1. Field of the Invention
This disclosure relates to the field of illumination, and more particularly to the field of illumination sources controlled by a computer.
2. Description of the Related Art
LED lighting systems are used in a variety of applications to provide light, including for illumination, display and indication. One method of operating an LED in these systems is through pulse width modulation (PWM). That is, the current through the LED is fixed at a desired level and the duration the LED is activated varies to generate the appearance that the LED is dimming or increasing in intensity. The human eye integrates light it receives, and if the LED is on for a very short period of time, the LED appears dim even though the LED was operated at its optimum current. Another method of operating LEDs is through analog techniques where the amplitude of either the voltage or the current is modulated to change the light output of the LEDs. There are other techniques for operating LEDs, for example amplitude modulation of a pulsed signal or other techniques for modulating the power dissipated by the LED per unit of time. Certain techniques for the computer control of LEDs to generate illumination are disclosed in U.S. Pat. No. 6,016,038, which is hereby incorporated by reference.
One of the problems with changing the apparent or actual light output of an LED from a low light level to a higher light level is that the output changes may appear as stepped function rather than a smooth transition. This is common to other light sources, besides LEDs, as well. This is because the eye is highly sensitive to discrete changes in light output at low light levels. When the light is changed from one low light output level to another low light output level, the eye perceives the change as stepped. It would be useful to provide a lighting system that reduced the apparent stepped transition in light output from such a lighting system.
Provided herein are methods and systems for providing control signals for lights and light systems. The methods and systems include methods and systems for accessing a control module for generating an output control signal to control the output of a light, providing a conversion module for converting a data input to the output control signal, determining the response of a viewer to different levels of output of the light, and converting data inputs to output control signals in a nonlinear relationship to account for the response of a viewer to different levels of output of the light.
The methods and systems can include relationships in which the changes in the output control signal are smaller a low levels of light output and larger at higher levels of light output and methods and systems wherein the ratio of the output control signal to the data input increases continuously throughout the intensity range of the light.
The relationship between the data input and the output control signal can be a continuously increasing relationship. The relationship between the data input and the output control signal can be based on a function, such as an exponential function, a quadratic function, a squared function, a cubed function or other function.
The light may be an LED, and the ouput control signal can be a pulse width modulation (PWM) signal.
The ratio of the output control signal to the data input can increase continuously throughout the intensity range of the light.
The relationship between the data input and the output control signal can comprise multiple relationships, such as two linear relationships of different slopes or a linear relationship and a non-linear relationship. Where two linear relationships are used, one can apply to lower levels of data input with a lower slope than a second relationship that applies to higher levels of data input and that has a higher slope. Where there is a linear relationship and a nonlinear relationship, they can apply to different data ranges, and the nonlinear relationship can be based on a function, such as a an exponential function, a quadratic function, a squared function, a cubed function, or any other function.
The relationships used herein can account for the responses viewers to lights and illumination sources, such as those having LEDs of colors of different frequency ranges, such as red, green, blue, white, UV, IR, and amber LEDs. In embodiments the viewer response can be calculated based on reflected illumination, such as that reflected from a white surface, a wall, a colored surface, a mirror, a lens, or any other element. The relationships can be used to account for viewer responses to color-mixed light ouput. The color-mixed ouput can come from LEDs, such as red, green, blue, white, UV, IR, and/or amber LEDs.
The methods and systems disclosed herein also include methods and systems for providing a lighting control signal and may include methods and systems for providing a processor, providing memory, providing a light, providing a data input, providing a user interface, and using the processor to access a table stored in the memory to determine a control signal for the light, wherein the processor accesses the table to determine the control signal and wherein the table stores a nonlinear relationship between the data input and the control signal. The table can store a function that defines the nonlinear relationship. A user interface can allow a user to modify a parameter of the function, such as a PWM parameter and/or a scaling factor. In embodiments the user interface can allow a user to modify the table or select one or more tables from a plurality of tables. A function can define the relationship between the data input and the control signal, and can cause the ouput signal to increase continually in increasing amounts throughout the range of the data input.
Also provided herein are methods and systems of providing a conversion module having a processor for applying a nonlinear relationship to convert a data input to an ouput control signal for the light to account for the response of a viewer of the light to varying light levels.
The following figures depict certain illustrative embodiments of the invention in which like reference numerals refer to like elements. These depicted embodiments are to be understood as illustrative of the invention and not as limiting in any way.
The description below pertains to several illustrative embodiments of the invention. Although many variations of the invention may be envisioned by one skilled in the art, such variations and improvements are intended to fall within the compass of this disclosure. Thus, the scope of the invention is not to be limited in any way by the disclosure below.
Referring to
Referring still to
In an embodiment a lighting system 100 may have a conversion module 102 that converts a data signal or input 112 into a given control signal or signals to control the lights 108. After receipt of the data 112, the output signal of the conversion module 102 may be a converted signal that would be used to control the LED or plurality of LEDs. The conversion module 102 may consist of a processor, as well as various hardware, firmware and software elements that are conventionally used to convert data inputs 112 into control signals or currents that are sent to the lights 108. In embodiments, the light system 100 may include a user interface 110, which may be used to control the data inputs 112 or may be used to program or otherwise control the conversion module 102. Thus, the conversion module 102 may be programmable, so that the conversion of a given data input 112 to a control signal can be varied by a user over time. The user interface 110 may be a computer, a dial, a switch, a power-cycle facility, or a wide variety of different kinds of user interfaces. In an embodiment the user interface 110 is a user interface for a computer, such a a keypad, mouse and display.
