Systems and methods for controlling rollback in continuously variable transmissions

Information

  • Patent Grant
  • 10920882
  • Patent Number
    10,920,882
  • Date Filed
    Monday, August 13, 2018
    5 years ago
  • Date Issued
    Tuesday, February 16, 2021
    3 years ago
Abstract
A continuously variable transmission capable of operating in a forward direction or reverse direction may be controlled in the reverse direction by providing an initial skew angle in a first skew direction, followed by a set or sequence of skew angle adjustments in an opposite direction to prevent runaway or other unintended consequences. A continuously variable transmission may include a timing plate to maintain all planets at an angle or within a range of an angle in forward and reverse operations.
Description
FIELD OF THE DISCLOSURE

Embodiments disclosed herein may be directed to continuously variable transmissions. In particular, embodiments may be directed to ball-planetary type continuously variable transmissions intended for forward rotation.


BACKGROUND

The term “continuously variable planetary transmission” (or “CVP”) may refer to a variable ratio planetary drive assembly capable of transmitting continuous and stepless power (speed and torque). A CVP may be a continuously variable subassembly (or “variator”) of a continuously variable transmission or, where there are no additional elements that modify speed and torque, the CVP may be referred to as a continuously variable transmission (“CVT”). Ball-planetary continuously variable transmissions (CVTs) generally utilize a plurality of spherical rolling elements (also commonly referred to as balls, planets, or spheres) interposed between an input ring and an output ring, and in contact with a sun. A CVP capable of operating in either a forward direction or a reverse direction may be referred to as an infinitely variable transmission (“IVT”).


SUMMARY

Embodiments disclosed herein may overcome the shortcomings of the prior art with systems and methods for controlling rollback in a continuously variable transmission.


In one broad respect, embodiments may be directed to a system or method for controlling rollback in a continuously variable transmission. When operating in a forward (design) direction, feedback is generally provided by the geometry of carrier slots. During reversed operation (rotation opposite to design), feedback is provided by skew actuator commands generated by algorithms in a control module. The control module may be integrated with an actuator or comprise a set of instructions stored in memory on a controller communicatively coupled to an actuator.


In another broad respect, embodiments may be directed to a system or method for controlling rollback in a continuously variable transmission operating in a reverse direction. In some embodiments, at the onset of reverse operation, a set of commands causes an actuator to change skew angle ζ (zeta) of a plurality of planet axles in a direction that will result in a change in tilt angle γ (gamma) towards reduction during rotation opposite to design. The number and timing of the set of commands overcomes inaccuracies in skew angle ζ (zeta) due to machining error or overcomes droop in skew angle ζ (zeta) due to load. The set of commands may include a first command to cause at least one planet carrier to rotate in a first direction. In some embodiments, the set of commands may include a second command to hold at least one planet carrier at a fixed skew angle. In some embodiments, the set of commands may include one or more commands executed after a first or second command as needed to rotate at least one planet carrier in a second rotation direction opposite the first rotation direction. The method may be performed by executing a set of instructions stored in a memory integral to the actuator or comprise a set of instructions stored in memory on a controller communicatively coupled to the actuator.


In another broad respect, embodiments may be directed to a system or method for controlling rollback in a continuously variable transmission capable of operating in a forward or reverse direction. At the expectation of reverse operation, a set of commands causes an actuator to offset skew angle ζ (zeta) for a plurality of planet axles in a direction to result in a change in the tilt angle γ (gamma) towards reduction for reverse operation. The set of commands, including the initial skew angle and any subset angles, is determined based on one or more of a geometry of the CVT, a desired operating speed or torque of the CVT and a determined input torque or speed of the CVT. The set of commands overcomes inaccuracies in skew angle ζ (zeta) due to machining error and overcomes droop in skew angle ζ (zeta) due to load. The method may be performed by executing a set of instructions stored in a memory integral to the actuator or comprise a set of instructions stored in memory on a controller communicatively coupled to the actuator.


In another broad respect, embodiments may be directed to a system or method for managing rollback in a continuously variable transmission. Whenever the transmission is stopped, and the next action is indeterminate, a command is sent to an actuator for offsetting skew angle ζ (zeta) for a plurality of planet axles in a direction that will result in a change in the tilt angle γ (gamma) towards reduction if rotation direction is reverse. The command is sufficient to overcome inaccuracies in skew angle ζ (zeta) due to machining error and overcomes droop in skew angle ζ (zeta) due to load. The method may be performed by executing a set of instructions stored in a memory integral to the actuator or comprise a set of instructions stored in memory on a controller communicatively coupled to the actuator.


In another broad respect, embodiments may be directed to a system or method for controlling rollback in a continuously variable transmission. During rotation opposite to design, skew angle ζ (zeta) may be continuously monitored as the change in tilt angle γ (gamma) for the drive approaches reduction. If skew angle ζ (zeta) is determined to be increasing due to positive feedback (e.g., angled guide slots increasing skew angle ζ (zeta)), rotation of at least one carrier in an opposite direction may be used to counteract the positive feedback. In some embodiments, if during rotation opposite to design the skew angle ζ (zeta) is offset in a direction that causes a change in the tilt angle γ (gamma) towards reduction, then as the tilt angle γ (gamma) changes towards reduction, the angled guide slots will cause an increase in the skew angle ζ (zeta). In some embodiments, to prevent runaway adjustments, a subsequent change in the skew angle ζ (zeta) back towards zero skew angle follows the ratio change. A method may be performed by executing a set of instructions stored in a memory integral to an actuator or comprise a set of instructions stored in memory on a controller communicatively coupled to an actuator.


In another broad respect, embodiments may be directed to a method for managing the skew angle in a continuously variable transmission. A targeted continuous operating condition for rotation opposite design comprises a rotation position where the planet axle ends nearest an input end of the CVP contact the centermost limit of the input carrier's guide slot. In some embodiments, a continuous skew angle ζ (zeta) may be limited to the minimum skew angle ζ (zeta) required to maintain a reduction rotation effort for each of the planets in an array of planets. In some embodiments, the continuous skew angle ζ (zeta) may be limited with consideration to machining errors or an unexpected change in external load and ratio droop.


In another broad respect, embodiments may be directed to a system for controlling skew angle in a continuously variable transmission. A slotted timing plate may be used to limit the error in ratio angle any single planet may have in relation to the mean ratio of the remaining planets. The timing plate may be a free turning disc with radial guide slots placed axially between the carrier halves. Each of the planet axles extends through the timing plate and engages the carrier guide slots at one end of the drive. Tolerances of timing plate slots allow the carrier guide slots to be the primary circumferential alignment feature for the planets. The angle or tolerances of slots in a timing plate may be based on slots formed in at least one carrier.


In another broad respect, embodiments may be directed to a system for controlling skew angle in a continuously variable transmission. A slotted timing plate having slots with tolerances and oriented at an angle other than perpendicular to an axis of rotation may be used to limit the error in ratio angle any single planet may have in relation to the mean ratio of the remaining planets. The timing plate may be a free turning disc with radial guide slots, and may be positioned axially outside of the carrier halves. Each of the planet axles extends through the carrier guide slots and engages the timing plate at one end of the drive (i.e., at an input or an output of the CVT). Tolerances of timing plate slots allow the carrier guide slots to be the primary circumferential alignment feature for the planets.


In another broad respect, embodiments disclosed herein may be directed to a variator having a sun, a plurality of planets, and first and second rings. The plurality of planets may be interposed between the first and second rings, and further in contact with and rotatable about the sun. An offset radial slot timing plate may enhance the control by ensuring each planet in the plurality of planets is within a controlled ratio angle of the whole and within a limited skew angle ζ (zeta) of the whole. The timing plate may be a free turning disc with offset radial guide slots placed axially between the array of planets and one of the carriers. Each of the planet axles extends through a timing plate slot and engages a carrier guide slot. The timing plate slots have tolerances large enough to allow the carrier guide slots to be the primary circumferential alignment feature for the planets. The angle between the timing plate slots and the carrier guide slots is non zero.


In another broad respect, embodiments disclosed herein may be directed to a variator having a sun, a plurality of planets, and first and second rings. The plurality of planets may be interposed between the first and second rings, and further in contact with and rotatable about the sun. An offset radial slot timing plate may enhance the control by ensuring each planet in the plurality of planets is within a controlled ratio angle of the whole and within a limited skew angle ζ (zeta) of the whole. The timing plate may be a free turning disc with offset radial guide slots placed axially outside the array of planets and axially outside one of the carriers. Each of the planet axles extends through a carrier guide slot and engages a timing plate slot. The carrier guide slots have tolerances large enough to allow the timing plate slots to be the primary circumferential alignment feature for the planets. The angle between the timing plate slots and the carrier guide slots is non zero.


In another broad respect, embodiments disclosed herein may be directed to a variator having a sun, a plurality of planets, first and second rings, first and second carriers, and a timing plate used to limit errors in ratio that any single spherical planet may have in relation to the mean ratio of the plurality of planets. The timing plate may be grounded relative to the carrier located opposite the plurality of planets. The timing plate may be grounded due to a direct coupling between the timing plate and the carrier or may be grounded to an element that is also grounded relative to the carrier.


In another broad respect, embodiments disclosed herein may be directed to a variator having a sun, a plurality of planets, first and second rings, first and second carriers, and a timing plate used to limit the error in ratio that any single planet may have in relation to the mean ratio of the remaining planets. The timing plate may be counter-timed to the carrier located on the same side of the plurality of planets. In other words, if the timing plate is located near an input carrier on a first side of the plurality of planets, the timing plate may be counter-timed relative to the input carrier. Counter-timing the timing plate with the first carrier may be accomplished by a gear mechanism.


These, and other, aspects will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. The following description, while indicating various embodiments of the invention and numerous specific details thereof, is given by way of illustration and not of limitation. Many substitutions, modifications, additions or rearrangements may be made within the scope of the disclosure, and the disclosure includes all such substitutions, modifications, additions or rearrangements.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A, 1B, 1C, and 1D depict simplified views of a CVT, illustrating one embodiment of a control mechanism for a ball-planetary type infinitely variable transmission;



FIG. 2A depicts a graph of tilt angle and skew angle over time, illustrating operation of one embodiment of a continuously variable transmission in a design direction;



FIG. 2B depicts a graph of tilt angle and skew angle over time, illustrating operation of one embodiment of a continuously variable transmission in a reverse direction;



FIG. 3A depicts a graph of tilt angle and skew angle over time, illustrating one method of managing rollback in a continuously variable transmission according to one embodiment;



FIG. 3B depicts a graph of tilt angle and skew angle over time, illustrating one method of managing rollback in a continuously variable transmission according to one embodiment;



FIG. 4 depicts a flow chart illustrating one method for controlling rollback in a continuously variable transmission according to one embodiment;



FIG. 5A depicts a partial view of one embodiment of a system utilizing a timing plate for controlling a continuously variable transmission during reverse operation;



FIG. 5B depicts an exploded view of one embodiment of a system utilizing a timing plate for use in controlling a continuously variable transmission during reverse operation; and



FIGS. 5C and 5D depict views of one embodiment of a system including carrier plates with control via a floating timing plate interposed between the carrier plates.





