The present disclosure relates generally to video playback and editing and, more particularly, to systems and methods for automatically creating a passive linear video from an interactive branching video.
Over the past decade there has been an exponential growth in the prevalence of streaming media in the lives of the general public. Users frequently listen to streaming music on Internet radio stations such as Pandora, and watch streaming television shows, movies, and video clips on websites such as Hulu, Netflix, and YouTube. Interactive streaming multimedia content, though less common, is also available. Existing forms of interactive videos allow a viewer to make choices on how to proceed through predefined video paths; however, this functionality is accomplished using separate video segments that are jumped to upon selection, resulting in a noticeable disconnect in audio and video between consecutive segments. Further, some interactive videos require custom players or other software not readily available to certain viewers. Without access to such software, these viewers are unable to experience any portion of the interactive media.
Systems and methods are presented for creating a linear, non-interactive video from a branching, interactive video such that viewers without the ability to view the interactive video can experience at least a portion of the interactive video in a linear, non-interactive manner. In one aspect, a computer-implemented method for constructing a linear video is provided. Selectably presentable video segments, each representing a predefined portion of one or more paths in a traversable video tree, are stored. A portion (or more) of a first path in the video tree is traversed to automatically create a linear, non-interactive video from those video segments in the path. Upon completion, the linear video is provided to a viewer for playback.
In one implementation, the linear, non-interactive video includes a teaser portion of at least some of the video segments from one of the paths of the video tree and/or includes all of the video segments from one of the paths of the video tree. The path that is traversed in the video tree can be selected based on attributes associated with a viewer of the linear video or another video, such as demographic attributes, geographic attributes, and/or social networking attributes. Alternatively, the traversed path can be randomly selected.
In another implementation, the first path is traversed by virtually playing back the portion of the first path and recording the playback as the linear, non-interactive video. In addition, a graphical user interface layer can be recorded as part of the linear, non-interactive video.
In some implementations, the linear, non-interactive video is automatically created by further traversing a portion (or all) of an alternative path branching from the first path, resulting in a linear, non-interactive video that includes video from the traversed portions of the first path and the alternative path. The linear video can include a split-screen configuration, in which video from the first path and video from the alternative path are simultaneously presented in separate video frame regions.
In another aspect, a system for constructing a linear video includes one or more computers programmed to perform various operations. Selectably presentable video segments, each representing a predefined portion of one or more paths in a traversable video tree, are stored. A portion (or more) of a first path in the video tree is traversed to automatically create a linear, non-interactive video from those video segments in the path. Upon completion, the linear video is provided to a viewer for playback.
In one implementation, the linear, non-interactive video includes a teaser portion of at least some of the video segments from one of the paths of the video tree and/or includes all of the video segments from one of the paths of the video tree. The path that is traversed in the video tree can be selected based on attributes associated with a viewer of the linear video or another video, such as demographic attributes, geographic attributes, and/or social networking attributes. Alternatively, the traversed path can be randomly selected.
In another implementation, the first path is traversed by virtually playing back the portion of the first path and recording the playback as the linear, non interactive video. In addition, a graphical user interface layer can be recorded as part of the linear, non-interactive video.
In some implementations, the linear, non-interactive video is automatically created by further traversing a portion (or all) of an alternative path branching from the first path, resulting in a linear, non-interactive video that includes video from the traversed portions of the first path and the alternative path. The linear video can include a split-screen configuration, in which video from the first path and video from the alternative path are simultaneously presented in separate video frame regions.
Other aspects and advantages of the invention will become apparent from the following drawings, detailed description, and claims, all of which illustrate the principles of the invention, by way of example only.
A more complete appreciation of the invention and many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. Further, the drawings are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the invention.
Described herein are various implementations of methods and supporting systems for transforming branching video into linear, non-interactive video. Referring to
The prerecorded video segments in a video tree can be selectably presentable multimedia content and can include, for example, one or more predefined, separate multimedia content segments that are combined to create a continuous, seamless presentation such that there are no noticeable gaps, jumps, freezes, or other visual or audible interruptions to video or audio playback between segments. In addition to the foregoing, “seamless” can refer to a continuous playback of content that gives the user the appearance of watching a single, linear multimedia presentation, as well as a continuous playback of content segments that have smooth audio and/or video transitions (e.g., fadeout/fade-in, linking segments) between two or more of the segments.
In some instances, the user is permitted to make choices or otherwise interact in real-time at decision points or during decision periods interspersed throughout the multimedia content. Decision points and/or decision periods can occur at any time and in any number during a multimedia segment, including at or near the beginning and/or the end of the segment. Decision points and/or periods can be predefined, occurring at fixed points or during fixed periods in the multimedia content segments. Based at least in part on the user's choices made before or during playback of content, one or more subsequent multimedia segment(s) associated with the choices can be presented to the user. In some implementations, the subsequent segment is played immediately and automatically following the conclusion of the current segment, whereas in other implementations, the subsequent segment is played immediately upon the user's interaction with the video, without waiting for the end of the decision period or the segment itself.
If a user does not make a selection at a decision point or during a decision period, a default or random selection can be made by the system. In some instances, the user is not provided with options; rather, the system automatically selects the segments that will be shown based on information that is associated with the user, other users, or other factors, such as the current date. For example, the system can automatically select subsequent segments based on the user's IP address, location, time zone, the weather in the user's location, social networking ID, saved selections, and so on. The system can also automatically select segments based on previous selections made by other users, such as the most popular suggestion or shared selections. The information can also be displayed to the user in the video, e.g., to show the user why an automatic selection is made. As one example, video segments can be automatically selected for presentation based on the geographical location of three different users; a user in Canada will see a twenty-second beer commercial segment followed by an interview segment with a Canadian citizen; a user in the US will see the same beer commercial segment followed by an interview segment with a US citizen; and a user in France is shown only the beer commercial segment.
Multimedia segment(s) selected automatically or by a user can be presented immediately following a currently playing segment, or can be shown after other segments are played. Further, the selected multimedia segment(s) can be presented to the user immediately after selection, after a fixed or random delay, at the end of a decision period, and at the end of the currently playing segment. Two or more combined segments form a seamless multimedia content path, and there can be multiple paths that a user can take to experience a complete, start-to-finish, seamless presentation. Further, one or more multimedia segments can be shared among intertwining paths while still ensuring a seamless transition from a previous segment and to the next segment. The content paths can be predefined, with fixed sets of possible transitions in order to ensure seamless transitions among segments. There can be any number of predefined paths, each having any number of predefined multimedia segments. Some or all of the segments can have the same or different playback lengths, including segments branching from a single source segment.
Traversal of the multimedia content along a content path can be performed by selecting among options that appear on and/or around the video while the video is playing. In some implementations, these options are presented to users at a decision point and/or during a decision period in a content segment. The display can hover and then disappear when the decision period ends or when an option has been selected. Further, a countdown or other visual, aural, or other sensory indicator can be presented during playback of content segment to inform the user of the point by which he must make his selection. For example, the countdown can indicate when the decision period will end, which can be at a different time than when the currently playing segment will end. If a decision period ends before the end of a particular segment, the remaining portion of the segment can serve as a non-interactive seamless transition to one or more other segments. Further, during this non-interactive end portion, the next multimedia content segment (and other potential next segments) can be downloaded and buffered in the background for later playback (or potential playback).
