The technology disclosed herein relates, in general, to light emitting diodes (LEDs) and, more specifically, to systems and methods that communicate data from one or more LEDs to an LED driver.
LEDs represent an attractive alternative to incandescent light bulbs in illumination devices due to their smaller form factor, lower energy consumption, longer operational lifetime, and enhanced mechanical robustness. To provide the aforementioned advantages, LEDs must be controlled and driven properly. In particular, in contrast to incandescent bulbs, the operating conditions (e.g., temperature) to which an LED is subjected used greatly affect the performance (e.g., luminous intensity) thereof. The operating conditions are controlled by an LED driver, typically by regulating the current flowing through the LEDs; the LED driver, however, is typically designed as general-purpose circuitry for use with a wide variety of LEDs. Accordingly, LEDs having different load characteristics may experience substantially varying operating conditions and performance despite using the same driver. In addition, because the input load characteristics of an LED do not remain constant over the LED's lifetime, but instead change with age and environmental conditions, the compatibility between an LED and its driver may erode over time, thereby causing unstable LED performance.
Conventionally, the load characteristics or operating conditions of LEDs are monitored by external circuitry that communicates the monitored information over an external data path to the LED driver. Upon detecting changes in the load characteristics or operating conditions of LEDs, for example, the external circuitry transmits a feedback signal to the LED driver to change the output load impedance or signal frequency to compensate for the changes. The external circuitry may involve, for example, a temperature-sensitive element (e.g., thermistor, thermocouple, etc.) positioned near the LEDs and a discrete data channel to communicate the sensed temperature. Such complex and specialized circuit designs can be expensive and inconveniently implemented, especially when the sensing system is far from the driver. Additionally, various schemes for communicating the LED performance information may interrupt normal operation of the LEDs.
Consequently, there is a need for circuitry that can reliably monitor the operating conditions of the LEDs without interrupting normal operation, vary the output of the LED driver to optimize the performance of the LEDs, and is conveniently deployed in a luminaire or other LED-based device.
In various embodiments, the present invention relates to systems and methods for directly transmitting operating conditions affecting one or more LEDs to the LED driver via a small electronics package co-located with the LEDs. The electronics package may include a microcontroller to activate a component (e.g., a thermistor) that monitors one or more operating conditions (for example, the temperature) of the LEDs and then transmits the measured information to the electronics of the LED driver, preferably by modulating the driver load with circuitry (e.g., a transistor and a resistor) in a manner that conveys the information. The electronics package (or at least the sensing component thereof) is compact and located sufficiently proximate to the LED(s) to detect relevant operating conditions without interrupting normal LED operation.
Use of a simple and small electronics package allows the LED driver to selectively and directly monitor LED operating conditions and adjust the operating current/voltage to optimize LED performance and lifetime. The direct transmission of the information-containing signals by load modulation obviates the need for a dedicated communication channel between the LED(s) and the LED driver, and thus avoids using unnecessary circuitry to convey information; this simplifies the overall circuit design. Furthermore, communication by load modulation alters the LED load at a level sufficient for data detection by the LED driver but insufficient to be detected by the human eye, thereby imposing at most a negligible impact on normal LED operation.
Accordingly, in one aspect, the invention pertains to a system for communicating one or more operating conditions (e.g., temperature) of an LED device to an LED driver. In representative embodiments, the system includes sensing circuitry for sensing an operating condition affecting the LED device and communication circuitry for modulating a load of the LED driver based on the sensed operating condition, thereby communicating the sensed condition to the LED driver. The sensing circuitry may include a thermistor. In various embodiments, the communication circuitry includes a device for switching a load in and out of the LED driver load. The device may include a transistor and the load may include a resistor. In one implementation, the communication circuitry includes a controller for controlling the device based on data from the sensing circuitry.
In some embodiments, the communication circuitry is configured to modulate the load in a temporal pattern corresponding to a digital value that itself corresponds to the sensed operating condition. The temporal pattern may correspond to a bit rate, which may be faster than an activation rate of the sensing circuitry. In one embodiment, the communication circuitry further includes monitoring circuitry for monitoring an output waveform of the LED driver. The controller synchronizes the temporal pattern with a frequency of the output waveform.