In an embodiment, the control signal can be a pulse width modulation (PWM) control signal and the conversion module can be a table that correlates particular data inputs to particular PWM control signal outputs that are sent to the lights 108.
Referring to
In a PWM-based system, a conventional table serving as a conversion module 102 would provide a linear correlation between the data and the output PWM control signals. For example, in an 8-bit system, the data may comprise 256 steps (2^8) and the table would contain 256 linearly progressing PWM control signals, or data indicative of such control signals. As a result, the system can control a given LED or plurality of LEDs with 256 steps of resolution with an 8-bit system.
In certain applications, the linear relationship 308 has a tendency to generate perceptible stepping when data changes are made in the lower values. The eye is very sensitive to illumination changes at low levels of illumination intensity, and, as a result, changes in the illumination conditions at those intensity levels may cause perceived flicker or stepping. A system according to the principles of the present invention may have a non-linear relationship between the data received and the PWM control signal duration. FIG. 4illustrates such a relationship 402. In an embodiment, the relationship 402 may be relatively flat in the low data values with increasing slope as the data values increase. In an embodiment, the slope may continuously increase throughout the intensity range of the light 108. This increasing non-linear relationship 402 generates much finer control over the low LED intensities and as a result reduces the perceived flicker of the LEDs. This relationship also generates less resolution in the higher data values such that the range of LED intensities can still be as large as the linear relationship 308. For example, an LED system with a non-linear relation 402 may be used to provide high resolution control over low light levels but still allow the system to achieve high light levels. This gives the appearance of an overall higher resolution system. This is due in part because the lower resolution changes in the upper portion of the curve 402 do not result in perceived flicker due to the higher illumination levels. A user may feel as though the 8-bit system has been converted into a 16-bit system. In an embodiment, a non-linear relationship 402 may be used to increase the overall range of control while maintaining acceptable performance throughout the entire operating range. For example, the PWM range may appear to span 4095 steps (12 bit resolution), 16383 steps (14 bits) or other resolution with only 255 (8-bit) data input. It should be understood that other data and other PWM resolutions may be used and these illustrative embodiments should not be used to limit the present invention in anyway.
The relationship 402 may be an exponential, quadratic, squared, cubed or other non-linear function that increases the intensity at a greater rate with increasing light intensities. The relationship does not need to be a continuous function and may be two or more linear functions. For example, referring to
In other embodiments, the relationship between input data and output control signals may be a combination between linear and non-linear functions or any other combination of functions or tables.
There are many ways of generating the non-linear relationship 402 and it should be understood that the relationship is not limited to the specific embodiments illustrated in FIG. 4. In an embodiment, the non-linear relationship may be a function that is generated on a conversion module 102 using a processor (illustrated in FIG. 1). The conversion module 102 may generate a PWM signal based on a function wherein the received data is a variable within the function. In another embodiment, the PWM signals, or data indicative of such signals, may be stored in a table or tables and, when data is received, the conversion module 102 may select a PMW signal that corresponds with the received data from the table and then communicate the signal to the lights 108. In an embodiment, the information or data contained in the table may be used by the processor of the conversion module 102 to generate a PWM signal or other control signal. In another embodiment, the data may be sent to the lighting device and the data may indicate how a PMW signal should be adjusted or generated before being communicated to an LED. It should be appreciated that there are many systems and methods that may be used to generate the non-linear effects described herein and the present invention is not limited in any way by the illustrative embodiments presented herein. In another embodiment, a code may be communicated to a conversion module 102 such that the conversion module 102 selects another table or function from memory 104 upon receipt of new data. This new table selection or function selection may then be used for the selection of PWM signals. In an embodiment, the code may also be used to provide other tables, functions, or modifications thereof and the code may be stored in non-volatile memory such that subsequently received data can be interpreted through the newly coded parameters.
Referring again to
In an embodiment, a lighting system 100 may include two or more independently controllable lights 108A and 108B. The lights 108A and 108B may be LEDs that produce different colors when energized. In another embodiment, a lighting system may include three different colored individually controllable lights 108A, 108B, and 108C (for example, red, green and blue LEDs, respectively). In an embodiment, one or more of these may be combined with one or more white LEDs 108, such as white LEDs of different color temperature ranges. Each of these LEDs 108A, 108B, and 108C may be controlled by the processor of the conversion module 102 and the processor may select control signals to be communicated to the lights 108A, 108B, and 108C through a table or function, as described herein.
