The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to systems and methods for generating a stimulation program for electrical stimulation of a patient.
Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders. For example, spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes. Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation. Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients. Stimulation of the brain, such as deep brain stimulation, can be used to treat a variety of diseases or disorders.
Stimulators have been developed to provide therapy for a variety of treatments. A stimulator can include a control module (with a pulse generator), at least one lead, and an array of stimulator electrodes on each lead. The stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated. The pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.
One embodiment is a method for generating a stimulation program for electrical stimulation of a patient. The method includes providing, by a processor on a display communicatively coupled to the processor, a first grid demarcating a plurality of selectable first pixels and a representation of a portion of an electrical stimulation lead with a plurality of electrodes; obtaining, by the processor, a user selection of a first plurality of the first pixels in the first grid of first pixels for stimulation; generating, by the processor, a stimulation program based, at least in part, on the user-selected first plurality of the first pixels for stimulation using at least one of the electrodes of the electrical stimulation lead; and initiating, by the processor, a signal that provides an implantable pulse generator with the stimulation program for producing electrical stimulation using an electrical stimulation lead coupled to the implantable pulse generator in accordance with the stimulation program.
In at least some embodiments, generating the stimulation program includes: determining, by the processor, a target volume based, at least in part, on the user-selected first plurality of the first pixels for stimulation; determining, by the processor, a stimulation field model (SFM) based, at least in part, on the determined target volume; and generating, by the processor, the stimulation program based, at least in part, on the SFM.
In at least some embodiments, the method further includes: providing, by the processor on the display, a second grid demarcating a plurality of selectable second pixels, the second grid of second pixels residing on a different plane than a plane on which the first grid of first pixels resides; and obtaining, by the processor, a user selection of a plurality of the second pixels in the second grid of second pixels for stimulation, wherein determining the target volume includes determining, by the processor, the target volume based, at least in part, on both the user-selected first plurality of the first pixels for stimulation and the user-selected plurality of the second pixels for stimulation.
In at least some embodiments, providing the first grid of first pixels includes providing, by the processor on the display, a view of the first grid of first pixels, wherein the view shows the first grid of first pixels in relation to a representation of at least one anatomical or physiological feature.
In at least some embodiments, the method further includes obtaining, by the processor, a user selection of a second plurality of the first pixels in the first grid of first pixels to avoid stimulation, wherein generating the stimulation program includes: determining, by the processor, a first volume based, at least in part, on the user-selected first plurality of the first pixels for stimulation; determining, by the processor, a second volume based, at least in part, on the user-selected second plurality of the first pixels to avoid stimulation; determining, by the processor, a stimulation field model (SFM) based, at least in part, on the first and second determined volumes; and generating, by the processor, the stimulation program based, at least in part, on the SFM.
In at least some embodiments, generating the stimulation program includes: matching, by the processor, the user-selected first plurality of the first pixels for stimulation to a stimulation field model (SFM) stored in a memory communicatively coupled to the processor; selecting, by the processor, at least one of the electrodes of the electrical stimulation lead based, at least in part, on the SFM; selecting, by the processor, a set of stimulation parameters based, at least in part, on the SFM; and generating, by the processor, the stimulation program.
In at least some embodiments, the method further includes obtaining, by the processor, a user input representing a stimulation level for each one of the user-selected first plurality of the first pixels for stimulation, wherein generating the stimulation program includes generating, by the processor, the stimulation program based, at least in part, on the user-selected first plurality of the first pixels for stimulation and on the user-input stimulation level for each one of the user-selected first plurality of the first pixels for stimulation.
In at least some embodiments, the method further includes superimposing the first grid of first pixels on a representation of at least one anatomical or physiological feature.
Another embodiment is a method for generating a stimulation program for electrical stimulation of a patient. The method includes providing, by processor on a display communicatively coupled to the processor, a portion of a first plane; obtaining, by the processor, a user placement of a first primitive onto the first plane for stimulation; obtaining, by the processor, a user input of a command to modify at least one feature of the user-placed first primitive for stimulation; generating, by the processor, a stimulation program based, at least in part, on the modified user-placed first primitive for stimulation; and initiating, by the processor, a signal that provides an implantable pulse generator with the stimulation program for producing electrical stimulation using an electrical stimulation lead coupled to the implantable pulse generator in accordance with the stimulation program.
In at least some embodiments, generating the stimulation program includes: determining, by the processor, a target volume based, at least in part, on the modified user-placed first primitive for stimulation; determining, by the processor, a stimulation field model (SFM) based, at least in part, on the determined target volume; and generating, by the processor, the stimulation program based, at least in part, on the SFM.
In at least some embodiments, the method further includes providing, by the processor on the display, a portion of a second plane different from the first plane; obtaining, by the processor, a user placement of a second primitive onto the second plane; and obtaining, by the processor, a user input of a command to modify at least one feature of the user-placed second primitive for stimulation, wherein determining the target volume includes determining, by the processor, the target volume based, at least in part, on both the modified user-placed first primitive for stimulation and the modified user-placed second primitive for stimulation.
In at least some embodiments, obtaining the user input of the command to modify the at least one feature of the user-placed first primitive for stimulation includes obtaining, by the processor, a user input of a command to alter a shape of the user-placed first primitive for stimulation along at least one dimension of the user-placed first primitive for stimulation.
In at least some embodiments, the method further includes obtaining, by the processor, a user placement of a second primitive onto the first plane to avoid stimulation, wherein generating the stimulation program includes: determining, by the processor, a first volume based, at least in part, on the modified user-placed first primitive for stimulation; determining, by the processor, a second volume based, at least in part, on the user-placed second primitive to avoid stimulation; determining, by the processor, a stimulation field model (SFM) based, at least in part, on the first and second determined volumes; and generating, by the processor, the stimulation program based, at least in part, on the SFM, wherein the stimulation program, when implemented by the implantable pulse generator, causes the implantable pulse generator to stimulate the first determined volume and to avoid stimulation of the second determined volume.
In at least some embodiments, determining the SFM includes determining when the second determined volume overlaps at least one portion of first determined volume; and generating the stimulation program based, at least in part, on the SFM includes, responsive to the second determined volume overlapping the at least one portion of the first determined volume, generating, by the processor, the stimulation program based, at least in part, on the SFM, wherein the stimulation program, when implemented by the implantable pulse generator, causes the implantable pulse generator to stimulate at least one portion of the first determined volume that the second determined volume fails to overlap and to avoid stimulation of at least one portion of the second determined volume.
In at least some embodiments, the method further includes obtaining, by the processor, a user input of a command to modify at least one feature of the user-placed second primitive to avoid stimulation, wherein determining the second volume includes determining, by the processor, the second volume based, at least in part, on the modified user-placed second primitive to avoid stimulation.
In at least some embodiments, generating the stimulation program includes: matching, by the processor, the modified user-placed first primitive to a stimulation field model (SFM) stored in a memory communicatively coupled to the processor; selecting, by the processor, a set of stimulation electrodes from the electrodes of the electrical stimulation lead based, at least in part, on the SFM; selecting, by the processor, a set of stimulation parameters based, at least in part, on the SFM; and generating, by the processor, the stimulation program, wherein the stimulation program, when implemented by the implantable pulse generator, causes the implantable pulse generator to stimulate the patient via the set of stimulation electrodes according to the set of stimulation parameters.
Yet another embodiment is a non-transitory computer-readable medium having computer executable instructions stored thereon that, when executed by at least one processor, cause the at least one processor to perform any of the methods described above.
A further embodiment is a system for generating a stimulation program for electrical stimulation of a patient, the system including processor configured and arranged to perform any of the methods described above.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to systems and methods for selecting stimulation parameters.
Suitable implantable electrical stimulation systems include, but are not limited to, a least one lead with at least one electrode disposed on a distal end portion of the lead and at least one terminal disposed on at least one proximal end portion of the lead. Leads include, for example, percutaneous leads, paddle leads, cuff leads, or any other arrangement of electrodes on a lead. Examples of electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,244,150; 7,450,997; 7,672,734; 7,761,165; 7,783,359; 7,792,590; 7,809,446; 7,949,395; 7,974,706; 8,175,710; 8,224,450; 8,271,094; 8,295,944; 8,364,278; 8,391,985; and 8,688,235; and U.S. Patent Applications Publication Nos. 2007/0150036; 2009/0187222; 2009/0276021; 2010/0076535; 2010/0268298; 2011/0005069; 2011/0004267; 2011/0078900; 2011/0130817; 2011/0130818; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/0197375; 2012/0203316; 2012/0203320; 2012/0203321; 2012/0316615; 2013/0105071; and 2013/0197602, all of which are incorporated by reference. In the discussion below, a percutaneous lead will be exemplified, but it will be understood that the methods and systems described herein are also applicable to paddle leads and other leads.
A lead for electrical stimulation (for example, deep brain or spinal cord stimulation) includes stimulation electrodes that can be ring electrodes, segmented electrodes that extend only partially around the circumference of the lead, or any other type of electrode, or any combination thereof. The segmented electrodes can be provided in sets of electrodes, with each set having electrodes circumferentially distributed about the lead at a particular longitudinal position or across a particular longitudinal region. For illustrative purposes, the leads are described herein relative to use for deep brain stimulation, but it will be understood that any of the leads can be used for applications other than deep brain stimulation, including spinal cord stimulation, peripheral nerve stimulation, or stimulation of other nerves, muscles, and tissues. In particular, stimulation may stimulate specific targets. Examples of such targets include, but are not limited to, the subthalamic nucleus (STN), internal segment of the globus pallidus (GPi), external segment of the globus pallidus (GPe), and the like. In at least some embodiments, an anatomical structure is defined by its physical structure and a physiological target is defined by its functional attributes. In at least some embodiments, the lead may be positioned at least partially within the target, but in other embodiments, the lead may be near, but not inside, the target. The stimulation of tissue can include, but is not limited to, one or more of activation, inhibition, depression, or other modulation of the stimulated tissue.
Turning to
The IPG 14 is physically connected, optionally via at least one lead extension 24, to the stimulation lead(s) 12. Each lead carries multiple electrodes 26 arranged in an array. The IPG 14 includes pulse generation circuitry that delivers electrical stimulation energy in the form of, for example, a pulsed electrical waveform (i.e., a temporal series of electrical pulses) to the electrode array 26 in accordance with a set of stimulation parameters. The IPG 14 can be implanted into a patient's body, for example, below the patient's clavicle area or within the patient's buttocks or abdominal cavity. The IPG 14 can have eight stimulation channels which may be independently programmable to control the magnitude of the current stimulus from each channel. In at least some embodiments, the IPG 14 can have more or fewer than eight stimulation channels (for example, 4-, 6-, 16-, 32-, or more stimulation channels). The IPG 14 can have one, two, three, four, or more connector ports, for receiving the terminals of the leads.
The ETS 20 may also be physically connected, optionally via the percutaneous lead extensions 28 and external cable 30, to the stimulation leads 12. The ETS 20, which may have similar pulse generation circuitry as the IPG 14, also delivers electrical stimulation energy in the form of, for example, a pulsed electrical waveform to the electrode array 26 in accordance with a set of stimulation parameters. One difference between the ETS 20 and the IPG 14 is that the ETS 20 is often a non-implantable device that is used on a trial basis after the neurostimulation leads 12 have been implanted and prior to implantation of the IPG 14, to test functioning of the system or the responsiveness of the stimulation that is to be provided. Any functions described herein with respect to the IPG 14 can likewise be performed with respect to the ETS 20.
The RC 16 may be used to telemetrically communicate with or control the IPG 14 or ETS 20 via a uni- or bi-directional wireless communications link 32. Once the IPG 14 and neurostimulation leads 12 are implanted, the RC 16 may be used to telemetrically communicate with or control the IPG 14 via a uni- or bi-directional communications link 34. Such communication or control allows the IPG 14 to be turned on or off and to be programmed with different stimulation parameter sets. The IPG 14 may also be operated to modify the programmed stimulation parameters to actively control the characteristics of the electrical stimulation energy output by the IPG 14. The CP 18 allows a user, such as a clinician, the ability to program stimulation parameters for the IPG 14 and ETS 20 in the operating room and in follow-up sessions.
The CP 18 may perform this function by indirectly communicating with the IPG 14 or ETS 20, through the RC 16, via a wireless communications link 36. Alternatively, the CP 18 may directly communicate with the IPG 14 or ETS 20 via a wireless communications link (not shown). The stimulation parameters provided by the CP 18 are also used to program the RC 16, so that the stimulation parameters can be subsequently modified by operation of the RC 16 in a stand-alone mode (i.e., without the assistance of the CP 18).
For purposes of brevity, the details of the RC 16, CP 18, ETS 20, and external charger 22 will not be further described herein. Details of exemplary embodiments of these devices are disclosed in U.S. Pat. No. 6,895,280, which is expressly incorporated herein by reference. Other examples of electrical stimulation systems can be found at U.S. Pat. Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,949,395; 7,244,150; 7,672,734; and 7,761,165; 7,974,706; 8,175,710; 8,224,450; and 8,364,278; and U.S. Patent Application Publication No. 2007/0150036, as well as the other references cited above, all of which are incorporated by reference.
In at least some embodiments, measurement devices coupled to the muscles or other tissues affected by the target neurons or neural structures, or a unit responsive to the patient or clinician, can be coupled to the IPG 14 or microdrive motor system. The measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrode(s) to further identify the target neurons and facilitate positioning of the stimulation electrode(s). For example, if the target neurons are directed to a muscle experiencing tremors, a measurement device can be used to observe the muscle and indicate changes in, for example, tremor frequency or amplitude in response to stimulation of neurons. Alternatively, the patient or clinician can observe the muscle and provide feedback.
The lead 100 for deep brain stimulation can include stimulation electrodes, recording electrodes, or both. In at least some embodiments, the lead 100 is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.
Stimulation electrodes may be disposed on the circumference of the lead 100 to stimulate the target neurons. Stimulation electrodes may be ring shaped so that current projects from each electrode equally in every direction from the position of the electrode along a length of the lead 100. In the embodiment of
The lead 100 includes a lead body 110, terminals 135, at least one ring electrode 120, and at least one set of segmented electrodes 130 (or any other combination of electrodes). The lead body 110 can be formed of a biocompatible, non-conducting material such as, for example, a polymeric material. Suitable polymeric materials include, but are not limited to, silicone, polyurethane, polyurea, polyurethane-urea, polyethylene, or the like. Once implanted in the body, the lead 100 may be in contact with body tissue for extended periods of time. In at least some embodiments, the lead 100 has a cross-sectional diameter of no more than 1.5 mm and may be in the range of 0.5 to 1.5 mm. In at least some embodiments, the lead 100 has a length of at least 10 cm and the length of the lead 100 may be in the range of 10 to 70 cm.