DETAILED DESCRIPTION

Various features and advantageous details are explained more fully with reference to the non-limiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. Descriptions of well-known starting materials, processing techniques, components and equipment are omitted so as not to unnecessarily obscure the features and advantages they provide. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments, are given by way of illustration only and not by way of limitation. Various substitutions, modifications, additions and/or rearrangements within the spirit and/or scope of the underlying concepts will become apparent to those skilled in the art from this disclosure.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, product, article, or apparatus that comprises a list of elements is not necessarily limited only those elements but may include other elements not expressly listed or inherent to such process, product, article, or apparatus. Further, unless expressly stated to the contrary, the use of the term “or” refers to an inclusive “or” and not to an exclusive (or logical) “or.” For example, a condition “A or B” is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), or both A and B are true (or present).


Additionally, any examples or illustrations given herein are not to be regarded in any way as restrictions on, limits to, or express definitions of, any term or terms with which they are utilized. Instead, these examples or illustrations are to be regarded as being described with respect to one particular embodiment and as illustrative only. Those of ordinary skill in the art will appreciate that any term or terms with which these examples or illustrations are utilized will encompass other embodiments which may or may not be given therewith or elsewhere in the specification and all such embodiments are intended to be included within the scope of that term or terms. Language designating such non-limiting examples and illustrations includes, but is not limited to: “for example,” “for instance,” “e.g.,” “in one embodiment.”


Embodiments of the invention disclosed here are related to the control of a variator and/or a CVT using generally spherical planets each having a tiltable axis of rotation that can be adjusted to achieve a desired ratio of input speed to output speed during operation. In some embodiments, adjustment of said axis of rotation involves angular displacement of the planet axis in a first plane in order to achieve an angular adjustment of the planet axis in a second plane, wherein the second plane is substantially perpendicular to the first plane. The angular displacement in the first plane is referred to here as “skew,” “skew angle,” and/or “skew condition.” For discussion purposes, the first plane is generally parallel to a longitudinal axis of the variator and/or the CVT. The second plane can be generally perpendicular to the longitudinal axis. In one embodiment, a control system coordinates the use of a skew angle to generate forces between certain contacting components in the variator that will tilt the planet axis of rotation substantially in the second plane. The tilting of the planet axis of rotation adjusts the speed ratio of the variator. The aforementioned skew angle, or skew condition, can be applied in a plane substantially perpendicular to the plane of the page of FIG. 1, for example. Embodiments of transmissions employing certain inventive skew control systems for attaining a desired speed ratio of a variator will be discussed.


The following description may be easier to understand in a specific context, particularly when considering a variator configured such that power is input via a first ring and exits via a second ring, with power not passing through a sun. In the context of the configuration illustrated in FIGS. 1A, 1B, and 1C, planet carrier 114 or 124 may be non-rotating with respect to a main axle such as main axle 101, the input is via a first ring 112A and the output is via a second ring 112B (also referred to as a “ring to ring” configuration). The actions and effects are the same for any configuration, such as input to a pair of carriers or to the sun, as long as the description is normalized to relative rotation of the rings to the carrier.



FIGS. 1A, 1B and 1C depict simplified views of an exemplary CVP comprising a plurality of planets for continuously transferring power. In particular, FIG. 1A depicts CVP 100 having a plurality of planets 110 distributed about main axle 101 defining longitudinal axis 105. Main axle 101 is a rigid member for supporting other elements and for transmitting power from a power source to the elements or from the elements to a power load. Main axle 101 may be solid or may have at least a portion with a hollow passage for allowing fluid flow or to accommodate sensors, wires, control mechanisms, rods, shafts, other axles, conduits, reservoirs, etc. Longitudinal axis 105 is an axis of rotation for planets 110, traction rings 112, sun 102 and planet carriers 114 and 124, and may also be referred to as a main axis or a center axis.


In addition to elements rotating about main axis 105, each planet 110 has a tiltable planet axle 111. Each planet axle 111 extends through a planet 110 and defines axis of rotation 115 for that planet 110. Similar to main axle 101, planet axles 111 are rigid members. Planet axles may also be solid or hollow for enabling fluid flow through planets 110.


Power may be input to planets 110 via ring 112A or 112B or to sun 102 via main axle 101, and transferred via planets 110 to sun 102 or ring 112A or 112B as needed. As described above, planets 110 are rotatable about tiltable planet axles 111. Control of how power is transferred across planets 110 is based on a tilt angle γ (gamma). Tilt angle γ (gamma) is used herein to refer to a projection of an angle between planet axis of rotation 115 and longitudinal axis 105 in the plane containing both axes, and may also be referred to as “ratio angle.”


Embodiments disclosed herein may take advantage of the architecture of CVTs that allows skew shifting (i.e., imparting a skew angle to cause a stepless change in tilt angle γ). FIGS. 1B-1D depict side and top views of one embodiment of a CVT, illustrating slot angles and angular displacement and their effects on skew angle. As depicted in FIGS. 1A, 1B, 1C, and 1D, carrier 114 has slots 116 configured to retain ends 111A of planet axles 111 such that ends 111A of planet axles 111 may move along slots 116 (independently of axle ends 111B retained in slots 126 of carrier 124), enabling a change in skew angle ζ (zeta), causing a change in tilt angle γ (gamma) to provide continuous and stepless adjustment of the speed ratio of variator 100. As depicted in FIG. 1B, slots 116 (or 126) may be oriented at a bias angle B of zero degrees, where bias angle B is relative to a construction line LC of carrier 114 (or 124) extending radially outward perpendicular to axis of rotation 115 (extending out of the page).


As depicted in FIGS. 1A, 1B and 1C, carrier 124 has slots 126 configured to retain ends 111B of planet axles 111 such that ends 111B of planet axles 111 may move along slots 126 (independent of axle ends 112A), enabling a change in skew angle ζ to cause a change in tilt angle γ (gamma) to provide a continuous (stepless) change in the speed ratio of variator 100.


In some embodiments, carrier 114 is rotatable relative to carrier 124. In other embodiments, carrier 124 is rotatable relative to carrier 114. The angle of relative rotation between carriers 114 and 124 may be adjusted based on a desired skew angle ζ (zeta), a target tilt angle γ (gamma), or a desired speed ratio (SR). In other words, if slots 116 in carrier 114 have a different angle or orientation relative to slots 126 in carrier 124, then when carriers 114 and 124 rotate relative to each other, the ends 111A, 111B of planet axles 111 may translate or rotate within slots 116 or 126, causing a skew angle (ζ) to be applied to planets 110 to cause a change in tilt angle γ (gamma), causing a change in speed ratio (SR). Ends 111A, 111B of planet axles 111 may be configured to allow for linear motion as well as rotational motion of planet axles 111.


When planet axles 111 are oriented such that axes of rotation 115 are parallel with center axis 105 (i.e., tilt angle γ (gamma)=0), the rotational speed and torque transmitted across planets 110 to ring 112B is substantially equivalent to the rotational speed and torque applied to ring 112A (minus losses due to friction, tolerances and the like). When power is transmitted from ring to ring (e.g., from ring 112A to ring 112B or from ring 112B to ring 112A) and planet axles 111 are tilted at a non-zero tilt angle (i.e., tilt angle γ (gamma) is greater than or less than 0), the CVP is considered to be operating in either underdrive or overdrive, and the rotational speed and torque are at some other ratio. The term “underdrive” is used herein to refer to a transmission ratio that causes in an increase of torque from the input to the output of a transmission. Underdrive may also refer to a decrease in rotational speed from the input to the output of a transmission, and may also be referred to as “reduction.” When planet axles 111 are at a positive tilt angle γ (gamma) greater than 0 such that axes of rotation 115 are not parallel with center axis 105, ring 112B experiences an increase in torque and a decrease in rotational speed. The term “overdrive” is used herein to refer to a transmission ratio that causes a decrease of torque from the input to the output of a transmission. Overdrive may also refer to an increase in rotational speed from the input to the output of a transmission, and may also be referred to as “speed up.” When planet axles 111 are at a negative tilt angle γ (gamma) greater than 0, CVP 100 is considered to be in overdrive and ring 112B experiences a decrease in torque and an increase in rotational speed. The principles apply whether the power path is from a ring to ring, ring to sun, or sun to ring in that the relationship between the skew forces and the skew direction are constant.


The value of the tilt angle γ (gamma) (including positive or negative) may be controlled through the use of carriers 114, 124. Carriers 114, 124 are structures that control the relative rotation angle Ψ (psi) between ends 111A, 111B of planet axles 111. Carriers 114, 124 control the absolute rotational angle between the planet positions and an inertial reference frame. A change in the relative rotational angle between first and second carriers 114, 124 may be referred to as Ψ (psi) or “carrier shift.” It should be noted that carrier rotation refers to something other than, for example, “ratio shift” or “gamma shift.” Furthermore, the term “rotation angle” is used herein to refer to a relative rotational angle between carriers 114 and 124. For ease of understanding, throughout this document carrier 114 is referred to as being placed at the input of the variator, and carrier 124 is referred to as located at the output of the variator. Carriers 114 and 124 have slots 116, 126 configured to retain ends 111A, 111B of planet axles 111 such that ends 111A, 111B may translate along slots 116, 126 and may further rotate or experience other motion.


Slots 116, 126 each have a length L, a width W, and a slot angle Θ (theta). The lengths of slots 116, 126 extend inside a pitch diameter (DP) of carrier 114, 124. The widths of slots 116, 126 allow ends 111A or 111B of planet axles 111 to translate or rotate. However, if the width of any slot 116, 126 is outside a tolerance for all slots 116, it is possible for one planet 110 to behave different than other planets 110 and control of a CVP becomes more difficult. One effect of a CVP being more difficult to control is a decreased efficiency of the CVP. Slot angle Θ (theta) is defined at the projected intersection (P) of the centerline of the skew guide feature (i.e., slot 116 or 126), a radial line LR normal to center axis 105 and pitch diameter DP of the array of traction planets 110, wherein the projection plane is normal to center axis 105. Slot angle Θ may also be referred to as an offset radial angle, a skew slot angle, or a guide slot angle. The term “radial” generally describes a line, groove or slot normal to center axis 105. A second description of an offset radial feature is a feature tangent to a circle of non-zero radius concentric to the center axis.


Ratio rotation may be controlled by applying a skew angle ζ (zeta) to planet axles 111. Skew refers to an angle from a plane containing planet axis 115 to a plane containing center axis 105. A skew angle ζ (zeta) may refer to an included angle between the projection of a skew guide feature and a radial line LR normal to center axis 105, wherein the projection plane is normal to center axis 105.


During normal direction operation of CVT 100, the geometry of carriers 114, 124 adds negative feedback when tilt angle γ (gamma) changes, which contributes to system stability during ratio change. One such negative feedback geometry involves carriers 114 with at least one set of carrier guide slots 116 or 126 that are not purely radial but instead are angled with respect to a radial plane. The angle β (beta) of slots 116 may be singular (i.e., constant) or may be different at each radial increment. Slots 116 or 126 may be straight or curved. Advantageously, angled slots 116 or 126 utilize a positive change of ratio angle to cancel a positive skew angle ζ. When a CVT is rotating in the normal direction (also referred to as the design or rolling direction), any bias of the CVT is countered, the CVT remains at the desired skew angle ζ (zeta) until a tilt angle γ (gamma) is achieved, and the CVT is stable. Thus, only an initial skew angle input is necessary to achieve a target tilt angle output.


