This disclosure relates generally to the machine learning field, and more specifically to new and useful systems and methods for understanding machine learning models.
As complexity of machine learning systems increases, it becomes increasingly difficult to understand why a machine learning model generated a given score, or made a decision based on a variety of inputs. This becomes even more difficult when model inputs are themselves outputs of other models, or when outputs of such model systems are further transformed prior to being used to make a decision.
Thus, there is a need in the machine learning field to create a new and useful machine learning system and method for explaining machine learning models and model-based decisions. The disclosure herein provides such new and useful systems and methods.
1. Overview
The following description of embodiments is not intended to limit the disclosure to these embodiments, but rather to enable any person skilled in the art to make and use the embodiments disclosed herein.
A machine learning model takes a set of input variables, sometimes numerical, ordinal, continuous-valued, categorical, and the like, and maps those input values to a numeric output. The numerical output can represent a score, a prediction (e.g., a regression prediction, a classification prediction, etc.), and the like. Sometimes the numerical output is passed through a transformation (e.g., a sigmoid transformation, an ECDF transformation, a calibration transformation , etc.) before being used to make a decision based on the model's output (e.g., based on a threshold applied to the model's score, etc.).
For understanding a machine learning model, it is helpful to determine how changes in input values affect the output or outputs of the model. One approach is to select a set of input data sets (e.g., X={x1, x1, . . . , xn}), use the model to generate outputs for each input data set, and identify changes to the outputs across the input data sets. For example, if it is observed that a change in feature x1 results in increased output values, then feature x1 might be understood to have a contribution to output values generated by the model. If this feature relates to an attribute that should not have an impact on model outputs (e.g., the feature relates to an applicant's race, and is used by a credit model to approve loan applications), an alert can be generated to identify possible concerns with the model. If an output generated by the model falls below a threshold, changing a feature might increase an output value generated by the model and cause the model output to exceed a decision threshold. Moreover, the impact of the feature on model outputs generated by the model can be observed over time to help identify changes in operation of the model. Therefore, it is useful to understand the impact that individual features (or groups of features) have on outputs generated by a model.
Machine learning models capture relationships among model inputs to arrive at a model output (e.g., a score for a particular classification or regression target of interest). For example, a fully-connected neural network can consider all combinations of inputs and provide information that can be used to explain how changes in multiple inputs together should influence the model's outputs. A decision tree (or forest, ensemble, etc.) may consider conjunctions and disjunctions of variables and values to arrive at a decision. Model systems may include layers of models and sub-models that determine how much weight each model output should be assigned, given a set of input variables. Moreover a model score may be transformed (e.g., by an ECDF, sigmoid, or other transformation) prior to being used to make a decision (e.g., a decision to deny a credit application, stop a dangerous lane change, make a medical diagnosis, admit an applicant to an educational program, etc.). The disclosure herein describes improved systems and methods for understanding how changes in input values affect the output or outputs of the model or model system, so that the model or model system and the decisions it is used to make, can be understood (e.g., in terms of safety and soundness, fairness, disparate impact, explanation of how outputs were generated, explanation of how model-based decisions were made, comparison with other models, including understanding the relative importance of various input variables and combinations of inputs, by monitoring the operation of the model in production, etc.).
In some variations, the model explanation system is based on a differential credit assignment method such as Aumann-Shapley (described in Aumann & Shapley Values of Atomic Games, 1975, Princeton University Press, incorporated herein by reference). In other variations, the model explanation system is based on measure-theoretic methods that extend Aumann-Shapley as described herein. In some variations, the model explanation system produces a specific quantification of the importance of each input variable to a model-based decision, such as, e.g., a decision to deny a credit application. This quantification can be used to power explanations that enable model users to understand why a model made a given decision and what to do to change the model-based decision outcome.
In some variations, the set of input data sets (e.g., X={x1, x1, . . . , xn}) used to understand the model are selected based on a reference input data set, and optionally one or more evaluation input data sets. In some implementations, the reference input data set is generated from a population of data sets. In some implementations, the reference input data set is computed based on specified constraints. In some implementations, the evaluation input data set is generated from a population of data sets. In some implementations, the evaluation input data set is computed based on specified constraints. In some implementations, the evaluation input data set is a data set whose model output is to be understood. In some implementations, the reference data set is the set of all input vectors. In some embodiments, the reference data set is the set of approved applicants, e.g., those applicants who had been previously approved for a loan. In other embodiments, the reference data set is a set of healthy patients, a set of defendants found innocent, a set of signals from sensors indicating a safe lane change, a set of admitted students, etc. In some embodiments, the reference data set is the set of applicants from unprotected groups, such as Non-Hispanic White, men, non-LGBTQ, non-military, or people without disabilities, and the evaluation data set is a set of applicants from protected groups such as African American, Hispanic, Asian, American Indian and Alaskan Natives, Pacific Islander, women, LGBTQ, members of the military, or people with disabilities. In some embodiments, the reference data sets or input data sets are partitioned based on demographic, ethnographic, and psychographic attributions. In some embodiments, the reference data sets or input data sets are partitioned based on a computable indicator function. In some embodiments the systems output a set of reports that enable an operator to review the input variables causing differences in model scores for a plurality of segments based on a model, model system, or model-based decisioning system. In some embodiments the model system is an ensemble of different model types including, without limitation, neural networks, gradient boosted decision trees, rule-based models, linear models etc. In some embodiments the model-based decisioning system is comprised of a model system and a transformation function. In some embodiments the model-based decisioning system is comprised of a model system, a transformation function, and a threshold determining a binary outcome such as approve/deny. In some embodiments the model-based decisioning system includes a partitioning of a continuous value into a countable set of discrete outcomes, such as credit grades (A, B, C, D, etc.), customer types, and other discrete outputs, without limitation.
In some variations, a set of input data sets (e.g., X={x1, x1, . . . , xn}) used to understand the model are selected by determining a path between each element of a reference input data set and each element of an evaluation input data set. In some variations, this path is a straight line path between an element of a reference input data set and an element of an evaluation input data set.
In some variations, for a continuous model, contribution values for each feature of the model can be determined by computing the componentwise integral of the gradient of the output of the model on the path from any element of the reference input data set to any element of an evaluation input data set (integration path), wherein each component of the componentwise integral represents a contribution value for a feature of the input space. For example, for an input with features {x1, x2, x3}, the componentwise integral includes contribution values {c1, c2, c3} which correspond to the feature contribution of features {x1, x2, x3}, respectively. This technique is known as Aumann-Shapley. The Aumann-Shapley is described in Values of Non-Atomic Games. Robert Aumann, and Lloyd Shapley, 1974, https://press.princeton.edu/books/hardcover/9780691645469/values-of-non-atomic-games, the contents of which is incorporated by reference herein. The Aumann-Shapley technique has been adapted to determine the contribution of each feature to a model's score, as described in Axiomatic Attribution for Deep Networks. Mukund Sundararajan, Ankur Taly, Qiqi Yan, 2017 https://arxiv.org/abs/1703.01365, the contents of which is incorporated by reference herein.
Unfortunately these techniques only apply to continuous models for which the partial derivative (and therefore the gradient, or matrix of partial derivatives) is defined. This limits the utility of the technique to a limited class of predictive models. The present disclosure overcomes this limitation by making use of advanced analysis, specifically, the lesser-known tools of measure theory, pioneered by French mathematicians Borel and Lebesgue. This novel application of advanced mathematical analysis provides a practical method for computing the importance of variables used in complex predictive model systems is described in detail herein. Disclosed herein are methods and systems based on importance values that generate notices to consumers explaining, for example, why they were denied a loan, mortgage, or credit card. Disclosed herein are methods and systems that perform analysis for understanding disparate impact on protected classes, such as a difference in approval rate, pricing or other feature of a loan product and generate comprehensive reports that enable lenders to understand how their model is behaving and document it for risk managers and regulators. This method can also be used for such practical purposes as explaining why a model arrived at a particular medical diagnosis, why a model decided a defendant was guilty, a contract vague, an essay should receive a particular grade, a student should be denied admission, and many more practical and useful applications that produce tangible outputs by implementing the methods in systems described herein, which embody our invention.
For a non-continuous model, there may be points along the path from the reference input data set to the evaluation input data set for which the gradient of the output of the model cannot be determined. For instance, in tree-based models or rule-based models, the predictive function may have jump discontinuities at any tree split or rule antecedent. In some variations, the boundary points along the path correspond to decision tree feature splits. In some variations, the boundary points along the path correspond to rule antecedents. In some variations, the boundary points correspond to decision tree feature splits in a forest of trees. In some variations, the boundary points correspond to threshold values in a Bayesian or system of Bayesian models such as a hierarchical Bayesian model system.
For example, for a tree-based model that represents the expression, “If x1>10 then 5, otherwise if x1>20 then 10, otherwise 0.”, this expression identifies two boundary points, namely the points having the following values for feature x1:: <10>, <20>.