The segment that is played after a currently playing segment can be determined based on an option selected or other interaction with the video. Each available option can result in a different video and audio segment being played. As previously mentioned, the transition to the next segment can occur immediately upon selection, at the end of the current segment, or at some other predefined or random point. Notably, the transition between content segments can be seamless. In other words, the audio and video can continue playing regardless of whether a segment selection is made, and no noticeable gaps appear in audio or video playback between any connecting segments. In some instances, the video continues on to another segment after a certain amount of time if none is chosen, or can continue playing in a loop.
In one example, the multimedia content is a music video in which the user selects options upon reaching segment decision points to determine subsequent content to be played. First, a video introduction segment is played for the user. Prior to the end of the segment, a decision point is reached at which the user can select the next segment to be played from a listing of choices. In this case, the user is presented with a choice as to who will sing the first verse of the song: a tall, female performer, or a short, male performer. The user is given an amount of time to make a selection (i.e., a decision period), after which, if no selection is made, a default segment will be automatically selected. The default can be a predefined or random selection. Of note, the media content continues to play during the time the user is presented with the choices. Once a choice is selected (or the decision period ends), a seamless transition occurs to the next segment, meaning that the audio and video continue on to the next segment as if there were no break between the two segments and the user cannot visually or audibly detect the transition. As the music video continues, the user is presented with other choices at other decisions points, depending on which path of choices is followed. Ultimately, the user arrives at a final segment, having traversed a complete multimedia content path.
In some instances, a custom video player (e.g., a Flash-based player, browser plug-in, standalone application, etc.) is required to play selectably presentable, seamless media such as that described above. For users that do not readily have access to the custom video player, a passive (i.e., non-interactive) linear video can be created from the interactive video tree to allow for playback on a standard video player. The linear video can be created at the time the interactive video is created (e.g., after the editor has published the interactive video), dynamically upon the need to playback the linear video (e.g. when a user desires to watch an interactive video but does not have the necessary software installed), and/or upon publishing to interactive video to a non-interactive environment (e.g., YouTube, television, etc.). The linear video can be automatically created on any of these events and/or created entirely manually or with manual input (e.g., by the creator of the interactive video).
Proceeding to STEP 104, creation of the linear, non-interactive video includes selecting the video tree path or paths to traverse. Some or all of the video segments in the path can then be combined to form the linear video. Referring now to
As shown in
In some implementations, portions of the video segments in a path can be included in the linear video, rather using the full video segments. For example, a “teaser” video can be created that showcases a sneak peek of the interactive experience.
The linear video can be the same for all users or can be customized for a specific user. In other words, the path(s) and video segment(s) (and/or portions thereof) selected from the video tree to create the linear video can be constant or variable. In some implementations, the paths and/or segments (or portions thereof) selected can be completely random. In other implementations, the paths and/or segments (or portions thereof) from the video tree can be selected from a predefined group of paths/segments. In further implementations, the paths and/or segments (or portions thereof) can be selected based on a set of rules defining valid paths that can be followed. In one implementation, the paths and/or segments (or portions thereof) can be automatically selected based on information associated with the viewer, such as demographic attributes (e.g., age, sex, income range), geographic attributes (e.g., country, region, time zone), and/or social networking attributes (e.g., videos shared by social connections). For example, a male viewer in the U.S. can be shown a different linear video than a female viewer in China. The paths and/or segments (or portions thereof) can also be automatically selected based on information associated with the interactive version of the linear video, such as popular selections made by other users when viewing the interactive version.
Referring again to
As noted above, the linear video can include multiple paths shown in parallel by, e.g., splitting the video display area into multiple portions. The linear video can simultaneously display all or a subset of the video segment options for branches of a path. When creating the linear video, an editor can manually select which path options to display in parallel and/or how the video display area is divided into regions. The display area regions can be polygonal shapes, elliptical shapes, or other suitable shapes arranged in any suitable manner. In some implementations, the regions are automatically defined based on the paths selected (whether manually or automatically).
In one example, shown in
As described above, the interactive version of the video can include graphical and textual user interface elements, such as selection buttons, countdown timers, and other control and display elements. These interface elements can be reproduced in the linear, non-interactive video. For example, if, at a decision point in the interactive version of the video, an animated clock and selectable video thumbnail controls are shown, which allow a user to select a next video segment to watch, the same clock and thumbnails can be reproduced in the linear version of the video, but in a prerecorded, non-interactive manner. Further, in the linear video, a mouse cursor can be shown clicking one of the thumbnail controls in order to simulate user interaction.
Additional features can be added to the non-interactive, linear video. For example, the linear video can include an overlay or a separate portion of the display that shows a graphical representation of the full video tree and/or the path that is being shown. The path can be graphically updated as the user linearly moves from video segment to video segment. In some implementations, additional video can be added to the linear video that is not otherwise included in the interactive version (e.g., a general explanation on how to install the custom video player, introduction video, closing video, and so on). Likewise, additional audio can be included in the linear video (e.g., narration, soundtrack, etc.).
In further implementations, additional graphical and/or textual elements can be added to the linear video, such as logos, highlights, advertisements, pop-up bubbles, and arrows (e.g., to point out notable features that would be present in the interactive version of the video). Cursor/pointer movement can be included in the linear video to simulate the movement of a mouse, touchpad, of other input device that would be controlled by a user viewing the interactive version of the video. Features of the interactive video player can also be shown such as looping, linking out to an external site, and a dynamic progress bar, such as that described in U.S. patent application Ser. No. 13/622,795, filed on Sep. 19, 2012, and entitled, “Progress Bar for Branched Videos,” the entirety of which is incorporated by reference herein. The linear video can also show a “back-in-time” feature of the interactive video version, in which a selection of a next video segment is made at a decision point, the selected video segment is shown, and then the video is rewound, a different selection is made, and the corresponding video segment is played.
In one implementation, to create the linear video, the interactive version of the video is virtually played and recorded frame by frame. In some instances, this is accomplished by installing the custom interactive video player (e.g., browser and a plugin, standalone application, etc.) on a server and playing the interactive video according to the selected path(s) and/or video segment(s) (or portions thereof). In other instances, the video player is emulated to output the desired linear video. In the case where a linear video is created from multiple paths (e.g., serially or in parallel as a split screen, as shown in
The linear video can be recorded alone and/or in conjunction with a graphical user interface layer (e.g., to reproduce interface elements as described above). One example method for recording the linear video and the user interface includes the steps of running the interactive video on the custom player; controlling the video by automatically selecting video segment options at decision points and/or manipulating the player controls (e.g., stop, play, rewind, pause, etc.); and recording the resulting video frames. The interactive video can be automatically controlled in a randomized fashion or according to a script or other rule set. As the interactive video is played, all or a subset of frames are recorded as the linear video, which can include any associated video, audio, and/or interface elements. Optionally, additional content can be added to the linear video, as described above, such as narration and opening/closing audio and/or video segments.
