This application generally relates to systems and methods for controlling substrate flatness in printing device, in particular, using the flow of air.
In order to make color spectral measurements in printing device, a sheet of paper (or other substrate media) may be transported past an embedded or inline spectrophotometer or other measurement device for monitoring printed images. If the sheet of paper is not sufficiently “flat” as it passes the spectrophotometer, especially while traveling at high speeds (e.g., up to 3 m/s), accurate color spectral measurements may be comprised and/or unobtainable.
According to one aspect of the application, a system for controlling flatness of sheets of media in a printing device comprising: a first transport baffle and a second transport baffle generally spaced apart to permit a sheet of media to pass; a plenum located adjacent to the first transport baffle; a blower to generate a flow of air to the plenum; and a sensor located adjacent to the second transport baffles and configured to measure a property of the sheet of media, wherein the plenum is configured to enable the air flow to urge the sheet of media toward the sensor during use.
According to another aspect of the application, a method for controlling flatness of sheets of media in a printing device comprising: providing a first transport baffle and a second transport baffle generally spaced apart to permit a sheet of media to pass; generating a flow of air to the first transport baffle, wherein air flow urges the sheet of media toward a sensor mounted in the second transport baffle; and measuring a property of the sheet of media using the sensor.
Other objects, features, and advantages of one or more embodiments of the present invention will seem apparent from the following detailed description, and accompanying drawings, and the appended claims.
Embodiments of the present invention will now be disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
This application proposes a methodology for a controlling substrate flatness using the flow of air to control paper flatness. This application relates to subject matter similar to that disclosed in co-pending U.S. patent application Ser. No. 12/246,113, filed Oct. 6, 2008, herein incorporated by reference in its entirety.
The print engine 30 may operate at a constant speed. The media handler 20 delivers a substrate, for example, a sheet of media from a hopper 22, to the print engine 30 at a specified time window for printing.
Generally, the substrate will be a sheet of paper. For example, the sheet of media may be a standard 8½×11 inch letter paper, A4 paper, or 8½×14 inch legal paper. However, it will be appreciated that other sizes and substrate media types may similarly be used, such as, bond paper, parchment, cloth, cardboard, plastic, transparencies, film, foil, or other print media substrates.
The print engine 30 may be a color xerographic printing system. In one implementation, the printing system 100 may be a Xerox Igen3® digital printing press. However, it will be appreciated that the print engine may be readily adapted for other kinds of printing technology, such as, for example, ink-jet (bubble jet), laser, offset, solid-ink, dye sublimation, etc.
After the substrate has been printed by the print engine 30, the printed substrate proceeds along an output media path 35 toward the output destination/finisher 40. The output destination/finisher 40 may include one of a plurality of output destinations, or output trays. In one embodiment, one or more of the output trays may be used as a purge tray. The output destination/finisher 40 may also perform final collating of the pages of the document. As is known in the art, the finisher can include any post-printing accessory device such as a sorter, mailbox, inserter, interposer, folder, stapler, stacker, hole puncher, collater, stitcher, binder, envelope stuffer, postage machine, or the like.
Located between the print engine 30 and the output finisher 40 there may be a Velocity Changing Transport (VCT) unit 50. The VCT 50 is a paper transport with at least one nip/idler 51 set to move the paper through the machine.
The VCT 50 generally includes an upper transport baffle 52 and lower transport baffle 54 spaced parallel defining a space 53 to permit a sheet of paper to pass. A sensor 55 may be mounted on the upper transport baffle 52 (or lower transport baffle 54). A slot, aperture, or hole which may be referred to as a “sensor window” (not shown) may be provided in the upper transport baffle (or lower baffle) to permit measurement of the substrate as it passes the sensor 55.