The electrodes 125 can be made using a metal, alloy, conductive oxide, or any other suitable conductive biocompatible material. Examples of suitable materials include, but are not limited to, platinum, platinum iridium alloy, iridium, titanium, tungsten, palladium, palladium rhodium, or the like. Preferably, the electrodes 125 are made of a material that is biocompatible and does not substantially corrode under expected operating conditions in the operating environment for the expected duration of use.
Each of the electrodes 125 can either be used or unused (OFF). When an electrode is used, the electrode can be used as an anode or cathode and carry anodic or cathodic current. In some instances, an electrode might be an anode for a period of time and a cathode for a period of time.
Deep brain stimulation leads may include at least one set of segmented electrodes. Segmented electrodes may provide for superior current steering than ring electrodes because target structures in deep brain stimulation are not typically symmetric about the axis of the distal electrode array. Instead, a target may be located on one side of a plane running through the axis of the lead. Through the use of a radially segmented electrode array (“RSEA”), current steering can be performed not only along a length of the lead but also around a circumference of the lead. This provides precise three-dimensional targeting and delivery of the current stimulus to neural target tissue, while potentially avoiding stimulation of other tissue. Examples of leads with segmented electrodes include U.S. Pat. Nos. 8,473,061; 8,571,665; and 8,792,993; U.S. Patent Application Publications Nos. 2010/0268298; 2011/0005069; 2011/0130803; 2011/0130816; 2011/0130817; 2011/0130818; 2011/0078900; 2011/0238129; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/197375; 2012/0203316; 2012/0203320; 2012/0203321; 2013/0197424; 2013/0197602; 2014/0039587; 2014/0353001; 2014/0358208; 2014/0358209; 2014/0358210; 2015/0045864; 2015/0066120; 2015/0018915; 2015/0051681; U.S. patent application Ser. Nos. 14/557,211 and 14/286,797; and U.S. Provisional Patent Application Ser. No. 62/113,291, all of which are incorporated herein by reference.
The computing device 300 can be a computer, tablet, mobile device, or any other suitable device for processing information. The computing device 300 can be local to the user or can include components that are non-local to the computer including one or both of the processor 302 or memory 304 (or portions thereof). For example, in at least some embodiments, the user may operate a terminal that is connected to a non-local computing device. In other embodiments, the memory can be non-local to the user.
The computing device 300 can utilize any suitable processor 302 including at least one hardware processors that may be local to the user or non-local to the user or other components of the computing device. The processor 302 is configured to execute instructions provided to the processor 302, as described below.
Any suitable memory 304 can be used for the computing device 302. The memory 304 illustrates a type of computer-readable media, namely computer-readable storage media. Computer-readable storage media may include, but is not limited to, nonvolatile, non-transitory, removable, and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. Examples of computer-readable storage media include RAM, ROM, EEPROM, flash memory, or other memory technology, CD-ROM, digital versatile disks (“DVD”) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.
Communication methods provide another type of computer readable media; namely communication media. Communication media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, data signal, or other transport mechanism and include any information delivery media. The terms “modulated data signal,” and “carrier-wave signal” includes a signal that has at least one of its characteristics set or changed in such a manner as to encode information, instructions, data, and the like, in the signal. By way of example, communication media includes wired media such as twisted pair, coaxial cable, fiber optics, wave guides, and other wired media and wireless media such as acoustic, RF, infrared, and other wireless media.
The display 306 can be any suitable display device, such as a monitor, screen, display, or the like, and can include a printer. The input device 308 can be, for example, a keyboard, mouse, touch screen, track ball, joystick, voice recognition system, or any combination thereof, or the like.
At least one imaging system 310 can be used including, but not limited to, MRI, computed tomography (CT), ultrasound, or other imaging systems. The imaging system 310 may communicate through a wired or wireless connection with the computing device 300 or, alternatively or additionally, a user can provide images from the imaging system 310 using a computer-readable medium or by some other mechanism.
The electrical stimulation system 312 can include, for example, any of the components illustrated in
The methods and systems described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Accordingly, the methods and systems described herein may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Systems referenced herein typically include memory and typically include methods for communication with other devices including mobile devices. Methods of communication can include both wired and wireless (for example, RF, optical, or infrared) communications methods and such methods provide another type of computer readable media; namely communication media. Wired communication can include communication over a twisted pair, coaxial cable, fiber optics, wave guides, or the like, or any combination thereof. Wireless communication can include RF, infrared, acoustic, near field communication, Bluetooth™, or the like, or any combination thereof.
It has been found that users may fail to understand or accurately predict effects of particular stimulation parameters on a desired portion of patient tissue when programming stimulation parameters for the IPG 14 and ETS 20 (for example, in the operating room or in follow-up sessions). Accordingly, the stimulation system may fail to sufficiently stimulate, may completely fail to stimulate, or may adversely stimulate the patient tissue.
The present systems or methods facilitate the development of stimulation programs and the selection of stimulation parameters.
The user interface 400 also includes multiple selectable planes 406, 410. In at least some embodiments, the planes 406, 410 are each a bounded two-dimensional region which corresponds to a two-dimensional region in three-dimensional space around a lead in a patient (or a future position of a lead to be implanted in the patient). In at least some embodiments, the planes each intersect, border or are near or adjacent the lead representation 404. In at least some embodiments, the planes intersect a longitudinal axis or a surface of the lead representation 404.
In at least some embodiments, the user interface 400 also includes representations (not shown) of at least one anatomical or physiological feature. In at least some embodiments, these representations may be captured images or simulated images or models of the anatomical or physiological features.
The user interface 400 can permit a user to select any of the selectable planes 406, 410. In at least some embodiments, the user interface 400 may emphasize the selected plane 406. In at least some embodiments, the user interface 400 may simultaneously display at least one other plane 410 for potential selection by the user. In some embodiments, actions or selections taken with respect to one plane may limit or restrict actions that can be taken in another plane or may increase or provide additional actions that can be taken in the other plane. This other plane or planes may be planes that having the same orientation or a different (for example, perpendicular) orientation to the first plane. In some embodiments, selections or other actions taken in a plane other than the currently selected plane may be displayed in the corresponding plane.
In at least some embodiments, the user interface 400 also includes one or more controls for selection by the user. The controls permit the user to change between different planes 406, 410. As an example, in the illustrated embodiment, selection of the first user control 408 causes the user interface to display and, optionally, highlight a subsequent plane 410 in the set of planes. In at least some embodiments, selection by the user of the first user control 408 may cause the user interface 400 to remove the initial plane 406 from view and display the subsequent plane 410.
Selection by the user of a second user control 412 causes the user interface to display and, optionally, highlight a prior plane (not shown) in the set of planes. The selection by the user of the second user control 412, when following the selection of the first user control 408 by the user, may cause the user interface 400 to return to the plane 406.
In at least some embodiments, the interface 400 can include one or more controls for viewing a second, distinct set of planes. In at least some embodiments, each plane in the second set of planes may be orthogonal to each plane in the first set of planes. As an example, selection by the user of a third user control 414 may cause the user interface 400 to display at least one plane in a second set of planes as seen from a distal tip of the lead 404 (for example, the rounded tip of the lead representation 404 shown by
In at least some embodiments, the user interface 400 may, responsive to displaying the second set of planes, replace the user controls 408 and 412 with user controls to scroll through the second set of planes. In at least some embodiments, the user interface 400 may, responsive to a selection of either of the user controls 414 or 416 while the user interface 400 displays the second set of planes, return to displaying the first set of planes. It will be understood that instead of controls provided on the user interface 400, in at least some embodiments, such controls may be operated in response to hand gestures.
In at least some embodiments, the interface 500 may also define planes analogous to the plane 406 illustrated in
In at least some embodiments, the user interface 500 may include one or more potential-primitive controls 512. In at least some embodiments, the potential-primitive controls 512 may include at least one potential primitive 511, 513 for the user to place onto the interface. In the illustrated embodiment of
In at least some embodiments, the user interface 500 may include one or more primitive-designation controls. In the illustrated embodiment of
In at least some embodiments, the user interface 500 may include at least one primitive-movement control 518 to move a user-placed primitive within the interface in a direction or manner that corresponds to the user-operated primitive-movement control. User operation of these and other controls may be one or more of tap or click a control, press-and-hold or click-and-hold a control, or a hand gesture (for example, such as finger-drag in a predefined direction along at least one of a user-placed primitive or plane in the interface 500). Other controls, not shown, may pivot or rotate a user-placed primitive about at least one point (for example, a center of gravity of the primitive or a user-selected point). In some embodiments, controls may be used to change a primitive from one type (for example, a circle) to another type (for example, a hexagon or square).
In the illustrated embodiment of
In the illustrated embodiment of
In at least some embodiments, this grid 608 is analogous to the plane 406 illustrated in
In at least some embodiments, the user interface 600 may include at least one pixel-designation control such as a stimulation-designation control 612 and an avoid-designation control 614 that, when operated, cause a user-selected pixel to be designated for stimulation (for example, user-selected pixels 616) or designated to avoid stimulation (for example, user-selected pixels 618), respectively. These two different types of pixels can be distinguished visually or graphically using coloring, shading, patterns, or other graphical indicia or any combination thereof. In at least some embodiments, the user may select at least one pixel at a time (for example, via tapping, dragging a finger or cursor over, or circling at least one pixel in the grid of pixels 608). In at least some embodiments, the user may control a status of a user-selected pixel by operating at least one of the pixel-designation controls 612, 614 prior to or subsequent to user selection of the user-selected pixel.
In at least some embodiments, the interface 700 may also define planes analogous to the plane 406 illustrated in
In at least some embodiments, the user interface 700 may include at least one selectable object 716, 718 in the interface. In at least some embodiments, a selectable object may graphically represent at least one anatomical or physiological feature or some other region, area, or volume that is previously or contemporaneously defined. In at least some embodiments, a selectable object may include a captured image or a simulated image or a model of an anatomical or physiological feature (an entirety or a portion of the anatomical or physiological feature).
In at least some embodiments, the user interface 700 may include one or more object-designation controls such as a stimulation-designation control 710 and an avoid-designation control 712 that, when operated, may cause the user interface 700 to specify a selected selectable object as designated for stimulation (for example, the user-selected selectable object 718) or designated to avoid stimulation (for example, the user-selected selectable object 716), respectively. These two different types of designations, when applied to a selectable object, can be distinguished graphically or visually using, for example, differences in coloring, shading, patterns, or other graphical indicia or any combination thereof. In addition, selectable objects that have not been designated may also be graphically or visually distinguished. In at least some embodiments, the user may select at least one selectable object at a time (for example, via tapping, dragging a finger or cursor over, or circling at least one selectable object in the interface 700). In at least some embodiments, the user may operate at least one of the object-designation controls prior to or subsequent to user selection of at least one selectable object in the interface 700.
In at least some embodiments, the user interface 800 may include at least one value control for changing the current or voltage values on one or more of the electrodes 805. For example, the user may identify (for example, tap) one of the electrodes 805 of the lead representation 804 and subsequently operate the at least one value control.
Although the user interfaces 400, 500, 600, 700, and 800 of
The user interfaces 400, 500, 600, and 700 of
The user interfaces 400, 500, 600, 700, or 800 of
In at least some embodiments, at least one of the user interfaces 400, 500, 600, 700, or 800 of at least one of
In at least some embodiments, at least one of the user interfaces 400, 500, 600, 700, or 800 of at least one of
In steps 904a, 904b, or 904c, the user designates a desired stimulation region within the user interface. In some embodiments, only one of steps 904a, 904b, or 904c is performed. Steps 904a, 904b, and 904c can be considered alternatives to each other. In other embodiments, these steps 904a, 904b, 904c may be used in any combination. For example, the user interface may permit a user to specify a region using a combination of primitives (step 904b) and pixels in a grid (step 904a). As another example, the user interface may permit a user to specify an initial region using primitives (step 904b) and then translate that region into pixels on a grid and allow the user to modify the initial region to the desired region by selecting or deselecting pixels on the grid (step 904a). Any other combination of steps 904a, 904b, and 904c can be used. It will be recognized that the desired stimulation region may be a single, unified region or volume or may be divided in multiple, separate regions or volumes.
It will also be recognized that in any of these steps 904a, 904b, 904c, the designation may be repeated for multiple planes relative to the lead. In some embodiments, movement between the planes can be performed similar to that described with respect to user interface 400 of
In step 904a, the user designates a desired stimulation region by selecting pixels in one or more grids using, for example, the user interface 600 of
In step 904b, the user designates a desired stimulation region by placing one or more primitives using, for example, the user interface 500 of
In step 904c, the user designates a desired stimulation region by selecting one or more selectable regions using, for example, the user interface 700 of
It will be recognized that the user interface may also be used to specify a region to avoid stimulating, as described above with respect to user interfaces 500, 600, 700. One or more steps analogous to steps 904a, 904b, 904c (or any combination thereof) can be used to determine the region to avoid stimulating.
In some embodiments, one or more of the steps 904a, 904b, 904c may be repeated multiple times in an iterative manner to refine a stimulation region or to try different stimulation regions.
In step 906, the at least one computer processor generates at least one stimulation program based, at least in part, on desired stimulation region (and optionally a region to avoid stimulating) obtained using steps 904a, 904b, or 904c (or any combination thereof).
A stimulation program can be described by a set of stimulation parameters that produce the stimulation of the stimulation program. Stimulation parameters can include, but are not limited to, selection of electrode or electrodes to produce the stimulation, stimulation amplitude (total amplitude or individual amplitude for each electrode when multiple electrode are used to produce the stimulation), pulse width, pulse frequency, and the like. Some stimulation programs may also be more complex where the selection of electrodes may change during the program (for example, alternating between a first selection of electrodes and second selection of electrodes) or changes in amplitude, pulse width, pulse frequency, or the like. Also, some stimulation programs may include bursts of stimulation pulses with burst frequency and a pulse frequency.
The stimulation parameters can be used to calculate an estimated region of stimulation. The terms “stimulation field map” (SFM) and “volume of activation” (VOA) are often used to designate an estimated region of tissue that will be stimulated for a particular set of stimulation parameters. Any suitable method for determining the SFM/VOA can be used including those described in, for example, U.S. Pat. Nos. 8,326,433; 8,675,945; 8,831,731; 8,849,632; and 8,958,615; U.S. Patent Application Publications Nos. 2009/0287272; 2009/0287273; 2012/0314924; 2013/0116744; 2014/0122379; and 2015/0066111; and U.S. Provisional Patent Application Ser. No. 62/030,655, all of which are incorporated herein by reference. In some embodiments, a SFM/VOA may also be determined by methods other than calculation such as, for example, observations of stimulation effects, observations from internal or external sensors, imaging (e.g., MRI), or the like.
In at least some embodiments, the stimulation program is determined by selecting stimulation parameters that produce a SFM/VOA that matches the desired stimulation region within a predetermined degree or tolerance or that best matches the desired stimulation region. This may include, for example, selecting an initial set of stimulation parameters, calculating a SFM/VOA using those stimulation parameters, comparing that SFM/VOA to the desired stimulation region, and then refining the set of stimulation parameters in view of the comparison. This procedure can be iterated until a suitable set of stimulation parameters for a stimulation program are determined.