In some implementations, the graphical user interface is recorded alone on a transparent video layer. One example method for recording the user interface alone includes the steps of building the linear, non-interactive video and accompanying audio from selected path(s) and/or video segment(s), but without user interface components; reproducing, the user interface elements over a transparent video using the custom player; recording the frames that include the user interface elements; and merging, (e.g., overlaying) the recorded user interface frames with the corresponding linear video frames. Optionally, additional content can be added to the linear video, as described above, such as narration and opening/closing audio and/or video segments. The video and audio components of the linear video can then be merged together to produce the complete linear video.
An example system for transforming an interactive video project to non-interactive, linear video using, e.g., the techniques described herein, is shown in
In the present system, a Linear Builder component 402 receives as input a Linear Video Configuration File 442 and a Project Configuration File 446 and, based thereon, determines which portions of an interactive video project will be included in the final linear video 470. The Project Configuration File 446 can be a configuration file used in an interactive video project, and can include the interactive video tree structure and links to video, audio, and user interface elements. Specifically, the Project Configuration File 446 can specify which audio, video, and/or other media files correspond to each segment in the video tree, and which interface elements should be displayed or otherwise presented to users, as well as when the elements should be displayed, such that the audio, video, and interactive elements of the video are synchronized. The Linear Video Configuration File 442 defines the linear video composition description, and can include the length of the linear video, start point, end point, portions of segments to be played, user interface elements to be included, selections to be made on branching segments, and new video and audio assets, if any. For interactive videos that include real-time switching (e.g., where the video changes immediately upon user interaction), such as that described in U.S. Provisional Patent Application No. 61/889,304, filed on Oct. 10, 2013, and entitled “Systems and Methods for Real Time Pixel Switching,” the entirety of which is incorporated by reference herein, the Linear Video Configuration File 442 can also include the timing of the switches or any other details that assist the system in determining how to transition between the video changes (e.g., transition every 3 seconds, transition 4 times in 20 seconds, and so on).
The GUI Info Extractor component 410 parses the configuration files 442, 446 and extracts information relating to the user interface assets (e.g., asset identifiers, positioning, timing, etc.). The user interface assets are reproduced in a virtual interactive media player 456 in running in a web browser 452. The user interface assets can be reproduced on a transparent video layer, as described above, and returned as GUI frames to the Video Merging Center 414. The Audio Video Synchronizer 406 demultiplexes the project media assets (e.g., Project Video Files 436) into separate video and audio streams. The audio stream can then be processed by the Audio Extras Adder component 422, which merges Extra Audio Content 432, if any into the audio stream. The video stream is processed by Video Merging Center 414, which merges graphical user interface elements, animations, and other interface overlays in the GUI frames into the video stream. The video stream can be further processed by the Video Extras Adder component 418, which merges Extra Video Content 434, if any, into the video stream. The audio and video streams are then multiplexed to produce the final linear video 470.
One example of automatic linear video creation using the present system is as follows, in which a teaser video is created from video tree 200 as shown in
Initially, Linear Builder 402 processes Project Configuration File 446 to determine a starring video segment in the video tree 200 (here, video segment 202). Then, starting from the initial video segment 202, the video tree 200 is traversed until a branching point is found (here, at the end of video segment 204). Branching video segment 204 can include user interface elements (e.g., video thumbnails or dialogs that allow the user to make a choice on which path to take). Information relating to these elements is collected by GUI Info Extractor 410, and the elements are reproduced and recorded using the virtual interactive media player 456. The individual frames of the user interface elements are recorded as the elements change over time (e.g., the appearance of a button, the selection of a button, etc.). The interface element frames are then combined with the corresponding video segments by Video Merging Center 414, and the audio for the segments is multiplexed with the video. The audio can be faded in and/or faded out, and the narration is added by Audio Extras Adder 422. The closing video segment is then added by Video Extras Adder 418. At this point the linear teaser video is complete.
Expanding on the above example, the teaser video can be constructed so that it includes simultaneously shown portions of video segments 206 and 208, rather than just video segment 206. In other words, upon reaching the branching point after video segment 204, the portions of video segments 206 and 208 can be shown in a split screen similar to that shown in
The linear video creation processes described herein can be implemented in any appropriate hardware or software. If implemented as software, the processes can execute on a system capable of running a commercial operating system such as the Microsoft Windows® operating systems, the Apple OS X® operating systems, the Apple iOS® platform, the Google Android™ platform, the Linux® operating system and other variants of UNIX® operating systems, and the like.
Some or all of the described functionality can be implemented in software downloaded to or existing on a user's device. Some of the functionality can exist remotely; for example, video creation functions can be performed on one or more remote servers. In some implementations, the user's device serves only to provide output and input functionality, with the remainder of the processes being performed remotely.
The local and/or remote software call be implemented on devices such as a smart or dumb terminal network computer, personal digital assistant, wireless device smartphone, tablet, television, gaming device, music player, mobile telephone, laptop, palmtop, wireless telephone, information appliance, workstation, minicomputer, mainframe computer, or other computing device, that is operated as a general purpose computer or a special purpose hardware device that can execute the functionality described herein. The software can be implemented on a general purpose computing device in the form of a computer including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit.
The described systems can include a plurality of software processing modules stored in a memory and executed on a processor in the manner described herein. The program modules can be in the form of a suitable programming languages, which is converted to machine language or object code to allow the processor or processors to read the instructions. The software can be in the form of a standalone application, implemented in any suitable programming language or framework.
Method steps of the techniques described herein can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus of the invention can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. One or more memories can store media assets (e.g. audio, video, graphics, interface elements, and/or other media files), configuration files, and/or instructions that, when executed by a processor, form the modules, engines, and other components described herein and perform the functionality associated with the components. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.
In various implementations, the devices include a web browser, client software, or both. The web browser allows the client to request a web page or other downloadable program, applet, or document (e.g., from the server(s)) with a web page request. One example of a web page is a data file that includes computer executable or interpretable information, graphics, sound, text, and/or video, that can be displayed, executed, played, processed, streamed, and/or stored and that can contain links, or pointers, to other web pages. In one implementation, a user of the client manually requests a web page from the server. Alternatively, the device automatically makes requests with the web browser. Examples of commercially available web browser software are Microsoft® Internet Explorer®, Mozilla® Firefox®, and Apple® Safari®.
In some implementations, the devices include client software. The client software provides functionality to the device that provides for the implementation and execution of the features described herein. The client software can be implemented in various forms, for example, it can be in the form of a web page, widget, and/or Java, JavaScript, .Net, Silverlight, Flash, and/or other applet plug-in that is downloaded to the device and runs in conjunction with the web browser. The client software and the web browser can be part of a single client-server interface; for example, the client software can be implemented as a “plug-in” to the web browser or to another framework or operating system. Any other suitable client software architecture, including but not limited to widget frameworks and applet technology can also be employed with the client software.
A communications network can connect the devices with one or more servers and/or with each other. The communication can take place via any media such as standard telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25), broadband connections (ISDN, Frame Relay, ATM), wireless links (802.11 Bluetooth, GSM, COMA, etc.), and so on. The network can carry TCP/IP protocol communications, and HTTP/HTTPS requests made by a web browser, and the connection be the clients and Servers can be communicated over such TCP/IP networks. The type of network is not a limitation, however, and any suitable network can be used.