An undesirable effect can occur when a ball type variator operates in a reverse direction. Namely, if a CVT is configured to induce a tilt angle by applying a skew angle ζ (zeta) in the rolling direction and relies on negative feedback to reduce skew angle ζ (zeta) as the tilt angle γ (gamma) changes, then if the direction of operation is reversed and the negative feedback becomes positive feedback (i.e., the feedback becomes positive such that a skew angle ζ (zeta) inducing a tilt angle change is positively reinforced as the tilt angle γ (gamma) changes) the CVT may become unstable, and might continue to change tilt angle γ (gamma) to an extreme underdrive or overdrive condition.



FIGS. 2A and 2B depict diagrams illustrating operation of a CVT according to one embodiment. As a general note, solid lines represent active control or input into the system, and dashed lines represent effects. Thus, a change in an actuator position (e.g., an external command) intended for causing a desired rotation of a carrier 114 or 124 will be represented by a solid line, whereas if the same carrier 114 or 124 is rotated due to the geometry of the CVT, that movement is represented by a dashed line.



FIG. 2A depicts a diagram, illustrating changes in tilt angle γ (gamma) 220 and skew angle 210 over time for planet axles 111 (and therefore planet axes of rotation 115) in a CVT, illustrating a relationship between skew angle and tilt angle γ (gamma) for a CVT operating in a design operation. As depicted in FIG. 2A, skew angle 210 is controlled by a CVT during a first time period 210a until the skew angle reaches a desired skew angle 210b. In response, tilt angle 220 “follows” the skew angle over time 220a to a target tilt angle 220b, and skew angle 210 returns to zero over time 210c. In other words, during operation in the design direction, a first rotation of carrier 114 or 124 relative to carrier 124 or 114 to target skew angle 210b induces planet axle ends 111A to move in a first direction and the geometry of slots 116 and 126 translate axle ends 111A to generate a skew condition in the variator. The geometry of slots 116 and 126 allows ends 111A to translate in slots 116 to target tilt angle 220b. Eventually, the original rotation of carrier 114 or 124 and the angular movement of axle ends 111A due to slots 116 and 126 will offset and planet axles 111 will have zero skew angle at the target tilt angle. When the actual skew angle and the desired skew angle are equal and planet axes of rotation 115 are parallel to axis of rotation 105, the planet axle angle will stop changing (i.e. the system is stable). FIG. 2A depicts this principle.



FIG. 2B depicts a diagram of skew angle and tilt angle γ (gamma) over time, illustrating a relationship between skew angle and tilt angle during reverse operation. During reverse rotation, if a first carrier (e.g., carrier 114) is rotated to achieve a skew angle (depicted as point 210b), a skew condition of the planet axes of rotation 115 will cause planet axle ends 111A to rotate in a first direction, but slots 116 may allow planet axle ends 111A to move further radially inward, indicated by line 221. Because slots 116 are configured with slot angle Θ (theta) for rotation in a design direction, as planet axle ends 111A move radially inward, slots 116 will cause planet axle ends 111A to move in a second direction. This motion caused by slots 116 will add to the original rotation of first carrier 114, indicated by line 210d. The skew angle 210d of planet axes of rotation 115 will increase and the impetus for planet axle ends 111A in first carrier 114 to move radially inward will increase. FIG. 2B depicts a diagram illustrating this principle. Eventually, the skew angle ζ (zeta) of planet axes of rotation 115 from the rolling direction will increase to a maximum value 222 to cause the tilt angle to reach a maximum value 223 such that the transmission torque loss will overcome the available drive torque (i.e., the system is unstable). Moreover, if the scenario is left unchecked, sliding action caused by a planet whose axis of rotation is radically skewed from the rolling direction may destroy the rolling contacts or otherwise cause damage to the CVT, which may cause the CVT to fail.


Alternatively, during reverse rotation, if first carrier 114 is rotated in the opposite direction, skew angle 210 of planet axes of rotation 115 will cause planet axle ends 111A in first carrier slots 116 to move radially outward. Because slot angle Θ (theta) of slots 116 is configured for rotation in a design direction, as planet axle ends 111A moves radially outward, slots 116 will cause planet axle ends 111A to move. This motion caused by slots 116 will add to the original rotation of first carrier 114 (i.e., bias first carrier 114 in the same direction). The skew angle 210d of planet axes of rotation 115 will increase and the impetus for planet axle ends 111A at first carrier 114 to move radially outward will increase. Eventually, the skew angle ζ (zeta) of planet axes of rotation 115 will reach a value 222 to cause the tilt angle γ (gamma) to reach a value 223 such that the transmission torque loss will overcome the available drive torque. Moreover, any sliding action, caused by any planet 110 whose axis of rotation 115 is radically skewed from the rolling direction, may contact, damage or destroy a rolling contact or other component of the CVP.


Embodiments disclosed herein may overcome these, and other limitations of the prior art. Embodiments allow reverse rotation in a ball type variator utilizing skew control and angled slots in carriers 114, 124. Skew control and angled slots 116, 126 in carriers 114 and 124 provide negative feedback to planet axis angle change when in forward rotation. When operating in a reverse rotation, the rotation angle of first carrier 114 relative to second carrier 124 is actively controlled such that the skew angle of planet axes of rotation 115 relative to the rolling direction is controlled. For example, consider that during reverse rotation, tilt angle γ (gamma) of planet axes of rotation 115 is to be adjusted such that axle ends 111A at first carrier 114A move radially inward by a small amount. FIGS. 3A and 3B depict diagrams of skew angle and tilt angle over time, illustrating how tilt angle γ (gamma) may be changed even when a CVT is operating in a reverse direction.


Embodiments for controlling a tilt angle during reverse rotation disclosed herein may include a processor communicatively coupled to an actuator and a memory storing a program or a set of instructions executable by the processor. The processor may perform a method of controlling or managing a CVP, a variator, a CVT subassembly, a CVT, a drivetrain or a vehicle having a CVT.



FIG. 3A depicts a flow diagram, illustrating one embodiment of a method for controlling rollback in a CVT. As depicted in FIG. 3A, if an initial rotation of first carrier 114 causes a first skew angle 310a to cause a first tilt angle rate of change 340a to a first tilt angle 340b, then after the initial rotation to a first skew angle 310b, while axle ends 111A move radially inward, first carrier 114 may be rotated in an opposite direction according to a second skew angle rate of change 310c to a second skew angle 310d to compensate for the effect that angled slots 116 have on the skew of planet axes of rotation 115, and skew angle rate of change 310e is held constant for a desired time or until tilt angle γ (gamma) achieves a target value 340d. Note that although skew angle rate of change 310e is constant, tilt angle 340c might change. In other words, a rotation angle for first carrier 114 does not equal the target tilt angle. When the desired movement has been made or the tilt angle γ (gamma) nears a target tilt angle 340e, an additional rotation 310g of first carrier 114 in the clockwise direction is required to return planet axes of rotation 115 to zero skew 310h in the rolling direction.


As depicted in FIG. 3B, if an initial rotation 310a of first carrier 114 adjusts CVP at a first tilt angle rate of change 340a to a first tilt angle 340b, then after the initial rotation to a first skew angle 310b, while axle ends 111A move radially inward, first carrier 114 may be rotated in an opposite direction according to a second skew angle rate of change 310c to a second skew angle 310d to compensate for the effect that angled slots 116 have on the skew of the planet axes of rotation 115. Skew angle rate of change 310 may be adjusted using a series 310e-1 to 310e-n or until tilt angle γ (gamma) achieves target value 340d (or nears target value 340d). When the desired movement has been made or when the CVT is operated in a design direction, an additional rotation 310g of first carrier 114 in the first direction may return planet axes 115 to zero skew 310h in the rolling direction. Tilt angle 340 remains at the target tilt angle until another set of commands.


A CVT that is started in a forward direction, started from stop, or started in a reverse direction may be controlled using an active control algorithm. The control logic for a skew control based planetary CVT with mechanical gamma feedback and which allows reverse rotation might include determining a current transmission ratio, such as by a stored value from another operation or the previous measurement, determining a current skew such as from the last observed rotation change and rotation values, (speed and direction), or determining the current direction of rotation and speed of rotation. If the rotation direction is reversed, or zero, or expected to be reverse, the relative carrier angle may be rotated to a position such that the sum of the last known skew and the rotation amount result in a skew value that would safely initiate a downward rotation in reverse rotation. As long as the CVT is operating in a reverse direction, control may include determining an actual skew direction and rate of change of the tilt angle gamma as well as rotation direction, and correcting the skew for selected conditions.



FIG. 4 depicts a flow diagram, illustrating one method for controlling tilt angle of a CVT. As depicted in FIG. 4, the current value of planet axis skew angle and direction of rotation are obtained, the load is monitored, and as the ratio changes in the desired direction, subsequent signals may be communicated to maintain, reduce or reverse the skew angle an appropriate amount to control the rate of ratio change. Furthermore, embodiments may be preset to operate in a reverse direction as a precaution.


In step 410, a processor may receive, sense, or otherwise obtain information about a current value of planet axis skew angle and a direction of rotation. Planet axis skew angle may be known by determining a rate of change of planet axis skew angle and a rate of rotation of planets 110. A rate of change of the planet axis skew angle may be determined from a rate of change of a transmission ratio or other relative factors. Since the creep of the rolling surfaces, and subsequent loss of rolling speed, is related to the torque and speed of the transmission, calculation of the rate of change in planet axis angle is generally affected by the power. Hence, the power is one of the relative factors. Rotation direction can be determined by measurement of the phase angle between two offset signals such as inductive or Hall Effect speed pickups. Rotation direction can also be indicated by observing the direction of the actual change in transmission ratio versus an expected change. For example, if a signal is input to rotate the first carrier relative the second carrier to increase the ratio, but it decreases instead, that may be an indication that the rotation direction is the opposite of the expected rotation direction.


In some embodiments, step 415 includes monitoring the load on the CVT. Noting that the torque on the transmission causes load at each element in the control path, then backlash and compliance in the control elements, as well as changes in the creep rate, might affect the conclusion. Take for example the case where a signal to decrease ratio towards overdrive is synchronized with an increase in external load/torque on the transmission. A rotation of the relative angles of the carriers and subsequent desired change in skew angle of the planet axis might be expected to rotate the transmission towards overdrive. However, the increase in applied load might cause enough deflection in the elements to cause the actual skew angle to be opposite in sign. The result might be a negative rotation when a positive rotation was expected (or vice versa). Thus, the load on the transmission may be monitored and considered if rotation direction is to be determined from actual change in ratio versus expected change in ratio.


In step 420, a signal is sent to adjust carrier angle to provide a desired skew angle and therefore achieve a target tilt angle. Under forward operating conditions, steps 410, 415 and 420 are continuously performed to provide continuous and stepless transmission speed ratios.


Under reverse operations, steps 410, 415, 420 and 425 are continuously performed to provide continuous and stepless transmission speed ratios. In particular, any change of a planet axis 115 from a zero skew angle when the drive direction is opposite of design may likely cause a runaway move (i.e., an end 111A or 111B of one or more planet axles 111 will tend to translate along slot 116 or 126 towards one of the ratio extremes because of positive ratio feedback). In step 425, a signal to reverse carrier rotation is sent to an actuator. If carriers 114 or 124 are rotated such that reversed rotation is certain to move planet axes 115 towards underdrive, then as planets 110 move towards underdrive, one or both carriers 114, 124 may be rotated to an overdrive condition to compensate for the positive reinforcement of the underdrive rotation caused by slots 116 in carrier 114 or 124.