In some variations, a reference data point and an evaluation data point are received and each boundary point along the path between the two points is identified, and the path is segmented at each identified boundary point. Then, for each segment, contribution values for each feature of the model are determined by computing the componentwise integral of the gradient of the output of the model on the segment. A single contribution value is determined for each boundary point, and this contribution value is assigned to at least one feature. For example, for an input data set that includes three features {x1, x2, x3}, a single contribution value is determined for the boundary point, and this value is assigned to one or more of the features {x1, x2, x3}. In some variations, the value is assigned based on an analysis of the contribution within each component participating in the boundary point according to the methods described in Merrill, et al “Generalized Integrated Gradients: A practical method for explaining diverse ensembles” https://arxiv.org/abs/1909.01869, the contents of which are included herein by reference.
In some variations, a contribution value for each feature according to the path is determined by combining the feature's contribution values for each segment, and any boundary point contribution values assigned to the feature. In some implementations, contribution values for a feature are combined by adding. In some implementations, contribution values for a feature are combined by using a combining function. In some implementations, the contribution values for the endpoints are computed using a specific method as described in Merrill, et al., “Generalized Integrated Gradients: A practical method for explaining diverse ensembles”.
In some variations the model is a combination of continuous and discrete models, such as an ensemble of the form f(g(x), h(x), x) where x is a vector of input variables, h is a tree-based model, g is a continuous model and f is a continuous ensemble function that considers the outputs of g and h and the inputs x to produce a single prediction. It is obvious that any number of g and h may be combined in this way using arbitrarily deep compositions of ensemble functions like f, each f combining different combinations of submodels like g and h, and a subset of input variables. In this way, multiple diverse model types may be combined and used in combination to create a better prediction. The method disclosed herein is the only method known to the inventors to accurately calculate the contribution of each component of x to the ensemble model score, given such a complex system of diverse model types. The method described herein enables these complex and powerful ensemble models to be used in applications that require transparency and explanations, such as in financial services, where regulation and prudence require model-based decisions be explained to consumers, risk managers, and regulators, in order to prevent harm.
Processes for identifying boundary points along the integration path, determining a contribution value for each boundary point, assigning a boundary point contribution value to a feature, assigning a contribution value at each endpoint of the integration path, and combining the boundary point contributions with the endpoint contributions and the contributions along the segments between the boundary points are disclosed herein.
2. Systems
In some variations, a system includes at least one of: a modeling system (e.g., 110) and a model evaluation system (e.g., 120). In some variations, the model evaluation system 120 includes at least one of a decomposition module (e.g., 122), a model evaluation module (e.g., 123), an output explanation module (e.g., 124), a model monitoring module (e.g., 125), and a user interface system 126.
In some variations, the decomposition module 122 functions to determine feature decompositions for outputs of a modeling system in terms of its inputs (e.g., 110).
In some variations, the decomposition module 122 functions to determine feature decompositions for outputs of a modeling system (e.g., 110) by performing a generalized integrated gradients (GIG) process, as described herein. In some implementations, the GIG process includes performing an integrated gradients process to compute the feature contributions on segments of a path or plurality of paths between each element of an evaluation input data set and each element of a reference input data set, wherein the path is segmented at discontinuities of a model that generates the outputs of the modeling system. In some variations the GIG process includes computing the contribution at each discontinuity. In some variations the GIG process includes computing the contributions at the endpoints of the integration path. In some variations the GIG process includes combining the contributions at the endpoints and at each discontinuity with the contributions of each segment along the path between an element of a reference data set and an evaluation data set (the endpoints of the integration path).
In some variations, the model evaluation module 123 functions to generate information based on the influence of features determined by the decomposition module 122. In some variations, the model evaluation module 123 functions to evaluate model fairness based on the influence of features determined by the decomposition module 122. In some variations, the model evaluation module 123 functions to evaluate model output disparities between a data set representative of a first population and a data set representative of a second population, based on the influence of features determined by the decomposition module 122. In some variations, the model evaluation module 123 functions to perform model comparison based on the influence of features determined by the decomposition module 122.
In some variations, the output explanation module 124 functions to generate information based on the influence of features determined by the decomposition module 122. In some variations, the generated information includes output explanation information. In some variations, the generated information includes Adverse Action information. In some variations, the Adverse Action information is comprised of input variables and their contribution to the difference in score between an approved applicant and a denied applicant. In some variations, the Adverse Action information is a summary of the contributions of several grouped input variables, for example, income variables, delinquency variables, indebtedness variables and other variables, without limitation. In some variations the model input variables are based on credit reports, credit attributes, attributes based on data from multiple data sources, some of which may include or be based on credit bureau data, trended attributes, alternative data, public records and the like, and the Adverse Action information includes a summary of the credit attributes that must be improved in order for the applicant to be approved. In some embodiments the Adverse Action information includes reason codes. In some embodiments the reason codes correspond to reason codes consistent with reason codes from a plurality of data sources. In some embodiments the plurality of data sources includes one or more of the data sources used to create input variables for the model.
In some variations, the model monitoring module 125 functions to generate information based on the influence of features determined by the decomposition module 122 so that a model operator may determine whether the model is performing as expected. In some variations, the model monitoring module 125 functions to monitor model operation based on the influence of features determined by the decomposition module 122. In some variations, the model monitoring module 125 functions to monitor model operation based on the decomposition module 122 which it configures using specific sets of reference data points and the model inputs based on data collected over time, such as during model development and model operation. In some variations, the reference data sets used by the model monitoring module 125 are comprised of sub-populations of the applicants, including segments of applicants based on gender, race and ethnicity, military status, LGBTQ status, marital status, age, disabled status and other demographic, ethnographic or psychographic attributes without limitation.
In some variations, the user interface system 126 functions to provide information to at least one operator device (e.g., 171). In some variations, the user interface system 126 functions to provide information generated by at least one of the modules 122-125 to at least one operator device. In some variations, the user interface system 126 functions to provide at least one of a graphical user interface (e.g., a web application, a native application) and an application programming interface (API). In some variations, the user interface system 126 allows an operator to explore the reasons why individual applicants, groups of applicants, segments, were assigned a model output, including a model score, reason code, or model-based decision. In some variations, the user interface system 126 allows an operator to select the segments of applicants or individual applicants for analysis based on an input provided by the operator via the user interface system 126. In some variations, the user interface system 126 functions to provide the user interface to an external system (e.g., 171). In some variations, the user interface system 126 functions to process requests received from an operator device (e.g., 171), process the received requests, and provide responses to the received requests to at least one operator device. In some variations, the user interface system 126 functions to provide data file outputs which are then viewed in an external system (e.g., 171). In some embodiments the external system transforms and loads the data file outputs and outputs are provided to an operator via a data analysis system such as an OLAP system, Data Warehouse system, or analytics tools such as: Microsoft® PowerBI, Tableau®, Microsoft® Excel™, a database, SAP Business Objects®, Salesforce, Oracle BI, Amazon Redshift, SAS and other tools, without limitation.
In some variations, the model evaluation system 120 is communicatively coupled to an operator device 171 (e.g., via one of a private network and a public network).
In some variations, the model evaluation system 120 is communicatively coupled to the modeling system 110 (e.g., via one of a private network and a public network).
In some variations, the model evaluation system 120 is included in the modeling system.
In some variations, the system 120 is implemented by one or more hardware devices.
In some variations, a hardware device implementing the system 120 includes a bus 401 that interfaces with the processors 403A-N, the main memory 422 (e.g., a random access memory (RAM)), a read only memory (ROM) 404, a processor-readable storage medium 405, and a network device 411. In some variations, bus 401 interfaces with at least one of a display device 491 and a user input device 481.
In some variations, the processors 403A-403N include one or more of an ARM processor, an X86 processor, a GPU (Graphics Processing Unit), a tensor processing unit (TPU), and the like. In some variations, at least one of the processors includes at least one arithmetic logic unit (ALU) that supports a SIMD (Single Instruction Multiple Data) system that provides native support for multiply and accumulate operations.
In some variations, at least one of a central processing unit (processor), a GPU, and a multi-processor unit (MPU) is included.
In some variations, the processors and the main memory form a processing unit 499. In some variations, the processing unit includes one or more processors communicatively coupled to one or more of a RAM, ROM, and machine-readable storage medium; the one or more processors of the processing unit receive instructions stored by the one or more of a RAM, ROM, and machine-readable storage medium via a bus; and the one or more processors execute the received instructions. In some variations, the processing unit is an ASIC (Application-Specific Integrated Circuit). In some variations, the processing unit is a SoC (System-on-Chip).
In some variations, the processing unit includes at least one arithmetic logic unit (ALU) that supports a SIMD (Single Instruction Multiple Data) system that provides native support for multiply and accumulate operations. In some variations the processing unit is a Central Processing Unit such as an Intel processor.
