Embodiments of the disclosure relate to low emission power generation. More particularly, embodiments of the disclosure relate to methods and apparatus for controlling the supply of oxidant to the combustion chamber of a low emission turbine system to achieve and maintain stoichiometric or substantially stoichiometric combustion conditions.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present disclosure. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Many oil producing countries are experiencing strong domestic growth in power demand and have an interest in enhanced oil recovery (EOR) to improve oil recovery from their reservoirs. Two common EOR techniques include nitrogen (N2) injection for reservoir pressure maintenance and carbon dioxide (CO2) injection for miscible flooding for EOR.
There is also a global concern regarding green house gas (GHG) emissions. This concern combined with the implementation of cap-and-trade policies in many countries makes reducing CO2 emissions a priority for those countries as well as for the companies that operate hydrocarbon production systems therein.
Some approaches to lower CO2 emissions include fuel de-carbonization or post-combustion capture using solvents, such as amines. However, both of these solutions are expensive and reduce power generation efficiency, resulting in lower power production, increased fuel demand and increased cost of electricity to meet domestic power demand. In particular, the presence of oxygen, SOX, and NOx components makes the use of amine solvent absorption very problematic. Another approach is an oxyfuel gas turbine in a combined cycle (e.g., where exhaust heat from the gas turbine Brayton cycle is captured to make steam and produce additional power in a Rankin cycle). However, there are no commercially available gas turbines that can operate in such a cycle and the power required to produce high purity oxygen significantly reduces the overall efficiency of the process.
Moreover, with the growing concern about global climate change and the impact of carbon dioxide emissions, emphasis has been placed on minimizing carbon dioxide emissions from power plants. Gas turbine combined cycle power plants are efficient and have a lower cost compared to nuclear or coal power generation technologies. Capturing carbon dioxide from the exhaust of a gas turbine combined cycle power plant is very expensive for the following reasons: (a) the low concentration of carbon dioxide in the exhaust stack, (b) the large volume of gas that needs to be treated, (c) the low pressure of the exhaust stream, and the large amount of oxygen that is present in the exhaust stream. All of these factors result in a high cost of carbon dioxide capture from combined cycle plants.
Accordingly, there is still a substantial need for a low emission, high efficiency power generation and CO2 capture manufacturing process.
In the combined cycle power plants described herein, exhaust gases from low emission gas turbines, which are vented in a typical natural gas combined cycle (NGCC) plant, are instead cooled and recycled to the gas turbine main compressor inlet. The recycle exhaust gases, rather than excess compressed fresh air, are used to cool the products of combustion down to the material limitations in the expander. The present apparatus, systems, and methods enable low emission turbines to maintain a preferred combustion regime, e.g., stoichiometric combustion, over a large range of ambient conditions. By combining stoichiometric combustion with exhaust gas recycle, the concentration of CO2 in the recirculating gases is increased while minimizing the presence of excess O2, both of which make CO2 recovery easier. In one or more embodiments, the low emission turbine systems described herein employ air as the oxidant.
The present invention is directed to systems, methods, and apparatus for controlling the oxidant feed in low emission turbine systems so as to maintain stoichiometric or substantially stoichiometric combustion conditions. In one or more embodiments, such control is achieved through methods or systems that ensure delivery of a consistent mass flow rate of oxidant to the combustion chamber. Examples include, but are not limited to, various configurations for adding recycled exhaust gas to the oxidant feed to maintain a desired oxygen content in the oxidant feed. These configurations may optionally include one or more other control methods such as ratio controllers or modifying the temperature of the feed in addition to adding recycled exhaust gas to the oxidant feed.
The foregoing and other advantages of the present disclosure may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments in which:
In the following detailed description section, the specific embodiments of the present disclosure are described in connection with preferred embodiments. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present disclosure, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the disclosure is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
Various terms as used herein are defined below. To the extent a term used in a claim is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent.
As used herein, the term “natural gas” refers to a multi-component gas obtained from a crude oil well (associated gas) and/or from a subterranean gas-bearing formation (non-associated gas). The composition and pressure of natural gas can vary significantly. A typical natural gas stream contains methane (CH4) as a major component, i.e. greater than 50 mol % of the natural gas stream is methane. The natural gas stream can also contain ethane (C2H6), higher molecular weight hydrocarbons (e.g., C3-C20 hydrocarbons), one or more acid gases (e.g., hydrogen sulfide), or any combination thereof The natural gas can also contain minor amounts of contaminants such as water, nitrogen, iron sulfide, wax, crude oil, or any combination thereof
As used herein, the term “stoichiometric combustion” refers to a combustion reaction having a volume of reactants comprising a fuel and an oxidizer and a volume of products formed by combusting the reactants where the entire volume of the reactants is used to form the products. As used herein, the term “substantially stoichiometric” combustion refers to a combustion reaction having an equivalence ratio ranging from about 0.9:1 to about 1.1:1, or more preferably from about 0.95:1 to about 1.05:1. Use of the term “stoichiometric” herein is meant to encompass both stoichiometric and substantially stoichiometric conditions unless otherwise indicated.
As used herein, the term “stream” refers to a volume of fluids, although use of the term stream typically means a moving volume of fluids (e.g., having a velocity or mass flow rate). The term “stream,” however, does not require a velocity, mass flow rate, or a particular type of conduit for enclosing the stream.
Embodiments of the presently disclosed systems and processes may be used to produce ultra low emission electric power and CO2 for enhanced oil recovery (EOR) or sequestration applications. According to embodiments disclosed herein, a mixture of air and fuel can be stoichiometrically combusted and simultaneously mixed with a stream of recycled exhaust gas. The stream of recycled exhaust gas, generally including products of combustion such as CO2, can be used as a diluent to control or otherwise moderate the temperature of the stoichiometric combustion and flue gas entering the succeeding expander.
Combustion at near stoichiometric conditions (or “slightly rich” combustion) can prove advantageous in order to eliminate the cost of excess oxygen removal. By cooling the flue gas and condensing the water out of the stream, a relatively high content CO2 stream can be produced. While a portion of the recycled exhaust gas can be utilized for temperature moderation in a closed Brayton cycle, the remaining purge stream can be used for EOR applications and electric power can be produced with little or no SOX, NOR, or CO2 being emitted to the atmosphere. For example, the purge stream can be treated in a CO2 separator adapted to discharge a nitrogen-rich gas which can be subsequently expanded in a gas expander to generate additional mechanical power. The result of the systems disclosed herein is the production of power and the manufacturing or capture of additional CO2 at a more economically efficient level. In order to avoid deviations from stoichiometric conditions, however, the amount of oxidant supplied to the combustor must be closely controlled. The present invention provides systems and methods for achieving such control.
In one or more embodiments, the present invention is directed to integrated systems comprising an inlet compressor, a gas turbine system, and an exhaust gas recirculation system. The gas turbine system comprises a combustion chamber configured to combust one or more oxidants and one or more fuels in the presence of a compressed recycle stream. The inlet compressor compresses the one or more oxidants and directs a compressed oxidant stream to the combustion chamber. The combustion chamber directs a first discharge stream to an expander to generate a gaseous exhaust stream and at least partially drive a main compressor, and the main compressor compresses the gaseous exhaust stream and thereby generates the compressed recycle stream. In one or more embodiments of the invention, a portion of the exhaust gas is diverted from the exhaust gas recycle system and combined with the one or more oxidants to form a combined oxidant-exhaust stream that is directed to the combustion chamber. The amount of exhaust gas diverted may be varied so that stoichiometric or substantially stoichiometric reaction conditions are maintained in the combustion chamber.
The diverted exhaust gas may be taken from any point in the exhaust gas recycle system, and may be combined with the one or more oxidants at any point before the oxidants enter the combustion chamber. For example, in one or more embodiments, the portion of the exhaust gas diverted from the exhaust gas recycle system is combined with the one or more oxidants upstream of the inlet compressor. Alternately, the portion of the exhaust gas diverted from the exhaust gas recycle system may be combined with the compressed oxidants downstream of the inlet compressor but before the compressed oxidants enter the combustion chamber.
In one or more embodiments, the portion of the exhaust gas diverted from the exhaust gas recycle system may be extracted from the main compressor and injected into the inlet compressor. Each of the main compressor and the inlet compressor may have one or more stages. In certain embodiments, the main compressor has two or more stages and the diverted exhaust gas is withdrawn from the main compressor at an interstage location (i.e., between stages). In the same or other embodiments, the inlet compressor has two or more stages and the diverted exhaust gas is injected into the inlet compressor at an interstage location.
In some embodiments, the exhaust gas recirculation system may comprise at least one cooling unit configured to receive and cool the gaseous exhaust stream and at least one blower configured to receive and increase the pressure of the gaseous exhaust stream before directing a cooled recycle gas to the main compressor. In such embodiments, the portion of the exhaust gas diverted from the exhaust gas recycle system may be diverted from the gaseous exhaust stream entering the blower, or from the gaseous exhaust stream flowing from the blower to the cooling unit, or from the gaseous exhaust stream exiting the cooling unit, and may be combined with the one or more oxidants at any point before the oxidants enter the combustion chamber.
In one or more embodiments, the integrated systems may optionally further comprise one or more controllers configured to adjust the flow of the combined oxidant-exhaust stream and the one or more fuels into the combustion chamber to maintain a chosen flow ratio and therefore a fixed ratio of oxidant to fuel. The one or more controllers may be any type of controller suitable for adjusting the inlet streams to the combustion chamber, such as for example a ratio controller. In one or more embodiments, the ratio controller may be configured to receive measurements from one or more flow meters installed on one or more of the inlet streams to the combustion chamber and, based on the measurements received from the flow meters, open or close one or more valves to change the flow of one or more of the inlet streams accordingly. In this manner, the one or more controllers provide an additional level of control beyond that provided by combining a portion of the exhaust gas with the oxidant feed. The one or more controllers may also be used alone, as the sole method of controlling the oxidant feed to maintain stoichiometric or substantially stoichiometric combustion.