A CVT may be started from stop. Whenever the transmission is stopped, or the next action is indeterminate, a command for offsetting skew in the direction that will result in a rotation towards reduction if rotation direction is reverse may be communicated to an actuator. In a preferred embodiment, a command for offsetting the skew in the direction that will result in a rotation towards reduction if rotation direction is reverse that is adequate to overcome any inaccuracies in skew position due to machining error or droop in skew position due to load is communicated to an actuator. If the CVT is started from stop and the CVT is set to operate in a forward rotation direction but instead operates in a reverse rotation direction, damage may occur. In some embodiments, in step 430, the CVT is preset to operate in a reverse rotation direction. Thereafter, if the CVT is operated in a reverse mode, a command may be given to adjust the carrier angle (step 420) and embodiments may immediately begin monitoring the CVT to obtain information about the current value of planet axis skew and direction of rotation (step 410) to provide feedback to maintain a stable system. Alternatively, if the CVT is operated in a forward direction, slots 116 or other geometry of carriers 114 and 124 immediately provide positive feedback to maintain a stable system. Advantageously, the potential for damage to the system is reduced.


In some embodiments, a signal (e.g., a signal as sent in steps 420 or 425 or information obtained by monitoring a load in step 415) may be sent to an actuator to maintain the present skew angle of a CVT. The actuator may maintain this skew angle until subsequent signals are communicated to the actuator. Rotating may be accomplished by a processor sending a signal to an actuator coupled to carrier 114 or 124. In some embodiments, an actuator may be coupled to both carriers 114 and 124, and changing the skew angle may involve coordinating the rotational position of carriers 114 and 124.


The rate at which negative feedback is provided by an actuator may be more than the rate at which feedback is provided by the slots in forward operation. For example, the feedback provided by the slots depends on, among other things, the widths of the slots. As such, wider slots may provide less feedback. In other embodiments, the amount of negative feedback may be based on a parameter of the slots along with a speed of the CVP, a speed ratio (SR) of the CVP, a tilt angle of the CVP, or some other parameter determined to have an effect on the likelihood of the CVP adjusting to an undesired operating condition. Thus, if a CVP is operating at a high speed and slots 116, 126 have greater tolerances, more feedback (including higher frequency or greater magnitude) may be required to prevent damage, but a CVP operating at low speeds or with tighter tolerances may require less feedback.


As disclosed above, a system utilizing an active control algorithm may be useful for stabilizing a CVT in either rotation direction. In addition to controlling rollback by using continuous adjustments after an initial rotation, embodiments may include systems for controlling conditions which could lead to rollback. In some embodiments, a third plate with a third set of slots may be used as a timing plate. A timing plate may partially synchronize the ratio angles and the skew angles of each planet 110 within the plurality of planets 110.



FIGS. 5A, 5B and 5C depict views of carriers 114 and timing plate 510. It should be noted that carrier 124 is not shown, but that carrier 114 and carrier 124 are similar and may be identical. Accordingly, only carrier 114 is described here for simplicity and ease of understanding. Also, it should be noted that carrier 114 and timing plate 510 are depicted in FIGS. 5A and 5B as mirror images. However, this is just for ease of description and the dimensions of timing plate 510 may differ. For example, a thickness of timing plate 510 may be less than a thickness for carrier 114, the value of an angle for slot 516 may be more than, less than, or the same as the value of an angle for slot 116, the width (W516) of slot 516 may be greater than, the same, or less than the width (W116) of slot 116, the length (L516) of slot 516 may be longer or shorter than the length (L116) of slot 116, etc. In some embodiments, width W516 of slot 516 has tolerances selected such that slots 116 or 126 are the primary structures for controlling planet axle ends 111A or 111B in forward and reverse operations and slots 516 are for preventing runaway or other effects in reverse operation. In some embodiments, the value of an angle, the width, or some other parameter of slot 516 is selected such that slots 116 or 126 are the primary structures for controlling planet axle ends 111A or 111B in forward operations, and slots 516 are intended for preventing runaway or other effects in reverse operation.



FIGS. 5C and 5D depict views of one embodiment of a system including carrier plates 114A and 114B with control via a floating timing plate 510 interposed between carrier plates 114A and 114B. As depicted in FIGS. 5C and 5D, planet axles 111 extend through timing plate slots 516 and engaging carrier slots (e.g., carrier slots 116A and 116B). If an angle (B) between timing plate slot 516 and corresponding carrier slot 116 is other than zero, then one end (111A or 111B) of planet axle 111 may be positioned at the intersection (L) of timing plate slot 516 and carrier slot 116. In this configuration, timing plate 510 may be useful for controlling the movement of planet axles 111 along carrier slots 116, such as preventing any single planet axle 111 from deviating in a direction from the other planet axles 111, or maintaining each planet axle 111 at an angle within a tolerance of a collective angle for the plurality of planet axles 111. For example, if the collective angle is 25 degrees, embodiments may ensure all axles are at an angle between 22 degrees and 28 degrees. It is advantageous for efficient forward operation that slots 516 in each of carriers 114, 124 synchronize the angular spacing among the ends of each planets planet axle 111 within the array of planets 110. Embodiments disclosed herein provide an adequate amount of clearance or backlash in the timing plate slots to prevent timing plate 510 from interfering with the operation of either of the carriers (114 or 124).


The driving angle (alpha) refers to the angle between the projection of each of the timing plate slots 516 and a line 515 radial to the center axis and intersecting the centers of the timing plate slots 516 at the pitch diameter of the array of planets wherein the projection plane is normal to center axis 105. Blocking angle (B), as used herein, may refer to the angle between the projection of the timing plate slot centerlines and the carrier slot centers at the intersection of the timing plate slot centerlines, the carrier guide slot centerlines and the pitch diameter of the array of planets wherein the projection plane is normal to the center axis. The optimal blocking angle occurs when timing plate slots 516 are 90° to carrier slots 116 and 126 (opposite the direction of rotation).


Timing plate 510 may be free running or may be grounded relative to a carrier (e.g., carrier 114 or 124). In embodiments in which timing plate 510 is free running, its angular position may be determined by the sum of forces of the array of planet axles 111. In a preferred embodiment, the driving angle for slots 516 in timing plate 510 ideally will be less than 90° from radial. Advantageously, timing plate 510 may prevent a large error in ratio or skew by blocking the change of ratio angle. In a preferred embodiment, from the dual considerations for blocking and driving, timing plate slots 516 are configured such that the blocking angle is no less than 30° (relative to a radial line and in the design direction of rotation) and the driving angle no greater than 45° (relative to a radial line and opposite the design direction of rotation).


In some embodiments, timing plate 510 having radial slots 516 may enhance the control by ensuring each planet 110 in the array of planets 110 is within a controlled ratio angle of the set of planets and within a limited skew angle of the set of planets 110. Timing plate 510 may be a free turning disc with radial slots 516. In some embodiments, timing plate 510 may be positioned axially between the carrier halves 114 and 124. Each of the planet axles 111 passes through timing plate 510 before engaging the carrier guide slots 116 or 126 at one end of the drive. Tolerances of timing plate slots 516 allow carrier slots 116 or 126 to be the primary control of axles 111 and the primary circumferential alignment feature for planets 110. In some embodiments, the tolerances allow deviations of up to 3 degrees. In other embodiments, the tolerances allow for deviations up to 5 degrees.


In some embodiments, timing plate 510 having offset radial slots 516 may enhance the control by ensuring each planet axle 111 for all planet axles 111 in the array of planets 110 is within a controlled ratio angle of a mean ratio angle of the plurality of planets and within a limited skew angle of a mean ratio angle of the plurality of planets.


In some embodiments, timing plate 510 may comprise a disc with offset radial slots 516 formed therein, and may be positioned axially outside of one of carriers 114 or 124 and driven by carrier 114 or 124 opposite its axial position relative to planets 110. Each of the planet axles 111 extends through a carrier guide slot 116 or 126 and engages a timing plate slot 516. In this configuration, timing plate slots 516 has larger tolerances. However, carrier guide slots 116 or 126 have sufficient tolerances for planet axles 111 to allow timing plate slots 516 to be the primary circumferential alignment feature for planets 110. The angle of timing plate slots 516 may be determined as a function of the angles of carrier guide slots 116 and 126 in both carriers 114 and 124.


There are considerations which may affect the choice of the offset radial slot angles for a free running timing plate 510. These considerations include, but are not limited to, minimizing the timing plate drive torque, maximizing the synchronizing force, and minimizing the backlash or allowed synchronization error. Some factors which may affect these considerations include: manufacturing variations and tolerance bands for carrier guide slot radial spacing; carrier guide slot width; timing plate guide slot radial spacing; timing plate guide slot width; and axle or axle endcap diameters. Control factors such as a desired stationary skew value or a minimum desired continuous skew in reverse operation may also be of interest in timing plate offset radial angle design.


In some configurations, it may be necessary or desirable to have a timing plate driven by a carrier positioned proximate to the timing plate (i.e., located axially on the same side of a plurality of planets). In these configurations, the timing plate and the driving plate may be coupled via a mechanism such that an angular movement of the driving plate in a first direction is counteracted by an angular movement of the timing plate in the opposite direction. In some embodiments, a timing plate may have a first gear with a first set of teeth, and a carrier may have a second gear with a second set of teeth for meshing with the first set of teeth. As the carrier rotates, the second gear rotates in a first direction while the second set of teeth are engaged with the first set of teeth on the first gear, which causes the first gear to rotate in an opposite direction to bias the timing plate. Other mechanisms may be possible.


A method of manufacturing a timing plate for controlling rollback in a CVT capable of reverse operation may include forming a plurality of timing plate slots (e.g., slots 516) in a timing plate, wherein the plurality of timing plate slots are formed at an angle relative to a plurality of carrier guide slots (e.g., slots 116 or 126). The angle may be determined based on an analysis for optimizing a synchronization force (i.e., the force necessary to prevent one or more runaway planets from affecting the array of planets). In some embodiments, forming the plurality of timing plate slots includes determining an angle (b) between the timing plate slots and a radial line, wherein both intersect at the planet array pitch radius at an angle of 0° (i.e., perpendicular to a planet axis). The angle may be determined based on an analysis of criteria to minimize a skew or tilt force (i.e., a force necessary to effect a desired skew angle or tilt angle). In some embodiments, the method may further include determining an angle between the timing plate slots and a radial line of between 30° and 60°, where both intersect at the planet array pitch radius. The angle may be determined based on a compromise between any of the preceding factors. Furthermore, in some embodiments, the angle between the timing plate slots and a radial line where both intersect at the planet array pitch radius of between 0° and 80° is protected for the maximum possible contributions of all the previously described factors.


In some embodiments, a targeted continuous operating condition for rotation opposite design comprises a position such that the planet axles or planet axle endcaps nearest the input end of the CVP contact the centermost limit of the input carrier's guide slot. In some embodiments, a skew angle may be limited to a minimum angle required to maintain a reduction rotation effort for each of the planets in the array of planets. A minimum skew angle may be determined based on machining tolerances (including errors or other variations) and may further account for changes in external load or ratio droop.


In some embodiments, all but one of the array of planets may be held with a small amount of positive skew, which may allow the system to gradually change ratio in an overdrive direction. The remaining planet may be held at a position with a small amount of negative skew. However, the planet with negative skew is prevented from having additional negative skew or from negating the positive skew of the remaining planets.