In an embodiment, the table may be comprised of control signal data and the conversion module 102 may generate control signals from the control signal data. In an embodiment, such a system, with two or more lights 108 operated in a non-linear fashion, may be used to produce color-changing effects. The non-linearity of the system may improve the color mixing abilities of the system. For example, with a linear relationship 308 used to control the separate LEDs, the color mixing at high light levels may not work as well as at the lower light levels. This is due in part to the fact that at high intensities a linearly progressing step does not change the light output by enough to visually change the illumination conditions or the color of the emitted light as perceived by the eye. In order to cause a perceptible change in the illumination or color of the emitted light, at the higher light levels, the control signal may need to be changed by more than a linearly progressing step. A non-linear relationship 402, according to the principles of the present invention, increases the difference in control signal steps at the high light levels and as a result may provide perceptible color or illumination changes with fewer steps. In an embodiment, a non-linear relationship 402 may result in higher resolution at the low light levels to minimize the apparent snapping from one light level to the next as well as provide for lower resolution in the higher light levels to provide perceptible color or illumination changes with fewer steps.
In an embodiment, a program may be executed that is associated with the conversion module 102 wherein data (such as in an 8-bit input system that provides 256 steps of data) is communicated to the input 112 of a lighting system 100 and this data causes the conversion module 102 to generate, either by table or function or by other methods, a control signal to at least one light 108A. The relationship between the data and the control signals may be non-linear 402 such that high resolution is provided at low light levels and low resolution is provided at high light levels. In an embodiment three channels of such data may be communicated to the conversion module 102 through input 112 and the conversion module 102 may generate three lighting control signals in response. A system according to the principles of the present invention may be used to provide illumination, white illumination of a varying color temperature, colored illumination, color changing effects or other illumination or display conditions. A lighting system 100 may control the individual lights 108, such as LEDs, with a relationship 402 as illustrated in
While many of the embodiments described herein relate to LED systems, the systems and methods taught by the present invention may relate to other illumination sources as well. As used herein, the term “LED” means any system that is capable of receiving an electrical signal and producing a color of light in response to the signal. Thus, the term “LED” should be understood to include light emitting diodes of all types, light emitting polymers, semiconductor dies that produce light in response to current, organic LEDs, electro-luminescent strips, and other such systems. In an embodiment, an “LED” may refer to a single light emitting diode having multiple semiconductor dies that are individually controlled. It should also be understood that the term “LED” does not restrict the package type of the LED. The term “LED” includes packaged LEDs, nonpackaged LEDs, surface mount LEDs, chip on board LEDs and LEDs of all other configurations. The term “LED” also includes LEDs packaged or associated with material (e.g. a phosphor) wherein the material may convert energy from the LED to a different wavelength.
While many of the illustrative embodiments described herein relate to PWM control, the systems and methods taught by the present invention may relate to other illumination control techniques as well. Thus, the term “pulse width modulation” or “PWM” should be understood to encompass all control techniques used in modulating the intensity of an illumination source. For example, when controlling an LED with analog voltage control, the control signal may be changed to change the illumination from the LED and the rate at which this control signal is changed may be accomplished using systems or methods taught by the present invention.
An LED system is one type of light or illumination source. As used herein “light” and “illumination source” should each be understood to include all light and illumination sources, including LED systems, as well as incandescent sources, including filament lamps, pyro-luminescent sources, such as flames, candle-luminescent sources, such as gas mantles and carbon arc radiation sources, as well as photo-luminescent sources, including gaseous discharges, fluorescent sources, phosphorescence sources, lasers, electro-luminescent sources, such as electro-luminescent lamps, light emitting diodes, and cathode luminescent sources using electronic satiation, as well as miscellaneous luminescent sources including galvano-luminescent sources, crystallo-luminescent sources, kine-luminescent sources, thermo-luminescent sources, tribolurninescent sources, sonolurninescent sources, and radioluminescent sources. Illumination sources may also include luminescent polymers capable of producing primary colors.
The term “illuminate” should be understood to refer to the production of a frequency of radiation by an illumination source. The term “color” should be understood to refer to any frequency of radiation within a spectrum; that is, a “color,” as used herein, should be understood to encompass frequencies not only of the visible spectrum, but also frequencies in the infrared and ultraviolet areas of the spectrum, and in other areas of the electromagnetic spectrum.
All articles, patents, patent applications and other documents mentioned are hereby incorporated by reference. While the invention has been disclosed in connection with the embodiments shown and described in detail, various equivalents, modifications, and improvements will be apparent to one of ordinary skill in the art from the above description.