In addition, when a region to be avoided is also determined, the overlap between the region to be avoided and the calculated SFM/VOA may also be taken into account in refining the stimulation parameters. Moreover, in at least some embodiments, a suitable set of stimulation parameters will not overlap with the region to be avoided by at least some threshold amount, percentage, or other suitable measure of overlap.
In at least some embodiments, instead of calculating a SFM/VOA, stimulation parameters with an associated stimulation region (such as a SFM/VOA that has been previously calculated or otherwise determined) may be retrieved from an internal or external memory and compared to the desired stimulation region. For example, the system may use a database of stimulation parameters and associated stimulation regions to select the stimulation program (with its stimulation parameters) based on matching the database information with the desired stimulation region. Again, a determined region to be avoided may also be incorporated in this procedure for determination of the stimulation program.
In addition, in at least some embodiments, the user interface may provide controls by which the user may also manually alter one or more of the stimulation parameters for the stimulation program.
In at least some embodiments, the user interface may display the stimulation region for the stimulation program in relation to the desired stimulation region (and, optionally, the identified region to be avoided) to allow the user to visually observe the match between the regions.
In step 908, the at least one computer processor may deliver the stimulation program to an implantable pulse generator, ETS, or other device of an implantable electrical stimulation system. In at least some embodiments, the computer processor may initiate a signal that provides the implantable pulse generator, or other device, with the stimulation program for producing electrical stimulation to the patient in accordance with the stimulation program when selected.
In at least some embodiments, at least one of steps 902, 904a, 904b, 904c, 906, and 908 is skipped.
In step 1002, a desired stimulation region is received. The desired stimulation region may be based, at least in part, on at least one of user-selected pixels, a user-placed primitive, or a user-selected selectable object or any combination thereof as described above with respect to steps 904a, 904b, 904c. In some embodiments, a region to be avoided can also be designated. In some embodiments, multiple regions may be designated.
In some embodiments, the stimulation region (or region to be avoided) can be a volume defined by the user in using one plane or multiple planes. For example, the system may determine that the desired stimulation region extends from a designated region on a first plane to one or more other planes. In some embodiments, the system (automatically or under user direction) may uniformly extend the desired stimulation region around (partially or entirely) the lead to form a volume. For example, based on a ring electrode or a circumferentially elongated segmented electrode, the system may uniformly extend the desired stimulation region around the portion of the lead that the electrode covers. As another example, this same process may also be used based on a user-input command to uniformly employ segmented electrodes that are aligned with each other along the circumference of the lead. In at least some embodiments, this same processes may also be used (automatically or based on a user-input command) for longitudinally elongated electrodes or electrodes that are aligned with each other along the longitudinal length of the lead. In other embodiments, the system (automatically or under user direction) may decrease at least one dimension of the shape around the lead. In yet other embodiments, where a desired stimulation region is determined in more than one plane, the system may interpolate or estimate the stimulation volume between those planes. It will be understood that these same processes may also be used for a region to be avoided.
In at least some embodiments, the system may model the desired region or volume derived from the desired region using a predefined or stereotypical volume. For example, the stereotypical volume may include at least one three-dimensional shape such as, for example ovoid, ellipsoid, tube, Gaussian distributions, or Poisson distributions. The at least one three-dimensional shape may include a set or series of two-dimensional shapes such as, for example, Gaussian distributions, Poisson distributions, planar shapes, or cross-sections. For example, the two-dimensional shapes may be slices of the three-dimensional shapes. As another example, the two-dimensional shapes may include three or more shapes or planar faces that define outer boundaries of at least one closed volume. In at least some embodiments, the stereotypical volume may be defined by at least one of a center of mass, a major axis, a minor axis, a vertex, a mean in principal axes, a variance in principal axes, or spatial relationship to the lead representation.
In step 1004, a stimulation field model (SFM) or Volume of Activation (VOA) is determined based on the desired stimulation region. Any suitable method for determining the SFM/VOA can be used including those described in, for example, U.S. Pat. Nos. 8,326,433; 8,675,945; 8,831,731; 8,849,632; and 8,958,615; U.S. Patent Application Publications Nos. 2009/0287272; 2009/0287273; 2012/0314924; 2013/0116744; 2014/0122379; and 2015/0066111; and U.S. Provisional Patent Application Ser. No. 62/030,655, all of which are incorporated herein by reference. In particular, the system can calculate one or more SFMs/VOAs that approximate the desired stimulation region. Alternatively, the system may access a SFM library or database stored in memory internal or external to the system. In at least some embodiments, the library may, additionally or alternatively to SFMs, contain at least one other stimulation configuration such as, for example, stimulation parameters, electrode patterns, or the like.
In at least some embodiments, the system may select from one or more SFMs/VOAs that are calculated or retrieved based on how closely the SFM/VOA matches to the desired stimulation region. For example, searching for the closest match may include volume matching. It will also be understood, that for embodiments where a region to avoid stimulation is determined, the matching may also take a degree of overlap of each candidate SFM/VOA with the region to avoid into account (e.g., the system may require no overlap or no more than a particular degree or percentage overlap). In at least some embodiments, at least one of the desired region or the candidate SFM/VOA may be rotated for comparison to each other.
Any suitable metric may be used for determining the degree of matching between the desired stimulation region and an SFM/VOA. For example, a degree of matching may be determined using a distance metric. One example of a suitable distance metric is a sum of total differences between selected points on a surface or boundary of the desired stimulation region and analogous points on the SFM/VOA. The points may be uniformly or nonuniformly distributed or may be (or at least include) one or more critical points such as inflection/local maximum/local minimum points on the surface or boundary, surface or boundary points associated with lines radiating from a center or center of mass of the region or volume, or special points associated with particular shapes (for example, elliptical foci).
Another example of suitable distance metric represents the region or volume, as well as the SFM/VOA, by one or more m×n matrices of values where each matrix corresponds to a two-dimensional region of space (similar to the grid 608 in
As another distance metric, the region or volumes, as well as the SFM/VOA, are represented by one or more m×n matrices of values where each matrix corresponds to a two-dimensional region of space (similar to the grid 608 in
When the desired region of stimulation and SFM/VOA have similar shapes, other metrics can be used based on those shapes. For example, a distance metric may be a spatial distance between center of mass coordinates of the desired stimulation region and the SFM/VOA, a difference in volumes or a weighted difference in axes (e.g., length cubed to represent contributions of axes to volume, or length squared to target area), differences in cross-sectional area contours, or the like.
In some embodiments, an SFM/VOA may be selected from a number of different SFMs/VOAs based on having a most favorable distance metric. In some embodiments, a SFM/VOA may be selected because it has a distance metric that is below a threshold value. Other methods of selection may also be used. In addition, where a region to avoid stimulation is also determined, the selection may also take into account the degree of overlap with the region to avoid (e.g., the system may require no overlap or no more than a particular degree or percentage overlap) and may reject an otherwise acceptable SFM/VOA based on the unacceptable overlap with the region to avoid.
In step 1006, the system generates stimulation program based on the determined SFM/VOA. Generally, the SFM/VOA is calculated or associated with a particular set of stimulation parameters.
In any of the systems and methods described above, when the computing device 300 generates the stimulation program, the computing device 300 may communicate at least one of the set of stimulation parameters or the stimulation program to the IPG 14, the ETS 20, or another device.
It will be understood that the system can include at least one of the methods described hereinabove with respect to
The methods, systems, and units described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Accordingly, the methods, systems, and units described herein may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. The methods described herein can be performed using any type of processor or any combination of processors where each processor performs at least part of the process.
It will be understood that each block of the flowchart illustrations, and combinations of blocks in the flowchart illustrations and methods disclosed herein, can be implemented by computer program instructions. These program instructions may be provided to a processor to produce a machine, such that the instructions, which execute on the processor, create means for implementing the actions specified in the flowchart block or blocks disclosed herein. The computer program instructions may be executed by a processor to cause a series of operational steps to be performed by the processor to produce a computer implemented process. The computer program instructions may also cause at least some of the operational steps to be performed in parallel. Moreover, some of the steps may also be performed across more than one processor, such as might arise in a multi-processor computer system. In addition, at least one process may also be performed concurrently with other processes, or even in a different sequence than illustrated without departing from the scope or spirit of the invention.
The computer program instructions can be stored on any suitable computer-readable medium including, but not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (“DVD”) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.
The above specification provides a description of the structure, manufacture, and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/444,724, filed Jan. 10, 2017, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3999555 | Person | Dec 1976 | A |
4144889 | Tyers et al. | Mar 1979 | A |
4177818 | De Pedro | Dec 1979 | A |
4341221 | Testerman | Jul 1982 | A |
4378797 | Osterholm | Apr 1983 | A |
4445500 | Osterholm | May 1984 | A |
4735208 | Wyler et al. | Apr 1988 | A |
4765341 | Mower et al. | Aug 1988 | A |
4841973 | Stecker | Jun 1989 | A |
5067495 | Brehm | Nov 1991 | A |
5099846 | Hardy | Mar 1992 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
5255693 | Dutcher | Oct 1993 | A |
5259387 | dePinto | Nov 1993 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5344438 | Testerman et al. | Sep 1994 | A |
5361763 | Kao et al. | Nov 1994 | A |
5452407 | Crook | Sep 1995 | A |
5560360 | Filler et al. | Oct 1996 | A |
5565949 | Kasha, Jr. | Oct 1996 | A |
5593427 | Gliner et al. | Jan 1997 | A |
5601612 | Gliner et al. | Feb 1997 | A |
5607454 | Cameron et al. | Mar 1997 | A |
5620470 | Gliner et al. | Apr 1997 | A |
5651767 | Schulman | Jul 1997 | A |
5711316 | Elsberry et al. | Jan 1998 | A |
5713922 | King | Feb 1998 | A |
5716377 | Rise et al. | Feb 1998 | A |
5724985 | Snell et al. | Mar 1998 | A |
5749904 | Gliner et al. | May 1998 | A |
5749905 | Gliner et al. | May 1998 | A |
5776170 | MacDonald et al. | Jul 1998 | A |
5782762 | Vining | Jul 1998 | A |
5843148 | Gijsbers et al. | Dec 1998 | A |
5859922 | Hoffmann | Jan 1999 | A |
5868740 | LeVeen et al. | Feb 1999 | A |
5897583 | Meyer et al. | Apr 1999 | A |
5910804 | Fortenbery et al. | Jun 1999 | A |