Embodiments disclosed herein have been described as they pertain to planetary type continuously variable transmissions. Furthermore, embodiments have been depicted with power entering through a shaft. However, those skilled in the art will appreciate that concepts and features described herein may be applicable to other settings, including power entering through a ring or some combination of rings and a shaft. Furthermore, embodiments disclosed herein may be used individually or in combination with other embodiments to provide a drive train, continuously variable transmission, variator or the like capable of operating in either a forward direction or a reverse direction. Those skilled in the art will appreciate that these concepts may be equally useful in other settings and are thus not to be limited.

Claims
  • 1. A method for controlling rollback in a continuously variable transmission (CVT) by a control system comprising a controller communicatively coupled to a sensor configured to sense a first operating parameter of the CVT, the control system further comprising an actuator configured to change a second operating parameter of the CVT, the method comprising: sensing the first operating parameter of the CVT; andsending a command to the actuator to adjust a speed ratio of the CVT based on the sensed first operating parameter and a direction of rotation of the CVT, wherein if the CVT changes direction of rotation, sending a command to the actuator comprises: sending a first command to the actuator to cause a first adjustment of the CVT;sensing a rate of change of the first operating parameter based on the first adjustment; andsending a second command to the actuator to cause a second adjustment of the CVT to maintain the rate of change of the first operating parameter constant, wherein the second command is sent based on the sensed first operating parameter.
  • 2. The method of claim 1, wherein the first operating parameter comprises a speed ratio and the second operating parameter comprises a tilt angle or a skew angle.
  • 3. The method of claim 1, wherein the first operating parameter comprises a tilt angle and the second operating parameter comprises the tilt angle or a skew angle.
  • 4. The method of claim 1, wherein sensing the rate of change of the first operating parameter based on the first adjustment is performed when the CVT is rotating in a reverse direction of rotation.
  • 5. A system for controlling rollback in a continuously variable transmission (CVT), comprising: a controller communicatively coupled to a sensor configured to sense a first operating parameter of the CVT; andan actuator configured to change a second operating parameter of the CVT, wherein the controller comprises a set of instructions configured to: send a first command to the actuator to cause a first adjustment of the CVT;sense a rate of change of the first operating parameter based on the first adjustment; andsend a second command to the actuator to cause a second adjustment of the CVT to maintain the rate of change of the first operating parameter constant wherein the second command is sent based on the sensed first operating parameter.
  • 6. The system of claim 5, wherein the first operating parameter comprises a speed ratio and the second operating parameter comprises a tilt angle or a skew angle.
  • 7. The system of claim 5, wherein the first operating parameter comprises a tilt angle and the second operating parameter comprises the tilt angle or a skew angle.
  • 8. The system of claim 5, wherein sensing the rate of change of the first operating parameter based on the first adjustment is performed when the CVT is rotating in a reverse direction of rotation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/996,743, filed Jan. 15, 2016 and scheduled to issue as U.S. Pat. No. 10,047,861 on Aug. 14, 2018. The disclosures of the all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety. This application is related to U.S. Pat. Nos. 8,313,404, 8,469,856, and 8,888,643, all of which are incorporated by reference herein.

