |
4819629 | Jonson | Apr 1989 | A |
4819834 | Thiel | Apr 1989 | A |
4826080 | Ganser | May 1989 | A |
4826759 | Guire et al. | May 1989 | A |
4828886 | Hieber | May 1989 | A |
4843445 | Stemme | Jun 1989 | A |
4849303 | Graham et al. | Jul 1989 | A |
4850534 | Takahashi et al. | Jul 1989 | A |
4865006 | Nogi et al. | Sep 1989 | A |
4871489 | Ketcham | Oct 1989 | A |
4872553 | Suzuki et al. | Oct 1989 | A |
4877989 | Drews et al. | Oct 1989 | A |
4888516 | Daeges et al. | Dec 1989 | A |
4922901 | Brooks et al. | May 1990 | A |
4926915 | Deussen et al. | May 1990 | A |
4934358 | Nilsson et al. | Jun 1990 | A |
4954225 | Bakewell | Sep 1990 | A |
4957239 | Tempelman | Sep 1990 | A |
4964521 | Wieland et al. | Oct 1990 | A |
D312209 | Morrow et al. | Nov 1990 | S |
4968299 | Ahlstrand et al. | Nov 1990 | A |
4971665 | Sexton | Nov 1990 | A |
4973493 | Guire | Nov 1990 | A |
4976259 | Higson et al. | Dec 1990 | A |
4979959 | Guire | Dec 1990 | A |
4994043 | Ysebaert | Feb 1991 | A |
5002048 | Makiej, Jr. | Mar 1991 | A |
5002582 | Guire et al. | Mar 1991 | A |
5007419 | Weinstein et al. | Apr 1991 | A |
5016024 | Lam et al. | May 1991 | A |
5021701 | Takahashi et al. | Jun 1991 | A |
5022587 | Hochstein | Jun 1991 | A |
5024733 | Abys et al. | Jun 1991 | A |
5046627 | Hansen | Sep 1991 | A |
5062419 | Rider | Nov 1991 | A |
5063396 | Shiokawa et al. | Nov 1991 | A |
5063922 | Häkkinen | Nov 1991 | A |
5073484 | Swanson et al. | Dec 1991 | A |
5076266 | Babaev | Dec 1991 | A |
5080093 | Raabe et al. | Jan 1992 | A |
5080649 | Vetter | Jan 1992 | A |
5086765 | Levine | Feb 1992 | A |
5086785 | Gentile et al. | Feb 1992 | A |
5115803 | Sioutas | May 1992 | A |
5115971 | Greenspan et al. | May 1992 | A |
D327008 | Friedman | Jun 1992 | S |
5122116 | Kriesel et al. | Jun 1992 | A |
5129579 | Conte | Jul 1992 | A |
5134993 | Van Der Linden et al. | Aug 1992 | A |
5139016 | Waser | Aug 1992 | A |
5140740 | Weigelt | Aug 1992 | A |
5147073 | Cater | Sep 1992 | A |
5152456 | Ross et al. | Oct 1992 | A |
5157372 | Langford | Oct 1992 | A |
5164740 | Ivri | Nov 1992 | A |
5169029 | Behar et al. | Dec 1992 | A |
5170782 | Kocinski | Dec 1992 | A |
5180482 | Abys et al. | Jan 1993 | A |
5186164 | Raghuprasad | Feb 1993 | A |
5186166 | Riggs et al. | Feb 1993 | A |
5198157 | Bechet | Mar 1993 | A |
5201322 | Henry et al. | Apr 1993 | A |
5213860 | Laing | May 1993 | A |
5217148 | Cater | Jun 1993 | A |
5217492 | Guire et al. | Jun 1993 | A |
5227168 | Chvapil | Jul 1993 | A |
5230496 | Shillington et al. | Jul 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
5248087 | Dressler | Sep 1993 | A |
5258041 | Guire et al. | Nov 1993 | A |
5261601 | Ross et al. | Nov 1993 | A |
5263992 | Guire | Nov 1993 | A |
5279568 | Cater | Jan 1994 | A |
5297734 | Toda | Mar 1994 | A |
5299739 | Takahashi et al. | Apr 1994 | A |
5303854 | Cater | Apr 1994 | A |
5309135 | Langford | May 1994 | A |
5312281 | Takahashi et al. | May 1994 | A |
5313955 | Rodder | May 1994 | A |
5319971 | Osswald et al. | Jun 1994 | A |
5320603 | Vetter et al. | Jun 1994 | A |
5322057 | Raabe et al. | Jun 1994 | A |
5342011 | Short | Aug 1994 | A |
5342504 | Hirano et al. | Aug 1994 | A |
5347998 | Hodson et al. | Sep 1994 | A |