5925070 | King et al. | Jul 1999 | A |
5938688 | Schiff | Aug 1999 | A |
5938690 | Law et al. | Aug 1999 | A |
5978713 | Prutchi et al. | Nov 1999 | A |
6016449 | Fischell et al. | Jan 2000 | A |
6029090 | Herbst | Feb 2000 | A |
6029091 | de la Rama et al. | Feb 2000 | A |
6050992 | Nichols | Apr 2000 | A |
6058331 | King | May 2000 | A |
6066163 | John | May 2000 | A |
6083162 | Vining | Jul 2000 | A |
6094598 | Elsberry et al. | Jul 2000 | A |
6096756 | Crain et al. | Aug 2000 | A |
6106460 | Panescu et al. | Aug 2000 | A |
6109269 | Rise et al. | Aug 2000 | A |
6128538 | Fischell et al. | Oct 2000 | A |
6129685 | Howard, III | Oct 2000 | A |
6146390 | Heilbrun et al. | Nov 2000 | A |
6161044 | Silverstone | Dec 2000 | A |
6167311 | Rezai | Dec 2000 | A |
6181969 | Gord | Jan 2001 | B1 |
6192266 | Dupree et al. | Feb 2001 | B1 |
6205361 | Kuzma | Mar 2001 | B1 |
6208881 | Champeau | Mar 2001 | B1 |
6240308 | Hardy et al. | May 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6253109 | Gielen | Jun 2001 | B1 |
6289239 | Panescu et al. | Sep 2001 | B1 |
6301492 | Zonenshayn | Oct 2001 | B1 |
6310619 | Rice | Oct 2001 | B1 |
6319241 | King | Nov 2001 | B1 |
6336899 | Yamazaki | Jan 2002 | B1 |
6343226 | Sunde et al. | Jan 2002 | B1 |
6351675 | Tholen et al. | Feb 2002 | B1 |
6353762 | Baudino et al. | Mar 2002 | B1 |
6366813 | Dilorenzo | Apr 2002 | B1 |
6368331 | Front et al. | Apr 2002 | B1 |
6389311 | Whayne et al. | May 2002 | B1 |
6393325 | Mann et al. | May 2002 | B1 |
6421566 | Holsheimer | Jul 2002 | B1 |
6435878 | Reynolds et al. | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6463328 | John | Oct 2002 | B1 |
6491699 | Henderson et al. | Dec 2002 | B1 |
6494831 | Koritzinsky | Dec 2002 | B1 |
6507759 | Prutchi et al. | Jan 2003 | B1 |
6510347 | Borkan | Jan 2003 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6517480 | Krass | Feb 2003 | B1 |
6539263 | Schiff | Mar 2003 | B1 |
6560490 | Grill et al. | May 2003 | B2 |
6579280 | Kovach et al. | Jun 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6606523 | Jenkins | Aug 2003 | B1 |
6609029 | Mann et al. | Aug 2003 | B1 |
6609031 | Law et al. | Aug 2003 | B1 |
6609032 | Woods et al. | Aug 2003 | B1 |
6622048 | Mann et al. | Sep 2003 | B1 |
6631297 | Mo | Oct 2003 | B1 |
6654642 | North et al. | Nov 2003 | B2 |
6662053 | Borkan | Dec 2003 | B2 |
6675046 | Holsheimer | Jan 2004 | B2 |
6684106 | Herbst | Jan 2004 | B2 |
6687392 | Touzawa et al. | Feb 2004 | B1 |
6690972 | Conley et al. | Feb 2004 | B2 |
6690974 | Archer et al. | Feb 2004 | B2 |
6692315 | Soumillion et al. | Feb 2004 | B1 |
6694162 | Hartlep | Feb 2004 | B2 |
6694163 | Vining | Feb 2004 | B1 |
6707476 | Hochstedler | Mar 2004 | B1 |
6708096 | Frei et al. | Mar 2004 | B1 |
6741892 | Meadows et al. | May 2004 | B1 |
6748098 | Rosenfeld | Jun 2004 | B1 |
6748276 | Daignault, Jr. et al. | Jun 2004 | B1 |
6778846 | Martinez et al. | Aug 2004 | B1 |
6788969 | Dupree et al. | Sep 2004 | B2 |
6795737 | Gielen et al. | Sep 2004 | B2 |
6827681 | Tanner et al. | Dec 2004 | B2 |
6830544 | Tanner | Dec 2004 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6850802 | Holsheimer | Feb 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6909913 | Vining | Jun 2005 | B2 |
6937891 | Leinders et al. | Aug 2005 | B2 |
6937903 | Schuler et al. | Aug 2005 | B2 |
6944497 | Stypulkowski | Sep 2005 | B2 |
6944501 | Pless | Sep 2005 | B1 |
6950707 | Whitehurst | Sep 2005 | B2 |
6969388 | Goldman et al. | Nov 2005 | B2 |
7003349 | Andersson et al. | Feb 2006 | B1 |
7003352 | Whitehurst | Feb 2006 | B1 |
7008370 | Tanner et al. | Mar 2006 | B2 |
7008413 | Kovach et al. | Mar 2006 | B2 |
7035690 | Goetz | Apr 2006 | B2 |
7043293 | Baura | May 2006 | B1 |
7047082 | Schrom et al. | May 2006 | B1 |
7047084 | Erickson et al. | May 2006 | B2 |
7050857 | Samuelsson et al. | May 2006 | B2 |
7054692 | Whitehurst et al. | May 2006 | B1 |
7136518 | Griffin et al. | May 2006 | B2 |
7058446 | Schuler et al. | Jun 2006 | B2 |
7082333 | Bauhahn et al. | Jul 2006 | B1 |
7107102 | Daignault et al. | Sep 2006 | B2 |
7126000 | Ogawa et al. | Oct 2006 | B2 |
7127297 | Law et al. | Oct 2006 | B2 |
7136695 | Pless et al. | Nov 2006 | B2 |
7142923 | North et al. | Nov 2006 | B2 |
7146219 | Sieracki et al. | Dec 2006 | B2 |
7146223 | King | Dec 2006 | B1 |
7151961 | Whitehurst | Dec 2006 | B1 |
7155279 | Whitehurst | Dec 2006 | B2 |
7167760 | Dawant et al. | Jan 2007 | B2 |
7177674 | Echauz et al. | Feb 2007 | B2 |
7181286 | Sieracki et al. | Feb 2007 | B2 |
7184837 | Goetz | Feb 2007 | B2 |
7191014 | Kobayashi et al. | Mar 2007 | B2 |
7209787 | Dilorenzo | Apr 2007 | B2 |
7211050 | Caplygin | May 2007 | B1 |
7216000 | Sieracki et al. | May 2007 | B2 |
7217276 | Henderson | May 2007 | B2 |
7218968 | Condie et al. | May 2007 | B2 |
7228179 | Campen et al. | Jun 2007 | B2 |
7231254 | DiLorenzo | Jun 2007 | B2 |
7236830 | Gliner | Jun 2007 | B2 |
7239910 | Tanner | Jul 2007 | B2 |
7239916 | Thompson et al. | Jul 2007 | B2 |
7239926 | Goetz | Jul 2007 | B2 |
7242984 | DiLorenzo | Jul 2007 | B2 |
7244150 | Brase et al. | Jul 2007 | B1 |
7252090 | Goetz | Aug 2007 | B2 |
7254445 | Law et al. | Aug 2007 | B2 |
7254446 | Erickson | Aug 2007 | B1 |
7257447 | Cates et al. | Aug 2007 | B2 |
7266412 | Stypulkowski | Sep 2007 | B2 |
7294107 | Simon et al. | Nov 2007 | B2 |
7295876 | Erickson | Nov 2007 | B1 |
7299096 | Balzer et al. | Nov 2007 | B2 |
7308302 | Schuler et al. | Dec 2007 | B1 |
7313430 | Urquhart | Dec 2007 | B2 |
7324851 | DiLorenzo | Jan 2008 | B1 |
7346382 | McIntyre et al. | Mar 2008 | B2 |
7388974 | Yanagita | Jun 2008 | B2 |
7450997 | Pianca et al. | Nov 2008 | B1 |
7463928 | Lee et al. | Dec 2008 | B2 |
7499048 | Sieracki et al. | Mar 2009 | B2 |
7505815 | Lee et al. | Mar 2009 | B2 |
7548786 | Lee et al. | Jun 2009 | B2 |
7565199 | Sheffield et al. | Jul 2009 | B2 |
7603177 | Sieracki et al. | Oct 2009 | B2 |
7617002 | Goetz | Nov 2009 | B2 |
7623918 | Goetz | Nov 2009 | B2 |
7650184 | Walter | Jan 2010 | B2 |
7657319 | Goetz et al. | Feb 2010 | B2 |
7664849 | Chandler | Feb 2010 | B1 |
7672734 | Anderson et al. | Mar 2010 | B2 |
7676273 | Goetz et al. | Mar 2010 | B2 |
7680526 | McIntyre et al. | Mar 2010 | B2 |
7734340 | De Ridder | Jun 2010 | B2 |
7761165 | He et al. | Jul 2010 | B1 |
7783359 | Meadows | Aug 2010 | B2 |
7792590 | Pianca et al. | Sep 2010 | B1 |
7809446 | Meadows | Oct 2010 | B2 |
7826902 | Stone et al. | Nov 2010 | B2 |
7848802 | Goetz et al. | Dec 2010 | B2 |
7860548 | McIntyre et al. | Dec 2010 | B2 |
7904134 | McIntyre et al. | Mar 2011 | B2 |
7945105 | Jaenisch | May 2011 | B1 |
7949395 | Kuzma | May 2011 | B2 |
7974706 | Moffitt et al. | Jul 2011 | B2 |
8000794 | Lozano | Aug 2011 | B2 |
8019439 | Kuzma et al. | Sep 2011 | B2 |
8175710 | Fie | May 2012 | B2 |
8180601 | Butson et al. | May 2012 | B2 |
8195300 | Gliner et al. | Jun 2012 | B2 |
8224450 | Brase | Jul 2012 | B2 |
8257684 | Covalin et al. | Sep 2012 | B2 |
8262714 | Hulvershorn et al. | Sep 2012 | B2 |
8271094 | Moffitt et al. | Sep 2012 | B1 |
8280514 | Lozano et al. | Oct 2012 | B2 |
8295944 | Howard et al. | Oct 2012 | B2 |
8326433 | Blum et al. | Dec 2012 | B2 |
8364278 | Pianca et al. | Jan 2013 | B2 |
8391985 | McDonald | Mar 2013 | B2 |
8429174 | Ramani et al. | Apr 2013 | B2 |
8452415 | Goetz et al. | May 2013 | B2 |
8473061 | Moffitt et al. | Jun 2013 | B2 |
8483237 | Zimmermann et al. | Jul 2013 | B2 |
8543189 | Paitel et al. | Sep 2013 | B2 |
8571665 | Moffitt et al. | Oct 2013 | B2 |
8606360 | Butson et al. | Dec 2013 | B2 |
8620452 | King et al. | Dec 2013 | B2 |
8675945 | Barnhorst et al. | Mar 2014 | B2 |
8688235 | Pianca et al. | Apr 2014 | B1 |
8792993 | Pianca et al. | Jul 2014 | B2 |
8831731 | Blum et al. | Sep 2014 | B2 |
8849632 | Sparks et al. | Sep 2014 | B2 |
8958615 | Blum et al. | Feb 2015 | B2 |
9248272 | Romero | Feb 2016 | B2 |
20010031071 | Nichols et al. | Oct 2001 | A1 |
20020032375 | Bauch et al. | Mar 2002 | A1 |
20020062143 | Baudino et al. | May 2002 | A1 |
20020087201 | Firlik et al. | Jul 2002 | A1 |
20020099295 | Gil et al. | Jul 2002 | A1 |
20020115603 | Whitehouse | Aug 2002 | A1 |
20020116030 | Rezai | Aug 2002 | A1 |
20020123780 | Grill et al. | Sep 2002 | A1 |
20020128694 | Holsheimer | Sep 2002 | A1 |
20020151939 | Rezai | Oct 2002 | A1 |
20020183607 | Bauch et al. | Dec 2002 | A1 |
20020183740 | Edwards et al. | Dec 2002 | A1 |
20020183817 | Van Venrooij et al. | Dec 2002 | A1 |
20030097159 | Schiff et al. | May 2003 | A1 |
20030149450 | Mayberg | Aug 2003 | A1 |
20030171791 | KenKnight et al. | Sep 2003 | A1 |
20030212439 | Schuler et al. | Nov 2003 | A1 |
20040034394 | Woods et al. | Feb 2004 | A1 |
20040044279 | Lewin et al. | Mar 2004 | A1 |
20040044378 | Holsheimer | Mar 2004 | A1 |
20040044379 | Holsheimer | Mar 2004 | A1 |
20040054297 | Wingeier et al. | Mar 2004 | A1 |
20040059395 | North et al. | Mar 2004 | A1 |
20040106916 | Quaid et al. | Jun 2004 | A1 |
20040133248 | Frei et al. | Jul 2004 | A1 |
20040152957 | Stivoric et al. | Aug 2004 | A1 |
20040181262 | Bauhahn | Sep 2004 | A1 |
20040186532 | Tadlock | Sep 2004 | A1 |
20040199216 | Lee et al. | Oct 2004 | A1 |
20040267330 | Lee et al. | Dec 2004 | A1 |
20050021090 | Schuler et al. | Jan 2005 | A1 |
20050033380 | Tanner et al. | Feb 2005 | A1 |
20050049649 | Luders et al. | Mar 2005 | A1 |
20050060001 | Singhal et al. | Mar 2005 | A1 |
20050060009 | Goetz | Mar 2005 | A1 |
20050070781 | Dawant et al. | Mar 2005 | A1 |
20050075689 | Toy et al. | Apr 2005 | A1 |
20050085714 | Foley et al. | Apr 2005 | A1 |
20050165294 | Weiss | Jul 2005 | A1 |
20050171587 | Daglow et al. | Aug 2005 | A1 |
20050228250 | Bitter et al. | Oct 2005 | A1 |
20050251061 | Schuler et al. | Nov 2005 | A1 |
20050261061 | Nguyen et al. | Nov 2005 | A1 |
20050261601 | Schuler et al. | Nov 2005 | A1 |
20050261747 | Schuler et al. | Nov 2005 | A1 |
20050267347 | Oster | Dec 2005 | A1 |
20050288732 | Schuler et al. | Dec 2005 | A1 |
20060004422 | De Ridder | Jan 2006 | A1 |
20060017749 | McIntyre et al. | Jan 2006 | A1 |
20060020292 | Goetz et al. | Jan 2006 | A1 |
20060069415 | Cameron et al. | Mar 2006 | A1 |
20060094951 | Dean et al. | May 2006 | A1 |
20060095088 | De Riddler | May 2006 | A1 |
20060155333 | Goetz | Jul 2006 | A1 |
20060155340 | Schuler et al. | Jul 2006 | A1 |
20060206169 | Schuler | Sep 2006 | A1 |
20060218007 | Bjorner et al. | Sep 2006 | A1 |
20060224189 | Schuler et al. | Oct 2006 | A1 |
20060235472 | Goetz et al. | Oct 2006 | A1 |
20060259079 | King | Nov 2006 | A1 |
20060259099 | Goetz et al. | Nov 2006 | A1 |
20070000372 | Rezai et al. | Jan 2007 | A1 |
20070017749 | Dold et al. | Jan 2007 | A1 |
20070027514 | Gerber | Feb 2007 | A1 |
20070043268 | Russell | Feb 2007 | A1 |
20070049817 | Preiss et al. | Mar 2007 | A1 |
20070067003 | Sanchez et al. | Mar 2007 | A1 |
20070078498 | Rezai et al. | Apr 2007 | A1 |
20070083104 | Butson et al. | Apr 2007 | A1 |
20070123953 | Lee et al. | May 2007 | A1 |
20070129769 | Bourget et al. | Jun 2007 | A1 |
20070135855 | Foshee et al. | Jun 2007 | A1 |
20070150036 | Anderson | Jun 2007 | A1 |
20070156186 | Lee et al. | Jul 2007 | A1 |
20070162086 | DiLorenzo | Jul 2007 | A1 |
20070162235 | Zhan et al. | Jul 2007 | A1 |
20070168004 | Walter | Jul 2007 | A1 |
20070168007 | Kuzma et al. | Jul 2007 | A1 |
20070185544 | Dawant et al. | Aug 2007 | A1 |
20070191887 | Schuler et al. | Aug 2007 | A1 |
20070191912 | Ficher et al. | Aug 2007 | A1 |
20070197891 | Shachar et al. | Aug 2007 | A1 |
20070203450 | Berry | Aug 2007 | A1 |
20070203532 | Tass et al. | Aug 2007 | A1 |
20070203537 | Goetz | Aug 2007 | A1 |
20070203538 | Stone et al. | Aug 2007 | A1 |
20070203539 | Stone et al. | Aug 2007 | A1 |
20070203540 | Goetz et al. | Aug 2007 | A1 |
20070203541 | Goetz et al. | Aug 2007 | A1 |
20070203543 | Stone et al. | Aug 2007 | A1 |
20070203544 | Goetz et al. | Aug 2007 | A1 |
20070203545 | Stone | Aug 2007 | A1 |
20070203546 | Stone et al. | Aug 2007 | A1 |
20070213789 | Nolan et al. | Sep 2007 | A1 |
20070213790 | Nolan et al. | Sep 2007 | A1 |
20070244519 | Keacher et al. | Oct 2007 | A1 |
20070245318 | Goetz et al. | Oct 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255322 | Gerber et al. | Nov 2007 | A1 |
20070265664 | Gerber et al. | Nov 2007 | A1 |
20070276441 | Goetz | Nov 2007 | A1 |
20070282189 | Dan et al. | Dec 2007 | A1 |
20070288064 | Butson et al. | Dec 2007 | A1 |
20080027514 | DeMulling et al. | Jan 2008 | A1 |
20080039895 | Fowler et al. | Feb 2008 | A1 |
20080071150 | Miesel et al. | Mar 2008 | A1 |
20080081982 | Simon et al. | Apr 2008 | A1 |
20080086451 | Torres et al. | Apr 2008 | A1 |
20080103533 | Patel et al. | May 2008 | A1 |
20080114233 | McIntyre et al. | May 2008 | A1 |
20080114579 | McIntyre et al. | May 2008 | A1 |
20080123922 | Gielen et al. | May 2008 | A1 |
20080123923 | Gielen et al. | May 2008 | A1 |
20080133141 | Frost | Jun 2008 | A1 |
20080141217 | Goetz et al. | Jun 2008 | A1 |
20080154340 | Goetz | Jun 2008 | A1 |
20080154341 | McIntyre et al. | Jun 2008 | A1 |
20080163097 | Goetz | Jul 2008 | A1 |
20080183256 | Keacher | Jul 2008 | A1 |
20080188734 | Suryanarayanan et al. | Aug 2008 | A1 |
20080215118 | Goetz et al. | Sep 2008 | A1 |