In one or more embodiments, the integrated system may further comprise one or more cooling devices configured to cool the one or more oxidants (or the combined oxidant-exhaust stream in cases where the diverted portion of exhaust gas is combined with the oxidant upstream of the inlet compressor) before introduction to the inlet compressor. For example, the oxidant may be cooled to a temperature that is at least about 5° F., or at least about 10° F., or at least about 15° F., or at least about 20° F., or at least about 25° F., or at least about 30° F., or at least about 35° F., or at least about 40° F. lower than the ambient air temperature. In the same or other embodiments, the temperature difference between the oxidant entering the cooling device and the oxidant exiting the cooling device is at least about 5° F., or at least about 10° F., or at least about 15° F., or at least about 20° F., or at least about 25° F., or at least about 30° F., or at least about 35° F., or at least about 40° F. In one or more embodiments, the cooling device may be one or more heat exchangers, mechanical refrigeration units, direct contact coolers, trim coolers, or similar devices and combinations thereof. Additionally, the cooling device may employ any known cooling fluid suitable for such applications, such as chilled water or seawater, or refrigerants such as for example non-halogenated hydrocarbons, fluorocarbons, hydrofluorocarbons, chlorofluorocarbons, hydrochlorofluorocarbons, anhydrous ammonia, propane, carbon dioxide, propylene, and the like. In certain embodiments, the system may further comprise a separator configured to receive cooled oxidant from the cooling device and remove any water droplets from the oxidant stream before introduction to the inlet compressor. The separator may be any device suitable for the intended use, such as for example a vane pack, mesh pad, or other demisting device.
In one or more embodiments, the present invention also provides methods for generating power. The methods comprise compressing one or more oxidants in an inlet compressor to form a compressed oxidant; combusting the compressed oxidant and at least one fuel in a combustion chamber in the presence of a compressed recycle exhaust gas and under stoichiometric or substantially stoichiometric conditions, thereby generating a discharge stream; expanding the discharge stream in an expander to at least partially drive a main compressor and generate a gaseous exhaust stream; directing the gaseous exhaust stream to an exhaust gas recirculation system; and diverting a portion of the exhaust gas from the exhaust gas recycle system and combining the diverted portion of exhaust gas with the one or more oxidants to form a combined oxidant-exhaust stream that is directed to the combustion chamber. The diverted exhaust gas may be taken from any point in the exhaust gas recycle system, and may be combined with the one or more oxidants at any point before the oxidants enter the combustion chamber. The main compressor compresses the gaseous exhaust stream and thereby generates the compressed recycle stream. In some methods of the present invention, the exhaust gas recirculation system may comprise at least one cooling unit and at least one blower, such that the gaseous exhaust stream is cooled in at the least one cooling unit and the pressure of the gaseous exhaust stream is increased in the at least one blower, thereby generating a cooled recycle gas directed to the main compressor.
In one or more embodiments, methods of the invention may further comprise adjusting the flow of the combined oxidant-exhaust stream and the one or more fuels into the combustion chamber to maintain a fixed ratio of oxidant to fuel. The flow may be controlled via a ratio controller or similar device. In the same or other embodiments, methods of the invention may further comprise cooling the one or more oxidants before introduction to the inlet compressor and optionally removing water droplets from the cooled oxidant stream before introduction to the inlet compressor.
By diverting and combining a portion of the recycled exhaust gas with the oxidant feed in the systems and methods described herein, more precise control may be exerted over the amount of oxidant fed to the combustion chamber. Specifically, the mass density of the oxidant feed is allowed to float based on ambient temperature and pressure conditions, but the amount of oxygen per cubic foot in the combined oxidant-exhaust feed is kept at a constant level by varying the amount of recycle gas provided to the oxidant feed. When more oxygen is required, the amount of recycle gas mixed with the oxidant feed is reduced, and when less oxygen is required, the amount of recycle gas mixed with the oxidant feed is increased. In this manner, changes in the oxygen level of the oxidant feed caused by temperature changes, pressure changes, air quality, humidity, and the like can be accommodated and stoichiometric combustion conditions can be maintained regardless of variations elsewhere in the system or in the outside environment.
Referring now to the figures, various embodiments of the present invention may be best understood with reference to a base case, shown in
The gas turbine system 102 can also include a combustion chamber 110 configured to combust a fuel stream 112 mixed with a compressed oxidant 114. In one or more embodiments, the fuel stream 112 can include any suitable hydrocarbon gas or liquid, such as natural gas, methane, naphtha, butane, propane, syngas, diesel, kerosene, aviation fuel, coal derived fuel, bio-fuel, oxygenated hydrocarbon feedstock, or combinations thereof. The compressed oxidant 114 can be derived from a second or inlet compressor 118 fluidly coupled to the combustion chamber 110 and adapted to compress a feed oxidant 120. While the discussion herein assumes that the feed oxidant 120 is ambient air, the oxidant may comprise any suitable gas containing oxygen, such as air, oxygen-rich air, or combinations thereof
As will be described in more detail below, the combustion chamber 110 can also receive a compressed recycle stream 144, including a flue gas primarily having CO2 and nitrogen components. The compressed recycle stream 144 can be derived from the main compressor 104 and adapted to help facilitate the combustion of the compressed oxidant 114 and fuel 112, and also increase the CO2 concentration in the working fluid. A discharge stream 116 directed to the inlet of the expander 106 can be generated as a product of combustion of the fuel stream 112 and the compressed oxidant 114, in the presence of the compressed recycle stream 144. In at least one embodiment, the fuel stream 112 can be primarily natural gas, thereby generating a discharge 116 including volumetric portions of vaporized water, CO2, nitrogen, nitrogen oxides (NOX), and sulfur oxides (SOX). In some embodiments, a small portion of unburned fuel 112 or other compounds may also be present in the discharge 116 due to combustion equilibrium limitations. As the discharge stream 116 expands through the expander 106 it generates mechanical power to drive the main compressor 104, or other facilities, and also produces a gaseous exhaust stream 122 having a heightened CO2 content.
The power generation system 100 can also include an exhaust gas recirculation (EGR) system 124. While the EGR system 124 illustrated in the figures incorporates various apparatus, the illustrated configurations are representative only and any system that recirculates the exhaust gas 122 back to the main compressor to accomplish the goals stated herein may be used. In one or more embodiments, the EGR system 124 can include a heat recovery steam generator (HRSG) 126, or similar device. The gaseous exhaust stream 122 can be sent to the HRSG 126 in order to generate a stream of steam 130 and a cooled exhaust gas 132. The steam 130 can optionally be sent to a steam gas turbine (not shown) to generate additional electrical power. In such configurations, the combination of the HRSG 126 and the steam gas turbine can be characterized as a closed Rankine cycle. In combination with the gas turbine system 102, the HRSG 126 and the steam gas turbine can form part of a combined-cycle power generating plant, such as a natural gas combined-cycle (NGCC) plant.
In one or more embodiments, the cooled exhaust gas 132 exiting the HRSG 126 may be sent to at least one cooling unit 134 configured to reduce the temperature of the cooled exhaust gas 132 and generate a cooled recycle gas stream 140. In one or more embodiments, the cooling unit 134 is considered herein to be a direct contact cooler (DCC), but may be any suitable cooling device such as a direct contact cooler, trim cooler, a mechanical refrigeration unit, or combinations thereof The cooling unit 134 can also be configured to remove a portion of condensed water via a water dropout stream (not shown). In one or more embodiments, the cooled exhaust gas stream 132 can be directed to a blower or boost compressor 142 fluidly coupled to the cooling unit 134. In such embodiments, compressed exhaust gas stream 136 exits the blower 142 and is directed to the cooling unit 134.
The blower 142 can be configured to increase the pressure of the cooled exhaust gas stream 132 before it is introduced into the main compressor 104. In one or more embodiments, the blower 142 increases the overall density of the cooled exhaust gas stream 132, thereby directing an increased mass flow rate for the same volumetric flow to the main compressor 104. Because the main compressor 104 is typically volume-flow limited, directing more mass flow through the main compressor 104 can result in a higher discharge pressure from the main compressor 104, thereby translating into a higher pressure ratio across the expander 106. A higher pressure ratio generated across the expander 106 can allow for higher inlet temperatures and, therefore, an increase in expander 106 power and efficiency. This can prove advantageous since the CO2-rich discharge 116 generally maintains a higher specific heat capacity. Accordingly, the cooling unit 134 and the blower 142, when incorporated, may each be adapted to optimize or improve the operation of the gas turbine system 102.
The main compressor 104 can be configured to compress the cooled recycle gas stream 140 received from the EGR system 124 to a pressure nominally above the combustion chamber 110 pressure, thereby generating the compressed recycle stream 144. In at least one embodiment, a purge stream 146 can be tapped from the compressed recycle stream 144 and subsequently treated in a CO2 separator or other apparatus (not shown) to capture CO2. The separated CO2 can be used for sales, used in another process requiring carbon dioxide, and/or compressed and injected into a terrestrial reservoir for enhanced oil recovery (EOR), sequestration, or another purpose.