As the paper passes through the VCT 50 it may be accelerated. For example, the nip 51 may accelerate the paper from “process speed” (i.e., the speed that the paper is traveling when the image is transferred to the paper by the print engine) to two times (2×) process speed which is the speed a paper stacking mechanism (not shown) located in the output/finisher 40. In some implementations, the VCT 50 may also be located in the output module of the print engine 30 (for example, where a large print engine is broken into two modules due to the size). Other locations for the VCT 50 are also possible.
In one implementation, the sensor 55 may be an embedded or inline spectrophotometer (ILS) for making color spectral measurements of printed images on the substrate. For example, the ILS may be a point or strip spectrophotometer or a full width array (FWA) spectrophotometer, for example, as disclosed in U.S. Pat. Nos. 6,621,576, and 6,975,949, incorporated herein, in their entireties. It will be appreciated that in other implementations, the sensor 55 may be a calorimeter, a densitometer, a spectral camera, or other color sensing device. As the substrate passes through the VCT 50, the sensor measures a (top) surface of the sheet to detect a property of the sheet of media. Properties measured may include, for example, color, density, gloss, differential gloss, etc.
The substrate includes a length and a width oriented in an x-y plane. The x-direction and the y-direction may be also be referred to as the “process” and the “cross-process” directions, respectively. However, the height of the sheet of paper (as measured from the sensor 55) may vary in the Z-direction as it passes the sensor 55. Thus, a sensor “read plane” may be defined as a position to make an ideal sensor reading of the substrate. In some implementations, this may be the focal point of the sensor and/or the lower surface of the upper transport baffles. The read plane establishes a “zero location” (or origin point) for measuring a distance in the Z-direction from the read plane to surface of the substrate being measured. Other configurations and geometries are also possible.
In order to make accurate color density measurements with an inline spectrophotometer (ILS), the paper flatness may be controlled such that the distance (in the Z-direction) from the read plane to the surface of the substrate being measured is generally maintained to a desired specification, such as between −0.15 mm and +0.35 mm.
Experiments of the inventors have shown that the distance from the read plane typically varies from approximately 0.3 mm to 2.2 mm for points across the surface of the sheet of paper, with the greatest distance being generally at the leading and trailing edges. As such, accurate measurements using the ILS may be compromised and/or unobtainable.
The single plenum air system 200 may generally include an upper transport baffle 210 and lower transport baffle 220 spaced parallel to each other, forming a space 215 to allow a substrate to pass therebetween, generally in a process direction P.
Air flows into a blower 230 from a blower inlet 232 The blower 230 forces air via a connecting hose 236 into the connecting plenum 240 located above the blower 230. In one implementation, the blower 230 may be an electric fan motor which operates at approximately 20 volts generating a rotation of about 9,000 RPM. The blower 230 may be controlled, for example, by a suitable controller, to provide a specified air flow to the plenum 240. The plenum 240 allows the air to flow through the slots/jets in an uniform manner. This provides an upward force to the paper towards the read plane.
A sensor “read plane” may be defined as a position to make a sensor readings of the substrate. In some implementations, this may be the focal point of the sensor 250 or the lower surface of the upper transport baffles. The read plane establishes a “zero location” (or origin point) for measuring a distance in the Z-direction to surface of the substrate being measured.
Air from the plenum 240 flows through a series of slots of air supply holes 260 provided in the lower transport baffle 220 that urge the substrate up against the read plane. These air supply holes 260 may be circular, oblong, slot-shaped, elongated, etc., although teardrop-shaped may be preferred to minimize and/or prevent paper jams under the sensor. In one implementation, the air supply holes 260 may be spaced apart, for example, in the cross-process direction below the sensor 250.
In one implementation, the air supply holes 260 may be each have an effective width of about 5 mm and an effective length of about 9 mm, and be equally spaced approximately 24 mm apart.
While the supply holes 260 are shown in
Deflection of the paper towards the read plane may be a function of the flow rate and/or the total pressure on the back of the paper. The resulting distance from the read plane to the sheet may depend of the characteristics of the sheet of media (e.g., area, weight, coefficient of friction, velocity, etc), the velocity of the air, the total pressure of the air on the back side of the paper. In turn, the velocity and pressure on the paper surface depends on the total flow of the system and the geometry of the slots.