This application is based upon, claims priority to, and incorporates by reference a U.S. Provisional Patent Application Serial No. 60/298,471 entitled Systems and Methods for Controlling illumination Sources, filed Jun. 15, 2001, naming Ihor Lys, Frederick Morgan, Michael Blackwell and Alfred Ducharme as inventors. In addition, this patent application claims the benefit under 35 U.S.C. §119(e) of the following U.S. Provisional Applications: Serial No. 60/301,692, filed Jun. 28, 2001, entitled “Systems and Methods for Networking LED Lighting Systems”;Serial No. 60/328,867, filed Oct. 12, 2001, entitled “Systems and Methods for Networking LED Lighting Systems;” andSerial No. 60/341,476, filed Oct. 30, 2001, entitled “Systems and Methods for LED Lighting.” This application also claims the benefit under 35 U.S.C. §120 as a continuation-in-part (CIP) of U.S. Non-provisional application Ser. No. 09/971,367, filed Oct. 4, 2001, entitled “Multicolored LED Lighting Method and Apparatus,” which is a continuation of U.S. Non-provisional application Ser. No. 09/669,121, filed Sep. 25, 2000, entitled “Multicolored LED Lighting Method and Apparatus,” which is a continuation of U.S. Ser. No. 09/425,770, filed Oct. 22, 1999, now U.S. Pat. No. 6,150,774, which is a continuation of U.S. Ser. No. 08/920,156, filed Aug. 26, 1997, now U.S. Pat. No. 6,016,038. This application also claims the benefit under 35 U.S.C. §120 as a continuation-in-part (CIP) of the following U.S. Non-provisional Applications: Ser. No. 09/870,193, filed May 30, 2001, now U.S. Pat. No. 6,608,453, entitled “Methods and Apparatus for Controlling Devices in a Networked Lighting System;”Se. No. 09/215,624, filed Dec. 17, 1998, now U.S. Pat. No. 6,528,954, entitled “Smart Light Bulb,” which in turn claims priority to the following U.S. Provisional Applications: Serial No. 60/071,281, filed Dec. 17, 1997, entitled “Digitally Controlled Light Emitting Diodes Systems and Methods;”Serial No. 60/068,792, filed Dec. 24, 1997, entitled “Multi-Color Intelligent Lighting;”Serial No. 60/078,861, filed Mar. 20, 1998, entitled “Digital Lighting Systems;”Serial No. 60/079,285, filed Mar. 25, 1998, entitled “System and Method for Controlled Illumination;” andSerial No. 60/090,920, filed Jun. 26, 1998, entitled “Methods for Software Driven Generation of Multiple Simultaneous High Speed Pulse Width Modulated Signals;”Ser. No. 09/213,607, filed Dec. 17, 1998, now abandoned entitled “Systems and Methods for Sensor-Responsive Illumination;”Ser. No. 09/213,189, filed Dec. 17, 1998, now U.S. Pat. No. 6,459,919, entitled “Precision Illumination;”Ser. No. 09/213,581, filed Dec. 17, 1998, entitled “Kinetic Illumination;”Ser. No. 09/213,540, filed Dec. 17, 1998, now U.S. Pat. No. 6,720,745, entitled “Data Delivery Track;”Ser. No. 09/333,739, filed Jun. 15, 1999, entitled “Diffuse Illumination Systems and Methods;”Ser. No. 09/815,418, filed Mar. 22, 2001, now U.S. Pat. No. 6,577,080, entitled “Lighting Entertainment System,” which is a continuation of U.S. Ser. No. 09/213,548, filed Dec. 17, 1998, now U.S. Pat. No. 6,166,496;Ser. No. 10/045,604, filed Oct. 23, 2001, entitled “Systems and Methods for Digital Entertainment;” which in turn claims priority to the following U.S. Provisional Applications: Serial No. 60/277,911, filed Mar. 22, 2001, entitled “Systems and Methods for Digital Entertainment;”Serial No. 60/242,484, filed Oct. 23, 2000, entitled, “Systems and Methods for Digital Entertainment;”Serial No. 60/262,022, filed Jan. 16, 2001, entitled, “Color Changing LCD Screens;”Serial No. 60/262,153, filed Jan. 17, 2001, entitled, “Information Systems;”Serial No. 60/268,259, filed Feb. 13, 2001, entitled, “LED Based Lighting Systems for Vehicles;”Ser. No. 09/989,095, filed Nov. 20, 2001, entitled “Automotive Information Systems,” which in turn claims priority to the following U.S. Provisional Applications: Serial No. 60/252,004, filed Nov. 20, 2000, entitled, “Intelligent Indicatorsl” andSerial No. 60/296,219, filed Jun. 6, 2001, entitled, “Systems and Methods for Displaying