The EGR system 124 as described herein can be implemented to achieve a higher concentration of CO2 in the working fluid of the power generation system 100, thereby allowing for more effective CO2 separation for subsequent sequestration, pressure maintenance, or EOR applications. For instance, embodiments disclosed herein can effectively increase the concentration of CO2 in the flue gas exhaust stream to about 10 wt % or higher. To accomplish this, the combustion chamber 110 is adapted to stoichiometrically combust the incoming mixture of fuel 112 and compressed oxidant 114. In order to moderate the temperature of the stoichiometric combustion to meet expander 106 inlet temperature and component cooling requirements, a portion of the exhaust gas derived from the compressed recycle stream 144 can be injected into the combustion chamber 110 as a diluent. Thus, embodiments of the disclosure can essentially eliminate any excess oxygen from the working fluid while simultaneously increasing its CO2 composition. As such, the gaseous exhaust stream 122 can have less than about 3.0 vol % oxygen, or less than about 1.0 vol % oxygen, or less than about 0.1 vol % oxygen, or even less than about 0.001 vol % oxygen.
In some embodiments not depicted herein, high pressure steam may also be employed as a diluent in the combustion chamber, either in place of or in addition to the recycled exhaust gas. In such embodiments, the addition of steam would reduce power and size requirements in the EGR system (or eliminate the EGR system altogether), but would require the addition of a water recycle loop.
Additionally, in further embodiments not depicted herein, the compressed oxidant feed to the combustion chamber may comprise argon. For example, the oxidant may comprise from about 0.1 to about 5.0 vol % argon, or from about 1.0 to about 4.5 vol % argon, or from about 2.0 to about 4.0 vol % argon, or from about 2.5 to about 3.5 vol % argon, or about 3.0 vol % argon. As will be appreciated by those skilled in the art, incorporating argon into the compressed oxidant feed may require the addition of a cross exchanger or similar device between the main compressor and the combustion chamber configured to remove excess CO2 from the recycle stream and return argon to the combustion chamber at the appropriate temperature for combustion.
Referring now to
Referring now to
Referring now to
It will be apparent to those skilled in the art that one or more ratio controllers may be used as described above regardless of the configuration of the exhaust gas recycle circuit or the location where a portion of the exhaust gas is added to the oxidant feed. Additionally, one or more ratio controllers may be used as a sole method of stoichiometric control, without also adding a portion of the exhaust gas to the oxidant feed. Any such configurations or modifications are contemplated herein and considered to be within the scope of the invention.
Referring now to
In one or more embodiments of the present invention, the chilled oxidant feed 120 exiting the heat exchanger 510 may optionally be directed to a separator 512 to remove any condensed water droplets that may be entrained therein. Separator 512 can be any device suitable for the removal of water droplets, such as for example a vane pack, mesh pad, or other demisting device. From the separator 512, the oxidant feed stream 120 is directed to the inlet compressor 118, and the remainder of the system 500 operates in the same fashion as the system 300 of
While the present disclosure may be susceptible to various modifications and alternative forms, the exemplary embodiments discussed above have been shown only by way of example. Any features or configurations of any embodiment described herein may be combined with any other embodiment or with multiple other embodiments (to the extent feasible) and all such combinations are intended to be within the scope of the present invention. Additionally, it should be understood that the disclosure is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present disclosure includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
This application is the National Stage entry under 35 U.S.C. 371 of PCT/US2012/027772, that published as WO 2012/128925 and was filed on 5 Mar. 2012 which claims priority to U.S. Provisional Application 61/542,031, filed on 30 Sep. 2011 and U.S. Provisional Application 61/466,385, filed Mar. 22, 2011, each of which is incorporated by reference, it its entirety, for all purposes. This application contains subject matter related to U.S. Provisional Application 61/542,039 filed Sep. 30, 2011 (PCT/US2012/027780, that published as WO 2012/128928 and was filed on 5 Mar. 2012); U.S. Provisional Application 61/542,041 filed Sep. 30, 2011 (PCT/US2012/027781, that published as WO 2012/128929 and was filed on 5 Mar. 2012; U.S. Provisional Application 61/542,037 filed Sep. 30, 2011 (PCT/US2012/027776, that published as WO 2012/128927 and was filed on 5 Mar. 2012); U.S. Provisional Application 61/542,036 filed Sep. 30, 2011 (PCT/US2012/027774, that published as WO 2012/128926 and was filed on 5 Mar. 2012); U.S. Provisional Application 61/466,384 filed Mar. 22, 2011 and U.S. Provisional Application 61/542,030 filed 30 Sep. 2011 (PCT/2012/027769, that published as WO 2012/128923 and was filed on 5 Mar. 2012); and U.S. Provisional Application 61/466,381 filed Mar. 22, 2011 and U.S. Provisional Application 61/542,035 filed Sep. 30, 2011 (PCT/US2012/027770, that published as WO 2012/128924 and was filed on 5 Mar. 2012).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/027772 | 3/5/2012 | WO | 00 | 8/30/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/128925 | 9/27/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2488911 | Hepburn et al. | Nov 1949 | A |
2621475 | Loy | Dec 1952 | A |
2884758 | Oberle | May 1959 | A |
3561895 | Michelson | Feb 1971 | A |
3631672 | Gentile et al. | Jan 1972 | A |
3643430 | Emory et al. | Feb 1972 | A |
3705492 | Vickers | Dec 1972 | A |
3841382 | Gravis, III et al. | Oct 1974 | A |
3949548 | Lockwood, Jr. | Apr 1976 | A |
4018046 | Hurley | Apr 1977 | A |
4043395 | Every et al. | Aug 1977 | A |
4050239 | Kappler et al. | Sep 1977 | A |
4066214 | Johnson | Jan 1978 | A |
4077206 | Ayyagari | Mar 1978 | A |
4085578 | Kydd | Apr 1978 | A |
4092095 | Straitz, III | May 1978 | A |
4101294 | Kimura | Jul 1978 | A |
4112676 | DeCorso | Sep 1978 | A |
4117671 | Neal et al. | Oct 1978 | A |
4160640 | Maev et al. | Jul 1979 | A |
4165609 | Rudolph | Aug 1979 | A |
4171349 | Cucuiat et al. | Oct 1979 | A |
4204401 | Earnest | May 1980 | A |
4222240 | Castellano | Sep 1980 | A |
4224991 | Sowa et al. | Sep 1980 | A |
4236378 | Vogt | Dec 1980 | A |
4253301 | Vogt | Mar 1981 | A |
4271664 | Earnest | Jun 1981 | A |
4344486 | Parrish | Aug 1982 | A |
4345426 | Egnell et al. | Aug 1982 | A |
4352269 | Dineen | Oct 1982 | A |
4380895 | Adkins | Apr 1983 | A |
4399652 | Cole et al. | Aug 1983 | A |
4414334 | Hitzman | Nov 1983 | A |
4434613 | Stahl | Mar 1984 | A |
4435153 | Hashimoto et al. | Mar 1984 | A |
4442665 | Fick et al. | Apr 1984 | A |