In some variations, the network device 411 provides one or more wired or wireless interfaces for exchanging data and commands. Such wired and wireless interfaces include, for example, a universal serial bus (USB) interface, Bluetooth interface, Wi-Fi interface, Ethernet interface, near field communication (NFC) interface, and the like.
Machine-executable instructions in software programs (such as an operating system, application programs, and device drivers) are loaded into the memory (of the processing unit) from the processor-readable storage medium, the ROM or any other storage location. During execution of these software programs, the respective machine-executable instructions are accessed by at least one of processors (of the processing unit) via the bus, and then executed by at least one of processors. Data used by the software programs are also stored in the memory, and such data is accessed by at least one of processors during execution of the machine-executable instructions of the software programs. The processor-readable storage medium is one of (or a combination of two or more of) a hard drive, a flash drive, a DVD, a CD, an optical disk, a floppy disk, a flash storage, a solid state drive, a ROM, an EEPROM, an electronic circuit, a semiconductor memory device, and the like.
In some variations, the processor-readable storage medium 405 includes machine executable instructions for at least one of the decomposition module 122, the model evaluation module 123, the output explanation module 124, the model monitoring module 125, and the user interface system 126. In some variations, the processor-readable storage medium 405 includes at least one of data sets (e.g., 181) (e.g., input data sets, evaluation input data sets, reference input data sets), and modeling system information (e.g., 182) (e.g., access information, boundary information).
In some variations, the processor-readable storage medium 405 includes machine executable instructions, that when executed by the processing unit 499, control the device 400 to perform at least a portion of the method 200.
3. Methods:
As shown in
In some variations, the model evaluation system 120 performs at least a portion of the method 200. In some variations, at least one component of the model evaluation system 120 performs at least a portion of the method 200.
In some implementations, a cloud-based system performs at least a portion of the method 200. In some implementations, a local device performs at least a portion of the method 200.
S210 can include at least one of S211 and S212 shown in
S211 functions to access model access information for a model (e.g., a model of the modeling system 110). The model can be any type of model, including, without limitation, a continuous model, a non-continuous model, an ensemble, and the like. In some variations, model access information includes information identifying at least one of: at least one tree structure of the model; discontinuities of the model; decision boundary points of the model; values for decision boundary points of the model; features associated with boundary point values; an ensemble function of the model; a gradient operator of the model; gradient values of the model; information for accessing gradient values of the model; transformations applied to model scores that enable model-based outputs; information for accessing model scores and model-based outputs based on inputs.
In some embodiments, the model is a credit risk model. In some embodiments, the model is a fraud model. In some embodiments the model is a financial crimes model, including, without limitation, an anti-money laundering model. In some embodiments the model is a marketing model, including, without limitation, an online marketing model, a direct mail marketing model, or a marketing mix model. In some embodiments, the model is an advertising model, personalization model, affinity model, or recommendation model. In some embodiments, the model is a collections model. In some embodiments, the model is an account management, next best offer, or profit/loss prediction model. In some embodiments, the model predicts capital at risk in order to comply with BASEL, or CCAR. In some embodiments, the model is a financial results forecasting model. In some embodiments, the model is a price prediction model. In some embodiments, the model is a financial portfolio model. In some embodiments, the model is an inventory forecasting model, workforce management model, same store sales model, foot traffic model, category management model, LTV prediction model, customer acquisition cost model, and the like.
In some variations, S211 includes the model evaluation system 120 accessing the model access information from the modeling system (e.g., 110) (e.g., via one or more remote procedure calls, one or more local procedure calls, an API of the modeling system, an API of the model evaluation system). In some variations, the model evaluation system 120 accesses the model access information from a storage device (e.g., 182). In some variations, the model evaluation system and the model are co-located in the same process. In some variations, the model evaluation system and the model are represented as machine instructions on a hardware device such as an ASIC, GPU or FPGA.
In some variations, the model is a discontinuous model, such as a decision tree, random forest, or gradient boosted tree, or rule set, and the access information includes information identifying decision boundary points for the model (e.g., BoundaryInfo shown in
S212 functions to determine feature contribution values for at least one feature used by the model.
In some variations, feature contribution values determined at S212 are used to automatically generate documentation for the modeling system 110. In some variations, feature contribution values determined at S212 are used to automatically generate documentation by performing a method described in U.S. patent application Ser. No. 16/394,651 (“SYSTEMS AND METHODS FOR ENRICHING MODELING TOOLS AND INFRASTRUCTURE WITH SEMANTICS”), filed 25 Apr. 2019, the contents of which is incorporated herein. However, in some variations, documentation can be automatically generated from feature contribution values by performing any suitable process.
S212 can include at least one of S310, S320, S330, S340 and S350 shown in
In some variations, S310 functions to identify a path between a reference input data set (point) and an evaluation input data set (point). In some variations, this path is a straight line path.
In some variations, S310 includes selecting the reference input data set. In some variations, S310 includes selecting the evaluation input data set. In some variations, at least one of the reference input data set and the evaluation input data set is selected based on user input received via an operator device (e.g., 171). In some variations, at least one of the reference input data set and the evaluation input data set is selected by at least one of the model evaluation module 123, the output explanation module 124, and the model monitoring module 125. In some variations, the evaluation module 123 selects a reference input data set (e.g., representative of a general population) used to evaluate model fairness. In some variations, the evaluation module 123 selects an evaluation input data set (e.g., a protected class population) used to evaluate model fairness. In some variations, the output explanation module 124 selects a reference input data set (e.g., representing a barely acceptable credit applicant) used to explain an output generated by the model for a selected evaluation input data set (the evaluation input data set being the data set used by the model to generate the output being explained). In some variations, the output explanation module 124 selects a reference input data set or an evaluation data set based on a computable function. In some variations the function is a machine learning model. In some variations the reference input data set or evaluation data set are selected based on an estimation method of determining race and ethnicity, gender and other demographic, psychographic, or ethnographic attributes. In some variations the estimation method is the BISG method, e.g., described in Using publicly available information to proxy for unidentified race and ethnicity. CFPB, 2014 https://files.consumerfinance.gov/f/201409_cfpb_report_proxy-methodology.pdf, the contents of which is incorporated by reference herein.
In some variations the reference data set or evaluation data sets are selected based on self-reported information. In some variations the data sets are computed based on data stored in a database. In some variations the data sets are computed based on census information, data collected by the American Community Survey, a poll, public records, government records, telecommunications records, financial data, facial recognition software, ATM video feeds, surveillance camera feeds, satellite imagery, library records, biometric sensors, DHS and USCIS records, bank records, or other data sets, data sources, and data collection methods without limitation.
S320 functions to identify decision boundary points along the path identified at S310.
In some variations, S320 includes S321, which functions to segment the path identified at S310 at each boundary point, resulting in at least two path segments.
In some variations, identifying decision boundary points along the path includes accessing information about a tree structure of the model. In some variations, the tree structure information identifies the following for each node of the tree structure: a feature or plurality of features being compared at the node (or for a leaf node, the feature being compared in the leaf node's parent); for each non-leaf node, one or more threshold values that are compared with one or more features identified in the node, to select a child node; for each leaf node, the value of the leaf node; a left child node (NULL for a leaf node); and a right child node (NULL for a leaf node).
In some variations, S320 includes performing a boundary point process for finding the points along the path (values of α) corresponding to discontinuities produced by a decision tree's outputs along that path.
In some implementations, S320 includes performing a process as follows. First compute a boundary map comprising the splits for each variable with respect to the tree. In some embodiments, the boundary map is computed based on a depth-first traversal of the decision tree, wherein for each node, for each variable and threshold value encoded at that node, a map from variable to threshold value is accumulated. Once the tree (forest, or other system of rules which can be so encoded) has been fully traversed, each array of threshold values corresponding to each variable is sorted from least to greatest, and in some embodiments, further eliminating duplicates. Second, given any pair of input values, a line segment is defined, which is parameterized by a value α in [0,1]. In some embodiments the line segment is parameterized by a value α according to a linear function, or other computable function, without restriction. In some embodiments, for each input feature, the values of α corresponding to boundaries captured in the map calculated above are computed, such that each boundary is represented at least once in that set. In some embodiments the values of α are computed by solving for the value of each variable corresponding the boundaries in the map. So, for example, if a variable x has a boundary at 2 the method solves for the value of α corresponding to x=2. In some embodiments, the parameterization is linear, in which case, the solution for the value of α is the result of solving a single linear equation in one unknown. For example let the predictive function be f(x)=0 if x<2 and 2 if x>=2; let the pair of inputs be 1 and 4. If the parameterization of the line segment between 1 and 4 is given by f(α)=(1−α)*1+α*4. Then the value of α corresponding to the boundary is ⅓. In some embodiments, the values of α corresponding to all possible boundaries for each variable are extracted. In some embodiments, the values of α corresponding to only some of the boundaries are extracted, in order to reduce the number of computations. In some embodiments, a vector of α is aggregated to represent all the boundary points encountered along the path. In some embodiments the aggregation function is a set union. In other embodiments the aggregation function is a frequency map.