5348189 | Cater | Sep 1994 | A |
5350116 | Cater | Sep 1994 | A |
5355872 | Riggs et al. | Oct 1994 | A |
5357946 | Kee et al. | Oct 1994 | A |
5372126 | Blau | Dec 1994 | A |
5383906 | Burchett et al. | Jan 1995 | A |
5388571 | Roberts et al. | Feb 1995 | A |
5392768 | Johansson et al. | Feb 1995 | A |
5396883 | Knupp et al. | Mar 1995 | A |
5414075 | Swan et al. | May 1995 | A |
5415161 | Ryder | May 1995 | A |
5419315 | Rubsamen | May 1995 | A |
5426458 | Wenzel et al. | Jun 1995 | A |
5431155 | Marelli | Jul 1995 | A |
5435282 | Haber et al. | Jul 1995 | A |
5435297 | Klein | Jul 1995 | A |
5437267 | Weinstein et al. | Aug 1995 | A |
5445141 | Kee et al. | Aug 1995 | A |
D362390 | Weiler | Sep 1995 | S |
5449502 | Igusa et al. | Sep 1995 | A |
5452711 | Gault | Sep 1995 | A |
5458135 | Patton et al. | Oct 1995 | A |
5458289 | Cater | Oct 1995 | A |
5474059 | Cooper | Dec 1995 | A |
5477992 | Jinks et al. | Dec 1995 | A |
5479920 | Piper et al. | Jan 1996 | A |
5487378 | Robertson et al. | Jan 1996 | A |
5489266 | Grimard | Feb 1996 | A |
5497944 | Weston et al. | Mar 1996 | A |
D369212 | Snell | Apr 1996 | S |
5511726 | Greenspan et al. | Apr 1996 | A |
5512329 | Guire et al. | Apr 1996 | A |
5512474 | Clapper et al. | Apr 1996 | A |
5515841 | Robertson et al. | May 1996 | A |
5515842 | Ramseyer et al. | May 1996 | A |
5516043 | Manna et al. | May 1996 | A |
5518179 | Humberstone et al. | May 1996 | A |
5529055 | Gueret | Jun 1996 | A |
5533497 | Ryder | Jul 1996 | A |
5542410 | Goodman et al. | Aug 1996 | A |
5549102 | Lintl et al. | Aug 1996 | A |
5560837 | Trueba | Oct 1996 | A |
5563056 | Swan et al. | Oct 1996 | A |
D375352 | Bologna | Nov 1996 | S |
5579757 | McMahon et al. | Dec 1996 | A |
5582330 | Iba | Dec 1996 | A |
5584285 | Salter et al. | Dec 1996 | A |
5586550 | Ivri et al. | Dec 1996 | A |
5588166 | Burnett | Dec 1996 | A |
5601077 | Imbert | Feb 1997 | A |
5609798 | Liu et al. | Mar 1997 | A |
5632878 | Kitano | May 1997 | A |
5635096 | Singer et al. | Jun 1997 | A |
5637460 | Swan et al. | Jun 1997 | A |
5647349 | Ohki et al. | Jul 1997 | A |
5653227 | Barnes et al. | Aug 1997 | A |
5654007 | Johnson et al. | Aug 1997 | A |
5654162 | Guire et al. | Aug 1997 | A |
5654460 | Rong | Aug 1997 | A |
5657926 | Toda | Aug 1997 | A |
5660166 | Lloyd | Aug 1997 | A |
5664557 | Makiej, Jr. | Sep 1997 | A |
5664706 | Cater | Sep 1997 | A |
5665068 | Takamura | Sep 1997 | A |
5666946 | Langenback | Sep 1997 | A |
5670999 | Takeuchi et al. | Sep 1997 | A |
5685491 | Marks et al. | Nov 1997 | A |
5692644 | Gueret | Dec 1997 | A |
5707818 | Chudzik et al. | Jan 1998 | A |
5709202 | Lloyd et al. | Jan 1998 | A |
5714360 | Swan et al. | Feb 1998 | A |
5714551 | Bezwada et al. | Feb 1998 | A |
5718222 | Lloyd et al. | Feb 1998 | A |
D392184 | Weiler | Mar 1998 | S |
5724957 | Rubsamen et al. | Mar 1998 | A |
5744515 | Clapper | Apr 1998 | A |
5752502 | King | May 1998 | A |
5755218 | Johansson et al. | May 1998 | A |
5758637 | Ivri et al. | Jun 1998 | A |
5775506 | Grabenkort | Jul 1998 | A |
5788665 | Sekins | Aug 1998 | A |
5788819 | Onishi et al. | Aug 1998 | A |
5790151 | Mills | Aug 1998 | A |
5810004 | Ohki et al. | Sep 1998 | A |
5819730 | Stone et al. | Oct 1998 | A |