The dual plenum air system 600 may include an upper transport baffle 610 and a lower transport baffle 620, forming a space 615 to allow a substrate to pass there between.
Air flows from a blower 630 through a connecting hose 636 into the dual plenum 640 provided below the lower transport baffle 620. The dual plenum 640 splits the air flow into two parallel sub-flow channels or paths 642, 644, with the first sub-flow path 642 located before and the second sub-flow path 644 after a sensor window. In other implementations, the dual plenum 640 may include additional channels (i.e., three, four, etc.) for splitting the air flow from the blower 630 into additional sub-flow paths.
The air supply holes 660 may generally coincide with the two parallel sub-flow paths 642, 644 of the dual plenum (shown in dotted line) located before and after the sensor in the cross-process direction thus, forming series of leading edge (LE) air supply holes 661 and a plurality of trailing edge (TE) air supply holes. In one implementation, the leading edge air supply holes 661 and the trailing edge air supply holes 662 may be spaced apart approximately 25 mm.
The leading edge air supply holes 661 may be equally spaced apart from each other. In one implementation, the leading edge air supply holes 661 may be spaced apart approximately 24 mm apart from each other. Similarly, the holes forming the trailing edge holes 662 may be equally spaced apart in the same manner, generally corresponding to the leading edge air supply holes.
In some implementations, the upper transport baffle 610 may be similarly configured as the upper transport baffles 220 (
According to one aspect of the application, in addition to the supply holes 660 provided in the lower transport baffle 620, a series of vent holes 670 may be provided in the upper transport baffle 610′ before the sensor window 655. These vent holes 670 help to reduce air velocity at the LE air supply holes 661.
In one implementation, the vent holes 670 may be circular, each having a diameter of approximately 3.65 mm. Although, it will be appreciated that vent holes 670 having other shapes and sizes are also possible. The locations of air supply holes 660 (
In
In
While not shown in the figures, alternatively or additionally, it will be appreciated that similar vent holes may be provided that correspond with the leading edge vent holes 662 shown in
The inventors have found that regardless of the location or shape of the vent holes, the provision of the vent holes 670 on the upper transport baffle 610 was shown to provided better control the LE of the sheet. As a result, the sheet flatness control in the center part of the sheet was not compromised.
A total flow rate of 17.1 CFM was realized at the exit of the supply holes producing an average static pressure at the exit of the supply holes is 4.0 inwg. Adding the vent holes reduced the air velocity approaching the paper LE from 14 m/s to 10 m/s. Further experiments showed that the addition of the vent holes reduced the LE and TE distances for a sheet of paper from the read plane by as much as 15%. Although, this result was less pronounced for paper weights above 120 gsm.
Further experiments showed, though, that this result may not be consistent for all sheets and all paper weights. For example, the leading and trailing edges of some sheets, especially for heavier sheets of paper, may exceed the 0.35 mm specification. However, since ILS color spectral measurements are typically not made within 20 mm of the leading edge or trailing edge of the sheet this is not believed to pose a problem.
Methods of using the various embodiments disclosed in the application are also provided. Although, the embodiments disclosed herein show the sensor located on the upper transport baffle and the air flow coming from the lower transport baffle, it will be appreciated that the configuration can be reversed (i.e., the sensor on the bottom and air flow coming from the top). Other configurations are also possible, such as for side mounted sensors for monitoring vertically oriented sheets of media. Moreover, while the embodiments disclosed herein show a Velocity Changing Transport (VCT) 50 (
While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that it is capable of further modifications and is not to be limited to the disclosed embodiment, and this application is intended to cover any variations, uses, equivalent arrangements or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which the invention pertains, and as may be applied to the essential features hereinbefore set forth and followed in the spirit and scope of the appended claims.