Information;”Ser. No. 09/989,747, filed Nov. 20, 2001, entitled “Packaged Information Systems;” andSer. No. 09/989,677, filed Nov. 20, 2001, entitled “Information Systems.” In addition, this patent application claims the benefit under 35 U.S.C. §119(e) of the following U.S. Provisional Applications: Ser. No. 60/301,692, filed Jun. 28, 2001, entitled “Systems and Methods for Networking LED Lighting Systems”; Serial No. 60/328,867, filed Oct. 12, 2001, entitled “Systems and Methods for Networking LED Lighting Systems;” and Serial No. 60/341,476, filed Oct. 30, 2001, entitled “Systems and Methods for LED Lighting.” This application also claims the benefit under 35 U.S.C. §120 as a continuation-in-part (CIP) of U.S. Non-provisional application Ser. No. 09/971,367, filed Oct. 4, 2001, entitled “Multicolored LED Lighting Method and Apparatus,” which is a continuation of U.S. Non-provisional application Ser. No. 09/669,121, filed Sep. 25, 2000, entitled “Multicolored LED Lighting Method and Apparatus,” which is a continuation of U.S. Ser. No. 09/425,770, filed Oct. 22, 1999, now U.S. Pat. No. 6,150,774, which is a continuation of U.S. Ser. No. 08/920,156, filed Aug. 26, 1997, now U.S. Pat. No. 6,016,038. This application also claims the benefit under 35 U.S.C. §120 as a continuation-in-part (CIP) of the following U.S. Non-provisional applications: Ser. No. 09/870,193, filed May 30, 2001, entitled “Methods and Apparatus for Controlling Devices in a Networked Lighting System;” Ser. No. 09/215,624, filed Dec. 17, 1998, entitled “Smart Light Bulb;” Ser. No. 09/213,607, filed Dec. 17, 1998, entitled “Systems and Methods for Sensor-Responsive Illumination;” Ser. No. 09/213,189, filed dec. 17, 1998, entitled “Precision Illumination;” Ser. No. 09/213,581, filed dec. 17, 1998, entitled “Kinetic Illumination;” Ser. No. 09/213,540, filed dec. 17, 1998, entitled “Data Delivery Track;” Ser. No. 09/333,739, filed Jun. 15, 1999, entitled “Diffuse Illumination Systems and Methods;” Ser. No. 09/815,418, filed Mar. 22, 2001, entitled “Lighting Entertainment System,” which is a continuation of U.S. Ser. No. 09/213,548, filed dec. 17, 1998, now U.S. Pat. No. 6,166,496; Ser. No. 10/045,604, filed Oct. 23, 2001, entitled “Systems and Methods for Digital Entertainment;” Ser. No. 09/989,095, filed Nov. 20, 2001, entitled “Automotive Information Systems:” Ser. No. 09/989,747, filed Nov. 20, 2001, entitled “Packaged Information Systems;” and Ser. No. 09/989,677, filed Nov. 20, 2001, entitles “Information Systems.” This application also claims the benefit under 35 U.S.C. §120 of each of the following U.S. Provisional Applications, as at least one of the above-identified U.S. Non-provisional Applications similarly is entitled to the benefit of at least one of the following Provisional Applications: Serial No. 60/071,281, filed dec. 17, 1997, entitled “Digitally Controlled Light Emitting Diodes Systems and Methods;” Serial No. 60/068,792, filed dec. 24, 1997, entitled “Multi-Color Intelligent Lighting;” Serial No. 60/078,861, filed Mar. 20, 1998, entitled “Digital Lighting Systems;” Serial No. 60/079,285, filed Mar. 25, 1998, entitled “System and Method for Controlled Illumination;” Serial No. 60/090,920, filed Jun. 26, 1998, entitled “Methods for Software Driven Generation of Multiple Simultaneous High Speed Pulse Width Modulated Signals;” Serial No. 60/277,911, filed Mar. 22, 2001, entitled “Systems and Methods for Digital Entertainment;” Serial No. 60/242,484, filed Oct. 23, 2000, entitled, “Systems and Methods for Digital Entertainment;” Serial No. 60/252,004, filed Nov. 20, 2000, entitled, “Intelligent Indicators;” Serial No. 60/262,022, filed Jan. 16, 2001, entitled, “Color Changing LCD Screens;” Serial No. 60/262,153, filed Jan. 17, 2001, entitled, “Information Systems;” Serial No. 60/268,259, filed Feb. 13, 2001, entitled, “LED Based Lighting Systems for Vehicles;” and Serial No. 60/296,219, filed Jun. 6, 2001, entitled, “Systems and Methods for Displaying Information.” Each of the foregoing applications is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2909097 | Alden et al. | Oct 1959 | A |