In some implementations, S320 includes identifying decision boundary points as shown in
S330 functions to determine an integral of a gradient of the model along an integration path. If no decision boundary points are identified at S320, then the model is continuous along the path identified at S310, and S330 includes determining an integral of the gradient of the model along the path identified at S310 (process S331). If at least one decision boundary point is identified at S320, then the model is not continuous along the path identified at S310, and S330 includes: for each segment identified at S321, determining an integral of the gradient of the model along the segment (process S332).
S340 functions to determine a contribution value for each boundary point determined at S320, and assign each determined contribution to at least one feature. In some implementations, S340 includes determining a contribution value for each boundary point as shown in
In some embodiments, S340 determines a contribution value for each variable at the endpoints of the integration segment. In some embodiments, S340 determines a contribution value for a variable at the starting point of the integration segment as shown in
S350 functions to determine a feature contribution value for each feature based on any boundary values assigned at S340 and integrals determined at S330.
In some variations, S350 includes: for each feature, combining the feature's contribution values for each segment and any boundary contribution values assigned to the feature (S351). In some implementations, contribution values for a feature are combined by adding. In some implementations, contribution values for a feature are combined by using a combining function.
In some embodiments, S350 functions to determine a feature contribution value for each feature based on any boundary values assigned at S340 and integrals determined at S330 as shown in
Returning to
S220 can include at least one of S221, S222, S223, and S224. In some variations, the decomposition module 122 performs at least a portion of at least one of S221-S224. In some variations, the model evaluation module 123 performs at least a portion of S221. In some variations, the model evaluation module 123 performs at least a portion of S222. In some variations, the output explanation module 124 performs at least a portion of S223. In some variations, the model monitoring module 124 performs at least a portion of S224.
S221 functions to determine model fairness based on influence of features on operation of the model. In some variations, S221 functions to determine model fairness based decomposition by performing a method described in U.S. Provisional Patent Application No. U.S. Application No. 62/820,147 (“SYSTEMS AND METHODS FOR MODEL FAIRNESS”), filed 18 Mar. 2019, the contents of which is incorporated herein.
In some variations, S222 functions to compare the model (first model) to another model (second model) based on influence of features on operation of the first model and influence of features on operation of the second model. In some variations, S222 functions to compare the model (first model) to another model (second model) based on decompositions by performing a method described in U.S. patent application Ser. No. 16/394,651 (“SYSTEMS AND METHODS FOR ENRICHING MODELING TOOLS AND INFRASTRUCTURE WITH SEMANTICS”), filed 25 Apr. 2019, the contents of which is incorporated herein.
In some variations, S222 functions to compare operation of the model with a first set of input data (e.g., data for a first time period) with operation of the model with a second set of input data (e.g., data for a second time period), based on influence of features on operation of the model for the first set of input data and influence of features on operation of the model for the second set of input data. In some variations, S222 functions to compare operation of the model with a first set of input data (e.g., data for a first time period) with operation of the model with a second set of input data (e.g., data for a second time period), based on decompositions by performing a method described in U.S. patent application Ser. No. 16/394,651 (“SYSTEMS AND METHODS FOR ENRICHING MODELING TOOLS AND INFRASTRUCTURE WITH SEMANTICS”), filed 25 Apr. 2019, the contents of which is incorporated herein.
S223 functions to generate output explanation information for an output generated by the model. In some variations, the output explanation information includes adverse action information as required by the Fair Credit Reporting Act of 1970. In some variations, S223 functions to generate output explanation information for an output generated by the model by performing a method described in U.S. Provisional Patent Application No. 62/641,176, filed 9 Mar. 2018, entitled “SYSTEMS AND METHODS FOR PROVIDING MACHINE LEARNING MODEL EXPLAINABILITY INFORMATION BY USING DECOMPOSITION”, by Douglas C. Merrill et al, the contents of which is incorporated herein. In some variations, S223 functions to generate output explanation information for an output generated by the model by performing a method described in U.S. Provisional Patent Application No. 62/806,603 (“SYSTEMS AND METHODS FOR DECOMPOSITION OF DIFFERENTIABLE AND NON-DIFFERENTIABLE MODELS”), filed 15 Feb. 2019, the contents of which is incorporated by reference. In some variations, S223 functions to generate output explanation information for an output generated by the model by performing a method described in U.S. Provisional Patent Application No. U.S. Application No. 62/820,147 (“SYSTEMS AND METHODS FOR MODEL FAIRNESS”), filed 18 Mar. 2019, the contents of which is incorporated herein
S224 functions to monitor model operation of the model. In some variations, S224 includes detecting at least one of feature drift, unexpected inputs, unexpected outputs, unexpected explanations, population stability, and the like. In some variations S224 analyzes model feature contributions based on the GIG method and monitors model operations based on comparing distributions of feature contributions based on model inputs and scores selected from data captured during model operation in production, using the GIG method. In some variations, S224 includes providing an alert to at least one system (e.g., 171) in response to detecting at least one of feature drift, unexpected inputs, unexpected outputs, population stability, and the like. S224 functions to monitor model operation of the model by performing a method described in U.S. patent application Ser. No. 16/394,651 (“SYSTEMS AND METHODS FOR ENRICHING MODELING TOOLS AND INFRASTRUCTURE WITH SEMANTICS”), filed 25 Apr. 2019, the contents of which is incorporated herein.
S230 functions to provide information generated at S220 to at least one system (e.g., operator device 171). In some variations, S230 functions to store information generated at S220 in a knowledge graph which is used to generate informative reports, outputs, user interfaces, applications, and consumer notices.
Returning to S320, the decision boundary points are the set of vectors in the input space for which there is a discontinuity in the resulting model score. In some variations the decision boundary points are determined by first retrieving the discontinuous model, recursively traversing the tree or trees in the model, and enumerating the splits at each decision node in each tree. In forest models, there are multiple trees which contain multiple decision boundaries. In these cases, the method first enumerates the decision boundaries in each tree, iteratively, and then computes the union set of all decision boundaries in the input space. For example, a simple tree-based model might represent the expression, “If A>10 then 5, otherwise if A>20 then 10, otherwise 0.” The decision boundaries for this tree-based model would be an input data set (within the input space) having the value <10> for feature “A” and an input data set (within the input space) having the value <20> for feature “A”. In some variations, a forest model might consist of two trees, the first of which might represent the expression, “If A>10 then 5, otherwise 0,” and the second of which might represent the expression, “If A>20 then 10, otherwise 0.” The decision boundaries for this simple forest-based model computed using this method would be an input data set (within the input space) having the value <10> for feature “A” and an input data set (within the input space) having the value <20> for feature “A”.
In some variations, S320 (identify decision boundary points) includes extracting the decision boundaries by exhaustive search of the input space. In some variations, S320 includes extracting the decision boundaries by using methods built into a modeling package of the modeling system 110 (for example by directly accessing the tree structure and traversing it using a method such as depth-first search). In some variations, S320 includes extracting the decision boundaries by first exporting the model (e.g., of the system 110) into a text-based format, such as JSON, XML, GraphML, Lisp lists, etc., parsing the text-based format, storing the text-based format in a dictionary data structure held in memory, on disk, or in a database, or other suitable storage medium, and then traversing that data structure to compute the union set of decision boundaries.
In some variations, the model is an ensemble model, and the model access information (accessed at S211) includes information identifying decision boundary points for each discontinuous sub-model of the modeling system (e.g., BoundaryInfo shown in
In some variations, it is desired to understand the distance between a reference point x′ and an input vector x. The reference point may represent the ‘average’ input e.g., the centroid of all input vectors xi. The reference point may represent the ‘barely approved’ applicant, e.g., the centroid of all input vectors xi s.t. the score s produced by a model m(xi) is within epsilon of a threshold Θ in the range of m. In some variations the method 200 includes computing the average distance between a set of reference points x′i and a set of inputs xi in order to compute the differences between segments or populations, for example, as required in applications such as analysis for model compliance with the Equal Credit Opportunity Act of 1974. In some variations the populations are determined by assigning demographic, ethnographic, psychographic, and other attributes based on a model. In some variations, the race and ethnicity of an applicant is assigned using BISG. In some variations, FICO score ranges are used to segment the population of applicants prior to performing analysis. In some variations, a plurality of pre-configured and tunable segmentation methods are used to provide average feature importances by segment.
In some variations, each decision boundary point is a point in the input space that is compared with a value for a feature i. Logical expressions may be represented as trees (and vice-versa), and these notations can be used interchangeably. For example, in a tree model representing the expression “if X>2, then 9, else 6”, a boundary point is a point (input data set) in the input space (e.g., line 501 shown in
In what follows, the variable against which a comparison is being made at a given boundary value shall be referred to as the “variable corresponding to that boundary value.”