It should also be noted that the present implementations can be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The article of manufacture can be any suitable hardware apparatus, such as, for example, a floppy disk, a hard disk, a CD-ROM, a CD-RW, a CD-R, a DVD-ROM, a DVD-RW, DVD-R, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable programs can be implemented in any programming language. The software programs can be further translated into machine language or virtual machine instructions and stored in a program file in that form. The program file can then be stored on or in one or more of the articles of manufacture.
Although the systems and methods described herein relate primarily to audio and video playback, the invention is equally applicable to various streaming and non-streaming media, including animation, video games, interactive media, and other forms of content usable in conjunction with the present systems and methods. Further, there can be more than one audio, video, and/or other media content stream played in synchronization with other streams. Streaming media can include, for example, multimedia content that is continuously presented to a user while it is received from a content delivery source, such as a remote video server. If a source media file is in a format that cannot be streamed and/or does not allow for seamless connections between segments, the media file can be transcoded or converted into a format supporting streaming and/or seamless transitions.
While various implementations of the present invention have been described herein, it should be understood that they have been presented by example only. Where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering of certain steps can be modified and that such modifications are in accordance with the given variations. For example, although various implementations have been described as having particular features and/or combinations of components, other implementations are possible having any combination or sub-combination of any features and/or components from any of the implementations described herein.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/481,916, filed on Apr. 7, 2017, and entitled “Systems and Methods for Creating Linear Video from Branched Video,” which is a continuation of U.S. patent application Ser. No. 14/249,627, filed on Apr. 10, 2014, and entitled “Systems and Methods for Creating Linear Video from Branched Video,” the entireties of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4569026 | Best | Feb 1986 | A |
5137277 | Kitaue | Aug 1992 | A |
5161034 | Klappert | Nov 1992 | A |
5568602 | Callahan et al. | Oct 1996 | A |
5568603 | Chen et al. | Oct 1996 | A |
5597312 | Bloom et al. | Jan 1997 | A |
5607356 | Schwartz | Mar 1997 | A |
5610653 | Abecassis | Mar 1997 | A |
5636036 | Ashbey | Jun 1997 | A |
5676551 | Knight et al. | Oct 1997 | A |
5715169 | Noguchi | Feb 1998 | A |
5734862 | Kulas | Mar 1998 | A |
5737527 | Shiels et al. | Apr 1998 | A |
5745738 | Ricard | Apr 1998 | A |
5751953 | Shiels et al. | May 1998 | A |
5754770 | Shiels et al. | May 1998 | A |
5818435 | Kozuka et al. | Oct 1998 | A |
5848934 | Shiels et al. | Dec 1998 | A |
5887110 | Sakamoto et al. | Mar 1999 | A |
5894320 | Vancelette | Apr 1999 | A |
5956037 | Osawa et al. | Sep 1999 | A |
5983190 | Trower, II et al. | Nov 1999 | A |
6067400 | Saeki et al. | May 2000 | A |
6122668 | Teng et al. | Sep 2000 | A |
6128712 | Hunt et al. | Oct 2000 | A |
6191780 | Martin et al. | Feb 2001 | B1 |
6222925 | Shiels et al. | Apr 2001 | B1 |
6240555 | Shoff et al. | May 2001 | B1 |
6298020 | Kumagami | Oct 2001 | B1 |
6298482 | Seidman et al. | Oct 2001 | B1 |
6460036 | Herz | Oct 2002 | B1 |
6535639 | Uchihachi et al. | Mar 2003 | B1 |
6657906 | Martin | Dec 2003 | B2 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6728477 | Watkins | Apr 2004 | B1 |
6771875 | Kunieda et al. | Aug 2004 | B1 |
6801947 | Li | Oct 2004 | B1 |
6947966 | Oko, Jr. et al. | Sep 2005 | B1 |
7085844 | Thompson | Aug 2006 | B2 |
7155676 | Land et al. | Dec 2006 | B2 |
7231132 | Davenport | Jun 2007 | B1 |
7310784 | Gottlieb et al. | Dec 2007 | B1 |
7379653 | Yap et al. | May 2008 | B2 |
7444069 | Bernsley | Oct 2008 | B1 |
7472910 | Okada et al. | Jan 2009 | B1 |
7627605 | Lamere et al. | Dec 2009 | B1 |
7669128 | Bailey et al. | Feb 2010 | B2 |
7694320 | Yeo et al. | Apr 2010 | B1 |
7779438 | Davies | Aug 2010 | B2 |
7787973 | Lambert | Aug 2010 | B2 |
7917505 | van Gent et al. | Mar 2011 | B2 |
8024762 | Britt | Sep 2011 | B2 |
8046801 | Ellis et al. | Oct 2011 | B2 |
8065710 | Malik | Nov 2011 | B2 |
8151139 | Gordon | Apr 2012 | B1 |
8176425 | Wallace et al. | May 2012 | B2 |
8190001 | Bernsley | May 2012 | B2 |
8276058 | Gottlieb et al. | Sep 2012 | B2 |
8281355 | Weaver et al. | Oct 2012 | B1 |
8321905 | Streeter et al. | Nov 2012 | B1 |
8350908 | Morris et al. | Jan 2013 | B2 |
8600220 | Bloch et al. | Dec 2013 | B2 |
8612517 | Yadid et al. | Dec 2013 | B1 |
8626337 | Corak et al. | Jan 2014 | B2 |
8650489 | Baum et al. | Feb 2014 | B1 |
8667395 | Hosogai et al. | Mar 2014 | B2 |
8750682 | Nicksay et al. | Jun 2014 | B1 |
8752087 | Begeja et al. | Jun 2014 | B2 |