3318185 | Kott | May 1967 | A |
3561719 | Grindle | Feb 1971 | A |
3586936 | McLeroy | Jun 1971 | A |
3601621 | Ritchie | Aug 1971 | A |
3643088 | Osteen et al. | Feb 1972 | A |
3746918 | Drucker et al. | Jul 1973 | A |
3818216 | Larraburu | Jun 1974 | A |
3832503 | Crane | Aug 1974 | A |
3858086 | Anderson et al. | Dec 1974 | A |
3909670 | Wakamatsu et al. | Sep 1975 | A |
3924120 | Cox, III | Dec 1975 | A |
3958885 | Stockinger et al. | May 1976 | A |
3974637 | Bergey et al. | Aug 1976 | A |
4001571 | Martin | Jan 1977 | A |
4054814 | Fegley et al. | Oct 1977 | A |
4070568 | Gala | Jan 1978 | A |
4082395 | Donato et al. | Apr 1978 | A |
4096349 | Donato | Jun 1978 | A |
4241295 | Williams, Jr. | Dec 1980 | A |
4271408 | Teshima et al. | Jun 1981 | A |
4272689 | Crosby et al. | Jun 1981 | A |
4273999 | Pierpoint | Jun 1981 | A |
4298869 | Okuno | Nov 1981 | A |
4329625 | Nishizawa et al. | May 1982 | A |
4367464 | Kurahashi et al. | Jan 1983 | A |
4388567 | Yamazaki et al. | Jun 1983 | A |
4388589 | Molldrem, Jr. | Jun 1983 | A |
4392187 | Bornhorst | Jul 1983 | A |
4420711 | Takahashi et al. | Dec 1983 | A |
4500796 | Quin | Feb 1985 | A |
4597033 | Meggs et al. | Jun 1986 | A |
4622881 | Rand | Nov 1986 | A |
4625152 | Nakai | Nov 1986 | A |
4635052 | Aoike et al. | Jan 1987 | A |
4647217 | Havel | Mar 1987 | A |
4656398 | Michael et al. | Apr 1987 | A |
4668895 | Schneiter | May 1987 | A |
4682079 | Sanders et al. | Jul 1987 | A |
4686425 | Havel | Aug 1987 | A |
4687340 | Havel | Aug 1987 | A |
4688154 | Nilssen | Aug 1987 | A |
4688869 | Kelly | Aug 1987 | A |
4695769 | Schweickardt | Sep 1987 | A |
4701669 | Head et al. | Oct 1987 | A |
4705406 | Havel | Nov 1987 | A |
4707141 | Havel | Nov 1987 | A |
4727289 | Uchida | Feb 1988 | A |
4740882 | Miller | Apr 1988 | A |
4753148 | Johnson | Jun 1988 | A |
4771274 | Havel | Sep 1988 | A |
4780621 | Bartleucci et al. | Oct 1988 | A |
4794383 | Havel | Dec 1988 | A |
4818072 | Mohebban | Apr 1989 | A |
4824269 | Havel | Apr 1989 | A |
4837565 | White | Jun 1989 | A |
4843627 | Stebbins | Jun 1989 | A |
4845481 | Havel | Jul 1989 | A |
4845745 | Havel | Jul 1989 | A |
4857801 | Farrell | Aug 1989 | A |
4863223 | Weissenbach et al. | Sep 1989 | A |
4874320 | Freed et al. | Oct 1989 | A |
4887074 | Simon et al. | Dec 1989 | A |
4922154 | Cacoub | May 1990 | A |
4934852 | Havel | Jun 1990 | A |
4962687 | Belliveau et al. | Oct 1990 | A |
4965561 | Havel | Oct 1990 | A |
4973835 | Kurosu et al. | Nov 1990 | A |
4979081 | Leach et al. | Dec 1990 | A |
4980806 | Taylor et al. | Dec 1990 | A |
4992704 | Stinson | Feb 1991 | A |
5003227 | Nilssen | Mar 1991 | A |
5008595 | Kazar | Apr 1991 | A |
5008788 | Palinkas | Apr 1991 | A |
5010459 | Taylor et al. | Apr 1991 | A |
5027262 | Freed | Jun 1991 | A |
5034807 | Von Kohorn | Jul 1991 | A |
5036248 | McEwan et al. | Jul 1991 | A |
5038255 | Nishihashi et al. | Aug 1991 | A |
5072216 | Grange | Dec 1991 | A |
5078039 | Tulk et al. | Jan 1992 | A |
5083063 | Brooks | Jan 1992 | A |
5122733 | Havel | Jun 1992 | A |
5126634 | Johnson | Jun 1992 | A |
5128595 | Hara | Jul 1992 | A |
5130909 | Gross | Jul 1992 | A |
5134387 | Smith et al. | Jul 1992 | A |
5142199 | Elwell | Aug 1992 | A |
5154641 | McLaughlin | Oct 1992 | A |
5164715 | Kashiwabara et al. | Nov 1992 | A |
5184114 | Brown | Feb 1993 | A |
5194854 | Havel | Mar 1993 | A |
5209560 | Taylor et al. | May 1993 | A |
5225765 | Callahan et al. | Jul 1993 | A |
5226723 | Chen | Jul 1993 | A |
5254910 | Yang | Oct 1993 | A |
5256948 | Boldin et al. | Oct 1993 | A |
5278542 | Smith et al. | Jan 1994 | A |
5282121 | Bornhorst et al. | Jan 1994 | A |
5283517 | Havel | Feb 1994 | A |
5294865 | Haraden | Mar 1994 | A |
5298871 | Shimohara | Mar 1994 | A |
5307295 | Taylor et al. | Apr 1994 | A |
5329431 | Taylor et al. | Jul 1994 | A |
5350977 | Hamamoto et al. | Sep 1994 | A |
5357170 | Luchaco et al. | Oct 1994 | A |
5371618 | Tai et al. | Dec 1994 | A |
5374876 | Horibata et al. | Dec 1994 | A |