In some implementations, let P be the function P: [0,1]→n, s.t. P(α)=(1−α)x1+αx2 and α ∈ [0,1], the straight line path (e.g., 501 shown in
for each i in [0, 5] in the integers
let m=(αi+αi+1)/2
let (x, y)=P(m)
let dm[i]=d(x,y)
So for the example function f depicted in
In some variations, the model access information (e.g., BoundaryInfo shown in
In some variations, the model access information (e.g., accessed at S211) for a sub-model includes information for accessing input data sets for a reference population. In some variations, the model access information for a sub-model includes information for accessing a score generated by the sub-model for a specified input data set. In some variations, the model access information for a sub-model includes input data sets for a reference population. In some variations, the model access information for a sub-model includes scores generated by the sub-model for input data sets of a reference population. In some variations, the model access information for a sub-model includes API information for the sub-model that allows the caller to send an input value and receive the model score corresponding to that input value. In some variations, the model access information for a sub-model includes a URL and corresponding authentication information for accessing input data sets for the sub-model and generating a score for a specified input data set by using the sub-model. In some variations the API is a REST API, in some it is a SOAP API, in others it is an EDI API, a remote procedure call, named pipe, or function call within a process.
In some variations, the model is an ensemble model that includes at least one tree sub-model and at least one differentiable sub-model. In some variations, the ensemble model includes at least one of: a decision tree, a gradient-boosted tree, a multi-layer perceptron, a deep neural network, an autoencoder, a Boltzman machine, an LSTM model, a support vector machine, a random forest, an extra-random forest, a bayesian classifier, a linear model, a generalized additive model, a Gaussian mixture model, and a generalized linear model. In some variations, the ensemble function is a linear combination of sub-model scores. In some variations, the ensemble function is computed by ridge regression on the sub-model scores against the prediction outcome using a separate hold-out data set. In some variations, the ensemble model is a neural network.
In some variations, explainability information is computed (e.g., by the model evaluation system 120) by breaking up the explainability problem for a pair of items, an input item xi and a reference item xi′, into a set of subproblems, each one corresponding to one of the intervals between a value αi and a value αi+1 as described above. For each such interval, the compound model function f(x, y, d(x, y)) can be viewed as being a function of the form Fi(α)=f(xα, yα, di) where (xα, yα)=P(α) for any αi<α<αi+1. Each such Fi is a continuous function, and so a standard technique appropriate for providing feature contribution information can be applied to that segment (e.g., by using the model evaluation system 120). In some variations, this feature contribution information is provided by applying the Integrated Gradients method presented in Sundararajan et al. (2017) (by using the model evaluation system 120). In some variations, this feature contribution information is provided by methods such as LIME, LOCO, DeepLift (“Learning Important Features Through Propagating Activation Differences”, Shrikumar et al. (2017)), or other similar systems. In some variations, these partial attributions (feature contribution information) are then accumulated together (e.g., by using the model evaluation system 120) to create a single global attribution corresponding to contributions of the segments.
Attributions at the boundaries αi is described as follows. Let (xα,yα)=P(α). In some variations, the model evaluation system 120 determines the amounts of the attributions at the boundaries αi by computing f(xα,yα,d[i+1])−f(xα,yα,d[i]). The model evaluation system 120 assigns the attributions to the variable at which the boundary occurs. That is, if the variable X is the unique variable corresponding to the boundary at αi, then that difference is associated with the variable X. In some variations, as noted above, there are several edge cases: one arising from a boundary at an endpoint, for which the method described here goes through unchanged, one arising from a case where a given linear path has a value αi associated with more than one variable, in which case the explainability amount is assigned (by the model evaluation system 120) to all variables associated with the boundary in even amounts. In some variations, another edge case is the one in which a path runs along a decision boundary; in that case, the model evaluation system 120 associates all credit associated with any further intersection with the variable or variables along which the path proceeds.
In some variations, after the model evaluation system 120 assigns the attributions to the variable at which the boundary occurs, the model evaluation system 120 then collects these assignments of attributions across all boundaries to fill in the blanks at the boundaries αi. In some variations, the combination of the attribution values assigned for the boundary points with the global attribution corresponding to contributions of the continuous segments yields a complete attribution of explainability amounts for all input variable values xi, for any heterogeneous ensemble of differentiable and non-differentiable models, like those of the form f(x,y,d(x,y)) as discussed herein. In some variations, this same method can be used to compute explainability information for a model comprising many input variables, and generally applies to any piecewise integrable function on n. In some variations, the method is an application of the Hahn Decomposition Theorem and the Radon-Nikodym Theorem to the measure on n.
In some variations, the explainability information computed by the method 200 described herein is a decomposition of a model score expressed as a sum of values in , each associated with one input variable.
Returning to
In some variations, S212 includes: for each sub-model specified by the model access information (accessed at S212), the model evaluation system determining a decomposition for a sub-model score for an evaluation input data set (x) by using the input data sets for the reference population.
In some variations, any of the previously described variations can be applied to any ensemble model which can be separated into two parts, a discontinuous sub-model, d(x), and a continuous model of the form f(x, d(x)) including both the elements of the input space directly and indirectly through the discontinuous model. In some variations, even if f is itself continuous and possibly well-behaved, the composition of f with d might not be continuous if d itself is not continuous. Schematics of several such models are shown in
By composing the output of a GBM through a smoothed ECDF, S, one obtains a model of the form f(x, d(x))=S(d(x)), which meets the functional requirement for the Generalized decomposition method described herein. This modified form is useful, however, as lenders or other underwriters usually wish to approve only a fixed percentage of loans and such a transformation through a smoothed ECDF makes this possible. The methods described herein, however, are the first methods to correctly provide explanation information for ensemble models of this type.
It will be obvious to one of usual familiarity with the art that there is no limitation on the number or kind of the inputs to these models, and that the use previously of an example function with domain a subset of R2 was merely presented for clarity. It will also be obvious to one of reasonable skill in the art that the presentation of a single layer of discrete machine learning models with outputs being fed into a single ensembling layer is purely for pedagogical clarity; in fact, in some variations of these systems, a complex and complicated network of ensemblers can be assembled. Machine learning models of that type are routinely seen performing well in machine learning competitions, and have also been used at Facebook to construct and improve face recognition and identification systems.
In some variations, S212 includes: the model evaluation system 120 determining a decomposition for an ensemble model score for the evaluation input data set (x).
In some variations, the method 200 can be used on ensembles of ensembles and can be applied to ensembling methods wherein submodel scores are combined using another machine learning model. In some variations, at least one sub-model is an ensemble model. In some variations, at least one sub-model is a linear ensemble. In some variations, at least one sub-model is a stacked ensemble model. In some variations, at least one sub-model is a linear model. In some variations, at least one sub-model is a bagged ensemble model. In some variations, at least one sub-model is a forest of boosted trees ensemble model. In some variations, the ensemble model is a stacked ensemble model. In some variations, the ensemble model is a support vector machine. In some variations, the ensemble model is a neural network. In some variations the ensemble model is a deep neural network. In some variations the ensemble model is a neural network or a linear model constructed using a generative adversarial network. In some variations the ensemble model is a gaussian mixture model, a polynomial, a spline, a average, or other computable continuous function.
In some variations the ensemble function is a differentiable model such as a neural network, radial basis function, bayesian mixture, Gaussian mixture, polynomial, rational function, kernel-based support vector machine, or other differentiable function. Recall that if f and g are differentiable then f(g) is also differentiable by the chain rule. And so if g is piecewise-differentiable then f(g) is also piecewise differentiable. In these variations, the piecewise partial derivative of the ensemble, with respect to each input variable is integrated along a path as described above, and added to the function differences at the non-differentiable boundaries αi in order to quantify the influence of an input variable in the ensemble.
In some variations, the method 200 includes: the model evaluation system accessing the ensemble model score for the evaluation input data set from the modeling system. In some variations, the method 200 includes: the model evaluation system generating the ensemble model score for the evaluation input data set by accessing the modeling system.
Model Decomposition
In some variations, S212 includes the model evaluation system 120 determining a decomposition for a model (e.g., an ensemble) for an evaluation input data set (x) relative to a reference population (x′). In some variations, S212 includes: determining a decomposition for model score (e.g., ensemble score) for an evaluation input data set (x) relative to a reference population (x′) by performing at least one of the processes S310-S350. In some variations, the decomposition module 122 performs at least a portion of S212. In some variations, the model is a perceptron, a feed-forward neural network, an autoencoder, a probabilistic network, a convolutional neural network, a radial basis function network, a multilayer perceptron, a deep neural network, or a recurrent neural network, including: Boltzman machines, echo state networks, long short-term memory (LSTM), hierarchical neural networks, stochastic neural networks, a tree model, a forest model, a gradient boosted tree model, an adaboost model, a non-differentiable model, a differentiable model and other computable functions, without limitation.