US Referenced Citations (709)
Number Name Date Kind
719595 Huss Feb 1903 A
1121210 Techel Dec 1914 A
1175677 Barnes Mar 1916 A
1207985 Null et al. Dec 1916 A
1380006 Nielsen May 1921 A
1390971 Samain Sep 1921 A
1558222 Beetow Oct 1925 A
1629902 Arter et al. May 1927 A
1686446 Gilman Oct 1928 A
1774254 Daukus Aug 1930 A
1793571 Vaughn Feb 1931 A
1847027 Thomsen et al. Feb 1932 A
1850189 Weiss Mar 1932 A
1858696 Weiss May 1932 A
1865102 Hayes Jun 1932 A
1978439 Sharpe Oct 1934 A
2030203 Gove et al. Feb 1936 A
2060884 Madle Nov 1936 A
2086491 Dodge Jul 1937 A
2097631 Madle Nov 1937 A
2100629 Chilton Nov 1937 A
2109845 Madle Mar 1938 A
2112763 Cloudsley Mar 1938 A
2123008 Hayes Jul 1938 A
2131158 Almen et al. Sep 1938 A
2134225 Christiansen Oct 1938 A
2152796 Erban Apr 1939 A
2196064 Erban Apr 1940 A
2209254 Ahnger Jul 1940 A
2259933 Holloway Oct 1941 A
2269434 Brooks Jan 1942 A
2325502 Auguste Jul 1943 A
RE22761 Wemp May 1946 E
2461258 Brooks Feb 1949 A
2469653 Kopp May 1949 A
2480968 Ronai Sep 1949 A
2553465 Monge May 1951 A
2586725 Henry Feb 1952 A
2595367 Picanol May 1952 A
2596538 Dicke May 1952 A
2597849 Alfredeen May 1952 A
2675713 Acker Apr 1954 A
2696888 Chillson et al. Dec 1954 A
2868038 Billeter May 1955 A
2716357 Rennerfelt Aug 1955 A
2730904 Rennerfelt Jan 1956 A
2748614 Weisel Jun 1956 A
2959070 Flinn Jan 1959 A
2873911 Perrine Feb 1959 A
2874592 Oehrli Feb 1959 A
2883883 Chillson Apr 1959 A
2891213 Kern Jun 1959 A
2901924 Banker Sep 1959 A
2913932 Oehrli Nov 1959 A
2931234 Hayward Apr 1960 A
2931235 Hayward Apr 1960 A
2949800 Neuschotz Aug 1960 A
2959063 Perry Nov 1960 A
2959972 Madson Nov 1960 A
2964959 Beck Dec 1960 A
3008061 Mims et al. Nov 1961 A
3028778 Hayward Apr 1962 A
3035460 Guichard May 1962 A
3048056 Wolfram Aug 1962 A
3051020 Hartupee Aug 1962 A
3086704 Hurtt Apr 1963 A
3087348 Kraus Apr 1963 A
3154957 Kashihara Nov 1964 A
3163050 Kraus Dec 1964 A
3176542 Monch Apr 1965 A
3184983 Kraus May 1965 A
3204476 Rouverol Sep 1965 A
3209606 Yamamoto Oct 1965 A
3211364 Wentling et al. Oct 1965 A
3216283 General Nov 1965 A
3229538 Schlottler Jan 1966 A
3237468 Schlottler Mar 1966 A
3246531 Kashihara Apr 1966 A
3248960 Schottler May 1966 A
3273468 Allen Sep 1966 A
3277745 Harned Oct 1966 A
3280646 Lemieux Oct 1966 A
3283614 Hewko Nov 1966 A
3292443 Felix Dec 1966 A
3340895 Osgood, Jr. et al. Sep 1967 A
3407687 Hayashi Oct 1968 A
3413896 Wildhaber Dec 1968 A
3430504 Dickenbrock Mar 1969 A
3439563 Petty Apr 1969 A
3440895 Fellows Apr 1969 A
3464281 Azuma Sep 1969 A
3477315 Macks Nov 1969 A
3487726 Burnett Jan 1970 A
3487727 Gustafsson Jan 1970 A
3574289 Scheiter et al. Apr 1971 A
3581587 Dickenbrock Jun 1971 A
3661404 Bossaer May 1972 A
3695120 Titt Oct 1972 A
3707888 Schottler Jan 1973 A
3727473 Bayer Apr 1973 A
3727474 Fullerton Apr 1973 A
3736803 Horowitz et al. Jun 1973 A
3745844 Schottler Jul 1973 A
3768715 Tout Oct 1973 A
3800607 Zurcher Apr 1974 A
3802284 Sharpe et al. Apr 1974 A
3810398 Kraus May 1974 A
3820416 Kraus Jun 1974 A
3866985 Whitehurst Feb 1975 A
3891235 Shelly Jun 1975 A
3934493 Hillyer Jan 1976 A
3954282 Hege May 1976 A
3987681 Keithley et al. Oct 1976 A
3996807 Adams Dec 1976 A
4023442 Woods et al. May 1977 A
4098146 McLarty Jul 1978 A
4103514 Grosse-Entrup Aug 1978 A
4159653 Koivunen Jul 1979 A
4169609 Zampedro Oct 1979 A
4177683 Moses Dec 1979 A
4227712 Dick Oct 1980 A
4314485 Adams Feb 1982 A
4345486 Olesen Aug 1982 A
4369667 Kemper Jan 1983 A
4391156 Tibbals Jul 1983 A
4459873 Black Jul 1984 A
4464952 Stubbs Aug 1984 A
4468984 Castelli et al. Sep 1984 A
4494524 Wagner Jan 1985 A
4496051 Ortner Jan 1985 A
4501172 Kraus Feb 1985 A
4515040 Takeuchi et al. May 1985 A
4526255 Hennessey et al. Jul 1985 A
4546673 Shigematsu et al. Oct 1985 A
4560369 Hattori Dec 1985 A
4567781 Russ Feb 1986 A
4569670 McIntosh Feb 1986 A
4574649 Seol Mar 1986 A
4585429 Marier Apr 1986 A
4592247 Mutshler et al. Jun 1986 A
4617838 Anderson Oct 1986 A
4630839 Seol Dec 1986 A
4631469 Tsuboi et al. Dec 1986 A
4651082 Kaneyuki Mar 1987 A
4663990 Itoh et al. May 1987 A
4700581 Tibbals, Jr. Oct 1987 A
4713976 Wilkes Dec 1987 A
4717368 Yamaguchi et al. Jan 1988 A
4735430 Tomkinson Apr 1988 A
4738164 Kaneyuki Apr 1988 A
4744261 Jacobson May 1988 A
4756211 Fellows Jul 1988 A
4781663 Reswick Nov 1988 A
4838122 Takamiya et al. Jun 1989 A
4856374 Kreuzer Aug 1989 A
4869130 Wiecko Sep 1989 A
4881925 Hattori Nov 1989 A
4884473 Lew Dec 1989 A
4900046 Aranceta-Angoitia Feb 1990 A
4909101 Terry Mar 1990 A
4918344 Chikamori et al. Apr 1990 A
4964312 Kraus Oct 1990 A
5006093 Itoh et al. Apr 1991 A
5020384 Kraus Jun 1991 A
5025685 Kobayashi et al. Jun 1991 A
5033322 Nakano Jul 1991 A
5033571 Morimoto Jul 1991 A
5037361 Takahashi Aug 1991 A
5044214 Barber Sep 1991 A
5059158 Bellio et al. Oct 1991 A
5069655 Schivelbusch Dec 1991 A
5083982 Sato Jan 1992 A
5099710 Nakano Mar 1992 A
5121654 Fasce Jun 1992 A
5125677 Ogilvie et al. Jun 1992 A
5138894 Kraus Aug 1992 A
5156412 Meguerditchian Oct 1992 A
5230258 Nakano Jul 1993 A
5236211 Meguerditchian Aug 1993 A
5236403 Schievelbusch Aug 1993 A
5267920 Hibi Dec 1993 A
5273501 Schievelbusch Dec 1993 A
5318486 Lutz Jun 1994 A
5319486 Vogel et al. Jun 1994 A
5330396 Lohr et al. Jul 1994 A
5355749 Obara et al. Oct 1994 A
5375865 Terry, Sr. Dec 1994 A
5379661 Nakano Jan 1995 A
5383677 Thomas Jan 1995 A
5387000 Sato Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5451070 Lindsay et al. Sep 1995 A
5489003 Ohyama et al. Feb 1996 A
5508574 Vlock Apr 1996 A
5562564 Folino Oct 1996 A
5564998 Fellows Oct 1996 A
5577423 Mimura Nov 1996 A
5601301 Liu Feb 1997 A
5607373 Ochiai et al. Mar 1997 A
5645507 Hathaway Jul 1997 A
5651750 Imanishi et al. Jul 1997 A
5664636 Ikuma et al. Sep 1997 A
5669845 Muramoto et al. Sep 1997 A
5690346 Keskitalo Nov 1997 A
5722502 Kubo Mar 1998 A
5746676 Kawase et al. May 1998 A
5755303 Yamamoto et al. May 1998 A
5799541 Arbeiter Sep 1998 A
5823052 Nobumoto Oct 1998 A
5846155 Taniguchi et al. Dec 1998 A
5888160 Miyata et al. Mar 1999 A
5895337 Fellows et al. Apr 1999 A
5899827 Nakano et al. May 1999 A
5902207 Sugihara May 1999 A
5967933 Valdenaire Oct 1999 A
5976054 Yasuoka Nov 1999 A
5984826 Nakano Nov 1999 A
5995895 Watt et al. Nov 1999 A
6000707 Miller Dec 1999 A
6003649 Fischer Dec 1999 A
6004239 Makino Dec 1999 A
6006151 Graf Dec 1999 A
6012538 Sonobe et al. Jan 2000 A
6015359 Kunii Jan 2000 A
6019701 Mori et al. Feb 2000 A
6029990 Busby Feb 2000 A
6042132 Suenaga et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6045481 Kumagai Apr 2000 A
6053833 Masaki Apr 2000 A
6053841 Kolde et al. Apr 2000 A
6054844 Frank Apr 2000 A
6066067 Greenwood May 2000 A
6071210 Kato Jun 2000 A
6074320 Miyata et al. Jun 2000 A
6076846 Clardy Jun 2000 A
6079726 Busby Jun 2000 A
6083139 Deguchi Jul 2000 A
6085521 Folsom et al. Jul 2000 A
6086506 Petersmann et al. Jul 2000 A
6095940 Ai et al. Aug 2000 A
6099431 Hoge et al. Aug 2000 A
6101895 Yamane Aug 2000 A
6113513 Itoh et al. Sep 2000 A
6119539 Papanicolaou Sep 2000 A
6119800 McComber Sep 2000 A
6125314 Graf et al. Sep 2000 A
6159126 Oshidari Dec 2000 A
6171210 Miyata et al. Jan 2001 B1
6171212 Reuschel Jan 2001 B1
6174260 Tsukada et al. Jan 2001 B1
6186922 Bursal et al. Feb 2001 B1
6188945 Graf et al. Feb 2001 B1
6210297 Knight Apr 2001 B1
6217473 Ueda et al. Apr 2001 B1
6217478 Vohmann et al. Apr 2001 B1
6241636 Miller Jun 2001 B1
6243638 Abo et al. Jun 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6258003 Hirano et al. Jul 2001 B1
6261200 Miyata et al. Jul 2001 B1
6296593 Gotou Oct 2001 B1
6311113 Danz et al. Oct 2001 B1
6312358 Goi et al. Nov 2001 B1
6322475 Miller Nov 2001 B2
6325386 Shoge Dec 2001 B1
6356817 Abe Mar 2002 B1
6358174 Folsom et al. Mar 2002 B1
6358178 Wittkopp Mar 2002 B1
6367833 Horiuchi Apr 2002 B1
6371878 Bowen Apr 2002 B1
6375412 Dial Apr 2002 B1
6390945 Young May 2002 B1
6390946 Hibi et al. May 2002 B1
6406399 Ai Jun 2002 B1
6414401 Kuroda et al. Jul 2002 B1
6419608 Miller Jul 2002 B1
6425838 Matsubara et al. Jul 2002 B1
6434960 Rousseau Aug 2002 B1
6440035 Tsukada et al. Aug 2002 B2
6440037 Takagi et al. Aug 2002 B2
6459978 Tamiguchi et al. Oct 2002 B2
6461268 Milner Oct 2002 B1
6482094 Kefes Nov 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494805 Ooyama et al. Dec 2002 B2
6499373 Van Cor Dec 2002 B2
6514175 Taniguchi et al. Feb 2003 B2
6532890 Chen Mar 2003 B2
6551210 Miller Apr 2003 B2
6558285 Sieber May 2003 B1
6561941 Nakano et al. May 2003 B2
6575047 Reik et al. Jun 2003 B2
6658338 Joe et al. Dec 2003 B2
6659901 Sakai et al. Dec 2003 B2
6672418 Makino Jan 2004 B1
6676559 Miller Jan 2004 B2
6679109 Gierling et al. Jan 2004 B2
6682432 Shinozuka Jan 2004 B1
6689012 Miller Feb 2004 B2
6721637 Abe et al. Apr 2004 B2
6723014 Shinso et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6805654 Nishii Oct 2004 B2
6808053 Kirkwood et al. Oct 2004 B2
6839617 Mensler et al. Jan 2005 B2
6849020 Sumi Feb 2005 B2
6859709 Joe et al. Feb 2005 B2
6868949 Braford Mar 2005 B2
6931316 Joe et al. Aug 2005 B2
6932739 Miyata et al. Aug 2005 B2
6942593 Nishii et al. Sep 2005 B2
6945903 Miller Sep 2005 B2
6949049 Miller Sep 2005 B2
6958029 Inoue Oct 2005 B2
6991575 Inoue Jan 2006 B2
6991579 Kobayashi et al. Jan 2006 B2
7011600 Miller et al. Mar 2006 B2
7011601 Miller Mar 2006 B2
7014591 Miller Mar 2006 B2
7029418 Taketsuna et al. Apr 2006 B2
7032914 Miller Apr 2006 B2
7036620 Miller et al. May 2006 B2
7044884 Miller May 2006 B2