20080227139 | Deisseroth et al. | Sep 2008 | A1 |
20080242950 | Jung et al. | Oct 2008 | A1 |
20080261165 | Steingart et al. | Oct 2008 | A1 |
20080269588 | Csavoy et al. | Oct 2008 | A1 |
20080300654 | Lambert et al. | Dec 2008 | A1 |
20080300797 | Tabibiazar et al. | Dec 2008 | A1 |
20090016491 | Li | Jan 2009 | A1 |
20090043359 | Smoorenburg | Feb 2009 | A1 |
20090054950 | Stephens | Feb 2009 | A1 |
20090082640 | Kovach et al. | Mar 2009 | A1 |
20090082829 | Panken et al. | Mar 2009 | A1 |
20090112289 | Lee et al. | Apr 2009 | A1 |
20090118635 | Lujan et al. | May 2009 | A1 |
20090118786 | Meadows et al. | May 2009 | A1 |
20090149917 | Whitehurst et al. | Jun 2009 | A1 |
20090187222 | Barker | Jul 2009 | A1 |
20090196471 | Goetz et al. | Aug 2009 | A1 |
20090196472 | Goetz et al. | Aug 2009 | A1 |
20090198306 | Goetz et al. | Aug 2009 | A1 |
20090198354 | Wilson | Aug 2009 | A1 |
20090204192 | Carlton et al. | Aug 2009 | A1 |
20090208073 | McIntyre et al. | Aug 2009 | A1 |
20090210208 | McIntyre et al. | Aug 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090276008 | Lee et al. | Nov 2009 | A1 |
20090276021 | Meadows et al. | Nov 2009 | A1 |
20090281595 | King et al. | Nov 2009 | A1 |
20090281596 | King et al. | Nov 2009 | A1 |
20090287271 | Blum et al. | Nov 2009 | A1 |
20090287272 | Kokones et al. | Nov 2009 | A1 |
20090287273 | Carlton | Nov 2009 | A1 |
20090287467 | Sparks et al. | Nov 2009 | A1 |
20090299164 | Singhal et al. | Dec 2009 | A1 |
20090299165 | Singhal et al. | Dec 2009 | A1 |
20090299380 | Singhal et al. | Dec 2009 | A1 |
20100010566 | Thacker | Jan 2010 | A1 |
20100010646 | Drew et al. | Jan 2010 | A1 |
20100023103 | Elborno | Jan 2010 | A1 |
20100023130 | Henry et al. | Jan 2010 | A1 |
20100030312 | Shen | Feb 2010 | A1 |
20100049276 | Blum et al. | Feb 2010 | A1 |
20100049280 | Goetz | Feb 2010 | A1 |
20100064249 | Groetken | Mar 2010 | A1 |
20100076535 | Pianca et al. | Mar 2010 | A1 |
20100113959 | Pascual-Leon et al. | May 2010 | A1 |
20100121409 | Kothandaraman | May 2010 | A1 |
20100135553 | Joglekar | Jun 2010 | A1 |
20100137944 | Zhu | Jun 2010 | A1 |
20100152604 | Kuala et al. | Jun 2010 | A1 |
20100179562 | Linker et al. | Jul 2010 | A1 |
20100268298 | Moffitt | Oct 2010 | A1 |
20100324410 | Paek et al. | Dec 2010 | A1 |
20100331883 | Schmitz et al. | Dec 2010 | A1 |
20110004267 | Meadows | Jan 2011 | A1 |
20110005069 | Pianca | Jan 2011 | A1 |
20110040351 | Buston et al. | Feb 2011 | A1 |
20110046697 | Gerber | Feb 2011 | A1 |
20110066407 | Butson et al. | Mar 2011 | A1 |
20110078900 | Pianca et al. | Apr 2011 | A1 |
20110130803 | McDonald | Jun 2011 | A1 |
20110130816 | Howard et al. | Jun 2011 | A1 |
20110130817 | Chen | Jun 2011 | A1 |
20110130818 | Chen | Jun 2011 | A1 |
20110172737 | Davis et al. | Jul 2011 | A1 |
20110184487 | Alberts et al. | Jul 2011 | A1 |
20110191275 | Lujan et al. | Aug 2011 | A1 |
20110196253 | McIntyre et al. | Aug 2011 | A1 |
20110213440 | Fowler et al. | Sep 2011 | A1 |
20110238129 | Moffitt | Sep 2011 | A1 |
20110306845 | Osorio | Dec 2011 | A1 |
20110306846 | Osorio | Dec 2011 | A1 |
20110307032 | Goetz et al. | Dec 2011 | A1 |
20110313500 | Barker et al. | Dec 2011 | A1 |
20120016378 | Pianca et al. | Jan 2012 | A1 |
20120027272 | Akinyemi et al. | Feb 2012 | A1 |
20120046710 | Digiore et al. | Feb 2012 | A1 |
20120046715 | Moffitt et al. | Feb 2012 | A1 |
20120071949 | Pianca et al. | Mar 2012 | A1 |
20120078106 | Dentinger et al. | Mar 2012 | A1 |
20120089205 | Boyden et al. | Apr 2012 | A1 |
20120101552 | Lazarewicz et al. | Apr 2012 | A1 |
20120116476 | Kothandaraman | May 2012 | A1 |
20120165898 | Moffitt | Jun 2012 | A1 |
20120165901 | Zhu et al. | Jun 2012 | A1 |
20120165911 | Pianca | Jun 2012 | A1 |
20120197375 | Pianca et al. | Aug 2012 | A1 |
20120203316 | Moffitt et al. | Aug 2012 | A1 |
20120203320 | Digiore et al. | Aug 2012 | A1 |
20120203321 | Moffitt et al. | Aug 2012 | A1 |
20120207378 | Gupta et al. | Aug 2012 | A1 |
20120226138 | DeSalles et al. | Sep 2012 | A1 |
20120229468 | Lee et al. | Sep 2012 | A1 |
20120265262 | Osorio | Oct 2012 | A1 |
20120265268 | Blum et al. | Oct 2012 | A1 |
20120296396 | Moffitt | Nov 2012 | A1 |
20120302912 | Moffitt | Nov 2012 | A1 |
20120303087 | Moffitt | Nov 2012 | A1 |
20120314924 | Carlton et al. | Dec 2012 | A1 |
20120316615 | Digiore et al. | Dec 2012 | A1 |
20120316619 | Goetz | Dec 2012 | A1 |
20120330622 | Butson et al. | Dec 2012 | A1 |
20130039550 | Blum et al. | Feb 2013 | A1 |
20130041283 | Wichner | Feb 2013 | A1 |
20130060304 | LaTendresse | Mar 2013 | A1 |
20130060305 | Bokil | Mar 2013 | A1 |
20130105071 | Digiore et al. | May 2013 | A1 |
20130116744 | Blum et al. | May 2013 | A1 |
20130116748 | Bokil et al. | May 2013 | A1 |
20130116749 | Carlton | May 2013 | A1 |
20130116929 | Carlton et al. | May 2013 | A1 |
20130150922 | Butson et al. | Jun 2013 | A1 |
20130197424 | Bedenbaugh | Aug 2013 | A1 |
20130197602 | Pianca et al. | Aug 2013 | A1 |
20130226261 | Sparks | Aug 2013 | A1 |
20130261684 | Howard | Oct 2013 | A1 |
20130289380 | Molnar et al. | Oct 2013 | A1 |
20130304152 | Bradley | Nov 2013 | A1 |
20130317587 | Barker | Nov 2013 | A1 |
20130325091 | Pianca et al. | Dec 2013 | A1 |
20140005748 | Goetz | Jan 2014 | A1 |
20140039587 | Romero | Feb 2014 | A1 |
20140066999 | Carcieri et al. | Mar 2014 | A1 |
20140067018 | Carcieri et al. | Mar 2014 | A1 |
20140067022 | Carcieri et al. | Mar 2014 | A1 |
20140081354 | Davis | Mar 2014 | A1 |
20140122379 | Moffitt et al. | May 2014 | A1 |
20140276181 | Sun | Sep 2014 | A1 |
20140277284 | Chen et al. | Sep 2014 | A1 |
20140296953 | Pianca et al. | Oct 2014 | A1 |
20140324125 | Goetz | Oct 2014 | A1 |
20140343647 | Romero et al. | Nov 2014 | A1 |
20140353001 | Romero et al. | Dec 2014 | A1 |
20140358207 | Romero | Dec 2014 | A1 |
20140358208 | Howard et al. | Dec 2014 | A1 |
20140358209 | Romero et al. | Dec 2014 | A1 |
20140358210 | Howard et al. | Dec 2014 | A1 |
20140371819 | Goetz | Dec 2014 | A1 |
20150012057 | Carlson | Jan 2015 | A1 |
20150018915 | Leven | Jan 2015 | A1 |
20150021817 | Romero et al. | Jan 2015 | A1 |
20150022497 | Chang | Jan 2015 | A1 |
20150045864 | Howard | Feb 2015 | A1 |
20150051681 | Hershey | Feb 2015 | A1 |
20150066111 | Blum et al. | Mar 2015 | A1 |
20150066120 | Govea | Mar 2015 | A1 |
20150134031 | Moffitt et al. | May 2015 | A1 |
20150151113 | Govea et al. | Jun 2015 | A1 |
20150238762 | Pal | Aug 2015 | A1 |
20150297893 | Kokones | Oct 2015 | A1 |
20150328461 | Charlesworth | Nov 2015 | A1 |
20150328467 | Demers | Nov 2015 | A1 |
20160022995 | Kothandaraman et al. | Jan 2016 | A1 |
20160023008 | Kothandaraman | Jan 2016 | A1 |
20160027293 | Esteller | Jan 2016 | A1 |
20160030749 | Carcieri | Feb 2016 | A1 |
20160062499 | Pedder | Mar 2016 | A1 |
20160074662 | Moffitt | Mar 2016 | A1 |
20160096025 | Moffitt et al. | Apr 2016 | A1 |
20160121126 | Marnfeldt | May 2016 | A1 |
20160136429 | Massoumi et al. | May 2016 | A1 |
20160136443 | Kothandaraman et al. | May 2016 | A1 |
20160199660 | Rao | Jul 2016 | A1 |
20160228692 | Steinke et al. | Aug 2016 | A1 |
20160256693 | Parramon | Sep 2016 | A1 |
20160375248 | Carcieri | Dec 2016 | A1 |
20160375258 | Steinke | Dec 2016 | A1 |
20170100593 | Zottola | Apr 2017 | A1 |
20170252570 | Serrano Carmona et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
1048320 | Nov 2000 | EP |
1166819 | Jan 2002 | EP |
1372780 | Jan 2004 | EP |
1559369 | Aug 2005 | EP |
9739797 | Oct 1997 | WO |
9848880 | Nov 1998 | WO |
0190876 | Nov 2001 | WO |
0226314 | Apr 2002 | WO |
0228473 | Apr 2002 | WO |
02065896 | Aug 2002 | WO |
02072192 | Sep 2002 | WO |
03086185 | Oct 2003 | WO |
2004019799 | Mar 2004 | WO |
2004041080 | May 2005 | WO |
2006017053 | Feb 2006 | WO |
2006113305 | Oct 2006 | WO |
20071097859 | Aug 2007 | WO |
20071097861 | Aug 2007 | WO |
2007100427 | Sep 2007 | WO |
2007100428 | Sep 2007 | WO |
2007112061 | Oct 2007 | WO |
2009097224 | Aug 2009 | WO |
2010120823 | Oct 2010 | WO |
2011025865 | Mar 2011 | WO |
2011139779 | Nov 2011 | WO |
2011159688 | Dec 2011 | WO |
2012088482 | Jun 2012 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2018/012807 dated Apr. 23, 2018. |
Nowinski, W. L., et al., “Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas.”, Neurosurgery 57(4 Suppl) (Oct. 2005),319-30. |
Obeso, J. A., et al., “Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease.”, N Engl J Med., 345{13l. The Deep-Brain Stimulation for Parkinson's Disease Study Group, (Sep. 27, 2001 ),956-63. |
Butson et al., “Current Steering to control the volume of tissue activated during deep brain stimulation,” vol. 1, No. 1, Dec. 3, 2007, pp. 7-15. |
Patrick, S. K., et al., “Quantification of the UPDRS rigidity scale”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, [see also IEEE Trans. on Rehabilitation Engineering 9(1). (2001),31-41. |
Phillips, M. D., et al., “Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus—initial experience”, Radiology 239(1). (Apr. 2008),209-16. |
Ericsson, A. et al., “Construction of a patient-specific atlas of the brain: Application to normal aging,” Biomedical Imaging: From Nano to Macro, ISBI 2008, 5th IEEE International Symposium, May 14, 2008, pp. 480-483. |
Kaikal Shen et al., “Atlas selection strategy using least angle regression in multi-atlas segmentation propagation,” Biomedical Imaging: From Nano to Macro, 2011, 8th IEEE International Symposium, ISBI 2011, Mar. 30, 2011, pp. 1746-1749. |
Liliane Ramus et al., “Assessing selection methods in the cotnext of multi-atlas based segmentation,” Biomedical Imaging: From Nano to Macro, 2010, IEEE International Symposium, Apr. 14, 2010, pp. 1321-1324. |
Olivier Commowick et al., “Using Frankenstein's Creature Paradigm to Build a Patient Specific Atlas,” Sep. 20, 2009, Medical Image Computing and Computer-Assisted Intervention, pp. 993-1000. |
Lotjonen J.M.P. et al., “Fast and robust multi-atlas segmentation of brain magnetic resonance images,” NeuroImage, Academic Press, vol. 49, No. 3, Feb. 1, 2010, pp. 2352-2365. |
McIntyre, C. C., et al., “How does deep brain stimulation work? Present understanding and future questions.”, J Clin Neurophysiol. 21 (1 ). (Jan.-Feb. 2004 ),40-50. |
Sanchez Castro et al., “A cross validation study of deep brain stimulation targeting: From experts to Atlas-Based, Segmentation-Based and Automatic Registration Algorithms,” IEEE Transactions on Medical Imaging, vol. 25, No. 11, Nov. 1, 2006, pp. 1440-1450. |
Plaha, P. , et al., “Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism.”, Brain 129{Pt 7) (Jul. 2006), 1732-4 7. |
Rattay, F, “Analysis of models for external stimulation of axons”, IEEE Trans. Biomed. Eng. vol. 33 (1986),974-977. |
Rattay, F., “Analysis of the electrical excitation of CNS neurons”, IEEE Transactions on Biomedical Engineering 45 (6). (Jun. 1998),766-772. |
Rose, T. L., et al., “Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses [neuronal application]”, IEEE Transactions on Biomedical Engineering, 37(11 }, (Nov. 1990), 1118-1120. |
Rubinstein, J. T., et al., “Signal coding in cochlear implants: exploiting stochastic effects of electrical stimulation”, Ann Otol Rhinol Laryngol Suppl., 191, (Sep. 2003), 14-9. |
Schwan, H.P., et al., “The conductivity of living tissues.”, Ann NY Acad Sci., 65(6). (AUQ., 1957),1007-13. |
Taylor, R. S., et al., “Spinal cord stimulation for chronic back and leg pain and failed back surgery syndrome: a systematic review and analysis of prognostic factors”, Spine 30(1 ). (Jan. 1, 2005), 152-60. |
Siegel, Ralph M. et al., “Spatiotemporal dynamics of the functional architecture for gain fields in inferior parietal lobule of behaving monkey,” Cerebral Cortex, New York, NY, vol. 17, No. 2, Feb. 2007, pp. 378-390. |
Klein, A. et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration,” NeuroImage, Academic Press, Orlando, FL, vol. 46, No. 3, Jul. 2009, pp. 786-802. |
Geddes, L. A., et al., “The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist.”, Med Biol Ena. 5(3). (May 1967),271-93. |
Gimsa, J., et al., “Choosing electrodes for deep brain stimulation experiments—electrochemical considerations.”, J Neurosci Methods, 142(2), (Mar. 30, 2005),251-65. |
Vidailhet, M. , et al., “Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia”, N Engl J Med. 352(5) (Feb. 3, 2005),459-67. |
Izad, Oliver, “Computationally Efficient Method in Predicating Axonal Excitation,” Dissertation for Master Degree, Department of Biomedical Engineering, Case Western Reserve University, May 2009. |
Jaccard, Paul, “Elude comparative de la distribution florale dans une portion odes Aples et des Jura,” Bulletin de la Societe Vaudoise des Sciences Naturalles (1901), 37:547-579. |
Dice, Lee R., “Measures of the Amount of Ecologic Association Between Species,” Ecology 26(3) (1945): 297-302. doi:10.2307/ 1932409, http://jstor.org/stable/1932409. |
Rand, WM., “Objective criteria for the evaluation of clustering methods,” Journal of the American Statistical Association (American Statistical Association) 66 (336) (1971 ): 846-850, doi:10.2307/2284239, http://jstor.org/stable/2284239. |
Hubert, Lawrence et al., “Comparing partitions,” Journal of Classification 2(1) (1985): 193-218, doi:10.1007/BF01908075. |