In some variations, the decomposition module (e.g., 122 shown in
In some variations, determining a decomposition for a model score (e.g., an ensemble score) for the evaluation input data set (x) by using the decomposition module (e.g., 122) includes: generating a reference input data set (x′); and determining the decomposition for the model score for the evaluation input data set (x) by using the decomposition module (e.g., 122) to generate the decomposition relative to the reference input data set (x′).
In some variations, generating the decomposition of the evaluation input data set relative to the reference input data set includes, S310 shown in
In some variations, S212 includes determining the straight line path (e.g., line 501 shown in
In some variations, S330 includes, for each feature i, of the input space, determining a partial derivative of the model with respect to the feature i along the segment; and computing the Lebesgue integral relative to the measure induced on the linear path using the standard measure induced on that linear path by the canonical topology on n of the partial derivatives along that segment. In some variations, performing the methods herein on modern computing machinery can be improved by subdividing the problem so that numerical integration methods may be applied and still achieve reasonable runtime performance. Therefore, in some variations, the Lebesgue integral is computed by first scaling each segment to have unit length, computing the integrals corresponding to all segments simultaneously (which makes efficient use of multiprocessor hardware), determining products of the computed integral and the differences between the value xi-begin-seg at the beginning of the segment and the value xi-end-seg at the end of the segment. In some variations, this process is performed in parallel for each feature i of the evaluation input data set. The application of Lebesgue integration to solve the piecewise integration problem created by ensembles of tree-based models (non-differentiable models) and neural networks (differentiable models) enables the generalization of Integrated Gradients (Sundararajan, et al., 2017) to piecewise differentiable functions such as those described herein. This new and useful technique is a non-obvious application of multivariate analysis to the practical problem of explaining outputs generated by heterogeneous ensembles of differentiable and non-differentiable models, including deep stacks of models ensembled using continuous functions such as deep neural networks.
In some variations, the model evaluation system 120 determines each partial derivative of the model for all selected values of each feature i. In some variations, the model evaluation system 120 uses the modeling system 110 to determine each partial derivative of the model for all selected values of each feature i. In some variations, the model evaluation system 120 uses the modeling system 110 to determine each partial derivative of the model for all selected values of each feature i via an API of the modeling system 110. In some variations, the API is a REST API. In some variations, the API is an API that is accessible via a public network. In some variations, the API is an API that is accessible via an HTTP protocol. In some variations, the API is an API that is accessible via a remote procedure call.
In some variations, the model evaluation system 120 determines each partial derivative of the model for each selected value of each feature i by using a gradient operator on the ensemble and the continuous sub-models to determine the partial derivatives for each selected value. In some variations, the model evaluation system 120 uses the modeling system 110 to determine each partial derivative of the model for each selected value of each feature i by using a gradient operator of the modeling system on the ensemble and the continuous sub-models 110.
In some variations, the decompositions for each segment are summed (sum of segment decompositions) together to produce a sum of the segment decompositions to determine the contribution of the continuous sub-models and ensemble function to the model explainability information.
In some variations, for each boundary point (e.g. points 504-507 shown in
In some variations, generating the decomposition of the evaluation input data set relative to the reference input data set includes (for each feature i of the input space): for each segment of the plurality of segments, determining a set of values υ along the segment (e.g., υ=(xi+(k/m)(xib−x′ie)), for 1<=k<=m), wherein xib is the beginning point on the segment and xie is the end point on the segment; determining a derivative of the model for each determined value v
for model F); determining a sum of the derivatives
determining a product of the determined sum and a difference between the value xi of feature i of the evaluation input data set and the value x′i of the feature i of the reference input data set
and determining a decomposition value di for the feature i by dividing the determined product for feature i by m
wherein the decomposition for the segment is a linear combination of the determined decomposition values di for each feature i of the evaluation input data set (e.g, segment decomposition=d1+di+ . . . +dn) (S332).
In some variations, generating the decomposition of the evaluation input data set relative to the reference input data set includes (for each feature i of the input space): for each segment of the plurality of segments, determining a set of values υ along the segment (e.g., υ=(xi+(k/m)(xib−x′ie)), for 1<=k<=m), wherein xib is the beginning point on the segment and xie is the end point on the segment; determining a derivative of the model for each determined value v
for model F); and these values are used as the inputs to a higher-order numerical integration process to estimate the underlying integral (S332).
In some variations, generating the decomposition of the evaluation input data set relative to the reference input data set includes (for each feature i of the input space): for each segment of the plurality of segments, determining a set of values υ along the segment (e.g., υ=(xi+(k/m)(xib−x′ie)), for 1<=k<=m), wherein xib is the beginning point on the segment and xie is the end point on the segment; determining a derivative of the model for each determined value v
for model F); and these values are used as the inputs to a higher-order numerical integration process to estimate the underlying integral by means of a function call into a library implementing this integration process (S332). In some variations the method is Romberg integration (which repeatedly applies a quadrature), in other variations the method is Simpson's rule.
Determining Contribution Values of Each Variable in the Model for Each Boundary Point of the Straight Line Path
In some variations, S340 includes determining a contribution value of the model for a boundary point xboundary-i of the straight line path (e.g., contribution values for output values at α steps=0.25, 0.5, 0.583 and 0.75 shown in
In some variations, the left limit is computed by evaluating the model on the boundary point (e.g., boundary point 1011 shown in
In some variations, the decomposition module 122 accesses information (e.g., BoundaryInfo shown in
In some variations, for each boundary point xboundary-i (e.g., 504-507 shown in
In some variations, the point on the straight line path before the boundary point is a midpoint of the segment preceding the boundary point (e.g., the point before the boundary point 1011 corresponds to the α value for output value 1001), and the point on the straight line path after the boundary point is a midpoint of the segment following the boundary point (e.g., the point after the boundary point 1011 corresponds to the a value for output value 1002).
In some variations, the model evaluation system 120 uses the modeling system 110 to determine a difference in output value between a discontinuous model output value for a point on the straight line path before the boundary point and a model output value for a point on the straight line path after the boundary point, applies the ensemble function to the endpoints, computes the difference, and assigns the result to a feature as a contribution value for that feature by using an API of the modeling system 110. In some variations, the model evaluation system 120 uses the modeling system 110 to determine whether a boundary point corresponds to the feature i, by using the API of the modeling system 110.
In some variations, the API of the modeling system 110 is a REST API. In some variations, the API is an API that is accessible via a public network. In some variations, the API is an API that is accessible via an HTTP protocol. In some variations, the API is an API that is accessible via a remote procedure call.
8. Machines
The systems and methods of some variations and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, ASICs, FPGAs, an electronic circuit, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. In some implementations, the computer-executable component is a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.
9. Conclusion
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the variations disclosed herein without departing from the scope defined in the claims.