7063195 Berhan Jun 2006 B2
7063640 Miller Jun 2006 B2
7074007 Miller Jul 2006 B2
7074154 Miller Jul 2006 B2
7074155 Miller Jul 2006 B2
7077777 Miyata et al. Jul 2006 B2
7086979 Frenken Aug 2006 B2
7086981 Ali et al. Aug 2006 B2
7094171 Inoue Aug 2006 B2
7111860 Grimaldos Sep 2006 B1
7112158 Miller Sep 2006 B2
7112159 Miller et al. Sep 2006 B2
7125297 Miller et al. Oct 2006 B2
7131930 Miller et al. Nov 2006 B2
7140999 Miller Nov 2006 B2
7147586 Miller et al. Dec 2006 B2
7153233 Miller et al. Dec 2006 B2
7156770 Miller Jan 2007 B2
7160220 Shinojima et al. Jan 2007 B2
7160222 Miller Jan 2007 B2
7163485 Miller Jan 2007 B2
7163486 Miller et al. Jan 2007 B2
7166052 Miller et al. Jan 2007 B2
7166056 Miller et al. Jan 2007 B2
7166057 Miller et al. Jan 2007 B2
7166058 Miller et al. Jan 2007 B2
7169076 Miller et al. Jan 2007 B2
7172529 Miller et al. Feb 2007 B2
7175564 Miller Feb 2007 B2
7175565 Miller et al. Feb 2007 B2
7175566 Miller et al. Feb 2007 B2
7192381 Miller et al. Mar 2007 B2
7197915 Luh et al. Apr 2007 B2
7198582 Miller et al. Apr 2007 B2
7198583 Miller et al. Apr 2007 B2
7198584 Miller et al. Apr 2007 B2
7198585 Miller et al. Apr 2007 B2
7201693 Miller et al. Apr 2007 B2
7201694 Miller et al. Apr 2007 B2
7201695 Miller et al. Apr 2007 B2
7204777 Miller et al. Apr 2007 B2
7207918 Shimazu Apr 2007 B2
7214159 Miller et al. May 2007 B2
7217215 Miller et al. May 2007 B2
7217216 Inoue May 2007 B2
7217219 Miller May 2007 B2
7217220 Careau et al. May 2007 B2
7232395 Miller et al. Jun 2007 B2
7234873 Kato et al. Jun 2007 B2
7235031 Miller et al. Jun 2007 B2
7238136 Miller et al. Jul 2007 B2
7238137 Miller et al. Jul 2007 B2
7238138 Miller et al. Jul 2007 B2
7238139 Roethler et al. Jul 2007 B2
7246672 Shirai et al. Jul 2007 B2
7250018 Miller et al. Jul 2007 B2
7261663 Miller et al. Aug 2007 B2
7275610 Kuang et al. Oct 2007 B2
7285068 Hosoi Oct 2007 B2
7288042 Miller et al. Oct 2007 B2
7288043 Shioiri et al. Oct 2007 B2
7320660 Miller Jan 2008 B2
7322901 Miller et al. Jan 2008 B2
7343236 Wilson Mar 2008 B2
7347801 Guenter et al. Mar 2008 B2
7383748 Rankin Jun 2008 B2
7384370 Miller Jun 2008 B2
7393300 Miller et al. Jul 2008 B2
7393302 Miller Jul 2008 B2
7393303 Miller Jul 2008 B2
7395731 Miller et al. Jul 2008 B2
7396209 Miller et al. Jul 2008 B2
7402122 Miller Jul 2008 B2
7410443 Miller Aug 2008 B2
7419451 Miller Sep 2008 B2
7422541 Miller Sep 2008 B2
7422546 Miller et al. Sep 2008 B2
7427253 Miller Sep 2008 B2
7431677 Miller et al. Oct 2008 B2
7452297 Miller et al. Nov 2008 B2
7455611 Miller et al. Nov 2008 B2
7455617 Miller et al. Nov 2008 B2
7462123 Miller et al. Dec 2008 B2
7462127 Miller et al. Dec 2008 B2
7470210 Miller et al. Dec 2008 B2
7478885 Urabe Jan 2009 B2
7481736 Miller et al. Jan 2009 B2
7510499 Miller et al. Mar 2009 B2
7540818 Miller et al. Jun 2009 B2
7547264 Usoro Jun 2009 B2
7574935 Rohs et al. Aug 2009 B2
7591755 Petrzik et al. Sep 2009 B2
7632203 Miller Dec 2009 B2
7651437 Miller et al. Jan 2010 B2
7654928 Miller et al. Feb 2010 B2
7670243 Miller Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7727101 Miller Jun 2010 B2
7727106 Maheu et al. Jun 2010 B2
7727107 Miller Jun 2010 B2
7727108 Miller et al. Jun 2010 B2
7727110 Miller et al. Jun 2010 B2
7727115 Serkh Jun 2010 B2
7731615 Miller et al. Jun 2010 B2
7762919 Smithson et al. Jul 2010 B2
7762920 Smithson et al. Jul 2010 B2
7785228 Smithson et al. Aug 2010 B2
7828685 Miller Nov 2010 B2
7837592 Miller Nov 2010 B2
7871353 Nichols et al. Jan 2011 B2
7882762 Armstrong et al. Feb 2011 B2
7883442 Miller et al. Feb 2011 B2
7885747 Miller et al. Feb 2011 B2
7887032 Malone Feb 2011 B2
7909723 Triller et al. Mar 2011 B2
7909727 Smithson et al. Mar 2011 B2
7914029 Miller et al. Mar 2011 B2
7959533 Nichols et al. Jun 2011 B2
7963880 Smithson et al. Jun 2011 B2
7967719 Smithson et al. Jun 2011 B2
7976426 Smithson et al. Jul 2011 B2
8066613 Smithson et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8070635 Miller Dec 2011 B2
8087482 Miles et al. Jan 2012 B2
8123653 Smithson et al. Feb 2012 B2
8133149 Smithson et al. Mar 2012 B2
8142323 Tsuchiya et al. Mar 2012 B2
8167759 Pohl et al. May 2012 B2
8171636 Smithson et al. May 2012 B2
8230961 Schneidewind Jul 2012 B2
8262536 Nichols et al. Sep 2012 B2
8267829 Miller et al. Sep 2012 B2
8313404 Carter et al. Nov 2012 B2
8313405 Bazyn et al. Nov 2012 B2
8317650 Nichols et al. Nov 2012 B2
8317651 Lohr Nov 2012 B2
8321097 Vasiliotis et al. Nov 2012 B2
8342999 Miller Jan 2013 B2
8360917 Nichols et al. Jan 2013 B2
8376889 Hoffman et al. Feb 2013 B2
8376903 Pohl et al. Feb 2013 B2
8382631 Hoffman et al. Feb 2013 B2
8382637 Tange Feb 2013 B2
8393989 Pohl Mar 2013 B2
8398518 Nichols et al. Mar 2013 B2
8469853 Miller et al. Jun 2013 B2
8469856 Thomassy Jun 2013 B2
8480529 Pohl et al. Jul 2013 B2
8496554 Pohl et al. Jul 2013 B2
8506452 Pohl Aug 2013 B2
8512195 Lohr et al. Aug 2013 B2
8517888 Brookins Aug 2013 B1
8535199 Lohr et al. Sep 2013 B2
8550949 Miller Oct 2013 B2
8585528 Carter et al. Nov 2013 B2
8608609 Sherrill Dec 2013 B2
8622866 Bazyn et al. Jan 2014 B2
8626409 Vasiliotis et al. Jan 2014 B2
8628443 Miller et al. Jan 2014 B2
8641572 Nichols et al. Feb 2014 B2
8641577 Nichols et al. Feb 2014 B2
8663050 Nichols et al. Mar 2014 B2
8678974 Lohr Mar 2014 B2
8688337 Takanami Apr 2014 B2
8708360 Miller et al. Apr 2014 B2
8721485 Lohr et al. May 2014 B2
8738255 Carter et al. May 2014 B2
8776633 Armstrong et al. Jul 2014 B2
8784248 Murakami et al. Jul 2014 B2
8790214 Lohr et al. Jul 2014 B2
8814739 Hamrin et al. Aug 2014 B1
8818661 Keilers et al. Aug 2014 B2
8827856 Younggren et al. Sep 2014 B1
8827864 Durack Sep 2014 B2
8845485 Smithson et al. Sep 2014 B2
8852050 Thomassy Oct 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8900085 Pohl et al. Dec 2014 B2
8920285 Smithson et al. Dec 2014 B2
8924111 Fuller Dec 2014 B2
8956262 Tomomatsu et al. Feb 2015 B2
8961363 Shiina et al. Feb 2015 B2
8992376 Ogawa et al. Mar 2015 B2
8996263 Quinn et al. Mar 2015 B2
9017207 Pohl et al. Apr 2015 B2
9022889 Miller May 2015 B2
9046158 Miller et al. Jun 2015 B2
9052000 Cooper Jun 2015 B2
9074674 Nichols et al. Jul 2015 B2
9086145 Pohl et al. Jul 2015 B2
9121464 Nichols et al. Sep 2015 B2
9182018 Bazyn et al. Nov 2015 B2
9239099 Carter et al. Jan 2016 B2
9249880 Vasiliotis et al. Feb 2016 B2
9273760 Pohl et al. Mar 2016 B2
9279482 Nichols et al. Mar 2016 B2
9291251 Lohr et al. Mar 2016 B2
9328807 Carter et al. May 2016 B2
9341246 Miller et al. May 2016 B2
9360089 Lohr et al. Jun 2016 B2
9365203 Keilers et al. Jun 2016 B2
9371894 Carter et al. Jun 2016 B2
9388896 Hibino et al. Jul 2016 B2
9506562 Miller et al. Nov 2016 B2
9528561 Nichols et al. Dec 2016 B2
9574642 Pohl et al. Feb 2017 B2
9574643 Pohl Feb 2017 B2
9611921 Thomassy et al. Apr 2017 B2
9618100 Lohr Apr 2017 B2
9656672 Schieffelin May 2017 B2
9676391 Carter et al. Jun 2017 B2
9677650 Nichols et al. Jun 2017 B2
9683638 Kostrup Jun 2017 B2
9683640 Lohr et al. Jun 2017 B2
9709138 Miller et al. Jul 2017 B2
9726282 Pohl et al. Aug 2017 B2
9732848 Miller et al. Aug 2017 B2
9739375 Vasiliotis et al. Aug 2017 B2
9850993 Bazyn et al. Dec 2017 B2
9869388 Pohl et al. Jan 2018 B2
9878717 Keilers et al. Jan 2018 B2
9878719 Carter et al. Jan 2018 B2
9903450 Thomassy Feb 2018 B2
9920823 Nichols et al. Mar 2018 B2
9945456 Nichols et al. Apr 2018 B2
9950608 Miller et al. Apr 2018 B2
10036453 Smithson Jul 2018 B2
10047861 Thomassy et al. Aug 2018 B2
10056811 Pohl Aug 2018 B2
10066712 Lohr et al. Sep 2018 B2
10066713 Nichols et al. Sep 2018 B2
20010008192 Morisawa Jul 2001 A1
20010023217 Miyagawa et al. Sep 2001 A1
20010041644 Yasuoka et al. Nov 2001 A1
20010044358 Taniguchi Nov 2001 A1
20010044361 Taniguchi et al. Nov 2001 A1
20010046920 Sugihara Nov 2001 A1
20020019285 Henzler Feb 2002 A1
20020025875 Tsujioka Feb 2002 A1
20020028722 Sakai et al. Mar 2002 A1
20020037786 Hirano et al. Mar 2002 A1
20020045511 Geiberger et al. Apr 2002 A1
20020049113 Watanabe et al. Apr 2002 A1
20020117860 Man et al. Aug 2002 A1
20020128107 Wakayama Sep 2002 A1
20020151401 Lemanski Oct 2002 A1
20020161503 Joe et al. Oct 2002 A1
20020169051 Oshidari Nov 2002 A1
20020179348 Tamai et al. Dec 2002 A1
20030015358 Abe et al. Jan 2003 A1
20030015874 Abe et al. Jan 2003 A1
20030022753 Mizuno et al. Jan 2003 A1
20030036456 Skrabs Feb 2003 A1
20030132051 Nishii et al. Jul 2003 A1
20030135316 Kawamura et al. Jul 2003 A1
20030144105 O'Hora Jul 2003 A1
20030160420 Fukuda Aug 2003 A1
20030216216 Inoue et al. Nov 2003 A1
20030221892 Matsumoto et al. Dec 2003 A1
20040038772 McIndoe et al. Feb 2004 A1
20040058772 Inoue et al. Mar 2004 A1
20040067816 Taketsuna et al. Apr 2004 A1
20040082421 Wafzig Apr 2004 A1
20040092359 Imanishi et al. May 2004 A1
20040119345 Takano Jun 2004 A1
20040171457 Fuller Sep 2004 A1
20040204283 Inoue Oct 2004 A1
20040231331 Iwanami et al. Nov 2004 A1
20040254047 Frank et al. Dec 2004 A1
20050037876 Unno et al. Feb 2005 A1
20050037886 Lemansky Feb 2005 A1
20050064986 Ginglas Mar 2005 A1
20050085979 Carlson et al. Apr 2005 A1
20050181905 Ali et al. Aug 2005 A1
20050184580 Kuan et al. Aug 2005 A1
20050227809 Bitzer et al. Oct 2005 A1
20050229731 Parks et al. Oct 2005 A1
20050233846 Green et al. Oct 2005 A1
20060000684 Agner Jan 2006 A1
20060006008 Brunemann et al. Jan 2006 A1
20060052204 Eckert et al. Mar 2006 A1
20060054422 Dimsey et al. Mar 2006 A1
20060108956 Clark May 2006 A1
20060111212 Ai et al. May 2006 A9
20060154775 Ali et al. Jul 2006 A1