Cover, T.M. et al., “Elements of information theory,” (1991) John Wiley & Sons, New York. NY. |
Meila, Marina, “Comparing Clusterings by the Variation of Information,” Learning Theory and Kernel Machines (2003): 173-187. |
Viola, P., et al., “Alignment by maximization of mutual information”, International Journal of Com outer Vision 24(2). ( 1997), 137-154. |
Butson et al. “StimExplorer: Deep Brain Stimulation Parameter Selection Software System,” Acta Neurochirugica, Jan. 1, 2007, vol. 97, No. 2, pp. 569-574. |
Butson et al. “Role of Electrode Design on the Volume of Tissue Activated During Deep Brain Stimulation,” Journal of Neural Engineering, Mar. 1, 2006, vol. 3, No. 1, pp. 1-8. |
Volkmann et al., Indroduction to the Programming of Deep Brain Stimulators, Movement Disorders, vol. 17, Suppl. 3, pp. S181-S187 (2002). |
Miocinovic et al. “Cicerone: Stereotactic Neurophysiological Recording and Deep Brain Stimulation Electrode Placement Software System,” Acta Neurochirurgica Suppl., Jan. 1, 2007, vol. 97, No. 2, pp. 561-567. |
Schmidt et al. “Sketching and Composing Widgets for 3D Manipulation,” Eurographics, Apr. 2008, vol. 27, No. 2, pp. 301-310. |
Volkmann, J. , et al., “Basic algorithms for the programming of deep brain stimulation in Parkinson's disease”, Mov Disord., 21 Suppl 14. (Jun. 2006),S284-9. |
Walter, B. L., et al., “Surgical treatment for Parkinson's disease”, Lancet Neural. 3(12). (Dec. 2004),719-28. |
Wei, X. F., et al., “Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes”, J Neural Eng . . . 2(4). (Dec. 2005), 139-47. |
Zonenshayn, M. , et al., “Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson's disease.”, Surg Neurol., 62(3) (Sep. 2004),216-25. |
Da Silva et al (A primer on diffusion tensor imaging of anatomical substructures. Neurosurg Focus 15(1): p. 1-4, Article 4, 2003.). |
Micheli-Tzanakou, E., et al., “Computational Intelligence for target assesment in Parkinson's disease”, Proceedings of SPIE vol. 4479. Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation IV,(2001),54-69. |
Grill, W. M., “Stimulus waveforms for selective neural stimulation”, IEEE Engineering in Medicine and Biology Magazine, 14(4}, (Jul.-Aug. 1995), 375-385. |
Miocinovic, S., et al., “Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation”, J Neurosci Methods. 132(1). (Jan. 15, 2004), 91-9. |
Hunka, K. et al., Nursing Time to Program and Assess Deep Brain Stimulators in Movement Disorder Patients, J. Neursci Nurs., 37: 204-10 (Aug. 2005). |
Moss, J. , et al., “Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson's disease”, Brain, 127{Pt 12). (Dec. 2004 ),2755-63. |
Montgomery, E. B., et al., “Mechanisms of deep brain stimulation and future technical developments.”, Neurol Res. 22(3). (Apr. 2000),259-66. |
Merrill, D. R., et al., “Electrical stimulation of excitable tissue: design of efficacious and safe protocols”, J Neurosci Methods. 141(2), (Feb. 15, 2005), 171-98. |
Fisekovic et al., “New Controller for Functional Electrical Stimulation Systems”, Med. Eng. Phys. 2001; 23:391-399. |
Zhang, Y., et al., “Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy,” Neuroimage 52(4) (2010), pp. 1289-1301. |
““BioPSE” The Biomedical Problem Solving Environment”, htt12://www.sci.utah.edu/cibc/software/index.html, MCRR Center for Integrative Biomedical Computing,(2004). |
Andrews, R. J., “Neuroprotection trek—the next generation: neuromodulation I. Techniques—deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation.”, Ann NY Acad Sci. 993. (May 2003),1-13. |
Carnevale, N.T. et al., “The Neuron Book,” Cambridge, UK: Cambridge University Press (2006), 480 pages. |
Chaturvedi: “Development of Accurate Computational Models for Patient-Specific Deep Brain Stimulation,” Electronic Thesis or Dissertation, Jan. 2012, 162 pages. |
Chaturvedi, A. et al.: “Patient-specific models of deep brain stimulation: Influence of field model complexity on neural activation predictions.” Brain Stimulation, Elsevier, Amsterdam, NL, vol. 3, No. 2 Apr. 2010, pp. 65-77. |
Frankemolle, et al., “Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming,” Brian 133 (2010), pp. 746-761. |
McIntyre, C.C., et al., “Modeling the excitablitity of mammalian nerve fibers: influence of afterpotentials on the recovery cycle,” J Neurophysiol, 87(2) (Feb. 2002), pp. 995-1006. |
Peterson, et al., “Predicting myelinated axon activation using spatial characteristics of the extracellular field,” Journal of Neural Engineering, 8 (2011), 12 pages. |
Warman, et al., “Modeling the Effects of Electric Fields on nerver Fibers; Dermination of Excitation Thresholds,” IEEE Transactions on Biomedical Engineering, vol. 39, No. 12 (Dec. 1992), pp. 1244-1254. |
Wesselink, et al., “Analysis of Current Density and Related Parameters in Spinal Cord Stimulation,” IEEE Transactions on Rehabilitation Engineering, vol. 6, No. 2 Jun. 1998, pp. 200-207. |
Andrews, R. J., “Neuroprotection trek—the next generation: neuromodulation II. Applications—epilepsy, nerve regeneration, neurotrophins.”, Ann NY Acad Sci. 993 (May 2003), 14-24. |
Astrom, M. , et al., “The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study”, J Neural Eng., 3(2), (Jun. 2006), 132-8. |
Bazin et al., “Free Software Tools for Atlas-based Volumetric Neuroimage Analysis”, Proc. SPIE 5747, Medical Imaging 2005: Image Processing, 1824 May 5, 2005. |
Back, C. , et al., “Postoperative Monitoring of the Electrical Properties of Tissue and Electrodes in Deep Brain Stimulation”, Neuromodulation, 6(4), (Oct. 2003 ),248-253. |
Baker, K. B., et al., “Evaluation of specific absorption rate as a dosimeter of MRI-related implant heating”, J Magn Reson Imaging., 20(2), (Aug. 2004),315-20. |
Brown, J. “Motor Cortex Stimulation,” Neurosurgical Focus ( Sep. 15, 2001) 11(3):E5. |
Budai et al., “Endogenous Opioid Peptides Acting at m-Opioid Receptors in the Dorsal Horn Contribute to Midbrain Modulation of Spinal Nociceptive Neurons,” Journal of Neurophysiology (1998) 79(2): 677-687. |
Cesselin, F. “Opioid and anti-opioid peptides,” Fundamental and Clinical Pharmacology (1995) 9(5): 409-33 (Abstract only). |
Rezai et al., “Deep Brain Stimulation for Chronic Pain” Surgical Management of Pain, Chapter 44 pp. 565-576 (2002). |
Xu, MD., Shi-Ang, article entitled “Comparison of Half-Band and Full-Band Electrodes for Intracochlear Electrical Stimulation”, Annals of Otology, Rhinology & Laryngology (Annals of Head & Neck Medicine & Surgery), vol. 102(5) pp. 363-367 May 1993. |
Bedard, C. , et al., “Modeling extracellular field potentials and the frequency-filtering properties of extracellular space”, Biophys J .. 86(3). (Mar. 2004), 1829-42. |
Benabid, A. L., et al., “Future prospects of brain stimulation”, Neurol Res.;22(3), (Apr. 2000),237-46. |
Brummer, S. B., et al., “Electrical Stimulation with Pt Electrodes: II—Estimation of Maximum Surface Redox (Theoretical Non-Gassing) Limits”, IEEE Transactions on Biomedical Engineering, vol. BME-24, Issue 5, (Sep. 1977),440-443. |
Butson, Christopher R., et al., “Deep Brain Stimulation of the Subthalamic Nucleus: Model-Based Analysis of the Effects of Electrode Capacitance on the Volume of Activation”, Proceedings of the 2nd International IEEE EMBS, (Mar. 16-19, 2005),196-197. |
Mcintyre, Cameron C., et al., “Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition,” J Neurophysiol, 91(4) (Apr. 2004), pp. 1457-1469. |
Chaturvedi, A., et al., “Subthalamic Nucleus Deep Brain Stimulation: Accurate Axonal Threshold Prediction with Diffusion Tensor Based Electric Field Models”, Engineering in Medicine and Biology Society, 2006. EMBS'06 28th Annual International Conference of the IEEE, IEEE, Piscataway, NJ USA, Aug. 30, 2006. |
Butson, Christopher et al., “Predicting the Effects of Deep Brain Stimulation with Diffusion Tensor Based Electric Field Models” Jan. 1, 2001, Medical Image Computing and Computer-Assisted Intervention—Mic CAI 2006 Lecture Notes in Computer Science; LNCS, Springer, Berlin, DE. |
Butson, C. R., et al., “Deep brainstimulation interactive visualization system”, Society for Neuroscience vol. 898.7 (2005). |
Hodaie, M., et al., “Chronic anterior thalamus stimulation for intractable epilepsy,” Epilepsia, 43(6) (Jun. 2002), pp. 603-608. |
Hoekema, R., et al., “Multigrid solution of the potential field in modeling electrical nerve stimulation,” Comput Biomed Res., 31(5) (Oct. 1998), pp. 348-362. |
Holsheimer, J., et al., “Identification of the target neuronal elements in electrical deep brain stimulation,” Eur J Neurosci., 12(12) (Dec. 2000), pp. 4573-4577. |
Jezernik, S., et al., “Neural network classification of nerve activity recorded in a mixed nerve,” Neurol Res., 23(5) (Jul. 2001), pp. 429-434. |
Jones, DK., et al., “Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging.” Magn. Reson. Med., 42(3) (Sep. 1999), pp. 515-525. |
Krack, P., et al., “Postoperative management of subthalamic nucleus stimulation for Parkinson's disease,” Mov. Disord., vol. 17(suppl 3) (2002), pp. 188-197. |
Le Bihan, D., et al., “Diffusion tensor imaging: concepts and applications,” J Magn Reson Imaging, 13(4) (Apr. 2001), pp. 534-546. |
Lee, D. C., et al., “Extracellular electrical stimulation of central neurons: quantitative studies,” In: Handbook of neuroprosthetic methods, WE Finn and PG Lopresti (eds) CRC Press (2003), pp. 95-125. |
Levy, AL., et al., “An Internet-connected, patient-specific, deformable brain atlas integrated into a surgical navigation system,” J Digit Imaging, 10(3 Suppl 1) (Aug. 1997), pp. 231-237. |
Liu, Haiying, et al., “Intra-operative MR-guided DBS implantation for treating PD and ET,” Proceedings of SPIE vol. 4319, Department of Radiology & Neurosurgery, University of Minnesota, Minneapolis, MN 55455 (2001), pp. 272-276. |
Mcintyre, C. C., et al., “Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output,” J. Neurophysiol., 88(4), (Oct. 2002), pp. 1592-1604. |
Mcintyre, C. C., et al., “Microstimulation of spinal motoneurons: a model study,” Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology society, vol. 5, (1997), pp. 2032-2034. |
Mcintyre, Cameron C., et al., “Model-based Analysis of deep brain stimulation of the thalamus,” Proceedings of the Second joint EMBS/BM ES Conference, vol. 3, Annual Fall Meeting of the Biomedical Engineering Society (Cal. No. 02CH37392) IEEEPiscataway, NJ (2002), pp. 2047-2048. |
Mcintyre, C. C., et al., “Model-based design of stimulus trains for selective microstimulation of targeted neuronal populations,” Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1 (2001), pp. 806-809. |
Mcintyre, C. C., et al., Model-based design of stimulus waveforms for selective microstimulation in the central nervous system,, Proceedings of the First Joint [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual FallMeeting of the Biomedical Engineering Soc.] BM ES/EMBS Conference, vol. 1 (1999), p. 384. |
Mcintyre, Cameron C., et al., “Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle,” J Neurophysiol, 87(2) (Feb. 2002), pp. 995-1006. |
Mcintyre, Cameron C., et al., “Selective microstimulation of central nervous system neurons,” Annals of biomedical engineering, 28(3) (Mar. 2000), pp. 219-233. |
Mcintyre, C. C., et al., “Sensitivity analysis of a model of mammalian neural membrane,” Biol Cybern., 79(1) (Jul. 1998), pp. 29-37. |
Mcintyre, Cameron C., et al., “Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both,” Clin Neurophysiol, 115(6) (Jun. 2004), pp. 1239-1248. |
Mcintyre, Cameron C., et al., “Uncovering the mechanisms of deep brain stimulation for Parkinson's disease through functional imaging, neural recording, and neural modeling,” Crit Rev Biomed Eng., 30(4-6) (2002), pp. 249-281. |
Mouine et al. “Multi-Strategy and Multi-Algorithm Cochlear Prostheses”, Biomed. Sci. Instrument, 2000; 36:233-238. |
Mcintyre, Cameron C., et al., “Electric Field and Stimulating Influence generated by Deep Brain Stimulation of the Subthalamaic Nucleus,” Clinical Neurophysiology, 115(3) (Mar. 2004), pp. 589-595. |
Mcintyre, Cameron C., et al., “Electric field generated by deep brain stimulation of the subthalamic nucleus,” Biomedical Engineering Society Annual Meeting, Nashville TN (Oct. 2003), 16 pages. |
Mcintyre, Cameron C., et al., “Excitation of central nervous system neurons by nonuniform electric fields,” Biophys. J., 76(2) (1999), pp. 878-888. |
McNeal, DR., et al., “Analysis of a model for excitation of myelinated nerve,” IEEE Trans Biomed Eng., vol. 23 (1976), pp. 329-337. |
Micheli-Tzanakou, E. , et al., “Computational Intelligence for target assesment in Parkinson's disease,” Proceedings of SPIE vol. 4479, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation IV (2001 ), pp. 54-69. |
Miocinovic, S., et al., “Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation,” J Neurophysiol., 96(3) (Sep. 2006), pp. 1569-1580. |
Miranda, P. C., et al., “The distribution of currents inducedin the brain by Magnetic Stimulation: a finite element analysis incorporating OT-MRI-derived conductivity data,” Proc. Intl. Soc. Mag. Reson. Med. 9 (2001 ), p. 1540. |
Miranda, P. C., et al., “The Electric Field Induced in the Brain by Magnetic Stimulation: A 3-D Finite-Element Analysis of the Effect of Tissue Heterogeneity and Anisotropy,” IEEE Transactions on Biomedical Enginering, 50(9) (Sep. 2003), pp. 1074-1085. |