This application claims priority to U.S. Provisional Application No. 62/806,603 filed 15 Feb. 2019, which is incorporated herein in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
525413 | Gates | Sep 1894 | A |
5745654 | Titan | Apr 1998 | A |
5999938 | Bliss et al. | Dec 1999 | A |
6034314 | Koike | Mar 2000 | A |
6877656 | Jaros et al. | Apr 2005 | B1 |
7035811 | Gorenstein | Apr 2006 | B2 |
7280980 | Hoadley et al. | Oct 2007 | B1 |
7467116 | Wang | Dec 2008 | B2 |
7499919 | Meyerzon et al. | Mar 2009 | B2 |
7542993 | Satterfield et al. | Jun 2009 | B2 |
7610257 | Abrahams | Oct 2009 | B1 |
7711635 | Steele et al. | May 2010 | B2 |
7765151 | Williams et al. | Jul 2010 | B1 |
7813945 | Bonissone et al. | Oct 2010 | B2 |
7873535 | Umblijs et al. | Jan 2011 | B2 |
7873570 | Cagan et al. | Jan 2011 | B2 |
7921359 | Friebel | Apr 2011 | B2 |
7941363 | Tanaka et al. | May 2011 | B2 |
7941425 | Sahu et al. | May 2011 | B2 |
7970676 | Feinstein | Jun 2011 | B2 |
7987177 | Beyer et al. | Jul 2011 | B2 |
7996392 | Liao et al. | Aug 2011 | B2 |
8078524 | Crawford et al. | Dec 2011 | B2 |
8086523 | Palmer | Dec 2011 | B1 |
8166000 | Labrie et al. | Apr 2012 | B2 |
8200511 | Zizzamia et al. | Jun 2012 | B2 |
8219500 | Galbreath et al. | Jul 2012 | B2 |
8280805 | Abrahams | Oct 2012 | B1 |
8335741 | Kornegay et al. | Dec 2012 | B2 |
8442886 | Haggerty et al. | May 2013 | B1 |
8452699 | Crooks | May 2013 | B2 |
8515842 | Papadimitriou | Aug 2013 | B2 |
8554756 | Gemmell et al. | Oct 2013 | B2 |
8560436 | Lau et al. | Oct 2013 | B2 |
8600966 | Kravcik | Dec 2013 | B2 |
8626645 | Lazerson | Jan 2014 | B1 |
8645417 | Groeneveld et al. | Feb 2014 | B2 |
8660943 | Chirehdast | Feb 2014 | B1 |
8694401 | Stewart | Apr 2014 | B2 |
8744946 | Shelton | Jun 2014 | B2 |
8799150 | Annappindi | Aug 2014 | B2 |
9047392 | Wilkes et al. | Jun 2015 | B2 |
9268850 | El-Charif et al. | Feb 2016 | B2 |
9405835 | Wheeler et al. | Aug 2016 | B2 |
9501749 | Narsky | Nov 2016 | B1 |
9686863 | Chung et al. | Jun 2017 | B2 |
10121115 | Chrapko | Nov 2018 | B2 |
10581887 | Dinerstein | Mar 2020 | B1 |
10586280 | McKenna | Mar 2020 | B2 |
10684598 | Alanqar et al. | Jun 2020 | B1 |
10719301 | Dasgupta et al. | Jul 2020 | B1 |
10824959 | Chatterjee | Nov 2020 | B1 |
10977558 | Herbster | Apr 2021 | B2 |
20020038277 | Yuan | Mar 2002 | A1 |
20020091650 | Ellis | Jul 2002 | A1 |
20020138414 | Baker | Sep 2002 | A1 |
20020178113 | Clifford et al. | Nov 2002 | A1 |
20030009369 | Gorenstein | Jan 2003 | A1 |
20030033242 | Lynch et al. | Feb 2003 | A1 |
20030033587 | Ferguson et al. | Feb 2003 | A1 |
20030046223 | Crawford et al. | Mar 2003 | A1 |
20030101080 | Zizzamia et al. | May 2003 | A1 |
20030147558 | Loui et al. | Aug 2003 | A1 |
20030176931 | Pednault | Sep 2003 | A1 |
20040068509 | Garden et al. | Apr 2004 | A1 |
20040107161 | Tanaka et al. | Jun 2004 | A1 |
20040199456 | Flint et al. | Oct 2004 | A1 |
20050055296 | Hattersley et al. | Mar 2005 | A1 |
20050114279 | Scarborough et al. | May 2005 | A1 |
20050234762 | Pinto | Oct 2005 | A1 |
20050278246 | Friedman et al. | Dec 2005 | A1 |
20060047613 | Labreuche | Mar 2006 | A1 |
20060083214 | Grim, III | Apr 2006 | A1 |
20060106570 | Feldman | May 2006 | A1 |
20060112039 | Wang | May 2006 | A1 |
20060167654 | Keinan et al. | Jul 2006 | A1 |
20060200396 | Satterfield et al. | Sep 2006 | A1 |
20060218067 | Steele | Sep 2006 | A1 |
20070005313 | Sevastyanov | Jan 2007 | A1 |
20070011175 | Langseth | Jan 2007 | A1 |
20070016542 | Rosauer et al. | Jan 2007 | A1 |
20070050286 | Abrahams | Mar 2007 | A1 |
20070055619 | Abrahams et al. | Mar 2007 | A1 |
20070067284 | Meyerzon et al. | Mar 2007 | A1 |
20070106550 | Umblijs et al. | May 2007 | A1 |
20070112668 | Celano et al. | May 2007 | A1 |
20070124236 | Grichnik et al. | May 2007 | A1 |
20070288338 | Hoadley et al. | Dec 2007 | A1 |
20080133402 | Kurian et al. | Jun 2008 | A1 |
20080208820 | Usey et al. | Aug 2008 | A1 |
20080222061 | Soetjahja | Sep 2008 | A1 |
20080306893 | Saidi et al. | Dec 2008 | A1 |
20080307006 | Lee | Dec 2008 | A1 |
20090006283 | Labrie et al. | Jan 2009 | A1 |
20090006356 | Liao et al. | Jan 2009 | A1 |
20090015433 | James | Jan 2009 | A1 |
20090024517 | Crooks | Jan 2009 | A1 |
20090030888 | Sahu et al. | Jan 2009 | A1 |
20090037308 | Feinstein | Feb 2009 | A1 |
20090192980 | Beyer et al. | Jul 2009 | A1 |
20090216748 | Kravcik | Aug 2009 | A1 |
20090254572 | Redlich et al. | Oct 2009 | A1 |
20090299911 | Abrahams | Dec 2009 | A1 |
20090319521 | Groeneveld et al. | Dec 2009 | A1 |
20100005018 | Tidwell | Jan 2010 | A1 |
20100010878 | Pinto et al. | Jan 2010 | A1 |
20100010935 | Shelton | Jan 2010 | A1 |
20100082476 | Bowman | Apr 2010 | A1 |
20100257459 | Galbreath et al. | Oct 2010 | A1 |
20100325067 | Cagan et al. | Dec 2010 | A1 |
20110071969 | Doctor et al. | Mar 2011 | A1 |
20110078073 | Annappindi | Mar 2011 | A1 |
20110112957 | Ingram et al. | May 2011 | A1 |
20110161263 | Lee | Jun 2011 | A1 |
20110173116 | Yan | Jul 2011 | A1 |
20110178902 | Imrey | Jul 2011 | A1 |
20110184941 | El-Charif et al. | Jul 2011 | A1 |
20110320423 | Gemmell et al. | Dec 2011 | A1 |
20120053951 | Kowalchuk et al. | Mar 2012 | A1 |
20120059819 | Wheeler et al. | Mar 2012 | A1 |
20120066106 | Papadimitriou | Mar 2012 | A1 |
20120066116 | Kornegay et al. | Mar 2012 | A1 |
20120072029 | Persaud et al. | Mar 2012 | A1 |
20120082476 | Ito et al. | Apr 2012 | A1 |
20120239613 | Danciu | Sep 2012 | A1 |
20130091050 | Merrill | Apr 2013 | A1 |
20130103569 | Gopinathan | Apr 2013 | A1 |
20130138553 | Nikankin et al. | May 2013 | A1 |
20130185189 | Stewart | Jul 2013 | A1 |
20140012794 | Dillon et al. | Jan 2014 | A1 |
20140014047 | Garcia et al. | Jan 2014 | A1 |
20140025872 | Flynn | Jan 2014 | A1 |
20140052604 | Stewart | Feb 2014 | A9 |
20140081832 | Merrill et al. | Mar 2014 | A1 |
20140108665 | Arora | Apr 2014 | A1 |
20140122355 | Hardtke et al. | May 2014 | A1 |
20140149177 | Frank et al. | May 2014 | A1 |
20140172886 | Wilkes et al. | Jun 2014 | A1 |
20140180790 | Boal | Jun 2014 | A1 |
20140181267 | Wadkins | Jun 2014 | A1 |
20140310661 | Frederickson et al. | Oct 2014 | A1 |
20140310681 | Poozhiyil | Oct 2014 | A1 |
20150019912 | Darling et al. | Jan 2015 | A1 |
20150056229 | Nandy et al. | Feb 2015 | A1 |
20150081602 | Talley et al. | Mar 2015 | A1 |
20150161098 | Granshaw | Jun 2015 | A1 |
20150213361 | Gamon | Jul 2015 | A1 |
20150317337 | Edgar | Nov 2015 | A1 |
20150347485 | Cai | Dec 2015 | A1 |
20150379428 | Dirac et al. | Dec 2015 | A1 |
20160042292 | Caplan | Feb 2016 | A1 |
20160088723 | Chung et al. | Mar 2016 | A1 |
20160110353 | Merrill et al. | Apr 2016 | A1 |
20160132787 | Drevo et al. | May 2016 | A1 |
20160300252 | Frank | Oct 2016 | A1 |
20160371238 | Heavenrich | Dec 2016 | A1 |
20170061326 | Talathi et al. | Mar 2017 | A1 |
20170109657 | Marcu | Apr 2017 | A1 |
20170124464 | Crabtree et al. | May 2017 | A1 |
20170140518 | Liang et al. | May 2017 | A1 |
20170220633 | Porath | Aug 2017 | A1 |
20170222960 | Agarwal et al. | Aug 2017 | A1 |
20170316311 | Pilly | Nov 2017 | A1 |
20170330058 | Silberman et al. | Nov 2017 | A1 |
20180018578 | Yoshizumi | Jan 2018 | A1 |
20180025273 | Jordan | Jan 2018 | A1 |
20180060738 | Achin | Mar 2018 | A1 |
20180068219 | Turner et al. | Mar 2018 | A1 |
20180268262 | Osada | Sep 2018 | A1 |
20180293712 | Vogels et al. | Oct 2018 | A1 |
20180322406 | Merrill et al. | Nov 2018 | A1 |
20180349986 | Fidanza | Dec 2018 | A1 |
20190043070 | Merrill et al. | Feb 2019 | A1 |
20190114704 | Way | Apr 2019 | A1 |
20190228006 | Tormasov | Jul 2019 | A1 |
20190236480 | McKenna | Aug 2019 | A1 |