4445842 | Syska | May 1984 | A |
4479484 | Davis | Oct 1984 | A |
4480985 | Davis | Nov 1984 | A |
4488865 | Davis | Dec 1984 | A |
4498288 | Vogt | Feb 1985 | A |
4498289 | Osgerby | Feb 1985 | A |
4528811 | Stahl | Jul 1985 | A |
4543784 | Kirker | Oct 1985 | A |
4548034 | Maguire | Oct 1985 | A |
4561245 | Ball | Dec 1985 | A |
4569310 | Davis | Feb 1986 | A |
4577462 | Robertson | Mar 1986 | A |
4602614 | Percival et al. | Jul 1986 | A |
4606721 | Livingston | Aug 1986 | A |
4613299 | Backheim | Sep 1986 | A |
4637792 | Davis | Jan 1987 | A |
4651712 | Davis | Mar 1987 | A |
4653278 | Vinson et al. | Mar 1987 | A |
4681678 | Leaseburge et al. | Jul 1987 | A |
4684465 | Leaseburge et al. | Aug 1987 | A |
4753666 | Pastor et al. | Jun 1988 | A |
4762543 | Pantermuehl et al. | Aug 1988 | A |
4817387 | Lashbrook | Apr 1989 | A |
4858428 | Paul | Aug 1989 | A |
4895710 | Hartmann et al. | Jan 1990 | A |
4898001 | Kuroda et al. | Feb 1990 | A |
4946597 | Sury | Aug 1990 | A |
4976100 | Lee | Dec 1990 | A |
5014785 | Puri et al. | May 1991 | A |
5044932 | Martin et al. | Sep 1991 | A |
5054279 | Hines | Oct 1991 | A |
5073105 | Martin et al. | Dec 1991 | A |
5084438 | Matsubara et al. | Jan 1992 | A |
5085274 | Puri et al. | Feb 1992 | A |
5098282 | Schwartz et al. | Mar 1992 | A |
5123248 | Monty et al. | Jun 1992 | A |
5135387 | Martin et al. | Aug 1992 | A |
5141049 | Larsen et al. | Aug 1992 | A |
5142866 | Yanagihara et al. | Sep 1992 | A |
5147111 | Montgomery | Sep 1992 | A |
5154596 | Schwartz et al. | Oct 1992 | A |
5183232 | Gale | Feb 1993 | A |
5195884 | Schwartz et al. | Mar 1993 | A |
5197289 | Glevicky et al. | Mar 1993 | A |
5238395 | Schwartz et al. | Aug 1993 | A |
5255506 | Wilkes et al. | Oct 1993 | A |
5265410 | Hisatome | Nov 1993 | A |
5271905 | Owen et al. | Dec 1993 | A |
5275552 | Schwartz et al. | Jan 1994 | A |
5295350 | Child et al. | Mar 1994 | A |
5304362 | Madsen | Apr 1994 | A |
5325660 | Taniguchi et al. | Jul 1994 | A |
5332036 | Shirley et al. | Jul 1994 | A |
5344307 | Schwartz et al. | Sep 1994 | A |
5345756 | Jahnke et al. | Sep 1994 | A |
5355668 | Weil et al. | Oct 1994 | A |
5359847 | Pillsbury et al. | Nov 1994 | A |
5361586 | McWhirter et al. | Nov 1994 | A |
5388395 | Scharpf et al. | Feb 1995 | A |
5394688 | Amos | Mar 1995 | A |
5402847 | Wilson et al. | Apr 1995 | A |
5444971 | Holenberger | Aug 1995 | A |
5457951 | Johnson et al. | Oct 1995 | A |
5458481 | Surbey et al. | Oct 1995 | A |
5468270 | Borszynski | Nov 1995 | A |
5490378 | Berger et al. | Feb 1996 | A |
5542840 | Surbey et al. | Aug 1996 | A |
5566756 | Chaback et al. | Oct 1996 | A |
5572862 | Mowill | Nov 1996 | A |
5581998 | Craig | Dec 1996 | A |
5584182 | Althaus et al. | Dec 1996 | A |
5590518 | Janes | Jan 1997 | A |
5628182 | Mowill | May 1997 | A |
5634329 | Andersson et al. | Jun 1997 | A |
5638675 | Zysman et al. | Jun 1997 | A |
5640840 | Briesch | Jun 1997 | A |
5657631 | Androsov | Aug 1997 | A |
5680764 | Viteri | Oct 1997 | A |
5685158 | Lenahan et al. | Nov 1997 | A |
5709077 | Beichel | Jan 1998 | A |
5713206 | McWhirter et al. | Feb 1998 | A |
5715673 | Beichel | Feb 1998 | A |
5724805 | Golomb et al. | Mar 1998 | A |
5725054 | Shayegi et al. | Mar 1998 | A |
5740786 | Gartner | Apr 1998 | A |
5743079 | Walsh et al. | Apr 1998 | A |
5765363 | Mowill | Jun 1998 | A |
5771867 | Amstutz et al. | Jun 1998 | A |
5771868 | Khair | Jun 1998 | A |
5819540 | Massarani | Oct 1998 | A |
5832712 | Ronning et al. | Nov 1998 | A |
5836164 | Tsukahara et al. | Nov 1998 | A |
5839283 | Dobbeling | Nov 1998 | A |
5850732 | Willis et al. | Dec 1998 | A |
5894720 | Willis et al. | Apr 1999 | A |
5901547 | Smith et al. | May 1999 | A |
5924275 | Cohen et al. | Jul 1999 | A |
5930990 | Zachary et al. | Aug 1999 | A |
5937634 | Etheridge et al. | Aug 1999 | A |
5950417 | Robertson, Jr. et al. | Sep 1999 | A |
5956937 | Beichel | Sep 1999 | A |
5968349 | Duyvesteyn et al. | Oct 1999 | A |
5974780 | Santos | Nov 1999 | A |
5992388 | Seger | Nov 1999 | A |
6016658 | Willis et al. | Jan 2000 | A |
6032465 | Regnier | Mar 2000 | A |
6035641 | Lokhandwala | Mar 2000 | A |
6062026 | Woollenweber et al. | May 2000 | A |
6079974 | Thompson | Jun 2000 | A |
6082093 | Greenwood et al. | Jul 2000 | A |
6089855 | Becker et al. | Jul 2000 | A |
6094916 | Puri et al. | Aug 2000 | A |
6101983 | Anand et al. | Aug 2000 | A |
6148602 | Demetri | Nov 2000 | A |
6170264 | Viteri et al. | Jan 2001 | B1 |
6183241 | Bohn et al. | Feb 2001 | B1 |
6201029 | Waycuilis | Mar 2001 | B1 |
6202400 | Utamura et al. | Mar 2001 | B1 |
6202442 | Brugerolle | Mar 2001 | B1 |
6202574 | Liljedahl et al. | Mar 2001 | B1 |
6209325 | Alkabie | Apr 2001 | B1 |
6216459 | Daudel et al. | Apr 2001 | B1 |
6216549 | Davis et al. | Apr 2001 | B1 |
6230103 | DeCorso et al. | May 2001 | B1 |
6237339 | Åsen et al. | May 2001 | B1 |
6247315 | Marin et al. | Jun 2001 | B1 |
6247316 | Viteri | Jun 2001 | B1 |
6248794 | Gieskes | Jun 2001 | B1 |
6253555 | Willis | Jul 2001 | B1 |
6256976 | Kataoka et al. | Jul 2001 | B1 |
6256994 | Dillon, IV | Jul 2001 | B1 |
6263659 | Dillon, IV et al. | Jul 2001 | B1 |
6266954 | McCallum et al. | Jul 2001 | B1 |
6269624 | Frutschi | Aug 2001 | B1 |
6269882 | Wellington et al. | Aug 2001 | B1 |
6276171 | Brugerolle | Aug 2001 | B1 |
6282901 | Marin et al. | Sep 2001 | B1 |
6283087 | Isaksen | Sep 2001 | B1 |
6289666 | Ginter | Sep 2001 | B1 |
6289677 | Prociw et al. | Sep 2001 | B1 |
6298652 | Mittricker et al. | Oct 2001 | B1 |
6298654 | Vermes et al. | Oct 2001 | B1 |
6298664 | Åsen et al. | Oct 2001 | B1 |
6301888 | Gray, Jr. | Oct 2001 | B1 |
6301889 | Gladden et al. | Oct 2001 | B1 |
6305929 | Chung et al. | Oct 2001 | B1 |
6314721 | Mathews et al. | Nov 2001 | B1 |
6324867 | Fanning et al. | Dec 2001 | B1 |
6332313 | Willis et al. | Dec 2001 | B1 |
6345493 | Smith et al. | Feb 2002 | B1 |
6360528 | Brausch et al. | Mar 2002 | B1 |
6363709 | Kataoka et al. | Apr 2002 | B2 |
6367258 | Wen et al. | Apr 2002 | B1 |
6370870 | Kamijo et al. | Apr 2002 | B1 |
6374591 | Johnson et al. | Apr 2002 | B1 |
6374594 | Kraft et al. | Apr 2002 | B1 |
6383461 | Lang | May 2002 | B1 |
6389814 | Viteri et al. | May 2002 | B2 |
6405536 | Ho et al. | Jun 2002 | B1 |
6412278 | Matthews | Jul 2002 | B1 |
6412302 | Foglietta | Jul 2002 | B1 |
6412559 | Gunter et al. | Jul 2002 | B1 |
6418725 | Maeda et al. | Jul 2002 | B1 |
6429020 | Thornton et al. | Aug 2002 | B1 |
6449954 | Bachmann | Sep 2002 | B2 |
6450256 | Mones | Sep 2002 | B2 |
6461147 | Sonju et al. | Oct 2002 | B1 |
6467270 | Mulloy et al. | Oct 2002 | B2 |
6470682 | Gray, Jr. | Oct 2002 | B2 |
6477859 | Wong et al. | Nov 2002 | B2 |
6484503 | Raz | Nov 2002 | B1 |
6484507 | Pradt | Nov 2002 | B1 |
6487863 | Chen et al. | Dec 2002 | B1 |
6490858 | Barrett et al. | Dec 2002 | B2 |
6499990 | Zink et al. | Dec 2002 | B1 |
6502383 | Janardan et al. | Jan 2003 | B1 |
6505567 | Anderson et al. | Jan 2003 | B1 |
6505683 | Minkkinen et al. | Jan 2003 | B2 |
6508209 | Collier, Jr. | Jan 2003 | B1 |
6523349 | Viteri | Feb 2003 | B2 |
6532745 | Neary | Mar 2003 | B1 |