8826337 | Issa et al. | Sep 2014 | B2 |
8860882 | Bloch et al. | Oct 2014 | B2 |
8930975 | Woods et al. | Jan 2015 | B2 |
8977113 | Rumteen et al. | Mar 2015 | B1 |
9009619 | Bloch et al. | Apr 2015 | B2 |
9021537 | Funge et al. | Apr 2015 | B2 |
9082092 | Henry | Jul 2015 | B1 |
9094718 | Barton et al. | Jul 2015 | B2 |
9190110 | Bloch | Nov 2015 | B2 |
9257148 | Bloch et al. | Feb 2016 | B2 |
9268774 | Kim et al. | Feb 2016 | B2 |
9271015 | Bloch et al. | Feb 2016 | B2 |
9363464 | Alexander | Jun 2016 | B2 |
9367196 | Goldstein et al. | Jun 2016 | B1 |
9374411 | Goetz | Jun 2016 | B1 |
9390099 | Wang et al. | Jul 2016 | B1 |
9456247 | Pontual et al. | Sep 2016 | B1 |
9465435 | Zhang et al. | Oct 2016 | B1 |
9473582 | Fraccaroli | Oct 2016 | B1 |
9510044 | Pereira et al. | Nov 2016 | B1 |
9520155 | Bloch et al. | Dec 2016 | B2 |
9530454 | Bloch et al. | Dec 2016 | B2 |
9538219 | Sakata et al. | Jan 2017 | B2 |
9554061 | Proctor, Jr. et al. | Jan 2017 | B1 |
9571877 | Lee et al. | Feb 2017 | B2 |
9607655 | Bloch et al. | Mar 2017 | B2 |
9641898 | Bloch et al. | May 2017 | B2 |
9653115 | Bloch et al. | May 2017 | B2 |
9653116 | Paulraj et al. | May 2017 | B2 |
9672868 | Bloch et al. | Jun 2017 | B2 |
9715901 | Singh et al. | Jul 2017 | B1 |
9736503 | Bakshi et al. | Aug 2017 | B1 |
9792026 | Bloch et al. | Oct 2017 | B2 |
9792957 | Bloch et al. | Oct 2017 | B2 |
9826285 | Mishra et al. | Nov 2017 | B1 |
9967621 | Armstrong et al. | May 2018 | B2 |
10178304 | Tudor et al. | Jan 2019 | B1 |
10178421 | Thomas et al. | Jan 2019 | B2 |
10194189 | Goetz et al. | Jan 2019 | B1 |
10257572 | Manus et al. | Apr 2019 | B2 |
10419790 | Gersten | Sep 2019 | B2 |
10460765 | Bloch et al. | Oct 2019 | B2 |
10523982 | Oyman | Dec 2019 | B2 |
20010056427 | Yoon et al. | Dec 2001 | A1 |
20020019799 | Ginsberg et al. | Feb 2002 | A1 |
20020029218 | Bentley et al. | Mar 2002 | A1 |
20020053089 | Massey | May 2002 | A1 |
20020086724 | Miyaki et al. | Jul 2002 | A1 |
20020091455 | Williams | Jul 2002 | A1 |
20020105535 | Wallace et al. | Aug 2002 | A1 |
20020106191 | Betz et al. | Aug 2002 | A1 |
20020120456 | Berg et al. | Aug 2002 | A1 |
20020120931 | Huber et al. | Aug 2002 | A1 |
20020124250 | Proehl et al. | Sep 2002 | A1 |
20020129374 | Freeman et al. | Sep 2002 | A1 |
20020140719 | Amir et al. | Oct 2002 | A1 |
20020144262 | Plotnick et al. | Oct 2002 | A1 |
20020174430 | Ellis et al. | Nov 2002 | A1 |
20020177914 | Chase | Nov 2002 | A1 |
20020194595 | Miller et al. | Dec 2002 | A1 |
20030007560 | Mayhew et al. | Jan 2003 | A1 |
20030012409 | Overton et al. | Jan 2003 | A1 |
20030020744 | Ellis et al. | Jan 2003 | A1 |
20030023757 | Ishioka et al. | Jan 2003 | A1 |
20030039471 | Hashimoto | Feb 2003 | A1 |
20030076347 | Barrett et al. | Apr 2003 | A1 |
20030101164 | Pic et al. | May 2003 | A1 |
20030148806 | Weiss | Aug 2003 | A1 |
20030159566 | Sater et al. | Aug 2003 | A1 |
20030183064 | Eugene et al. | Oct 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030221541 | Platt | Dec 2003 | A1 |
20040009813 | Wind | Jan 2004 | A1 |
20040019905 | Fellenstein et al. | Jan 2004 | A1 |
20040034711 | Hughes | Feb 2004 | A1 |
20040070595 | Atlas et al. | Apr 2004 | A1 |
20040091848 | Nemitz | May 2004 | A1 |
20040125124 | Kim et al. | Jul 2004 | A1 |
20040128317 | Sull et al. | Jul 2004 | A1 |
20040138948 | Loomis | Jul 2004 | A1 |
20040146275 | Takata et al. | Jul 2004 | A1 |
20040172476 | Chapweske | Sep 2004 | A1 |
20040194128 | McIntyre et al. | Sep 2004 | A1 |
20040194131 | Ellis et al. | Sep 2004 | A1 |
20040199923 | Russek | Oct 2004 | A1 |
20040261127 | Freeman et al. | Dec 2004 | A1 |
20050019015 | Ackley et al. | Jan 2005 | A1 |
20050055377 | Dorey et al. | Mar 2005 | A1 |
20050091597 | Ackley | Apr 2005 | A1 |
20050102707 | Schnitman | May 2005 | A1 |
20050107159 | Sato | May 2005 | A1 |
20050120389 | Boss et al. | Jun 2005 | A1 |
20050132401 | Boccon-Gibod et al. | Jun 2005 | A1 |
20050166224 | Ficco | Jul 2005 | A1 |
20050198661 | Collins et al. | Sep 2005 | A1 |
20050210145 | Kim et al. | Sep 2005 | A1 |
20050251820 | Stefanik et al. | Nov 2005 | A1 |
20050251827 | Ellis et al. | Nov 2005 | A1 |
20060002895 | McDonnell et al. | Jan 2006 | A1 |
20060024034 | Filo et al. | Feb 2006 | A1 |
20060028951 | Tozun et al. | Feb 2006 | A1 |
20060064733 | Norton | Mar 2006 | A1 |
20060080167 | Chen et al. | Apr 2006 | A1 |
20060120624 | Jojic et al. | Jun 2006 | A1 |
20060150072 | Salvucci | Jul 2006 | A1 |
20060150216 | Herz et al. | Jul 2006 | A1 |
20060153537 | Kaneko et al. | Jul 2006 | A1 |
20060155400 | Loomis | Jul 2006 | A1 |
20060200842 | Chapman et al. | Sep 2006 | A1 |
20060222322 | Levitan | Oct 2006 | A1 |
20060224260 | Hicken et al. | Oct 2006 | A1 |
20060274828 | Siemens et al. | Dec 2006 | A1 |
20070003149 | Nagumo et al. | Jan 2007 | A1 |
20070024706 | Brannon et al. | Feb 2007 | A1 |
20070033633 | Andrews et al. | Feb 2007 | A1 |
20070055989 | Shanks et al. | Mar 2007 | A1 |
20070079325 | de Heer | Apr 2007 | A1 |
20070085759 | Lee et al. | Apr 2007 | A1 |
20070099684 | Butterworth | May 2007 | A1 |
20070101369 | Dolph | May 2007 | A1 |
20070118801 | Harshbarger et al. | May 2007 | A1 |
20070154169 | Cordray et al. | Jul 2007 | A1 |