5823179 | Grychowski et al. | Oct 1998 | A |
5823428 | Humberstone et al. | Oct 1998 | A |
5829723 | Brunner et al. | Nov 1998 | A |
5836515 | Fonzes | Nov 1998 | A |
5839617 | Cater et al. | Nov 1998 | A |
5842468 | Denyer et al. | Dec 1998 | A |
5865171 | Cinquin | Feb 1999 | A |
5878900 | Hansen | Mar 1999 | A |
5893515 | Hahn et al. | Apr 1999 | A |
5894841 | Voges | Apr 1999 | A |
5897008 | Hansen | Apr 1999 | A |
5910698 | Yagi | Jun 1999 | A |
5915377 | Coffee | Jun 1999 | A |
5918637 | Fleischman | Jul 1999 | A |
5925019 | Ljungquist | Jul 1999 | A |
5938117 | Ivri | Aug 1999 | A |
5950619 | Van Der Linden et al. | Sep 1999 | A |
5954268 | Joshi et al. | Sep 1999 | A |
5960792 | Lloyd et al. | Oct 1999 | A |
5964417 | Amann et al. | Oct 1999 | A |
5970974 | Van Der Linden et al. | Oct 1999 | A |
5976344 | Abys et al. | Nov 1999 | A |
5993805 | Sutton et al. | Nov 1999 | A |
6007518 | Kriesel et al. | Dec 1999 | A |
6012450 | Rubsamen | Jan 2000 | A |
6014970 | Ivri et al. | Jan 2000 | A |
6026809 | Abrams et al. | Feb 2000 | A |
6032665 | Psaros | Mar 2000 | A |
6037587 | Dowell et al. | Mar 2000 | A |
6045215 | Coulman | Apr 2000 | A |
6045874 | Himes | Apr 2000 | A |
6047818 | Warby et al. | Apr 2000 | A |
6055869 | Stemme et al. | May 2000 | A |
6060128 | Kim et al. | May 2000 | A |
6062212 | Davison et al. | May 2000 | A |
6068148 | Weiler | May 2000 | A |
6085740 | Ivri et al. | Jul 2000 | A |
6096011 | Trombley, III et al. | Aug 2000 | A |
6105877 | Coffee | Aug 2000 | A |
6106504 | Urrutia | Aug 2000 | A |
6116234 | Genova et al. | Sep 2000 | A |
6123413 | Agarwal et al. | Sep 2000 | A |
6139674 | Markham et al. | Oct 2000 | A |
6142146 | Abrams et al. | Nov 2000 | A |
6145963 | Pidwerbecki et al. | Nov 2000 | A |
6146915 | Pidwerbecki et al. | Nov 2000 | A |
6152130 | Abrams et al. | Nov 2000 | A |
6155676 | Etheridge et al. | Dec 2000 | A |
6158431 | Poole | Dec 2000 | A |
6161536 | Redmon et al. | Dec 2000 | A |
6163588 | Matsumoto et al. | Dec 2000 | A |
6182662 | McGhee | Feb 2001 | B1 |
6186141 | Pike et al. | Feb 2001 | B1 |
6196218 | Voges | Mar 2001 | B1 |
6196219 | Hess et al. | Mar 2001 | B1 |
6205999 | Ivri et al. | Mar 2001 | B1 |
6216916 | Maddox et al. | Apr 2001 | B1 |
6223746 | Jewett et al. | May 2001 | B1 |
6235177 | Borland et al. | May 2001 | B1 |
6254219 | Agarwal et al. | Jul 2001 | B1 |
6270473 | Schwebel | Aug 2001 | B1 |
6273342 | Terada et al. | Aug 2001 | B1 |
6318640 | Coffee | Nov 2001 | B1 |
6328030 | Kidwell et al. | Dec 2001 | B1 |
6328033 | Avrahami | Dec 2001 | B1 |
6341732 | Martin et al. | Jan 2002 | B1 |
6358058 | Strupat et al. | Mar 2002 | B1 |
6394363 | Arnott et al. | May 2002 | B1 |
6402046 | Loser | Jun 2002 | B1 |
6405934 | Hess et al. | Jun 2002 | B1 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6443146 | Voges | Sep 2002 | B1 |
6443366 | Hirota et al. | Sep 2002 | B1 |
6467476 | Ivri et al. | Oct 2002 | B1 |
6530370 | Heinonen | Mar 2003 | B1 |
6540153 | Ivri | Apr 2003 | B1 |
6540154 | Ivri et al. | Apr 2003 | B1 |
6543443 | Klimowicz et al. | Apr 2003 | B1 |
6546927 | Litherland et al. | Apr 2003 | B1 |
6550472 | Litherland et al. | Apr 2003 | B1 |
6554201 | Klimowicz et al. | Apr 2003 | B1 |
6615824 | Power | Sep 2003 | B1 |