6539716 | Finger et al. | Apr 2003 | B2 |
6584775 | Schneider et al. | Jul 2003 | B1 |
6598398 | Viteri et al. | Jul 2003 | B2 |
6598399 | Liebig | Jul 2003 | B2 |
6598402 | Kataoka et al. | Jul 2003 | B2 |
6606861 | Snyder | Aug 2003 | B2 |
6612291 | Sakamoto | Sep 2003 | B2 |
6615576 | Sheoran et al. | Sep 2003 | B2 |
6615589 | Allam et al. | Sep 2003 | B2 |
6622470 | Viteri et al. | Sep 2003 | B2 |
6622645 | Havlena | Sep 2003 | B2 |
6637183 | Viteri et al. | Oct 2003 | B2 |
6640548 | Brushwood et al. | Nov 2003 | B2 |
6644041 | Eyermann | Nov 2003 | B1 |
6655150 | Åsen et al. | Dec 2003 | B1 |
6668541 | Rice et al. | Dec 2003 | B2 |
6672863 | Doebbeling et al. | Jan 2004 | B2 |
6675579 | Yang | Jan 2004 | B1 |
6684643 | Frutschi | Feb 2004 | B2 |
6694735 | Sumser et al. | Feb 2004 | B2 |
6698412 | Dalla Betta | Mar 2004 | B2 |
6702570 | Shah et al. | Mar 2004 | B2 |
6722436 | Krill | Apr 2004 | B2 |
6725665 | Tuschy et al. | Apr 2004 | B2 |
6731501 | Cheng | May 2004 | B1 |
6732531 | Dickey | May 2004 | B2 |
6742506 | Grandin | Jun 2004 | B1 |
6743829 | Fischer-Calderon et al. | Jun 2004 | B2 |
6745573 | Marin et al. | Jun 2004 | B2 |
6745624 | Porter et al. | Jun 2004 | B2 |
6748004 | Jepson | Jun 2004 | B2 |
6752620 | Heier et al. | Jun 2004 | B2 |
6767527 | Åsen et al. | Jul 2004 | B1 |
6772583 | Bland | Aug 2004 | B2 |
6790030 | Fischer et al. | Sep 2004 | B2 |
6805483 | Tomlinson et al. | Oct 2004 | B2 |
6810673 | Snyder | Nov 2004 | B2 |
6813889 | Inoue et al. | Nov 2004 | B2 |
6817187 | Yu | Nov 2004 | B2 |
6820428 | Wylie | Nov 2004 | B2 |
6821501 | Matzakos et al. | Nov 2004 | B2 |
6823852 | Collier, Jr. | Nov 2004 | B2 |
6824710 | Viteri et al. | Nov 2004 | B2 |
6826912 | Levy et al. | Dec 2004 | B2 |
6826913 | Wright | Dec 2004 | B2 |
6838071 | Olsvik et al. | Jan 2005 | B1 |
6851413 | Tamol, Sr. | Feb 2005 | B1 |
6868677 | Viteri et al. | Mar 2005 | B2 |
6886334 | Shirakawa | May 2005 | B2 |
6887069 | Thornton et al. | May 2005 | B1 |
6899859 | Olsvik | May 2005 | B1 |
6901760 | Dittmann et al. | Jun 2005 | B2 |
6904815 | Widmer | Jun 2005 | B2 |
6907737 | Mittricker et al. | Jun 2005 | B2 |
6910335 | Viteri et al. | Jun 2005 | B2 |
6923915 | Alford et al. | Aug 2005 | B2 |
6939130 | Abbasi et al. | Sep 2005 | B2 |
6945029 | Viteri | Sep 2005 | B2 |
6945052 | Frutschi et al. | Sep 2005 | B2 |
6945087 | Porter et al. | Sep 2005 | B2 |
6945089 | Barie et al. | Sep 2005 | B2 |
6946419 | Kaefer | Sep 2005 | B2 |
6957539 | Lebas | Oct 2005 | B2 |
6969123 | Vinegar et al. | Nov 2005 | B2 |
6971242 | Boardman | Dec 2005 | B2 |
6981358 | Bellucci et al. | Jan 2006 | B2 |
6988549 | Babcock | Jan 2006 | B1 |
6993901 | Shirakawa | Feb 2006 | B2 |
6993916 | Johnson et al. | Feb 2006 | B2 |
6994491 | Kittle | Feb 2006 | B2 |
7007487 | Belokon et al. | Mar 2006 | B2 |
7010921 | Intile et al. | Mar 2006 | B2 |
7011154 | Maher et al. | Mar 2006 | B2 |
7015271 | Bice et al. | Mar 2006 | B2 |
7032388 | Healy | Apr 2006 | B2 |
7040400 | de Rouffignac et al. | May 2006 | B2 |
7043898 | Rago | May 2006 | B2 |
7043920 | Viteri et al. | May 2006 | B2 |
7045553 | Hershkowitz | May 2006 | B2 |
7053128 | Hershkowitz | May 2006 | B2 |
7056482 | Hakka et al. | Jun 2006 | B2 |
7059152 | Oakey et al. | Jun 2006 | B2 |
7065953 | Kopko | Jun 2006 | B1 |
7065972 | Zupanc et al. | Jun 2006 | B2 |
7074033 | Neary | Jul 2006 | B2 |
7077199 | Vinegar et al. | Jul 2006 | B2 |
7089743 | Frutschi et al. | Aug 2006 | B2 |
7096942 | de Rouffignac et al. | Aug 2006 | B1 |
7097925 | Keefer | Aug 2006 | B2 |
7104319 | Vinegar et al. | Sep 2006 | B2 |
7104784 | Hasegawa et al. | Sep 2006 | B1 |
7124589 | Neary | Oct 2006 | B2 |
7137256 | Stuttaford et al. | Nov 2006 | B1 |
7137623 | Mockry et al. | Nov 2006 | B2 |
7143572 | Ooka et al. | Dec 2006 | B2 |
7143606 | Tranier | Dec 2006 | B2 |
7146969 | Weirich | Dec 2006 | B2 |
7147461 | Neary | Dec 2006 | B2 |
7148261 | Hershkowitz et al. | Dec 2006 | B2 |
7152409 | Yee et al. | Dec 2006 | B2 |
7162875 | Fletcher et al. | Jan 2007 | B2 |
7168265 | Briscoe et al. | Jan 2007 | B2 |
7168488 | Olsvik et al. | Jan 2007 | B2 |
7183328 | Hershkowitz et al. | Feb 2007 | B2 |
7185497 | Dudebout et al. | Mar 2007 | B2 |
7194869 | McQuiggan et al. | Mar 2007 | B2 |
7197880 | Thornton et al. | Apr 2007 | B2 |
7217303 | Hershkowitz et al. | May 2007 | B2 |
7225623 | Koshoffer | Jun 2007 | B2 |
7237385 | Carrea | Jul 2007 | B2 |
7284362 | Marin et al. | Oct 2007 | B2 |
7299619 | Briesch et al. | Nov 2007 | B2 |
7299868 | Zapadinski | Nov 2007 | B2 |
7302801 | Chen | Dec 2007 | B2 |
7305817 | Blodgett et al. | Dec 2007 | B2 |
7305831 | Carrea et al. | Dec 2007 | B2 |
7313916 | Pellizzari | Jan 2008 | B2 |
7318317 | Carrea | Jan 2008 | B2 |
7343742 | Wimmer et al. | Mar 2008 | B2 |
7353655 | Bolis et al. | Apr 2008 | B2 |
7357857 | Hart et al. | Apr 2008 | B2 |
7363756 | Carrea et al. | Apr 2008 | B2 |
7363764 | Griffin et al. | Apr 2008 | B2 |
7381393 | Lynn | Jun 2008 | B2 |
7401577 | Saucedo et al. | Jul 2008 | B2 |
7410525 | Liu et al. | Aug 2008 | B1 |
7416137 | Hagen et al. | Aug 2008 | B2 |
7434384 | Lord et al. | Oct 2008 | B2 |
7438744 | Beaumont | Oct 2008 | B2 |
7467942 | Carroni et al. | Dec 2008 | B2 |
7468173 | Hughes et al. | Dec 2008 | B2 |
7472550 | Lear, Jr. et al. | Jan 2009 | B2 |
7481048 | Harmon et al. | Jan 2009 | B2 |
7481275 | Olsvik et al. | Jan 2009 | B2 |
7482500 | Johann et al. | Jan 2009 | B2 |
7485761 | Schindler et al. | Feb 2009 | B2 |
7488857 | Johann et al. | Feb 2009 | B2 |
7490472 | Lynghjem et al. | Feb 2009 | B2 |
7491250 | Hershkowitz et al. | Feb 2009 | B2 |
7492054 | Catlin | Feb 2009 | B2 |
7493769 | Jangili | Feb 2009 | B2 |
7498009 | Leach et al. | Mar 2009 | B2 |
7503178 | Bucker et al. | Mar 2009 | B2 |
7503948 | Hershkowitz et al. | Mar 2009 | B2 |
7506501 | Anderson et al. | Mar 2009 | B2 |
7513099 | Nuding et al. | Apr 2009 | B2 |
7513100 | Motter et al. | Apr 2009 | B2 |
7516626 | Brox et al. | Apr 2009 | B2 |
7520134 | Durbin et al. | Apr 2009 | B2 |
7523603 | Hagen et al. | Apr 2009 | B2 |
7536252 | Hibshman, II et al. | May 2009 | B1 |
7536873 | Nohlen | May 2009 | B2 |
7540150 | Schmid et al. | Jun 2009 | B2 |
7559977 | Fleischer et al. | Jul 2009 | B2 |
7562519 | Harris et al. | Jul 2009 | B1 |
7562529 | Kuspert et al. | Jul 2009 | B2 |
7566394 | Koseoglu | Jul 2009 | B2 |
7574856 | Mak | Aug 2009 | B2 |
7591866 | Bose | Sep 2009 | B2 |
7594386 | Narayanan et al. | Sep 2009 | B2 |
7610752 | Dalla Betta et al. | Nov 2009 | B2 |
7610759 | Yoshida et al. | Nov 2009 | B2 |
7611681 | Kaefer | Nov 2009 | B2 |
7614352 | Anthony et al. | Nov 2009 | B2 |
7618606 | Fan et al. | Nov 2009 | B2 |
7631493 | Shirakawa et al. | Dec 2009 | B2 |
7634915 | Hoffmann et al. | Dec 2009 | B2 |
7635408 | Mak et al. | Dec 2009 | B2 |
7637093 | Rao | Dec 2009 | B2 |
7644573 | Smith et al. | Jan 2010 | B2 |
7650744 | Varatharajan et al. | Jan 2010 | B2 |
7654320 | Payton | Feb 2010 | B2 |
7654330 | Zubrin et al. | Feb 2010 | B2 |
7655071 | De Vreede | Feb 2010 | B2 |
7670135 | Zink et al. | Mar 2010 | B1 |
7673454 | Saito et al. | Mar 2010 | B2 |
7673685 | Huntley Shaw et al. | Mar 2010 | B2 |