20070157234 | Walker | Jul 2007 | A1 |
20070157260 | Walker | Jul 2007 | A1 |
20070157261 | Steelberg et al. | Jul 2007 | A1 |
20070162395 | Ben-Yaacov et al. | Jul 2007 | A1 |
20070220583 | Bailey et al. | Sep 2007 | A1 |
20070226761 | Zalewski et al. | Sep 2007 | A1 |
20070239754 | Schnitman | Oct 2007 | A1 |
20070253677 | Wang | Nov 2007 | A1 |
20070253688 | Koennecke | Nov 2007 | A1 |
20070263722 | Fukuzawa | Nov 2007 | A1 |
20080019445 | Aono et al. | Jan 2008 | A1 |
20080021187 | Wescott et al. | Jan 2008 | A1 |
20080021874 | Dahl et al. | Jan 2008 | A1 |
20080022320 | Ver Steeg | Jan 2008 | A1 |
20080031595 | Cho | Feb 2008 | A1 |
20080086456 | Rasanen et al. | Apr 2008 | A1 |
20080086754 | Chen et al. | Apr 2008 | A1 |
20080091721 | Harboe et al. | Apr 2008 | A1 |
20080092159 | Dmitriev et al. | Apr 2008 | A1 |
20080148152 | Blinnikka et al. | Jun 2008 | A1 |
20080161111 | Schuman | Jul 2008 | A1 |
20080170687 | Moors et al. | Jul 2008 | A1 |
20080177893 | Bowra et al. | Jul 2008 | A1 |
20080178232 | Velusamy | Jul 2008 | A1 |
20080276157 | Kustka et al. | Nov 2008 | A1 |
20080300967 | Buckley et al. | Dec 2008 | A1 |
20080301750 | Silfvast et al. | Dec 2008 | A1 |
20080314232 | Hansson et al. | Dec 2008 | A1 |
20090022015 | Harrison | Jan 2009 | A1 |
20090022165 | Candelore et al. | Jan 2009 | A1 |
20090024923 | Hartwig et al. | Jan 2009 | A1 |
20090029771 | Donahue | Jan 2009 | A1 |
20090055880 | Batteram et al. | Feb 2009 | A1 |
20090063681 | Ramakrishnan et al. | Mar 2009 | A1 |
20090077137 | Weda et al. | Mar 2009 | A1 |
20090079663 | Chang et al. | Mar 2009 | A1 |
20090083631 | Sidi et al. | Mar 2009 | A1 |
20090116817 | Kim et al. | May 2009 | A1 |
20090177538 | Brewer et al. | Jul 2009 | A1 |
20090191971 | Avent | Jul 2009 | A1 |
20090195652 | Gal | Aug 2009 | A1 |
20090199697 | Lehtiniemi et al. | Aug 2009 | A1 |
20090226046 | Shteyn | Sep 2009 | A1 |
20090228572 | Wall et al. | Sep 2009 | A1 |
20090254827 | Gonze et al. | Oct 2009 | A1 |
20090258708 | Figueroa | Oct 2009 | A1 |
20090265746 | Halen et al. | Oct 2009 | A1 |
20090297118 | Fink et al. | Dec 2009 | A1 |
20090320075 | Marko | Dec 2009 | A1 |
20100017820 | Thevathasan et al. | Jan 2010 | A1 |
20100042496 | Wang et al. | Feb 2010 | A1 |
20100050083 | Axen et al. | Feb 2010 | A1 |
20100069159 | Yamada et al. | Mar 2010 | A1 |
20100077290 | Pueyo | Mar 2010 | A1 |
20100088726 | Curtis et al. | Apr 2010 | A1 |
20100122286 | Begeja et al. | May 2010 | A1 |
20100146145 | Tippin et al. | Jun 2010 | A1 |
20100153512 | Balassanian et al. | Jun 2010 | A1 |
20100153885 | Yates | Jun 2010 | A1 |
20100161792 | Palm et al. | Jun 2010 | A1 |
20100162344 | Casagrande et al. | Jun 2010 | A1 |
20100167816 | Perlman et al. | Jul 2010 | A1 |
20100167819 | Schell | Jul 2010 | A1 |
20100186032 | Pradeep et al. | Jul 2010 | A1 |
20100186579 | Schnitman | Jul 2010 | A1 |
20100199299 | Chang et al. | Aug 2010 | A1 |
20100210351 | Berman | Aug 2010 | A1 |
20100251295 | Amento et al. | Sep 2010 | A1 |
20100262336 | Rivas et al. | Oct 2010 | A1 |
20100267450 | McMain | Oct 2010 | A1 |
20100268361 | Mantel et al. | Oct 2010 | A1 |
20100278509 | Nagano et al. | Nov 2010 | A1 |
20100287033 | Mathur | Nov 2010 | A1 |
20100287475 | van Zwol et al. | Nov 2010 | A1 |
20100293455 | Bloch | Nov 2010 | A1 |
20100325135 | Chen et al. | Dec 2010 | A1 |
20100332404 | Valin | Dec 2010 | A1 |
20110000797 | Henry | Jan 2011 | A1 |
20110007797 | Palmer et al. | Jan 2011 | A1 |
20110010742 | White | Jan 2011 | A1 |
20110026898 | Lussier et al. | Feb 2011 | A1 |
20110033167 | Arling et al. | Feb 2011 | A1 |
20110041059 | Amarasingham et al. | Feb 2011 | A1 |
20110069940 | Shimy et al. | Mar 2011 | A1 |
20110078023 | Aldrey et al. | Mar 2011 | A1 |
20110078740 | Bolyukh et al. | Mar 2011 | A1 |
20110096225 | Candelore | Apr 2011 | A1 |
20110126106 | Ben Shaul et al. | May 2011 | A1 |
20110131493 | Dahl | Jun 2011 | A1 |
20110138331 | Pugsley et al. | Jun 2011 | A1 |
20110163969 | Anzures et al. | Jul 2011 | A1 |
20110169603 | Fithian et al. | Jul 2011 | A1 |
20110182366 | Frojdh et al. | Jul 2011 | A1 |
20110191684 | Greenberg | Aug 2011 | A1 |
20110191801 | Vytheeswaran | Aug 2011 | A1 |
20110193982 | Kook et al. | Aug 2011 | A1 |
20110197131 | Duffin et al. | Aug 2011 | A1 |
20110200116 | Bloch et al. | Aug 2011 | A1 |
20110202562 | Bloch et al. | Aug 2011 | A1 |
20110238494 | Park | Sep 2011 | A1 |
20110239246 | Woodward et al. | Sep 2011 | A1 |
20110246885 | Pantos et al. | Oct 2011 | A1 |
20110252320 | Arrasvuori et al. | Oct 2011 | A1 |
20110264755 | Salvatore De Villiers | Oct 2011 | A1 |
20110282745 | Meoded et al. | Nov 2011 | A1 |
20110282906 | Wong | Nov 2011 | A1 |
20110307786 | Shuster | Dec 2011 | A1 |
20110307919 | Weerasinghe | Dec 2011 | A1 |
20110307920 | Blanchard et al. | Dec 2011 | A1 |
20110313859 | Stillwell et al. | Dec 2011 | A1 |
20110314030 | Burba et al. | Dec 2011 | A1 |
20120004960 | Ma et al. | Jan 2012 | A1 |
20120005287 | Gadel et al. | Jan 2012 | A1 |
20120017141 | Eelen et al. | Jan 2012 | A1 |
20120062576 | Rosenthal et al. | Mar 2012 | A1 |
20120081389 | Dilts | Apr 2012 | A1 |
20120089911 | Hosking et al. | Apr 2012 | A1 |
20120094768 | McCaddon | Apr 2012 | A1 |