5375043 | Tokunaga | Dec 1994 | A |
5381074 | Rudzewicz et al. | Jan 1995 | A |
5388357 | Malita | Feb 1995 | A |
5392431 | Pfisterer | Feb 1995 | A |
5402702 | Hata | Apr 1995 | A |
5404282 | Klinke et al. | Apr 1995 | A |
5406176 | Sugden | Apr 1995 | A |
5410328 | Yoksza et al. | Apr 1995 | A |
5412284 | Moore et al. | May 1995 | A |
5412552 | Fernandes | May 1995 | A |
5420482 | Phares | May 1995 | A |
5421059 | Leffers, Jr. | Jun 1995 | A |
5432408 | Matsuda et al. | Jul 1995 | A |
5436535 | Yang | Jul 1995 | A |
5436853 | Shimohara | Jul 1995 | A |
5450301 | Waltz et al. | Sep 1995 | A |
5461188 | Drago et al. | Oct 1995 | A |
5463280 | Johnson | Oct 1995 | A |
5465144 | Parker et al. | Nov 1995 | A |
5475300 | Havel | Dec 1995 | A |
5489827 | Xia | Feb 1996 | A |
5491402 | Small | Feb 1996 | A |
5493183 | Kimball | Feb 1996 | A |
5504395 | Johnson et al. | Apr 1996 | A |
5519496 | Borgert et al. | May 1996 | A |
5545950 | Cho | Aug 1996 | A |
5559681 | Duarte | Sep 1996 | A |
5561346 | Byrne | Oct 1996 | A |
5575459 | Anderson | Nov 1996 | A |
5575554 | Guritz | Nov 1996 | A |
5592051 | Korkala | Jan 1997 | A |
5614788 | Mullins et al. | Mar 1997 | A |
5621282 | Haskell | Apr 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5640061 | Bornhorst et al. | Jun 1997 | A |
5642129 | Zavracky et al. | Jun 1997 | A |
5656935 | Havel | Aug 1997 | A |
5673059 | Zavracky et al. | Sep 1997 | A |
5701058 | Roth | Dec 1997 | A |
5712650 | Barlow | Jan 1998 | A |
5721471 | Begemann et al. | Feb 1998 | A |
5734590 | Tebbe | Mar 1998 | A |
5751118 | Mortimer | May 1998 | A |
5752766 | Bailey et al. | May 1998 | A |
5769527 | Taylor et al. | Jun 1998 | A |
5803579 | Turnbull et al. | Sep 1998 | A |
5808689 | Small | Sep 1998 | A |
5821695 | Vilanilam et al. | Oct 1998 | A |
5836676 | Ando et al. | Nov 1998 | A |
5848837 | Gustafson | Dec 1998 | A |
5850126 | Kanbar | Dec 1998 | A |
5851063 | Doughty et al. | Dec 1998 | A |
5852658 | Knight et al. | Dec 1998 | A |
RE36030 | Nadeau | Jan 1999 | E |
5859508 | Ge et al. | Jan 1999 | A |
5896010 | Mikolajczak et al. | Apr 1999 | A |
5912653 | Fitch | Jun 1999 | A |
5923363 | Elberbaum | Jul 1999 | A |
5924784 | Chliwnyj et al. | Jul 1999 | A |
5927845 | Gustafson et al. | Jul 1999 | A |
5945988 | Williams et al. | Aug 1999 | A |
5946209 | Eckel et al. | Aug 1999 | A |
5952680 | Strite | Sep 1999 | A |
5959547 | Tubel et al. | Sep 1999 | A |
5963185 | Havel | Oct 1999 | A |
5974553 | Gandar | Oct 1999 | A |
5980064 | Metroyanis | Nov 1999 | A |
6008783 | Kitagawa et al. | Dec 1999 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6018237 | Havel | Jan 2000 | A |
6025550 | Kato | Feb 2000 | A |
6031343 | Recknagel et al. | Feb 2000 | A |
6068383 | Robertson et al. | May 2000 | A |
6069597 | Hansen | May 2000 | A |
6072280 | Allen | Jun 2000 | A |
6095661 | Lebens et al. | Aug 2000 | A |
6097352 | Zavracky et al. | Aug 2000 | A |
6132072 | Turnbull et al. | Oct 2000 | A |
6135604 | Lin | Oct 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6166496 | Lys et al. | Dec 2000 | A |
6175201 | Sid | Jan 2001 | B1 |
6181126 | Havel | Jan 2001 | B1 |
6183086 | Neubert | Feb 2001 | B1 |
6184628 | Ruthenberg | Feb 2001 | B1 |
6196471 | Ruthenberg | Mar 2001 | B1 |
6211626 | Lys et al. | Apr 2001 | B1 |
6215409 | Blach | Apr 2001 | B1 |
6250774 | Begemann et al. | Jun 2001 | B1 |
6273338 | White | Aug 2001 | B1 |
6292901 | Lys et al. | Sep 2001 | B1 |
6310590 | Havel | Oct 2001 | B1 |
6321177 | Ferrero et al. | Nov 2001 | B1 |
6323832 | Nishizawa et al. | Nov 2001 | B1 |
6329764 | van de Ven | Dec 2001 | B1 |
6340868 | Lys et al. | Jan 2002 | B1 |
6379244 | Sagawa et al. | Apr 2002 | B1 |
6459919 | Lys et al. | Oct 2002 | B1 |
6528954 | Lys et al. | Mar 2003 | B1 |
6548967 | Dowling et al. | Apr 2003 | B1 |
6563479 | Weindorf et al. | May 2003 | B2 |
6577080 | Lys et al. | Jun 2003 | B2 |
6608453 | Morgan et al. | Aug 2003 | B2 |
6624597 | Dowling et al. | Sep 2003 | B2 |
6639574 | Scheibe | Oct 2003 | B2 |
20010033488 | Chliwnyj et al. | Oct 2001 | A1 |
20020004423 | Minami et al. | Jan 2002 | A1 |