7674443 | Davis | Mar 2010 | B1 |
7677309 | Shaw et al. | Mar 2010 | B2 |
7681394 | Haugen | Mar 2010 | B2 |
7682597 | Blumenfeld et al. | Mar 2010 | B2 |
7690204 | Drnevich et al. | Apr 2010 | B2 |
7691788 | Tan et al. | Apr 2010 | B2 |
7695703 | Sobolevskiy et al. | Apr 2010 | B2 |
7717173 | Grott | May 2010 | B2 |
7721543 | Massey et al. | May 2010 | B2 |
7726114 | Evulet | Jun 2010 | B2 |
7734408 | Shiraki | Jun 2010 | B2 |
7739864 | Finkenrath et al. | Jun 2010 | B2 |
7749311 | Saito et al. | Jul 2010 | B2 |
7752848 | Balan et al. | Jul 2010 | B2 |
7752850 | Laster et al. | Jul 2010 | B2 |
7753039 | Harima et al. | Jul 2010 | B2 |
7753972 | Zubrin et al. | Jul 2010 | B2 |
7762084 | Martis et al. | Jul 2010 | B2 |
7763163 | Koseoglu | Jul 2010 | B2 |
7763227 | Wang | Jul 2010 | B2 |
7765810 | Pfefferle | Aug 2010 | B2 |
7788897 | Campbell et al. | Sep 2010 | B2 |
7789159 | Bader | Sep 2010 | B1 |
7789658 | Towler et al. | Sep 2010 | B2 |
7789944 | Saito et al. | Sep 2010 | B2 |
7793494 | Wirth et al. | Sep 2010 | B2 |
7802434 | Varatharajan et al. | Sep 2010 | B2 |
7815873 | Sankaranarayanan et al. | Oct 2010 | B2 |
7815892 | Hershkowitz et al. | Oct 2010 | B2 |
7819951 | White et al. | Oct 2010 | B2 |
7824179 | Hasegawa et al. | Nov 2010 | B2 |
7827778 | Finkenrath et al. | Nov 2010 | B2 |
7827794 | Pronske et al. | Nov 2010 | B1 |
7841186 | So et al. | Nov 2010 | B2 |
7845406 | Nitschke | Dec 2010 | B2 |
7846401 | Hershkowitz et al. | Dec 2010 | B2 |
7861511 | Chillar et al. | Jan 2011 | B2 |
7874140 | Fan et al. | Jan 2011 | B2 |
7874350 | Pfefferle | Jan 2011 | B2 |
7875402 | Hershkowitz et al. | Jan 2011 | B2 |
7882692 | Pronske et al. | Feb 2011 | B2 |
7886522 | Kammel | Feb 2011 | B2 |
7895822 | Hoffmann et al. | Mar 2011 | B2 |
7896105 | Dupriest | Mar 2011 | B2 |
7906304 | Kohr | Mar 2011 | B2 |
7909898 | White et al. | Mar 2011 | B2 |
7914749 | Carstens et al. | Mar 2011 | B2 |
7914764 | Hershkowitz et al. | Mar 2011 | B2 |
7918906 | Zubrin et al. | Apr 2011 | B2 |
7921633 | Rising | Apr 2011 | B2 |
7922871 | Price et al. | Apr 2011 | B2 |
7926292 | Rabovitser et al. | Apr 2011 | B2 |
7931712 | Zubrin et al. | Apr 2011 | B2 |
7931731 | Van Heeringen et al. | Apr 2011 | B2 |
7931888 | Drnevich et al. | Apr 2011 | B2 |
7934926 | Kornbluth et al. | May 2011 | B2 |
7942003 | Baudoin et al. | May 2011 | B2 |
7942008 | Joshi et al. | May 2011 | B2 |
7943097 | Golden et al. | May 2011 | B2 |
7955403 | Ariyapadi et al. | Jun 2011 | B2 |
7966822 | Myers et al. | Jun 2011 | B2 |
7976803 | Hooper et al. | Jul 2011 | B2 |
7980312 | Hill et al. | Jul 2011 | B1 |
7985399 | Drnevich et al. | Jul 2011 | B2 |
7988750 | Lee et al. | Aug 2011 | B2 |
8001789 | Vega et al. | Aug 2011 | B2 |
8029273 | Paschereit et al. | Oct 2011 | B2 |
8036813 | Tonetti et al. | Oct 2011 | B2 |
8038416 | Ono et al. | Oct 2011 | B2 |
8038746 | Clark | Oct 2011 | B2 |
8038773 | Ochs et al. | Oct 2011 | B2 |
8046986 | Chillar et al. | Nov 2011 | B2 |
8047007 | Zubrin et al. | Nov 2011 | B2 |
8051638 | Aljabari et al. | Nov 2011 | B2 |
8061120 | Hwang | Nov 2011 | B2 |
8062617 | Stakhev et al. | Nov 2011 | B2 |
8065870 | Jobson et al. | Nov 2011 | B2 |
8065874 | Fong et al. | Nov 2011 | B2 |
8074439 | Foret | Dec 2011 | B2 |
8080225 | Dickinson et al. | Dec 2011 | B2 |
8083474 | Hashimoto et al. | Dec 2011 | B2 |
8097230 | Mesters et al. | Jan 2012 | B2 |
8101146 | Fedeyko et al. | Jan 2012 | B2 |
8105559 | Melville et al. | Jan 2012 | B2 |
8110012 | Chiu et al. | Feb 2012 | B2 |
8117825 | Griffin et al. | Feb 2012 | B2 |
8117846 | Wilbraham | Feb 2012 | B2 |
8127558 | Bland et al. | Mar 2012 | B2 |
8127936 | Liu et al. | Mar 2012 | B2 |
8127937 | Liu et al. | Mar 2012 | B2 |
8133298 | Lanyi et al. | Mar 2012 | B2 |
8166766 | Draper | May 2012 | B2 |
8167960 | Gil | May 2012 | B2 |
8176982 | Gil et al. | May 2012 | B2 |
8191360 | Fong et al. | Jun 2012 | B2 |
8191361 | Fong et al. | Jun 2012 | B2 |
8196387 | Shah et al. | Jun 2012 | B2 |
8196413 | Mak | Jun 2012 | B2 |
8201402 | Fong et al. | Jun 2012 | B2 |
8205455 | Popovic | Jun 2012 | B2 |
8206669 | Schaffer et al. | Jun 2012 | B2 |
8209192 | Gil et al. | Jun 2012 | B2 |
8215105 | Fong et al. | Jul 2012 | B2 |
8220247 | Wijmans et al. | Jul 2012 | B2 |
8220248 | Wijmans et al. | Jul 2012 | B2 |
8220268 | Callas | Jul 2012 | B2 |
8225600 | Theis | Jul 2012 | B2 |
8226912 | Kloosterman et al. | Jul 2012 | B2 |
8240142 | Fong et al. | Aug 2012 | B2 |
8240153 | Childers et al. | Aug 2012 | B2 |
8245492 | Draper | Aug 2012 | B2 |
8245493 | Minto | Aug 2012 | B2 |
8247462 | Boshoff et al. | Aug 2012 | B2 |
8257476 | White et al. | Sep 2012 | B2 |
8261823 | Hill et al. | Sep 2012 | B1 |
8262343 | Hagen | Sep 2012 | B2 |
8266883 | Dion Ouellet et al. | Sep 2012 | B2 |
8266913 | Snook et al. | Sep 2012 | B2 |
8268044 | Wright et al. | Sep 2012 | B2 |
8281596 | Rohrssen et al. | Oct 2012 | B1 |
8316665 | Mak | Nov 2012 | B2 |
8316784 | D'Agostini | Nov 2012 | B2 |
8337613 | Zauderer | Dec 2012 | B2 |
8347600 | Wichmann et al. | Jan 2013 | B2 |
8348551 | Baker et al. | Jan 2013 | B2 |
8371100 | Draper | Feb 2013 | B2 |
8372251 | Goller et al. | Feb 2013 | B2 |
8377184 | Fujikawa et al. | Feb 2013 | B2 |
8377401 | Darde et al. | Feb 2013 | B2 |
8388919 | Hooper et al. | Mar 2013 | B2 |
8397482 | Kraemer et al. | Mar 2013 | B2 |
8398757 | Iijima et al. | Mar 2013 | B2 |
8409307 | Drnevich et al. | Apr 2013 | B2 |
8414694 | Iijima et al. | Apr 2013 | B2 |
8424282 | Vollmer et al. | Apr 2013 | B2 |
8424601 | Betzer-Zilevitch | Apr 2013 | B2 |
8436489 | Stahlkopf et al. | May 2013 | B2 |
8453461 | Draper | Jun 2013 | B2 |
8453462 | Wichmann et al. | Jun 2013 | B2 |
8453583 | Malavasi et al. | Jun 2013 | B2 |
8454350 | Berry et al. | Jun 2013 | B2 |
8475160 | Campbell et al. | Jul 2013 | B2 |
8539749 | Wichmann et al. | Sep 2013 | B1 |
8555796 | D'Agostini | Oct 2013 | B2 |
8567200 | Brook et al. | Oct 2013 | B2 |
8616294 | Zubrin et al. | Dec 2013 | B2 |
8627643 | Chillar et al. | Jan 2014 | B2 |
8813503 | Jones | Aug 2014 | B2 |
8875483 | Wettstein | Nov 2014 | B2 |
20010000049 | Kataoka et al. | Mar 2001 | A1 |
20010029732 | Bachmann | Oct 2001 | A1 |
20010045090 | Gray, Jr. | Nov 2001 | A1 |
20020043063 | Kataoka et al. | Apr 2002 | A1 |
20020053207 | Finger et al. | May 2002 | A1 |
20020069648 | Levy et al. | Jun 2002 | A1 |
20020187449 | Doebbeling et al. | Dec 2002 | A1 |
20030005698 | Keller | Jan 2003 | A1 |
20030131582 | Anderson et al. | Jul 2003 | A1 |
20030134241 | Marin et al. | Jul 2003 | A1 |
20030221409 | McGowan | Dec 2003 | A1 |
20040006994 | Walsh et al. | Jan 2004 | A1 |
20040068981 | Siefker et al. | Apr 2004 | A1 |
20040166034 | Kaefer | Aug 2004 | A1 |
20040170559 | Hershkowitz et al. | Sep 2004 | A1 |
20040223408 | Mathys et al. | Nov 2004 | A1 |
20040238654 | Hagen et al. | Dec 2004 | A1 |
20050028529 | Bartlett et al. | Feb 2005 | A1 |
20050144961 | Colibaba-Evulet et al. | Jul 2005 | A1 |
20050197267 | Zaki et al. | Sep 2005 | A1 |
20050229585 | Webster | Oct 2005 | A1 |
20050236602 | Viteri et al. | Oct 2005 | A1 |
20060112675 | Anderson et al. | Jun 2006 | A1 |