Moffitt, MA., et al., “Prediction of myelinated nerve fiber stimulation thresholds: limitations of linear models,” IEEE Transactions on Biomedical Engineering, 51 (2) (2003), pp. 229-236. |
Moro, E, et al., “The impact on Parkinson's disease of electrical parameter settings in STN stimulation,” Neurology, 59 (5) (Sep. 10, 2002), pp. 706-713. |
Nowak. LG., et al., “Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements,” Exp. Brain Res., 118(4) (Feb. 1998), pp. 477-488. |
Nowak, LG., et al., “Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments,” Exp. Brain Res., 118(4) (Feb. 1998), pp. 489-500. |
O'Suilleabhain, PE., et al., “Tremor response to polarity, voltage, pulsewidth and frequency of thalamic stimulation,” Neurology, 60(5) (Mar. 11, 2003), pp. 786-790. |
Pierpaoli, C., et al., “Toward a quantitative assessment of diffusion anisotropy,” Magn Reson Med., 36(6) (Dec. 1996), pp. 893-906. |
Plonsey, R., et al., “Considerations of quasi-stationarity in electrophysiological systems,” Bull Math Biophys., 29(4) (Dec. 1967), pp. 657-664. |
Ranck, J B., “Specific impedance of rabbit cerebral cortex,” Exp. Neurol., vol. 7 (Feb. 1963), pp. 144-152. |
Ranck, J B., et al., “The Specific impedance of the dorsal columns of the cat: an anisotropic medium,” Exp. Neurol., 11 (Apr. 1965), pp. 451-463. |
Ranck, J B., “Which elements are excited in electrical stimulation of mammalian central nervous system: a review,” Brain Res., 98(3) (Nov. 21, 1975), pp. 417-440. |
Rattay, F., et al., “A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes,” Hear Res., 153(1-2) (Mar. 2001), pp. 43-63. |
Rattay, F., “A model of the electrically excited human cochlear neuron. II. Inftuence of the three-dimensional cochlear structure on neural excitability,” Hear Res., 153(1-2) (Mar. 2001), pp. 64-79. |
Rattay, F., “Arrival at Functional Electrostimulation by modelling of fiber excitation,” Proceedings of the Ninth annual Conference of the IEEE Engineering in Medicine and Biology Society (1987), pp. 1459-1460. |
Rattay, F., “The inftuence of intrinsic noise can preserve the temporal fine structure of speech signals in models of electrically stimulated human cochlear neurones,” Journal of Physiology, Scientific Meeting of the Physiological Society, London, England, UK Apr. 19-21, 1999 (Jul. 1999), p. 170P. |
Rizzone, M., et al., “Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: effects of variation in stimulation parameters,” J. Neurol. Neurosurg, Psychiatry., 71(2) (Aug. 2001), pp. 215-219. |
Saint-Cyr, J. A., et al., “Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging,” J. Neurosurg., 87(5) (Nov. 2002), pp. 1152-1166. |
Sances, A., et al., “In Electroanesthesia: Biomedical and Biophysical Studies,” A Sances and SJ Larson, Eds., Academic Press, NY (1975), pp. 114-124. |
Sl. Jean, P., et al., “Automated atlas integration and interactive three-dimensional visualization tools for planning and guidance in functional neurosurgery,” IEEE Transactions on Medical Imaging, 17(5) (1998), pp. 672-680. |
Starr, P.A., et al., “Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations,” J. Neurosurg., 97(2) (Aug. 2002), pp. 370-387. |
Sterio, D., et al., “Neurophysiological refinement of subthalamic nucleus targeting,” Neurosurgery, 50(1) (Jan. 2002), pp. 58-69. |
Struijk, J. J., et al., “Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study,” IEEE Transactions on Biomedical Engineering, 40(7) (Jul. 1993), pp. 632-639. |
Struijk, J J., et al., “Recruitment of dorsal column fibers in spinal cord stimulation: inftuence of collateral branching,” IEEE Transactions on Biomedical Engineering, 39(9) (Sep. 1992), pp. 903-912. |
Tamma, F., et al., “Anatomo-clinical correlation of intraoperative stimulation-induced side-effects during HF-DBS of the subthalamic nucleus,” Neurol Sci., vol. 23 (Suppl 2) (2002), pp. 109-110. |
Tarler, M., et al., “Comparison between monopolar and tripolar configurations in chronically implanted nerve cuff electrodes,” IEEE 17th Annual Conference Engineering in Medicine and Biology Society, vol. 2 (1995), pp. 1093-1109. |
Testerman, Roy L., “Coritical response to callosal stimulation: A model for determining safe and efficient stimulus parameters,” Annals of Biomedical Engineering, 6(4) (1978), pp. 438-452. |
Tuch, D.S., et al., “Conductivity mapping of biological tissue using diffusion MRI,” Ann NY Acad Sci., 888 (Oct. 30, 1999), pp. 314-316. |
Tuch, D.S., et al., “Conductivity tensor mapping of the human brain using diffusion tensor MRI,” Proc Nall Acad Sci USA, 96(20) (Sep. 25, 2001), pp. 11697-11701. |
Veraart, C., et al., “Selective control of muscle activation with a multipolar nerve cuff electrode,” IEEE Transactions on Biomedical Engineering, 40(7) (Jul. 1993), pp. 640-653. |
Vercueil, L., et al., “Deep brain stimulation in the treatment of severe dystonia,” J. Neurol., 248(8) (Aug. 2001 ), pp. 695-700. |
Vilalte, “Circuit Design of the Power-on-Reset,” Apr. 2000, pp. 1-25. |
Vitek, J. L., “Mechanisms of deep brain stimulation: excitation or inhibition,” Mov. Disord., vol. 17 (Suppl. 3) (2002), pp. 69-72. |
Voges, J., et al., “Bilater high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic efftect with anatomical electrode position,” J. Neurosurg., 96(2) (Feb. 2002), pp. 269-279. |
Wakana, S., et al., “Fiber tract-based atlas of human white matter anatomy,” Radioloy, 230(1) (Jan. 2004) pp. 77-87. |
Alexander, DC., et al., “Spatial transformations of diffusion tensor magnetic resonance images,” IEEE Transactions on Medical Imaging, 20 (11), pp. 1131-1139. |
Wu, Y. R., et al., “Does Stimulation of the GPi control dyskinesia by activating inhibitory axons?,” Mov. Disord., vol. 16 (2001), pp. 208-216. |
Yelnik, J., et al., “Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas-magnetic resonance imaging coregistration method,” J Neurosurg., 99(1) (Jul. 2003), pp. 89-99. |
Yianni, John, et al., “Globus pallidus internus deep brain stimulation for dystonic conditions: a prospective audit,” Mov. Disord., vol. 18 (2003), pp. 436-442. |
Zonenshayn, M., et al., “Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting,” Neurosurgery, 47(2) (Aug. 2000), pp. 282-294. |
Voghell et al., “Programmable Current Source Dedicated to Implantable Microstimulators” ICM '98 Proceedings of the Tenth International Conference, pp. 67-70. |
Butson, Christopher R., et al. “Patient-specific analysis of the volume of tissue activated during deep brain stimulation”, NeuroImage. vol. 34. (2007),661-670. |
Adler, DE., et al., “The tentorial notch: anatomical variation, morphometric analysis, and classification in 100 human autopsy cases,” J. Neurosurg., 96(6), (Jun. 2002), pp. 1103-1112. |
Jones et al., “An Advanced Demultiplexing System for Physiological Stimulation”, IEEE Transactions on Biomedical Engineering, vol. 44 No. 12 Dec. 1997, pp. 1210-1220. |
Alo, K. M., et al., “New trends in neuromodulation for the management of neuropathic pain,” Neurosurgery, 50(4), (Apr. 2002), pp. 690-703, discussion pp. 703-704. |
Ashby, P., et al., “Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus,” Brain, 122 (PI 10), (Oct. 1999), pp. 1919-1931. |
Baker, K. B., et al., “Subthalamic nucleus deep brain stimulus evoked potentials: Physiological and therapeutic implications,” Movement Disorders, 17(5), (Sep./Oct. 2002), pp. 969-983. |
Bammer, R, et al., “Diffusion tensor imaging using single-shot SENSE-EPI”, Magn Reson Med., 48(1 ), (Jul. 2002), pp. 128-136. |
Basser, P J., et al., “MR diffusion tensor spectroscopy and imaging,” Biophys J., 66(1 ), (Jan. 1994), pp. 259-267. |
Basser, P J., et al., “New currents in electrical stimulation of excitable tissues,” Annu Rev Biomed Eng., 2, (2000), pp. 377-397. |
Benabid, AL., et al., “Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders,” J. Neurosurg., 84(2), (Feb. 1996), pp. 203-214. |
Benabid, AL., et al., “Combined (lhalamotoy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease,” Appl Neurophysiol, vol. 50, (1987), pp. 344-346. |
Benabid, A L., et al., “Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus,” Lancet, 337 (8738), (Feb. 16, 1991 ), pp. 403-406. |
Butson, C. R., et al., “Predicting the effects of deep brain stimulation with diffusion tensor based electric field models,” Medical Image Computing and Computer-Assisted Intervention—Mic Cai 2006, Lecture Notes in Computer Science (LNCS), vol. 4191, pp. 429-437, LNCS, Springer, Berlin, DE. |
Christensen, Gary E., et al., “Volumetric transformation of brain anatomy,” IEEE Transactions on Medical Imaging, 16(6), (Dec. 1997), pp. 864-877. |
Cooper, S , et al., “Differential effects of thalamic stimulation parameters on tremor and paresthesias in essential tremor,” Movement Disorders, 17(Supp. 5), (2002), p. S193. |
Coubes, P, et al., “Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus,” Lancet, 355 (9222), (Jun. 24, 2000), pp. 2220-2221. |
Dasilva, A.F. M., et al., “A Primer Diffusion Tensor Imaging of Anatomical Substructures,” Neurosurg. Focus; 15(1) (Jul. 2003), pp. 1-4. |
Dawant, B. M., et al., “Compuerized atlas-guided positioning of deep brain stimulators: a feasibility study,” Biomedical Image registration, Second International Workshop, WBIR 2003, Revised Papers (Lecture notes in Comput. Sci. vol. (2717), Springer-Verlag Berlin, Germany(2003), pp. 142-150. |
Finnis, K. W., et al., “3-D functional atalas of subcortical structures for image guided stereotactic neurosurgery,” Neuroimage, vol. 9, No. 6, Iss. 2 (1999), p. S206. |
Finnis, K. W., et al., “3D Functional Database of Subcorticol Structures for Surgical Guidance in Image Guided Stereotactic Neurosurgery,” Medical Image Computing and Computer-Assisted Intervention—MICCAI'99, Second International Conference.Cambridge, UK, Sep. 19-22, 1999, Proceedings (1999), pp. 758-767. |
Finnis, K.W., et al., “A 3-Dimensional Database of Deep Brain Functional Anatomy, and Its Application to Image-Guided Neurosurgery,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention.Lecture Notes In Computer Science; vol. 1935 (2000), pp. 1-8. |
Finnis, K. W., et al., “A functional database for guidance of surgical and therapeutic procedures in the deep brain,” Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3 (2000), pp. 1787-1789. |
Finnis, K. W., et al., “Application of a Population Based Electrophysiological Database to the Planning and Guidance of Deep Brain Stereotactic Neurosurgery,” Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention—Part 11, Lecture Notes in Computer Science; vol. 2489 (2002), pp. 69-76. |
Finnis, K. W., et al., “Subcortical physiology deformed into a patient-specific brain atlas for image-guided stereotaxy,” Proceedings of SPIE—vol. 4681 Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display (May 2002), pp. 184-195. |
Finnis, Krik W., et al., “Three-Dimensional Database of Subcortical Electrophysiology for Image-Guided Stereotatic Functional Neurosurgery,” IEEE Transactions on Medical Imaging, 22(1) (Jan. 2003), pp. 93-104. |
Gabriels, L , et al., “Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: psychopathological and neuropsychological outcome in three cases,” Acta Psychiatr Scand., 107(4) (2003), pp. 275-282. |
Gabriels, LA., et al., “Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder,” Neurosurgery, 52(6) (Jun. 2003), pp. 1263-1276. |
Goodall, E. V., et al., “Modeling study of activation and propagation delays during stimulation of peripheral nerve fibers with a tripolar cuff electrode,” IEEE Transactions on Rehabilitation Engineering, [see also IEEE Trans. on Neural Systems and Rehabilitation], 3(3) (Sep. 1995), pp. 272-282. |
Goodall, E. V., et al., “Position-selective activation of peripheral nerve fibers with a cuff electrode,” IEEE Transactions on Biomedical Engineering, 43(8) (Aug. 1996), pp. 851-856. |
Goodall, E. V., “Simulation of activation and propagation delay during tripolar neural stimulation,” Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1993), pp. 1203-1204. |
Grill, WM., “Modeling the effects of electric fields on nerve fibers: influence of tissue electrical properties,” IEEE Transactions on Biomedical Engineering, 46(8) (1999), pp. 918-928. |
Grill, W. M., et al., “Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes,” J Biomed Mater Res., 50(2) (May 2000), pp. 215-226. |
Grill, W. M., “Neural modeling in neuromuscular and rehabilitation research,” Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4 (2001 ), pp. 4065-4068. |
Grill, W. M., et al., “Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes,” Journal of Neuroscience Methods, 65(1) (Mar. 1996), pp. 43-50. |
Grill, W. M., et al., “Quantification of recruitment properties of multiple contact cuff electrodes,” IEEE Transactions on Rehabilitation Engineering, [see also IEEE Trans. on Neural Systems and Rehabilitation], 4(2) (Jun. 1996), pp. 49-62. |
Grill, W. M., “Spatially selective activation of peripheral nerve for neuroprosthetic applications,” Ph.D. Case Western Reserve University, (1995), pp. 245 pages. |