In another aspect, the invention relates to a method for controlling an LED device connected to an LED driver. In various embodiments, the method includes sensing an operating condition of the LED device, modulating a load of the LED driver based on the sensed operating condition, and varying an output of the LED driver based on the modulated load. In one embodiment, the modulated load is detected by the LED driver, which responsively adjusts the output based thereon. In another embodiment, the load is modulated in a temporal pattern corresponding to a digital value that itself corresponds to the sensed operating condition. In various embodiments, the method further includes monitoring an output waveform of the LED driver and synchronizing the temporal pattern with a frequency of the monitored output waveform. The temporal pattern may correspond to a bit rate, which may be faster than a sensing rate of sensing the operating condition.
As used herein, the term “approximately” means±10°, and in some embodiments, ±5°. Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, steps, or characteristics may be combined in any suitable manner in one or more examples of the technology. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the claimed technology.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, with an emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
In various embodiments, the electronics package 130 is a single, compact unit that can be easily installed in and removed from the LED lighting system 100. Referring to
Upon detecting the resistance of the thermistor 214, the microcontroller 220 computes the corresponding LED temperature and converts the detected temperature information into a signal that can be transmitted to the LED driver 110. For example, the measured temperature may first be converted to an 8-bit digital value. The microcontroller 220 then transmits this digital signal to the LED driver circuitry 110 by modulating the driver load with modulation circuitry 230. That is, the modulation circuitry 230 alters the driver load in a temporal pattern indicative of the digital value. This signal is sensed as a loading variation by the driver circuit 110 (see
As a result, changes in the driver load communicated by the modulation circuitry 230 result in alteration of the operating current/voltage supplied to the LED unit in order to optimize the performance and lifetime of the LEDs. The modulation circuitry 230 may include, for example, a resistor 232 and a transistor 234 (or other switch), as depicted in
In one embodiment, the microcontroller 220 monitors the output current waveform of the LED driver 110 using a voltage-divider network 240 and then synchronizes the data bit rate accordingly. For example, for a regular rectified output current waveform having a frequency of 120 Hz, the microcontroller 220 may transmit the measured temperature data with a bit rate of 120 Hz, thereby modulating the driver output waveform synchronously with each period (e.g., at the peak voltage). If the temperature data is represented by 8 bits, the data-transmission time is approximately 65 ms; the electronics package 220 thus ensures quick feedback to adjust the operating current/voltage of the LEDs in real time in response to changes in the operating conditions thereof. As shown in
Furthermore, operating conditions other than temperature may be monitored. For example, the modulation circuitry 230 may be electrically responsive to another environmental condition (such as humidity or the degree of incident solar radiation) or an operating parameter of the LED(s), e.g., variations in the forward voltage, output wattage, lifetime operating hours, LED color temperature, or room occupancy detection. These conditions are measured and signals indicative of the measurements are communicated to the driver circuitry via modulation as described above.
In various embodiments, a voltage regulator 250 provides suitable power to the microcontroller 220. When the operating conditions of the LED unit 120 are not monitored or transmitting data to the LED driver 110 is not necessary, the microcontroller 220 may be deactivated to minimize power consumption. The microcontroller 220 may be provided as either software, hardware, or some combination thereof. Similarly, the driver circuitry contains circuitry to sense the loading modulations imparted by the modulation circuitry and suitable internal logic to decode the communication and take appropriate action, e.g., varying the supplied voltage and/or current. These functions may be implemented by computational circuitry including a main memory unit for storing programs and/or data relating to the activation or deactivation described above. The memory may include random access memory (RAM), read only memory (ROM), and/or FLASH memory residing on commonly available hardware such as one or more application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), electrically erasable programmable read-only memories (EEPROM), programmable read-only memories (PROM), or programmable logic devices (PLD).
For embodiments in which the controller is provided as a software program, the program may be written in low-level microcode or in a high-level language such as FORTRAN, PASCAL, JAVA, C, C++, C#, LISP, PERL, BASIC, PYTHON or any suitable programming language.