20060158961 | Ruscheweyh et al. | Jul 2006 | A1 |
20060183009 | Berlowitz et al. | Aug 2006 | A1 |
20060196812 | Beetge et al. | Sep 2006 | A1 |
20060248888 | Geskes | Nov 2006 | A1 |
20070000242 | Harmon et al. | Jan 2007 | A1 |
20070006592 | Balan | Jan 2007 | A1 |
20070044475 | Leser et al. | Mar 2007 | A1 |
20070044479 | Brandt et al. | Mar 2007 | A1 |
20070089425 | Motter et al. | Apr 2007 | A1 |
20070107430 | Schmid et al. | May 2007 | A1 |
20070144747 | Steinberg | Jun 2007 | A1 |
20070231233 | Bose | Oct 2007 | A1 |
20070234702 | Hagen et al. | Oct 2007 | A1 |
20070245736 | Barnicki | Oct 2007 | A1 |
20070249738 | Haynes et al. | Oct 2007 | A1 |
20070272201 | Amano et al. | Nov 2007 | A1 |
20080000229 | Kuspert et al. | Jan 2008 | A1 |
20080006561 | Moran et al. | Jan 2008 | A1 |
20080010967 | Griffin et al. | Jan 2008 | A1 |
20080034727 | Sutikno | Feb 2008 | A1 |
20080038598 | Berlowitz et al. | Feb 2008 | A1 |
20080047280 | Dubar | Feb 2008 | A1 |
20080066443 | Frutschi et al. | Mar 2008 | A1 |
20080115478 | Sullivan | May 2008 | A1 |
20080118310 | Graham | May 2008 | A1 |
20080127632 | Finkenrath et al. | Jun 2008 | A1 |
20080155984 | Liu et al. | Jul 2008 | A1 |
20080178611 | Ding | Jul 2008 | A1 |
20080202123 | Sullivan et al. | Aug 2008 | A1 |
20080223038 | Lutz et al. | Sep 2008 | A1 |
20080250795 | Katdare et al. | Oct 2008 | A1 |
20080251234 | Wilson et al. | Oct 2008 | A1 |
20080276617 | Mak | Nov 2008 | A1 |
20080290719 | Kaminsky et al. | Nov 2008 | A1 |
20080309087 | Evulet et al. | Dec 2008 | A1 |
20090000762 | Wilson et al. | Jan 2009 | A1 |
20090025390 | Christensen et al. | Jan 2009 | A1 |
20090038247 | Taylor et al. | Feb 2009 | A1 |
20090056342 | Kirzhner | Mar 2009 | A1 |
20090064653 | Hagen et al. | Mar 2009 | A1 |
20090071166 | Hagen et al. | Mar 2009 | A1 |
20090107141 | Chillar et al. | Apr 2009 | A1 |
20090117024 | Weedon et al. | May 2009 | A1 |
20090120087 | Sumser et al. | May 2009 | A1 |
20090157230 | Hibshman, II et al. | Jun 2009 | A1 |
20090193809 | Schroder et al. | Aug 2009 | A1 |
20090205334 | Aljabari et al. | Aug 2009 | A1 |
20090218821 | ElKady et al. | Sep 2009 | A1 |
20090223227 | Lipinski et al. | Sep 2009 | A1 |
20090229263 | Ouellet et al. | Sep 2009 | A1 |
20090235637 | Foret | Sep 2009 | A1 |
20090241506 | Nilsson | Oct 2009 | A1 |
20090255242 | Paterson et al. | Oct 2009 | A1 |
20090262599 | Kohrs et al. | Oct 2009 | A1 |
20090284013 | Anand et al. | Nov 2009 | A1 |
20090301054 | Simpson et al. | Dec 2009 | A1 |
20090301099 | Nigro | Dec 2009 | A1 |
20100003123 | Smith | Jan 2010 | A1 |
20100018218 | Riley et al. | Jan 2010 | A1 |
20100058732 | Kaufmann et al. | Mar 2010 | A1 |
20100115960 | Brautsch et al. | May 2010 | A1 |
20100126176 | Kim | May 2010 | A1 |
20100126906 | Sury | May 2010 | A1 |
20100162703 | Li et al. | Jul 2010 | A1 |
20100170253 | Berry et al. | Jul 2010 | A1 |
20100180565 | Draper | Jul 2010 | A1 |
20100300102 | Bathina et al. | Dec 2010 | A1 |
20100310439 | Brok et al. | Dec 2010 | A1 |
20100322759 | Tanioka | Dec 2010 | A1 |
20100326084 | Anderson et al. | Dec 2010 | A1 |
20110000221 | Minta et al. | Jan 2011 | A1 |
20110000671 | Hershkowitz et al. | Jan 2011 | A1 |
20110036082 | Collinot | Feb 2011 | A1 |
20110048002 | Taylor et al. | Mar 2011 | A1 |
20110048010 | Balcezak et al. | Mar 2011 | A1 |
20110072779 | ELKady et al. | Mar 2011 | A1 |
20110088379 | Nanda | Apr 2011 | A1 |
20110110759 | Sanchez et al. | May 2011 | A1 |
20110126512 | Anderson | Jun 2011 | A1 |
20110138766 | ELKady et al. | Jun 2011 | A1 |
20110162353 | Vanvolsem et al. | Jul 2011 | A1 |
20110205837 | Gentgen | Aug 2011 | A1 |
20110226010 | Baxter | Sep 2011 | A1 |
20110227346 | Klenven | Sep 2011 | A1 |
20110232545 | Clements | Sep 2011 | A1 |
20110239653 | Valeev et al. | Oct 2011 | A1 |
20110265447 | Cunningham | Nov 2011 | A1 |
20110300493 | Mittricker et al. | Dec 2011 | A1 |
20120023954 | Wichmann | Feb 2012 | A1 |
20120023955 | Draper | Feb 2012 | A1 |
20120023956 | Popovic | Feb 2012 | A1 |
20120023957 | Draper et al. | Feb 2012 | A1 |
20120023958 | Snook et al. | Feb 2012 | A1 |
20120023960 | Minto | Feb 2012 | A1 |
20120023962 | Wichmann et al. | Feb 2012 | A1 |
20120023963 | Wichmann et al. | Feb 2012 | A1 |
20120023966 | Ouellet et al. | Feb 2012 | A1 |
20120031581 | Chillar et al. | Feb 2012 | A1 |
20120032810 | Chillar et al. | Feb 2012 | A1 |
20120085100 | Hughes et al. | Apr 2012 | A1 |
20120096829 | West | Apr 2012 | A1 |
20120096870 | Wichmann et al. | Apr 2012 | A1 |
20120119512 | Draper | May 2012 | A1 |
20120131925 | Mittricker et al. | May 2012 | A1 |
20120144837 | Rasmussen et al. | Jun 2012 | A1 |
20120185144 | Draper | Jul 2012 | A1 |
20120192565 | Tretyakov et al. | Aug 2012 | A1 |
20120247105 | Nelson et al. | Oct 2012 | A1 |
20120260660 | Kraemer et al. | Oct 2012 | A1 |
20130086916 | Oelfke et al. | Apr 2013 | A1 |
20130086917 | Slobodyanskiy et al. | Apr 2013 | A1 |
20130091853 | Denton et al. | Apr 2013 | A1 |
20130091854 | Gupta et al. | Apr 2013 | A1 |
20130104562 | Oelfke et al. | May 2013 | A1 |
20130104563 | Oelfke et al. | May 2013 | A1 |
20130125554 | Mittricker et al. | May 2013 | A1 |
20130125555 | Mittricker et al. | May 2013 | A1 |
20130232980 | Chen et al. | Sep 2013 | A1 |
20130269310 | Wichmann et al. | Oct 2013 | A1 |
20130269311 | Wichmann et al. | Oct 2013 | A1 |
20130269355 | Wichmann et al. | Oct 2013 | A1 |
20130269356 | Butkiewicz et al. | Oct 2013 | A1 |
20130269357 | Wichmann et al. | Oct 2013 | A1 |
20130269358 | Wichmann et al. | Oct 2013 | A1 |
20130269360 | Wichmann et al. | Oct 2013 | A1 |
20130269361 | Wichmann et al. | Oct 2013 | A1 |
20130269362 | Wichmann et al. | Oct 2013 | A1 |
20130283808 | Kolvick | Oct 2013 | A1 |
20140000271 | Mittricker et al. | Jan 2014 | A1 |
20140000273 | Mittricker et al. | Jan 2014 | A1 |
20140007590 | Huntington et al. | Jan 2014 | A1 |
20140013766 | Mittricker et al. | Jan 2014 | A1 |
20140020398 | Mittricker et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2231749 | Sep 1998 | CA |
2550675 | Jul 2005 | CA |
2645450 | Sep 2007 | CA |
2614669 | Dec 2008 | CA |
0453059 | Jun 1994 | EP |
0770771 | May 1997 | EP |
0654639 | Sep 1998 | EP |
2924951 | Jun 2006 | FR |
0776269 | Jun 1957 | GB |
2117053 | Oct 1983 | GB |
2397349 | Jul 2004 | GB |
WO9521683 | Aug 1995 | WO |
WO9707329 | Feb 1997 | WO |
WO9906674 | Feb 1999 | WO |
WO9963210 | Dec 1999 | WO |
WO2005064232 | Jul 2005 | WO |
WO2006107209 | Oct 2006 | WO |
WO2007068682 | Jun 2007 | WO |
WO2008074980 | Jun 2008 | WO |
WO2008142009 | Nov 2008 | WO |
WO2008155242 | Dec 2008 | WO |
WO2009120779 | Oct 2009 | WO |
WO2009121008 | Oct 2009 | WO |
WO2010044958 | Apr 2010 | WO |
WO2010066048 | Jul 2010 | WO |
WO2010141777 | Dec 2010 | WO |
WO2011003606 | Jan 2011 | WO |
WO2011028322 | Mar 2011 | WO |
WO2012003076 | Jan 2012 | WO |
WO2012003077 | Jan 2012 | WO |
WO2012003078 | Jan 2012 | WO |
WO2012003079 | Jan 2012 | WO |
WO2012003080 | Jan 2012 | WO |
WO2012003489 | Jan 2012 | WO |
WO2012018458 | Feb 2012 | WO |
WO2012018459 | Feb 2012 | WO |
WO2012128928 | Sep 2012 | WO |
WO2012128929 | Sep 2012 | WO |