20060172829 Ishio Aug 2006 A1
20060180363 Uchisasai Aug 2006 A1
20060223667 Nakazeki Oct 2006 A1
20060234822 Morscheck et al. Oct 2006 A1
20060234826 Moehlmann et al. Oct 2006 A1
20060276299 Imanishi Dec 2006 A1
20070004552 Matsudaira et al. Jan 2007 A1
20070004554 Hans Jan 2007 A1
20070004556 Rohs et al. Jan 2007 A1
20070099753 Matsui et al. May 2007 A1
20070149342 Guenter et al. Jun 2007 A1
20070155552 De Cloe Jul 2007 A1
20070155567 Miller et al. Jul 2007 A1
20070193391 Armstrong et al. Aug 2007 A1
20070219048 Yamaguchi Sep 2007 A1
20070228687 Parker Oct 2007 A1
20070232423 Katou et al. Oct 2007 A1
20080009389 Jacobs Jan 2008 A1
20080032852 Smithson et al. Feb 2008 A1
20080032854 Smithson et al. Feb 2008 A1
20080039269 Smithson et al. Feb 2008 A1
20080039273 Smithson et al. Feb 2008 A1
20080039276 Smithson et al. Feb 2008 A1
20080081728 Faulring et al. Apr 2008 A1
20080139363 Williams Jun 2008 A1
20080149407 Shibata et al. Jun 2008 A1
20080183358 Thomson et al. Jul 2008 A1
20080200300 Smithson et al. Aug 2008 A1
20080228362 Muller et al. Sep 2008 A1
20080284170 Cory Nov 2008 A1
20080305920 Nishii et al. Dec 2008 A1
20090023545 Beaudoin Jan 2009 A1
20090055061 Zhu Feb 2009 A1
20090062062 Choi Mar 2009 A1
20090082169 Kolstrup Mar 2009 A1
20090107454 Hiyoshi et al. Apr 2009 A1
20090251013 Vollmer et al. Oct 2009 A1
20090318261 Tabata et al. Dec 2009 A1
20100093479 Carter et al. Apr 2010 A1
20100120577 Gu et al. May 2010 A1
20100145573 Vasilescu Jun 2010 A1
20100181130 Chou Jul 2010 A1
20110127096 Schneidewind Jun 2011 A1
20110178684 Umemoto et al. Jul 2011 A1
20110190093 Bishop Aug 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110237385 Andre Parise Sep 2011 A1
20110291507 Post Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120035011 Menachem et al. Feb 2012 A1
20120035015 Ogawa et al. Feb 2012 A1
20120130603 Simpson et al. May 2012 A1
20120258839 Smithson et al. Oct 2012 A1
20130035200 Noji et al. Feb 2013 A1
20130053211 Fukuda et al. Feb 2013 A1
20140094339 Ogawa et al. Apr 2014 A1
20140155220 Messier et al. Jun 2014 A1
20140228163 Aratsu et al. Aug 2014 A1
20140274536 Versteyhe Sep 2014 A1
20150038285 Aratsu et al. Feb 2015 A1
20150051801 Quinn et al. Feb 2015 A1
20150219194 Winter et al. Aug 2015 A1
20150345599 Ogawa Dec 2015 A1
20150369348 Nichols et al. Dec 2015 A1
20160003349 Kimura et al. Jan 2016 A1
20160031526 Watarai Feb 2016 A1
20160131231 Carter et al. May 2016 A1
20160201772 Lohr et al. Jul 2016 A1
20160290451 Lohr Oct 2016 A1
20160298740 Carter et al. Oct 2016 A1
20160347411 Yamamoto et al. Dec 2016 A1
20160377153 Ajumobi Dec 2016 A1
20170082049 David et al. Mar 2017 A1
20170159812 Pohl et al. Jun 2017 A1
20170204948 Thomassy et al. Jul 2017 A1
20170211696 Nassouri Jul 2017 A1
20170211698 Lohr Jul 2017 A1
20170268638 Nichols et al. Sep 2017 A1
20170276217 Nichols et al. Sep 2017 A1
20170284519 Kolstrup Oct 2017 A1
20170284520 Lohr et al. Oct 2017 A1
20170314655 Miller et al. Nov 2017 A1
20170328470 Pohl Nov 2017 A1
20170343105 Vasiliotis et al. Nov 2017 A1
20180066754 Miller et al. Mar 2018 A1
20180106359 Bazyn et al. Apr 2018 A1
20180134750 Pohl et al. May 2018 A1
20180148055 Carter et al. May 2018 A1
20180148056 Keilers et al. May 2018 A1
20180195586 Thomassy et al. Jul 2018 A1
20180202527 Nichols et al. Jul 2018 A1
20180236867 Miller et al. Aug 2018 A1
20180306283 Engesather et al. Oct 2018 A1
20180372192 Lohr Dec 2018 A1
20190049004 Quinn et al. Feb 2019 A1
20190195321 Smithson Jun 2019 A1
20190277399 Guerin Sep 2019 A1
20200018384 Nichols et al. Jan 2020 A1
Foreign Referenced Citations (236)
Number Date Country
118064 Dec 1926 CH
1054340 Sep 1991 CN
2245830 Jan 1997 CN
1157379 Aug 1997 CN
1167221 Dec 1997 CN
1178573 Apr 1998 CN
1178751 Apr 1998 CN
1204991 Jan 1999 CN
2320843 May 1999 CN
1283258 Feb 2001 CN
1300355 Jun 2001 CN
1412033 Apr 2003 CN
1434229 Aug 2003 CN
1474917 Feb 2004 CN
1483235 Mar 2004 CN
1568407 Jan 2005 CN
1654858 Aug 2005 CN
2714896 Aug 2005 CN
1736791 Feb 2006 CN
1791731 Jun 2006 CN
1847702 Oct 2006 CN
1860315 Nov 2006 CN
1940348 Apr 2007 CN
101016076 Aug 2007 CN
101312867 Nov 2008 CN
498 701 May 1930 DE
1171692 Jun 1964 DE
2021027 Dec 1970 DE
2 310880 Sep 1974 DE
2 136 243 Jan 1975 DE
2436496 Feb 1975 DE
19851738 May 2000 DE
10155372 May 2003 DE
102011016672 Oct 2012 DE
102012023551 Jun 2014 DE
102014007271 Dec 2014 DE
0 432 742 Dec 1990 EP
0 528 381 Feb 1993 EP
0 528 382 Feb 1993 EP
0 635 639 Jan 1995 EP
0 638 741 Feb 1995 EP
0 831 249 Mar 1998 EP
0 832 816 Apr 1998 EP
0 976 956 Feb 2000 EP
1 136 724 Sep 2001 EP
1 251 294 Oct 2002 EP
1 366 978 Mar 2003 EP
1 433 641 Jun 2004 EP
1 624 230 Feb 2006 EP
2 620 672 Jul 2013 EP
2 893 219 Jul 2015 EP
2 927 534 Oct 2015 EP
620375 Apr 1927 FR
2460427 Jan 1981 FR
2590638 May 1987 FR
2996276 Apr 2014 FR
391448 Apr 1933 GB
592320 Sep 1947 GB
858710 Jan 1961 GB
906002 Sep 1962 GB
919430 Feb 1963 GB
1132473 Nov 1968 GB
1165545 Oct 1969 GB
1376057 Dec 1974 GB
2031822 Apr 1980 GB
2035481 Jun 1980 GB
2035482 Jun 1980 GB
2080452 Aug 1982 GB
38-025315 Nov 1963 JP
41-3126 Feb 1966 JP
42-2843 Feb 1967 JP
42-2844 Feb 1967 JP
44-1098 Jan 1969 JP
46-029087 Aug 1971 JP
47-000448 Jan 1972 JP
47-207 Jun 1972 JP
47-20535 Jun 1972 JP
47-1621 Aug 1972 JP
47-00962 Nov 1972 JP
47-29762 Nov 1972 JP
48-54371 Jul 1973 JP
49-012742 Mar 1974 JP
49-013823 Apr 1974 JP
49-041536 Nov 1974 JP
50-114581 Sep 1975 JP
51-25903 Aug 1976 JP
51-150380 Dec 1976 JP
52-35481 Mar 1977 JP
53-048166 Jan 1978 JP
53-50395 Apr 1978 JP
55-135259 Oct 1980 JP
56-24251 Mar 1981 JP
56-047231 Apr 1981 JP
56-101448 Aug 1981 JP
56-127852 Oct 1981 JP
58-065361 Apr 1983 JP
59-069565 Apr 1984 JP
59-144826 Aug 1984 JP
59-190557 Oct 1984 JP
60-247011 Dec 1985 JP
61-031754 Feb 1986 JP
61-053423 Mar 1986 JP
61-144466 Jul 1986 JP
61-173722 Oct 1986 JP
61-270552 Nov 1986 JP
62-075170 Apr 1987 JP
63-125854 May 1988 JP
63-219953 Sep 1988 JP
63-160465 Oct 1988 JP
01-039865 Nov 1989 JP
01-286750 Nov 1989 JP
01-308142 Dec 1989 JP
02-130224 May 1990 JP
02-157483 Jun 1990 JP
02-271142 Jun 1990 JP
02-182593 Jul 1990 JP
03-149442 Jun 1991 JP
03-223555 Oct 1991 JP
04-166619 Jun 1992 JP
04-272553 Sep 1992 JP
04-327055 Nov 1992 JP
04-351361 Dec 1992 JP
05-087154 Apr 1993 JP
06-050169 Feb 1994 JP
06-050358 Feb 1994 JP
07-42799 Feb 1995 JP
07-133857 May 1995 JP
07-139600 May 1995 JP
07-259950 Oct 1995 JP
08-135748 May 1996 JP
08-170706 Jul 1996 JP
08-247245 Sep 1996 JP
08-270772 Oct 1996 JP
09-024743 Jan 1997 JP
09-089064 Mar 1997 JP
10-061739 Mar 1998 JP
10-078094 Mar 1998 JP
10-089435 Apr 1998 JP
10-115355 May 1998 JP
10-115356 May 1998 JP
10-194186 Jul 1998 JP
10-225053 Aug 1998 JP
10-511621 Nov 1998 JP
11-063130 Mar 1999 JP
11-091411 Apr 1999 JP
11-210850 Aug 1999 JP
11-227669 Aug 1999 JP
11-240481 Sep 1999 JP
11-257479 Sep 1999 JP
2000-6877 Jan 2000 JP
2000-46135 Feb 2000 JP
2000-177673 Jun 2000 JP
2001-027298 Jan 2001 JP
2001-071986 Mar 2001 JP
2001-107827 Apr 2001 JP
2001-165296 Jun 2001 JP
2001-328466 Nov 2001 JP
2002-147558 May 2002 JP
2002-250421 Jun 2002 JP
2002-307956 Oct 2002 JP
2002-533626 Oct 2002 JP
2002-372114 Dec 2002 JP
2003-028257 Jan 2003 JP
2003-56662 Feb 2003 JP
2003-507261 Feb 2003 JP
2003-161357 Jun 2003 JP
2003-194206 Jul 2003 JP
2003-194207 Jul 2003 JP
2003-320987 Nov 2003 JP
2003-336732 Nov 2003 JP
2004-011834 Jan 2004 JP
2004-38722 Feb 2004 JP
2004-162652 Jun 2004 JP
2004-189222 Jul 2004 JP
2004-232776 Aug 2004 JP
2004-526917 Sep 2004 JP
2004-301251 Oct 2004 JP
2005-003063 Jan 2005 JP
2005-096537 Apr 2005 JP
2005-188694 Jul 2005 JP
2005-240928 Sep 2005 JP
2005-312121 Nov 2005 JP
2006-015025 Jan 2006 JP
2006-283900 Oct 2006 JP
2006-300241 Nov 2006 JP
2007-085404 Apr 2007 JP
2007-321931 Dec 2007 JP
2008-002687 Jan 2008 JP
2008-14412 Jan 2008 JP
2008-133896 Jun 2008 JP
2010-069005 Apr 2010 JP
2012-107725 Jun 2012 JP
2012-122568 Jun 2012 JP
2012-211610 Nov 2012 JP
2012-225390 Nov 2012 JP
2015-227690 Dec 2015 JP
2015-227691 Dec 2015 JP
2002 0054126 Jul 2002 KR
10-2002-0071699 Sep 2002 KR
98467 Jul 1961 NE
74007 Jan 1984 TW
175100 Dec 1991 TW
218909 Jan 1994 TW
227206 Jul 1994 TW
275872 May 1996 TW
360184 Jun 1999 TW
366396 Aug 1999 TW
401496 Aug 2000 TW
510867 Nov 2002 TW
512211 Dec 2002 TW
582363 Apr 2004 TW
590955 Jun 2004 TW
I225129 Dec 2004 TW
I225912 Jan 2005 TW
I235214 Jan 2005 TW
M294598 Jul 2006 TW
200637745 Nov 2006 TW
200821218 May 2008 TW
WO 9908024 Feb 1999 WO
WO 9920918 Apr 1999 WO
WO 0173319 Oct 2001 WO
WO 03100294 Dec 2003 WO
WO 05083305 Sep 2005 WO
WO 05108825 Nov 2005 WO
WO 05111472 Nov 2005 WO
WO 06091503 Aug 2006 WO
WO 08078047 Jul 2008 WO
WO 10073036 Jul 2010 WO
WO 10135407 Nov 2010 WO
WO 11064572 Jun 2011 WO
WO 11101991 Aug 2011 WO
WO 11121743 Oct 2011 WO
WO 12030213 Mar 2012 WO
WO 13042226 Mar 2013 WO
WO 14186732 Nov 2014 WO
WO 16062461 Apr 2016 WO
Non-Patent Literature Citations (5)
Entry
Invitation to Pay Additional Fees dated May 3, 2017 in PCT/US2016/063880.
International Search Report and Written Opinion dated Jun. 27, 2017 in PCT/US2016/063880.
Office Action dated Nov. 3, 2017 in U.S. Appl. No. 14/996,743.
Notification of the First Office Action dated Jun. 26, 2019 in Chinese Patent Application No. 201680080281.3.
Notification of the Second Office Action dated Mar. 16, 2020 in Chinese Patent Application No. 201680080281.3.
Related Publications (1)
Number Date Country
20180347693 A1 Dec 2018 US
Continuations (1)
Number Date Country
Parent 14996743 Jan 2016 US
Child 16102437 US