Referring to
In one embodiment, the microcontroller 350 transmits the operating-condition information of the LED units 320 at a low periodic rate (e.g., 0.1 Hz). Because the data transmission time from each LED unit 320 to the LED driver 310 is relatively short (e.g., 65 ms), the transmission of each LED unit 320 takes only approximately 0.6% of the time between transmissions. Accordingly, the likelihood of data interference between the multiple transmission lines of the LED units 320 is very low, thereby effectively avoiding data collisions in the LED driver electronics 310. In addition, when multiple devices are incorporated in the LED lighting system 300 and transmit various signals on the same drive channel, the low data update rate (e.g., every 10 seconds) advantageously minimizes a probability of data collisions in the driver electronics from the multiple devices.
In some embodiments, the measured information about the operating conditions (e.g., temperature) is converted to a data packet including a header sequence to establish the start of the data, a payload containing the digitized temperature data, and a trailer sequence to mark the end of the packet. The header sequence includes instructions about the temperature data carried by the packet; for example, the header sequence may include a board number or other identifiers to set up a data rate and/or a data size (e.g., 8-bit temperature value) and/or the synchronization of the bit rate with the frequency of the driver waveform. Additionally, the data packet may include a code (such as a checksum or cyclic redundancy check (CRC) value) in the trailer sequence to detect errors that are introduced into the data packet during transmission. For example, the microcontroller may detect bits having a value of “1” in the payload, sum up the total value thereof, and store the summation as a hexadecimal value in the trailer sequence. Upon receiving the data packet via modulation as described above, the LED driver electronics sums up the bits having a value of “1” in the payload and compares the results with the value stored in the trailer sequence. If the values match, it indicates that the temperature data in the payload is correct. If the values do not match, the receiving LED driver electronics ignores the corrupted data and waits for the next transmission cycle. Accordingly, the checksum or CRC value may reliably and effectively facilitate the identification of corrupted data or data with low signal-to-noise ratio (SNR) values.
The terms and expressions employed herein are used as terms and expressions of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof. In addition, having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive.
This application claims priority to, and the benefits of, U.S. Provisional Application Ser. No. 61/576,085, filed on Dec. 15, 2011, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4400688 | Johnston et al. | Aug 1983 | A |
5691691 | Merwin et al. | Nov 1997 | A |
6097761 | Buhring et al. | Aug 2000 | A |
6490512 | Niggemann | Dec 2002 | B1 |
6510995 | Muthu et al. | Jan 2003 | B2 |
7573209 | Ashdown | Aug 2009 | B2 |
7635957 | Tripathi et al. | Dec 2009 | B2 |
8040078 | Knoble et al. | Oct 2011 | B1 |
8120283 | Tanaka et al. | Feb 2012 | B2 |
8890442 | Radermacher | Nov 2014 | B2 |
20050242822 | Klinger | Nov 2005 | A1 |
20060038661 | Reinhold et al. | Feb 2006 | A1 |
20060273741 | Stalker, III | Dec 2006 | A1 |
20070236159 | Beland | Oct 2007 | A1 |
20090160627 | Godbole | Jun 2009 | A1 |
20100096993 | Ashdown et al. | Apr 2010 | A1 |
20110006696 | Menegazzi et al. | Jan 2011 | A1 |
20110248644 | Welten et al. | Oct 2011 | A1 |
20150048754 | Davies et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
1000806 | May 2000 | EP |
1731003 | Dec 2006 | EP |
2330336 | Jun 2011 | EP |
2375858 | Oct 2011 | EP |
2953080 | May 2011 | FR |
2335334 | Sep 1999 | GB |
9948340 | Sep 1999 | WO |
WO-2006062484 | Jun 2006 | WO |
WO-2008001274 | Jan 2008 | WO |
WO-2009022153 | Feb 2009 | WO |
2013090704 | Jun 2013 | WO |
Entry |
---|
International Application Serial No. PCT/US2012/069723, International Preliminary Report on Patentability mailed on Jun. 26, 2014, 8 pages. |
International Search Report and Written Opinion mailed May 23, 2013 for International Application No. PCT/US2012/069723 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20130154518 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61576085 | Dec 2011 | US |