20120105723 | van Coppenolle et al. | May 2012 | A1 |
20120110618 | Kilar et al. | May 2012 | A1 |
20120110620 | Kilar et al. | May 2012 | A1 |
20120120114 | You et al. | May 2012 | A1 |
20120134646 | Alexander | May 2012 | A1 |
20120147954 | Kasai et al. | Jun 2012 | A1 |
20120159541 | Carton et al. | Jun 2012 | A1 |
20120179970 | Hayes | Jul 2012 | A1 |
20120198412 | Creighton et al. | Aug 2012 | A1 |
20120213495 | Hafeneger et al. | Aug 2012 | A1 |
20120225693 | Sirpal et al. | Sep 2012 | A1 |
20120263263 | Olsen et al. | Oct 2012 | A1 |
20120308206 | Kulas | Dec 2012 | A1 |
20120317198 | Patton et al. | Dec 2012 | A1 |
20120324491 | Bathiche et al. | Dec 2012 | A1 |
20130021269 | Johnson et al. | Jan 2013 | A1 |
20130024888 | Sivertsen | Jan 2013 | A1 |
20130028446 | Krzyzanowski | Jan 2013 | A1 |
20130028573 | Hoofien et al. | Jan 2013 | A1 |
20130031582 | Tinsman et al. | Jan 2013 | A1 |
20130033542 | Nakazawa | Feb 2013 | A1 |
20130039632 | Feinson | Feb 2013 | A1 |
20130046847 | Zavesky et al. | Feb 2013 | A1 |
20130054728 | Amir et al. | Feb 2013 | A1 |
20130055321 | Cline et al. | Feb 2013 | A1 |
20130061263 | Issa et al. | Mar 2013 | A1 |
20130094830 | Stone et al. | Apr 2013 | A1 |
20130097643 | Stone et al. | Apr 2013 | A1 |
20130117248 | Bhogal et al. | May 2013 | A1 |
20130125181 | Montemayor et al. | May 2013 | A1 |
20130129304 | Feinson | May 2013 | A1 |
20130129308 | Karn et al. | May 2013 | A1 |
20130173765 | Korbecki | Jul 2013 | A1 |
20130177294 | Kennberg | Jul 2013 | A1 |
20130188923 | Hartley et al. | Jul 2013 | A1 |
20130202265 | Arrasvuori et al. | Aug 2013 | A1 |
20130204710 | Boland et al. | Aug 2013 | A1 |
20130219425 | Swartz | Aug 2013 | A1 |
20130235152 | Hannuksela et al. | Sep 2013 | A1 |
20130235270 | Sasaki et al. | Sep 2013 | A1 |
20130254292 | Bradley | Sep 2013 | A1 |
20130259442 | Bloch et al. | Oct 2013 | A1 |
20130282917 | Reznik et al. | Oct 2013 | A1 |
20130290818 | Arrasvuori et al. | Oct 2013 | A1 |
20130298146 | Conrad et al. | Nov 2013 | A1 |
20130308926 | Jang et al. | Nov 2013 | A1 |
20130328888 | Beaver et al. | Dec 2013 | A1 |
20130330055 | Zimmermann et al. | Dec 2013 | A1 |
20130335427 | Cheung et al. | Dec 2013 | A1 |
20140015940 | Yoshida | Jan 2014 | A1 |
20140019865 | Shah | Jan 2014 | A1 |
20140025839 | Marko et al. | Jan 2014 | A1 |
20140040273 | Cooper et al. | Feb 2014 | A1 |
20140040280 | Slaney et al. | Feb 2014 | A1 |
20140046946 | Friedmann et al. | Feb 2014 | A2 |
20140078397 | Bloch et al. | Mar 2014 | A1 |
20140082666 | Bloch et al. | Mar 2014 | A1 |
20140085196 | Zucker et al. | Mar 2014 | A1 |
20140086445 | Brubeck et al. | Mar 2014 | A1 |
20140094313 | Watson et al. | Apr 2014 | A1 |
20140101550 | Zises | Apr 2014 | A1 |
20140105420 | Lee | Apr 2014 | A1 |
20140126877 | Crawford et al. | May 2014 | A1 |
20140129618 | Panje et al. | May 2014 | A1 |
20140136186 | Adami et al. | May 2014 | A1 |
20140152564 | Gulezian et al. | Jun 2014 | A1 |
20140156677 | Collins, III et al. | Jun 2014 | A1 |
20140178051 | Bloch et al. | Jun 2014 | A1 |
20140186008 | Eyer | Jul 2014 | A1 |
20140194211 | Chimes et al. | Jul 2014 | A1 |
20140210860 | Caissy | Jul 2014 | A1 |
20140219630 | Minder | Aug 2014 | A1 |
20140220535 | Angelone | Aug 2014 | A1 |
20140237520 | Rothschild et al. | Aug 2014 | A1 |
20140245152 | Carter et al. | Aug 2014 | A1 |
20140270680 | Bloch et al. | Sep 2014 | A1 |
20140279032 | Roever et al. | Sep 2014 | A1 |
20140282013 | Amijee | Sep 2014 | A1 |
20140282642 | Needham et al. | Sep 2014 | A1 |
20140298173 | Rock | Oct 2014 | A1 |
20140314239 | Meyer et al. | Oct 2014 | A1 |
20140380167 | Bloch et al. | Dec 2014 | A1 |
20150007234 | Rasanen et al. | Jan 2015 | A1 |
20150012369 | Dharmaji et al. | Jan 2015 | A1 |
20150015789 | Guntur et al. | Jan 2015 | A1 |
20150046946 | Hassell et al. | Feb 2015 | A1 |
20150058342 | Kim et al. | Feb 2015 | A1 |
20150063781 | Silverman et al. | Mar 2015 | A1 |
20150067596 | Brown et al. | Mar 2015 | A1 |
20150067723 | Bloch et al. | Mar 2015 | A1 |
20150070458 | Kim et al. | Mar 2015 | A1 |
20150104155 | Bloch et al. | Apr 2015 | A1 |
20150124171 | King | May 2015 | A1 |
20150154439 | Anzue et al. | Jun 2015 | A1 |
20150160853 | Hwang et al. | Jun 2015 | A1 |
20150179224 | Bloch et al. | Jun 2015 | A1 |
20150181271 | Onno et al. | Jun 2015 | A1 |
20150181301 | Bloch et al. | Jun 2015 | A1 |
20150185965 | Belliveau et al. | Jul 2015 | A1 |
20150195601 | Hahm | Jul 2015 | A1 |
20150199116 | Bloch et al. | Jul 2015 | A1 |
20150201187 | Ryo | Jul 2015 | A1 |
20150256861 | Oyman | Sep 2015 | A1 |
20150258454 | King et al. | Sep 2015 | A1 |
20150293675 | Bloch et al. | Oct 2015 | A1 |
20150294685 | Bloch et al. | Oct 2015 | A1 |
20150304698 | Redol | Oct 2015 | A1 |
20150318018 | Kaiser et al. | Nov 2015 | A1 |
20150331485 | Wilairat et al. | Nov 2015 | A1 |
20150331933 | Tocchini, IV et al. | Nov 2015 | A1 |
20150331942 | Tan | Nov 2015 | A1 |
20150348325 | Voss | Dec 2015 | A1 |
20160009487 | Edwards et al. | Jan 2016 | A1 |
20160021412 | Zito, Jr. | Jan 2016 | A1 |
20160037217 | Harmon et al. | Feb 2016 | A1 |
20160057497 | Kim et al. | Feb 2016 | A1 |
20160062540 | Yang et al. | Mar 2016 | A1 |
20160065831 | Howard et al. | Mar 2016 | A1 |