Grill, W. M., “Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes,” IEEE Transactions on Rehabilitation Engineering [see also IEEE Trans. on Neural Systems and Rehabilitation] (1998), pp. 364-373. |
Grill, W. M., “Stimulus waveforms for selective neural stimulation,” IEEE Engineering in Medicine and Biology Magazine, 14(4) (Jul.-Aug. 1995), pp. 375-385. |
Grill, W. M., et al., “Temporal stability of nerve cuff electrode recruitment properties,” IEEE 17th Annual Conference Engineering in Medicine and Biology Society, vol. 2 (1995), pp. 1089-1090. |
Gross, RE., et al., “Advances in neurostimulation for movement disorders,” Neurol Res., 22(3) (Apr. 2000), pp. 247-258. |
Guridi et al., “The subthalamic nucleus, hemiballismus and Parkinson's disease: reappraisal of a neurological dogma,” Brain, vol. 124, 2001, pp. 5-19. |
Haberler, C, et al., “No tissue damage by chronic deep brain stimulation in Parkinson's disease,” Ann Neurol., 48(3) (Sep. 2000), pp. 372-376. |
Hamel, W, et al., “Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts,” J Neurol Neurosurg Psychiatry, 74(8) (Aug. 2003), pp. 1036-1046. |
Hanekom, “Modelling encapsulation tissue around cochlear implant electrodes,” Med. Biol. Eng. Comput. vol. 43 (2005), pp. 47-55. |
Haueisen, J , et al., “The influence of brain tissue anisotropy on human EEG and MEG,” Neuroimage, 15(1) (Jan. 2002), pp. 159-166. |
D'Haese et al. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005 Lecture Notes in Computer Science, 2005, vol. 3750, 2005, 427-434. |
Rohde et al. IEEE Transactions on Medical Imaging, vol. 22 No. 11, 2003 p. 1470-1479. |
Dawant et al., Biomedical Image Registration. Lecture Notes in Computer Science, 2003, vol. 2717, 2003, 142-150. |
Miocinovic et al., “Stereotactiv Neurosurgical Planning, Recording, and Visualization for Deep Brain Stimulation in Non-Human Primates”, Journal of Neuroscience Methods, 162:32-41, Apr. 5, 2007, XP022021469. |
Gemmar et al., “Advanced Methods for Target Navigation Using Microelectrode Recordings in Stereotactic Neurosurgery for Deep Brain Stimulation”, 21st IEEE International Symposium on Computer-Based Medical Systems, Jun. 17, 2008, pp. 99-104, XP031284774. |
Acar et al., “Safety Anterior Commissure-Posterior Commissure-Based Target Calculation of the Subthalamic Nucleus in Functional Stereotactic Procedures”, Stereotactic Funct. Neurosura., 85:287-291, Aug. 2007. |
Andrade-Souza, “Comparison of Three Methods of Targeting the Subthalamic Nucleus for Chronic Stimulation in Parkinson's Disease”, Neurosurgery, 56:360-368, Apr. 2005. |
Anaheim et al., “Improvement in Parkinson Disease by Subthalamic Nucleus Stimulation Based on Electrode Placement”, Arch Neural., 65:612-616, May 2008. |
Butson et al., “Tissue and Electrode Capacitance Reduce Neural Activation Volumes During Deep Brain Stimulation”, Clinical Neurophysiology, 116:2490-2500, Oct. 2005. |
Butson et al., “Sources and Effects of Electrode Impedance During Deep Brain Stimulation”, Clinical Neurophysiology, 117:44 7-454, Dec. 2005. |
D'Haese et al., “Computer-Aided Placement of Deep Brain Stimulators: From Planning to Intraoperative Guidance”, IEEE Transaction on Medical Imaging, 24:1469-1478, Nov. 2005. |
Gross et al., “Electrophysiological Mapping for the Implantation of Deep Brain Stimulators for Parkinson's Disease and Tremor”, Movement Disorders, 21 :S259-S283, Jun. 2006. |
Halpern et al., “Brain Shift During Deep Brain Stimulation Surgery for Parkinson's Disease”, Stereotact Funct. Neurosurg., 86:37-43, published online Sep. 2007. |
Herzog et al., “Most Effective Stimulation Site in Subthalamic Deep Brain Stimulation for Parkinson's Disease”, Movement Disorders, 19:1050-1099, published on line Mar. 2004. |
Jeon et al., A Feasibility Study of Optical Coherence Tomography for Guiding Deep Brain Probes, Journal of Neuroscience Methods, 154:96-101, Jun. 2006. |
Khan et al., “Assessment of Brain Shift Related to Deep Brain Stimulation Surgery”, Sterreotact Funct. Neurosurg., 86:44-53, published online Sep. 2007. |
Koop et al., “Improvement in a Quantitative Measure of Bradykinesia After Microelectrode Recording in Patients with Parkinson's Disease During Deep Brain Stimulation Surgery”, Movement Disorders, 21 :673-678, published on line Jan. 2006. |
Lemaire et al., “Brain Mapping in Stereotactic Surgery: A Brief Overview from the Probabilistic Targeting to the Patient-Based Anatomic Mapping”, NeuroImage, 37:S109-S115, available online Jun. 2007. |
Machado et al., “Deep Brain Stimulation for Parkinson's Disease: Surgical Technique and Perioperative Management”, Movement Disorders, 21 :S247-S258, Jun. 2006. |
Maks et al., “Deep Brain Stimulation Activation Volumes and Their Association with Neurophysiological Mapping and Therapeutic Outcomes”, Downloaded from jnnp.bmj.com, pp. 1-21, published online Apr. 2008. |
Moran et al., “Real-Time Refinment of Subthalamic Nucleous Targeting Using Bayesian Decision-Making on the Root Mean Square Measure”, Movement Disorders, 21: 1425-1431, published online Jun. 2006. |
Sakamoto et al., “Homogeneous Fluorescence Assays for RNA Diagnosis by Pyrene-Conjugated 2′-0-Methyloligoribonucleotides”, Nucleosides, Nucleotides, and Nucleric Acids, 26:1659-1664, on line publication Oct. 2007. |
Winkler et al., The First Evaluation of Brain Shift During Functional Neurosurgery by Deformation Field Analysis, J. Neural. Neurosurg. Psychiatry, 76:1161-1163, Aug. 2005. |
Yelnik et al., “A Three-Dimensional, Histological and Deformable Atlas of the Human Basal J Ganglia. I, Atlas Construction Based on Immunohistochemical and MRI Data”, NeuroImage, 34:618-638,Jan. 2007. |
Ward, H. E., et al., “Update on deep brain stimulation for neuropsychiatric disorders,” Neurobiol Dis 38 (3) (2010), pp. 346-353. |
Alberts et al. “Bilateral subthalamic stimulation impairs cognitive-motor performance in Parkinson's disease patients.” Brain (2008), 131, 3348-3360, Abstract. |
Butson, Christopher R., et al., “Sources and effects of electrode impedance during deep brain stimulation”, Clinical Neurophysiology. vol. 117.(2006),447-454. |
An, et al., “Prefronlal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys,” J Comp Neural 401 (4) (1998), pp. 455-479. |
Bulson, C. R., et al., “Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation,” Clinical Neurophysiology, vol. 116 (2005), pp. 2490-2500. |
Carmichael, S. T., et al., “Connectional networks within the orbital and medial prefronlal cortex of macaque monkeys,” J Comp Neural 371 (2) (1996), pp. 179-207. |
Croxson, et al., “Quantitative investigation of connections of the prefronlal cortex in the human and macaque using probabilistic diffusion tractography,” J Neurosci 25 (39) (2005), pp. 8854-8866. |
Frankemolle, et al., “Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming,” Brain 133 (2010), pp. 746-761. |
Freedman, et al., “Subcortical projections of area 25 (subgenual cortex) of the macaque monkey,” J Comp Neurol 421 (2) (2000), pp. 172-188. |
Giacobbe, et al., “Treatment resistant depression as a failure of brain homeostatic mechanisms: implications for deep brain stimulation,” Exp Neural 219 (1) (2009), pp. 44-52. |
Goodman, et al., “Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design,” Biol Psychiatry 67 (6) (2010), pp. 535-542. |
Greenberg, et al., “Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience,” Mol Psychiatry 15 (1) (2010), pp. 64-79. |
Greenberg. et al., “Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder,” Neuropsychopharmacology 31 (11) (2006), pp. 2384-2393. |
Gutman, et al., “A tractography analysis of two deep brain stimulation white matter targets for depression,” Biol Psychiatry 65 (4) (2009), pp. 276-282. |
Haber, et al., “Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning,” J Neurosci 26 (32) (2006), pp. 8368-8376. |
Haber, et al., “Cognitive and limbic circuits that are affected by deep brain stimulation,” Front Biosci 14 (2009), pp. 1823-1834. |
Hines, M. L., et al., “The NEURON simulation environment,” Neural Comput., 9(6) (Aug. 15, 1997), pp. 1179-1209. |
Hua, et al., “Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification,” Neuroimage 39 (1) (2008), pp. 336-347. |
Johansen-Berg, et al., “Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression,” Cereb Cortex 18 (6) (2008), pp. 1374-1383. |
Kopell, et al., “Deep brain stimulation for psychiatric disorders,” J Clin Neurophysiol 21 (1) (2004), pp. 51-67. |
Lozano, et al., “Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression,” Biol Psychiatry 64 (6) (2008), pp. 461-467. |
Lujan, et al., “Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders,” Front Biosci 13 (2008), pp. 5892-5904. |
Lujan, J.L. et al., “Automated 3-Dimensional Brain Atlas Fitting to Microelectrode Recordings from Deep Brain Stimulation Surgeries,” Stereotact. Funel. Neurosurg. 87(2009), pp. 229-240. |
Machado. et al., “Functional topography of the ventral striatum and anterior limb of the internal capsule determined by electrical stimulation of awake patients,” Clin Neurophysiol 120 (11) (2009), pp. 1941-1948. |
Malone, et al., “Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression,” Biol Psychiatry 65 (4) (2009), pp. 267-275. |
Mayberg, H. S., et al., “Deep brain stimulation for treatment-resistant depression,” Neuron, 45(5) (Mar. 3, 2005), pp. 651-660. |
Mayberg, H. S., et al., “Limbic-cortical dysregulation: a proposed model of depression,” J Neuropsychiatry Clin Neurosci. 9 (3) (1997), pp. 471-481. |
McIntyre,C. C., et al., “Network perspectives on the mechanisms of deep brain stimulation,” Neurobiol Dis 38 (3) (2010), pp. 329-337. |
Miocinovic, S., et al., “Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation,” Exp Neurol 216 (i) (2009), pp. 166-176. |
Nuttin, et al., “Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder,” Lancet 354 (9189) (1999), p. 1526. |
Saxena, et al., “Cerebral glucose metabolism in obsessive-compulsive hoarding,” Am J Psychiatry. 161 (6) (2004), pp. 1038-1048. |
Viola, et al., “Importance-driven focus of attention,” IEEE Trans Vis Comput Graph 12 (5) (2006), pp. 933-940. |
Wakana, S., et al., “Reproducibility of quantitative tractography methods applied to cerebral white matter,” Neuroimage 36 (3) (2007), pp. 630-644. |
Mayr et al., “Basic Design and Construction of the Vienna FES Implants: Existing Solutions and Prospects for New Generations of Implants”, Medical Engineering & Physics, 2001; 23:53-60. |
McIntyre, Cameron , et al., “Finite element analysis of the current-density and electric field generated by metal microelectrodes”, Ann Biomed Eng . 29(3), (2001 ),227-235. |
Foster, K. R., et al., “Dielectric properties of tissues and biologicai materials: a critical review.”, Grit Rev Biomed Ena. 17(1 ). {1989),25-104. |
Limousin, P., et al., “Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease”, N Engl J Med .. 339(16), (Oct. 15, 1998), 1105-11. |
Kitagawa, M., et al., “Two-year follow-up of chronic stimulation of the posterior subthalamic white matter for tremor-dominant Parkinson's disease.”, Neurosurgery. 56(2). (Feb. 2005),281-9. |
Johnson, M. D., et al., “Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, [see also IEEE Trans. on Rehabilitation Engineering (2005), 160-165. |
Holsheimer, J. , et al., “Chronaxie calculated from current-duration and voltage-duration data”, J Neurosci Methods. 97(1), (Apr. 1, 2000),45-50. |
Hines, M. L., et al., “The NEURON simulation environment”, Neural Comput. 9(6). (Aug. 15, 1997), 1179-209. |
Herzog, J., et al., “Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease”, Mov Disord. 19(9). (Sep. 2004),1050-4. |
Hershey, T., et al., “Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD.”, Neurology 61(6). (Sep. 23, 2003),816-21. |
Hemm, S. , et al., “Evolution of Brain Impedance in Dystonic Patients Treated by GPi Electrical Stimulation”, Neuromodulation 7(2) (Apr. 2004),67-75. |
Hemm, S., et al., “Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging.”, J Neurosurg. 103(6): (Dec. 2005),949-55. |
Haueisen, J, et al., “The influence of brain tissue anisotropy on human EEG and MEG”, Neuroimage 15(1) (Jan. 2002),159-166. |
Haslinger, B., et al., “Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease.”, Neuroimage 28(3). (Nov. 15, 2005),598-606. |
Hashimoto, T. , et al., “Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons”, J Neurosci. 23(5). (Mar. 1, 2003),1916-23. |
Hardman, C. D., et al., “Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei”, J Comp Neurol., 445(3). (Apr. 8, 2002),238-55. |
McNaughtan et al., “Electrochemical Issues in Impedance Tomography”, 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, Apr. 14-17, 1999. |
Grill, WM., et al., “Electrical properties of implant encapsulation tissue”, Ann Biomed Eng. vol. 22. (1994),23-33. |
Grill, W. M., et al., “Deep brain stimulation creates an informational lesion of the stimulated nucleus”, Neuroreport. 15l7t (May 19, 2004 ), 1137-40. |
Pulliam CL, Heldman DA, Orcutt TH, Mera TO, Giuffrida JP, Vitek JL. Motion sensor strategies for automated optimization of deep brain stimulation in Parkinson's disease. Parkinsonism Relat Disord. Apr. 2015; 21(4):378-82. |
Number | Date | Country | |
---|---|---|---|
20180193655 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62444724 | Jan 2017 | US |