6629646 | Ivri | Oct 2003 | B1 |
6640804 | Ivri | Nov 2003 | B1 |
6651650 | Yamamoto et al. | Nov 2003 | B1 |
6732944 | Litherland et al. | May 2004 | B1 |
6755189 | Ivri et al. | Jun 2004 | B1 |
6769626 | Haveri | Aug 2004 | B1 |
6782886 | Narayan et al. | Aug 2004 | B1 |
6814071 | Klimowicz et al. | Nov 2004 | B1 |
6845770 | Klimowicz et al. | Jan 2005 | B1 |
6851626 | Patel et al. | Feb 2005 | B1 |
6860268 | Bohn et al. | Mar 2005 | B1 |
20010013554 | Borland et al. | Aug 2001 | A1 |
20010015737 | Truninger et al. | Aug 2001 | A1 |
20020011247 | Ivri et al. | Jan 2002 | A1 |
20020104530 | Ivri et al. | Aug 2002 | A1 |
20020121274 | Borland et al. | Sep 2002 | A1 |
20020134372 | Loeffler et al. | Sep 2002 | A1 |
20020134374 | Loeffler et al. | Sep 2002 | A1 |
20020134375 | Loeffler et al. | Sep 2002 | A1 |
20020134377 | Loeffler et al. | Sep 2002 | A1 |
20020162551 | Litherland | Nov 2002 | A1 |
20030140921 | Smith et al. | Jul 2003 | A1 |
20030150445 | Power et al. | Aug 2003 | A1 |
20030150446 | Patel et al. | Aug 2003 | A1 |
20030226906 | Ivri | Dec 2003 | A1 |
20040000598 | Ivri | Jan 2004 | A1 |
20040035490 | Power | Feb 2004 | A1 |
20040050947 | Power et al. | Mar 2004 | A1 |
20040139963 | Ivri et al. | Jul 2004 | A1 |
20040139968 | Loeffler et al. | Jul 2004 | A1 |
20040188534 | Litherland et al. | Sep 2004 | A1 |
20040256488 | Loeffler et al. | Dec 2004 | A1 |
20050011514 | Power et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
477 855 | Sep 1969 | CH |
555 681 | Nov 1974 | CH |
0 049 636 | Apr 1982 | EP |
0 103 161 | Mar 1984 | EP |
0 134 847 | Mar 1985 | EP |
0 178 925 | Apr 1986 | EP |
0 387 222 | Sep 1990 | EP |
0 432 992 | Jun 1991 | EP |
0 476 991 | Mar 1992 | EP |
0 480 615 | Apr 1992 | EP |
0 510 648 | Oct 1992 | EP |
0 516 565 | Dec 1992 | EP |
0 542 723 | May 1993 | EP |
0 933 138 | Apr 1999 | EP |
0 923 957 | Jun 1999 | EP |
1 142 600 | Oct 2001 | EP |
2 692 569 | Dec 1993 | FR |
973 458 | Oct 1964 | GB |
1 454 597 | Nov 1976 | GB |
2 073 616 | Oct 1981 | GB |
2 101 500 | Jan 1983 | GB |
2 177 623 | Jan 1987 | GB |
2 240 494 | Jul 1991 | GB |
2 272 389 | May 1994 | GB |
2 279 571 | Jan 1995 | GB |
57-023852 | Feb 1982 | JP |
57-105608 | Jul 1982 | JP |
58-061857 | Apr 1983 | JP |
58-139757 | Aug 1983 | JP |
59-142163 | Aug 1984 | JP |
60-004714 | Jan 1985 | JP |
61-008357 | Jan 1986 | JP |
61-215059 | Sep 1986 | JP |
02-135169 | May 1990 | JP |
02-189161 | Jul 1990 | JP |
60-07721 | Jan 1994 | JP |
WO 9207600 | May 1992 | WO |
WO 9211050 | Sep 1992 | WO |
WO 9217231 | Oct 1992 | WO |
WO 9301404 | Jan 1993 | WO |
WO 9310910 | Jun 1993 | WO |
WO 9409912 | May 1994 | WO |
WO 9609229 | Mar 1996 | WO |
WO 9917888 | Apr 1999 | WO |
WO 0037132 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040004133 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09678410 | Oct 2000 | US |
Child | 10394512 | US | |
Parent | 08417311 | Apr 1995 | US |
Child | 09318552 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09318552 | May 1999 | US |
Child | 09678410 | US | |
Parent | 08163850 | Dec 1993 | US |
Child | 08417311 | US | |
Parent | 07726777 | Jul 1991 | US |
Child | 08163850 | US | |
Parent | 07691584 | Apr 1991 | US |
Child | 07726777 | US |