20160066051 | Caidar et al. | Mar 2016 | A1 |
20160094875 | Peterson et al. | Mar 2016 | A1 |
20160099024 | Gilley | Apr 2016 | A1 |
20160100226 | Sadler et al. | Apr 2016 | A1 |
20160104513 | Bloch et al. | Apr 2016 | A1 |
20160105724 | Bloch et al. | Apr 2016 | A1 |
20160132203 | Seto et al. | May 2016 | A1 |
20160142889 | O'Connor et al. | May 2016 | A1 |
20160162179 | Annett et al. | Jun 2016 | A1 |
20160170948 | Bloch | Jun 2016 | A1 |
20160173944 | Kilar et al. | Jun 2016 | A1 |
20160192009 | Sugio et al. | Jun 2016 | A1 |
20160217829 | Bloch et al. | Jul 2016 | A1 |
20160224573 | Shahraray et al. | Aug 2016 | A1 |
20160232579 | Fahnestock | Aug 2016 | A1 |
20160277779 | Zhang et al. | Sep 2016 | A1 |
20160303608 | Jossick | Oct 2016 | A1 |
20160322054 | Bloch et al. | Nov 2016 | A1 |
20160323608 | Bloch et al. | Nov 2016 | A1 |
20160337691 | Prasad et al. | Nov 2016 | A1 |
20160365117 | Boliek et al. | Dec 2016 | A1 |
20160366454 | Tatourian et al. | Dec 2016 | A1 |
20170006322 | Dury et al. | Jan 2017 | A1 |
20170062012 | Bloch et al. | Mar 2017 | A1 |
20170142486 | Masuda | May 2017 | A1 |
20170178409 | Bloch et al. | Jun 2017 | A1 |
20170178601 | Bloch et al. | Jun 2017 | A1 |
20170195736 | Chai et al. | Jul 2017 | A1 |
20170264920 | Mickelsen | Sep 2017 | A1 |
20170289220 | Bloch et al. | Oct 2017 | A1 |
20170295410 | Bloch et al. | Oct 2017 | A1 |
20170345460 | Bloch et al. | Nov 2017 | A1 |
20180007443 | Cannistraro et al. | Jan 2018 | A1 |
20180014049 | Griffin et al. | Jan 2018 | A1 |
20180025078 | Quennesson | Jan 2018 | A1 |
20180068019 | Novikoff et al. | Mar 2018 | A1 |
20180130501 | Bloch et al. | May 2018 | A1 |
20180176573 | Chawla et al. | Jun 2018 | A1 |
20180191574 | Vishnia et al. | Jul 2018 | A1 |
20180254067 | Elder | Sep 2018 | A1 |
20180262798 | Ramachandra | Sep 2018 | A1 |
20190075367 | van Zessen et al. | Mar 2019 | A1 |
20190090002 | Ramadorai et al. | Mar 2019 | A1 |
20190166412 | Panchaksharaiah et al. | May 2019 | A1 |
20190182525 | Steinberg et al. | Jun 2019 | A1 |
20190335225 | Fang et al. | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2639491 | Mar 2010 | CA |
2428329 | Jan 1975 | DE |
2359916 | Jun 1975 | DE |
004038801 | Jun 1992 | DE |
10053720 | Apr 2002 | DE |
0965371 | Dec 1999 | EP |
1033157 | Sep 2000 | EP |
2104105 | Sep 2009 | EP |
2359916 | Sep 2001 | GB |
2428329 | Jan 2007 | GB |
2003-245471 | Sep 2003 | JP |
2008-005288 | Jan 2008 | JP |
2004-0005068 | Jan 2004 | KR |
2010-0037413 | Apr 2010 | KR |
WO-1996013810 | May 1996 | WO |
WO-2000059224 | Oct 2000 | WO |
WO-2007062223 | May 2007 | WO |
WO-2007138546 | Dec 2007 | WO |
WO-2008001350 | Jan 2008 | WO |
WO-2008052009 | May 2008 | WO |
WO-2008057444 | May 2008 | WO |
WO-2009125404 | Oct 2009 | WO |
WO-2009137919 | Nov 2009 | WO |
Entry |
---|
An ffmpeg and SDL Tutorial, “Tutorial 05: Synching Video,” Retrieved from internet on Mar. 15, 2013: <http://dranqer.com/ffmpeg/tutorial05.html>. 4 paqes. |
Archos Gen 5 English User Manual Version 3.0, Jul. 26, 2007, pp. 1-81. |
Barlett M, (2008), “iTunes 11: How to Queue Next Song,” Technipages, Oct. 6, 2008 issue, pp. 1-8, retrieved on Dec. 26, 2013 from the internet: http://www.technipages.com/itunes-queue-next-song.html. |
International Search Report and Writton Opinion for International Patent Application PCT/IB2013/001000 dated Jul. 31, 2013 (12 pages). |
International Search Report for International Patent Application PCT/IL2010/000362 dated Aug. 25, 2010 (2 pages). |
International Search Report for International Patent Application PCT/IL2012/000081 dated Jun. 28, 2012 (4 pages). |
iTunes 11: Howto Queue Next Song, Published Oct. 6, 2008, pp. 1-8. |
Labs.byHook: “Ogg Vorbis Encoder for Flash: Alchemy Series Part 1,” [Online] Internet Article, Retrieved on Jun. 14, 2012 from the Internet: URL:http://labs.byhook.com/2011/02/15/ogg-vorbis-encoder-for-flash-alchemy-series-part-1/, 2011, (pp. 1-8). |
Miller, Gregor et al., “MiniDiver: A Novel Mobile Media Playback Interface for Rich Video Content on an iPhoneTM”, Entertainment Computing A ICEC 2009, Sep. 3, 2009, pp. 98-109. |
Sodagar, I., “The MPEG-DASH Standard for Multimedia Streaming Over the Internet”, IEEE Multimedia, IEEE Service Center, New York, NY US, (2011) 18(4): 62-67. |
Supplemental European Search Report for EP10774637.2 (PCT/IL2010/000362) dated Jun. 28, 2012 (6 pages). |
Supplemental European Search Report for EP13184145, (dated Jan. 30, 2014), 3 pages. |
Yang, H, et al., “Time Stamp Synchronization in Video Systems,” Teletronics Technology Corporation, <http://www.ttcdas.com/products/daus_encoders/pdf/_tech_papers/tp_2010_time_stamp_video_system.pdf>, Abstract, (8 pages). |
Marciel, M. et al., “Understanding the Detection of View Fraud in Video Content Portals”, (Feb. 5, 2016), Cornell University, pp. 1-13. |
International Search Report of PCT/IL2012/000080 dated Aug. 9, 2012, 4 pages. |
International Preliminary Report and Written Opinion of PCT/IL2012/000080 dated Aug. 27, 2013, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200365187 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15481916 | Apr 2017 | US |
Child | 16986977 | US | |
Parent | 14249627 | Apr 2014 | US |
Child | 15481916 | US |