WO2012170114 | Dec 2012 | WO |
WO2013147632 | Oct 2013 | WO |
WO2013147633 | Oct 2013 | WO |
WO2013155214 | Oct 2013 | WO |
WO2013163045 | Oct 2013 | WO |
Entry |
---|
Ahmed, S. et al. (1998) “Catalytic Partial Oxidation Reforming of Hydrocarbon Fuels,” 1998 Fuel Cell Seminar, Nov. 16-19, 1998, 7 pgs. |
Air Separation Technology Ion Transport Membrane—Air Products 2008. |
Air Separation Technology Ion Transport Membrane—Air Products 2011. |
Anderson, R. E. (2006) “Durability and Reliability Demonstration of a Near-Zero-Emission Gas-Fired Power Plant,” California Energy Comm., CEC 500-2006-074, 80 pgs. |
Baxter, E. et al. (2003) “Fabricate and Test an Advanced Non-Polluting Turbine Drive Gas Generator,” U. S. Dept. of Energy, Nat'l Energy Tech. Lab., DE-FC26-00NT 40804, 51 pgs. |
Bolland, O. et al. (1998) “Removal of CO2 From Gas Turbine Power Plants Evaluation of Pre- and Postcombustion Methods,” SINTEF Group, 1998, www.energy.sintef.no/publ/xergi/98/3/art-8engelsk.htm, 11 pgs. |
BP Press Release (2006) “BP and Edison Mission Group Plan Major Hydrogen Power Project for California,” Feb. 10, 2006, www.bp.com/hydrogenpower, 2 pgs. |
Bryngelsson, M. et al. (2005) “Feasibility Study of CO2 Removal From Pressurized Flue Gas in a Fully Fired Combined Cycle—The Sargas Project,” KTH—Royal Institute of Technology, Dept. Of Chemical Engineering and Technology, 9 pgs. |
Clark, Hal (2002) “Development of a Unique Gas Generator for a Non-Polluting Power Plant,” California Energy Commission Feasibility Analysis, P500-02-011F, Mar. 2002, 42 pgs. |
Ditaranto, et al. , (2006), “Combustion Instabilities in Sudden Expansion Oxy-Fuel Flames,” ScienceDirect, Combustion and Flame, v. 146, Jun. 30, 2006, 15 pgs. |
Foy, Kirsten et al. (2005) “Comparison of Ion Transport Membranes” —Fourth Annual Conference on Carbon Capture and Sequestration, DOE/NETL; May 2005, 11 pages. |
Cho, J. H. et al. (2005) “Marrying LNG and Power Generation,” Energy Markets; Oct./Nov. 2005; 10, 8; ABI/INFORM Trade & Industry, p. 28. |
Ciulia, Vincent. About.com. Auto Repair. How the Engine Works. 2001-2003. |
Corti, A. et al. (1988) “Athabasca Mineable Oil Sands: The RTR/Gulf Extraction Process Theoretical Model of Bitumen Detachment,” 4th UNITAR/UNDP Int'l Conf. on Heavy Crude and Tar Sands Proceedings, v.5, paper No. 81, Edmonton, AB, Canada, Aug. 7-12, 1988, pp. 41-44. |
Cryogenics. Science Clarified. 2012. http://www.scienceclarified.com/Co-Di/Cryogenics.html. |
Defrate, L. A. et al. (1959) “Optimum Design of Ejector Using Digital Computers” Chem. Eng. Prog. Symp. Ser., 55 ( 21) pp. 46. |
Elwell, L. C. et al. (2005) “Technical Overview of Carbon Dioxide Capture Technologies for Coal-Fired Power Plants,” MPR Associates, Inc., Jun. 22, 2005, 15 pgs. |
Eriksson, Sara. Licentiate Thesis 2005, p. 22. KTH—“Development of Methane Oxidation Catalysts for Different Gas Turbine Combustor Concepts.” The Royal Institute of Technology, Department of Chemical Engineering and Technology, Chemical Technology, Stockholm Sweden. |
Ertesvag, I. S. et al. (2005) “Energy Analysis of a Gas-Turbine Combined-Cycle Power Plant With Precombustion CO2 Capture,” Elsivier, 2004, pp. 5-39. |
Evulet, Andrei T. et al. “Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture” ASME J. Engineering for Gas Turbines and Power, vol. 131, May 2009. |
Evulet, Andrei T. et al. “On the Performance and Operability of GE's Dry Low Nox Combustors utilizing Exhaust Gas Recirculation for Post-Combustion Carbon Capture” Energy Procedia I 2009, 3809-3816. |
http://www.turbineinletcooling.org/resources/papers/CTIC—WetCompression—Shepherd—ASMETurboExpo2011.pdf , Shepherd, IGTI 2011—CTIC Wet Compression, Jun. 8, 2011. |
Luby, P. et al. (2003) “Zero Carbon Power Generation: IGCC as the Premium Option,” Powergen International, 19 pgs. |
MacAdam, S. et al. (2008) “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” Clean Energy Systems, Inc. 6 pgs. |
Morehead, H. (2007) “Siemens Global Gasification and IGCC Update,” Siemens, Coal-Gen, Aug. 3, 2007, 17 pgs. |
Nanda, R. et al. (2007) “Utilizing Air Based Technologies as Heat Source for LNG Vaporization,” presented at the 86th Annual convention of the Gas Processors of America (GPA 2007), Mar. 11-14, 2007, San Antonio, TX. |
Reeves, S. R. (2001) “Geological Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project,” SPE 71749, 10 pgs. |
Reeves, S. R. (2003) “Enhanced Coalbed Methane Recovery,” SPE 101466-DL, 8 pgs. |
Richards, G. A. et al. (2001) “Advanced Steam Generators,” National Energy Technology Laboratory, 7 pgs. |
Rosetta, M. J. et al. (2006) “Integrating Ambient Air Vaporization Technology with Waste Heat Recovery—A Fresh Approach to LNG Vaporization,” presented at the 85th annual convention of the Gas Processors of America (GPA 2006), Grapevine, Texas, Mar. 5-8, 2006. |
Snarheim, D. et al. (2006) “Control Design for a Gas Turbine Cycle With CO2 Capture Capabilities,” Modeling, Identification and Control, vol. 00, 10 pgs. |
Ulfsnes, R. E. et al. (2003) “Investigation of Physical Properties for CO2/H2O Mixtures for use in Semi-Closed O2/CO2 Gas Turbine Cycle With CO2-Capture,” Department of Energy and Process Eng., Norwegian Univ. of Science and Technology, 9 pgs. |
vanHemert, P. et al. (2006) “Adsorption of Carbon Dioxide and a Hydrogen-Carbon Dioxide Mixture,” Intn'l Coalbed Methane Symposium (Tuscaloosa, AL) Paper 0615, 9 pgs. |
Zhu, J. et al. (2002) “Recovery of Coalbed Methane by Gas Injection,” SPE 75255, 15 pgs. |
U.S. Appl. No. 13/596,684, filed Aug. 28, 2012, Slobodyanskiy et al. |
U.S. Appl. No. 14/066,579, filed Oct. 29, 2013, Huntington et al. |
U.S. Appl. No. 14/066,551, filed Oct. 29, 2013, Minto. |
U.S. Appl. No. 14/144,511, filed Dec. 30, 2013, Thatcher et al. |
U.S. Appl. No. 14/067,559, filed Oct. 30, 2013, Lucas John Stoia et al. |
PCT/RU2013/000162, filed Feb. 28, 2013, General Electric Company. |
U.S. Appl. No. 14/067,679, filed Oct. 30, 2013, Elizabeth Angelyn Fadde et al. |
U.S. Appl. No. 14/067,714, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al. |
U.S. Appl. No. 14/067,726, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al. |
U.S. Appl. No. 14/067,731, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al. |
U.S. Appl. No. 14/067,739, filed Oct. 30, 2013, Carolyn Ashley Antoniono et al. |
U.S. Appl. No. 14/067,797, filed Oct. 31, 2013, Anthony Wayne Krull et al. |
U.S. Appl. No. 14/066,488, filed Oct. 29, 2013, Pramod K. Biyani et al. |
U.S. Appl. No. 14/135,055, filed Dec. 19, 2013, Pramod K. Biyani et al. |
U.S. Appl. No. 14/067,844, filed Oct. 30, 2013, John Farrior Woodall et al. |
PCT/US13/036020, filed Apr. 10, 2013, General Electric Company/ExxonMobil Upstream Company. |
U.S. Appl. No. 14/067,486, filed Oct. 30, 2013, Huntington et al. |
U.S. Appl. No. 14/067,537, filed Oct. 30, 2013, Huntington et al. |
U.S. Appl. No. 14/067,552, filed Oct. 30, 2013, Huntington et al. |
U.S. Appl. No. 14/067,563, filed Oct. 30, 2013, Huntington et al. |
Number | Date | Country | |
---|---|---|---|
20140000271 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61542031 | Sep 2011 | US | |
61466385 | Mar 2011 | US |