20020038157 | Dowling et al. | Mar 2002 | A1 |
20020044066 | Dowling et al. | Apr 2002 | A1 |
20020047569 | Dowling et al. | Apr 2002 | A1 |
20020047624 | Stam et al. | Apr 2002 | A1 |
20020048169 | Dowling et al. | Apr 2002 | A1 |
20020057061 | Mueller et al. | May 2002 | A1 |
20020070688 | Dowling et al. | Jun 2002 | A1 |
20020074559 | Dowling et al. | Jun 2002 | A1 |
20020078221 | Blackwell et al. | Jun 2002 | A1 |
20020101197 | Lys et al. | Aug 2002 | A1 |
20020130627 | Dowling et al. | Sep 2002 | A1 |
20020145394 | Morgan et al. | Oct 2002 | A1 |
20020145869 | Dowling | Oct 2002 | A1 |
20020152045 | Dowling et al. | Oct 2002 | A1 |
20020153851 | Dowling et al. | Oct 2002 | A1 |
20020158583 | Lys et al. | Oct 2002 | A1 |
20020163316 | Dowling et al. | Nov 2002 | A1 |
20020171365 | Morgan et al. | Nov 2002 | A1 |
20020171377 | Mueller et al. | Nov 2002 | A1 |
20020171378 | Morgan et al. | Nov 2002 | A1 |
20020176259 | Ducharme | Nov 2002 | A1 |
20020195975 | Dowling et al. | Dec 2002 | A1 |
20030011538 | Lys et al. | Jan 2003 | A1 |
20030028260 | Blackwell | Feb 2003 | A1 |
20030057884 | Dowling et al. | Mar 2003 | A1 |
20030057886 | Lys et al. | Mar 2003 | A1 |
20030057887 | Dowling et al. | Mar 2003 | A1 |
20030057890 | Lys et al. | Mar 2003 | A1 |
20030076281 | Morgan et al. | Apr 2003 | A1 |
20030100837 | Lys et al. | May 2003 | A1 |
20030133292 | Mueller et al. | Jul 2003 | A1 |
20030137258 | Piepgras et al. | Jul 2003 | A1 |
20030189412 | Cunningham | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
6 267 9 | Dec 1996 | AU |
2 178 432 | Dec 1996 | CA |
200018865 | Mar 2001 | DE |
0495305 | Jul 1992 | EP |
0534710 | Jan 1996 | EP |
0752632 | Jan 1997 | EP |
0752632 | Aug 1997 | EP |
0823812 | Feb 1998 | EP |
0903169 | Mar 1999 | EP |
0935234 | Aug 1999 | EP |
0942631 | Sep 1999 | EP |
1020352 | Jul 2000 | EP |
1113215 | Jul 2001 | EP |
1130554 | Sep 2001 | EP |
2 640 791 | Jun 1990 | FR |
88 17359 | Dec 1998 | FR |
2045098 | Oct 1980 | GB |
2135536 | Aug 1984 | GB |
2176042 | Dec 1986 | GB |
2327047 | Jan 1999 | GB |
03045166 | Feb 1991 | JP |
06043830 | Feb 1994 | JP |
7-39120 | Jul 1995 | JP |
8-106264 | Apr 1996 | JP |
08007611 | Dec 1996 | JP |
09-139289 | May 1997 | JP |
9 320766 | Dec 1997 | JP |
WO 8905086 | Jun 1989 | WO |
WO 9418809 | Aug 1994 | WO |
WO 9513498 | May 1995 | WO |
WO 9641098 | Dec 1996 | WO |
WO 02061328 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030057890 A1 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
60071281 | Dec 1997 | US | |
60068792 | Dec 1997 | US | |
60078861 | Mar 1998 | US | |
60079285 | Mar 1998 | US | |
60090920 | Jun 1998 | US | |
60277911 | Mar 2001 | US | |
60242484 | Oct 2000 | US | |
60252004 | Nov 2000 | US | |
60262022 | Jan 2001 | US | |
60262153 | Jan 2001 | US | |
60268259 | Feb 2001 | US | |
60296219 | Jun 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09425770 | Oct 1999 | US |
Child | 09669121 | US | |
Parent | 08920156 | Aug 1997 | US |
Child | 09425770 | US | |
Parent | 10174499 | US | |
Child | 09425770 | US | |
Parent | 09213548 | Dec 1998 | US |
Child | 09815418 | US | |
Parent | 10174499 | US | |
Child | 09815418 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09971367 | Oct 2001 | US |
Child | 10174499 | US | |
Parent | 09669121 | Sep 2000 | US |
Child | 09971367 | US | |
Parent | 09870193 | May 2001 | US |
Child | 10174499 | US | |
Parent | 09215624 | Dec 1998 | US |
Child | 09870193 | US | |
Parent | 09213607 | Dec 1998 | US |
Child | 09215624 | US | |
Parent | 09213189 | Dec 1998 | US |
Child | 09213607 | US | |
Parent | 09213581 | Dec 1998 | US |
Child | 09213189 | US | |
Parent | 09213540 | Dec 1998 | US |
Child | 09213581 | US | |
Parent | 09333739 | Jun 1999 | US |
Child | 09213540 | US | |
Parent | 09815418 | Mar 2001 | US |
Child | 09333739 | US | |
Parent | 10045604 | Oct 2001 | US |
Child | 10174499 | US | |
Parent | 09989095 | Nov 2001 | US |
Child | 10045604 | US | |
Parent | 09489747 | Nov 2001 | US |
Child | 09989095 | US | |
Parent | 09989677 | Nov 2001 | US |
Child | 09489747 | US |