20190236484 | McKenna | Aug 2019 | A1 |
20190236695 | McKenna | Aug 2019 | A1 |
20190244122 | Li | Aug 2019 | A1 |
20190279111 | Merrill | Sep 2019 | A1 |
20190287025 | Perez | Sep 2019 | A1 |
20190303404 | Amer | Oct 2019 | A1 |
20190311298 | Kopp et al. | Oct 2019 | A1 |
20190318421 | Lyonnet | Oct 2019 | A1 |
20190340518 | Merrill | Nov 2019 | A1 |
20190340684 | Belanger et al. | Nov 2019 | A1 |
20190354806 | Chhabra | Nov 2019 | A1 |
20190354853 | Zoldi | Nov 2019 | A1 |
20190378210 | Merrill | Dec 2019 | A1 |
20200005136 | Spryn | Jan 2020 | A1 |
20200012917 | Pham et al. | Jan 2020 | A1 |
20200082299 | Vasconcelos | Mar 2020 | A1 |
20200160177 | Durand | May 2020 | A1 |
20200175586 | McKenna | Jun 2020 | A1 |
20200183047 | Denli et al. | Jun 2020 | A1 |
20200231466 | Lu | Jul 2020 | A1 |
20200242492 | Goel | Jul 2020 | A1 |
20200257927 | Nomi | Aug 2020 | A1 |
20200257961 | Hua et al. | Aug 2020 | A1 |
20210019603 | Friedman | Jan 2021 | A1 |
20210133631 | Prendki | May 2021 | A1 |
20210209688 | Krishnamurthy | Jul 2021 | A1 |
20210224605 | Zhang | Jul 2021 | A1 |
20210256392 | Chen | Aug 2021 | A1 |
20210281491 | Yelahanka Raghuprasad | Sep 2021 | A1 |
20210406815 | Mimassi | Dec 2021 | A1 |
20220019741 | Roy | Jan 2022 | A1 |
20220122171 | Hubard | Apr 2022 | A1 |
20220188519 | Briody | Jun 2022 | A1 |
20220188568 | Singh | Jun 2022 | A1 |
20220191332 | Ahmadi | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2014014047 | Jan 2014 | WO |
2014055238 | Apr 2014 | WO |
2014121019 | Aug 2014 | WO |
2014184381 | Nov 2014 | WO |
2015056229 | Apr 2015 | WO |
2015081160 | Jun 2015 | WO |
2019028179 | Feb 2019 | WO |
Entry |
---|
Lippert, J. (2014, Oct. 12). “ZestFinance issues small, high-rate loans, uses big data to weed out deadbeats” (Year: 2014). |
Merrill, J. etal (2019). “Generalized integrated gradients: Apractical method forexplaining diverse ensembles” (Year: 2019). |
Zhang, et al., 2018. “Mitigating Unwanted Biases with Adversarial Learning,” In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (AIES '18). Association for Computing Machinery, New York, NY, USA, 335-340. |
International Search Report issued in PCT/US2013/060208, dated Jan. 7, 2014, 2 pages. |
Zhao, Zheng , et al., “On Similarity Preserving Feature Selection”, IEEE Transactions on Knowledge and Data Engineering 25,2011, pp. 619-632. |
Demaine, Erik D., et al., “Correlation clustering in general weighted graphs”, Theorectical Computer Science 361 2006)172-187. |
Ivanov, Alexei, et al., “Kolmogorov-Smirnov test for feature selection in emotion recognition from speech”, IEEE International Conference on acoustics, speech and signal processing (ICASSP), 2012, pp. 5125-5128. |
International Preliminary Report on Patentability issued in PCT/US2013/060208, dated Mar. 24, 2015, 8 pages. |
Bit Array, Wikipedia Search, May 5, 2021 at https://en.wikipedia.org/wiki/Bit_array. |
Genetic algorithm, Wikipedia Search, May 5, 2021 at https://en.wikipedia.org/wiki/Gentic_algorithm. |
“Feature Selection” from Wikipedia and obtained in the Wayback machine at URL “https://en.wikipedia.org/wiki/Feature_selection” for Feb. 25, 2021. |
“Feature Selection”, Wikipedia and obtained in the Wayback machine at URL http://en.wikipedia.org/wiki/Feature_selection, Sep. 1, 2011. |
Bittencourt, H.R. et al., “Feature Selection by Using Classification and Regression Trees (CART)”, dated Aug. 23, 2004. |
Strobl, Carolin , et al., “Conditional Variable Importance for Random Forests”, BMC Bioinformatics 2008, 9:307, published Jul. 11, 2008. |
Tuv, Eugene , et al., “Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination”, Journal of Machine Learning Research, pp. 1341-1366, Jul. 2009. |
“On the Convergence of Generalized Hill Climbing Algorithms” by A.W. Johnson et al. copyright 2002, Elsevier Science B.V., Discrete Applied Mathematics (Year: 2002). |
Office Action (Non-Final Rejection) dated Dec. 16, 2021 for U.S. Appl. No. 15/977,105 (pp. 1-19). |
International Search Report dated May 5, 2014 in corresponding PCT Application No. PCT/US2014/014047. |
International Preliminary Report on Patentability dated Aug. 4, 2015 in corresponding PCT Application No. PCT/US2014/014047. |
Office Action (Final Rejection) dated Dec. 7, 2021 for U.S. Appl. No. 16/109,545 (pp. 1-17). |
International Search Report and the Written Opinion, Application No. PCT/US14/014047, dated May 5, 2014. |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Nov. 19, 2021 for U.S. Appl. No. 16/292,844 (pp. 1-8). |
Mondarres, Ceena et al., Towards Explainable Deep Learning for Credit Lending: A Case Study Proc. Workshop Challenges Opportunities AI Financial Services: Impact Fairness Explainability Accuracy Privacy (NIPS), 2018 (Year: 2018). |
Chen, Jiahao, Fair lending needs explainable models for responsible recommendation Proceedings of the Second Workshop on Responsible Recommendation, 2018 (Year: 2018). |
Ribeiro, Marco Tulio et al., Why Should | Trust You?—Explaining Predictions of Any Classifier ACM, 2016 (Year: 2016). |
Gates, Susan Wharton et al., 4/3 Automated Underwriting: Friend or Foe to Low-Mod Households and Neighborhoods? Building Assets, Building Credit, Symposium, Nov. 2003 (Year: 2003). |
Wattenber, Martin et al., Attacking discrimination with smarter machine learning Google Research, 2016 (Year: 2016). |
Data Bias and Algorithmic Discrimination University of Montreal, 2017 (Year: 2017). |
Office Action (Final Rejection) dated Nov. 18, 2021 for U.S. Appl. No. 16/052,293 (pp. 1-18). |
International Search Report and Written Opinion for application No. PCT/US20/062271 dated Feb. 26, 2021. |
International Search Report and Written Opinion issued in PCT/US2020/062235, dated Mar. 10, 2021, 8 pages. |
International Search Report and Written Opinion issued in PCT/US2020/062271, dated Feb. 26, 2021, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US18/030966, dated Jul. 20, 2018. |
“Gehrlein, William et al., A two-stage least cost credit scoring model, 1997, Annals of Operations Research, pp. 159-171.” |
“International Search Report and the Written Opinion for Application No. PCT/US18/44874, dated Oct. 10, 2018”, Oct. 10, 2018. |
“International Search Report and Written Opinion of the ISA, dated Jul. 5, 2019, for application No. PCT/US19/021381.” |
“International Search Report and Written Opinion of the ISA, dated Sep. 16, 2019, for application No. PCT/US19/029148.” |
“International Search Report and Written Opinion of the ISA, dated Aug. 23, 2019, for application No. PCT/US19/036049.” |
Abadi, Martin , et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems”, Preliminary White Paper, Nov. 9, 2015. |
Breiman, Leo , et al., “Random Forests”, Machine Learning, 45, 5-32, 2001. |
Chen, Tianqi, et al., “XGBoost: A Scalable Tree Boosting System”, KDD '16, Aug. 13-17, 2016, San Francisco, CA, USA. |
Cortes, Corinna , et al., “Support-Vector Networks”, AT&T Labs-Research, USA, Journal Machine Learning, vol. 20, Issue 3, Sep. 1995. |
Friedman, Jerome H., “Greedy Function Approximation: A Gradient Boosting Machine”, IMS 1999 Reitz Lecture, Feb. 24, 1999. |
Garcia-Pedradas, Nicolas , et al., “Nonlinear Boosting Projections for Ensemble Contruction”, Journal of Machine Learning Research 8 (2007) 1-33. |
Geurts, Pierre , et al., “Extremely randomized trees”, Springer Science + Business Media, Inc., rec'd Jun. 14, 2005, pub. online Mar. 2, 2006. |
Kamkar, Sean Javad, “Mesh Adaption Strategies for Vortex-Dominated Flows”, Standard University, Feb. 2011. |
Louppe, Gilles , et al., “Learning to Pivot with Adversarial Networks”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, https://papers.nips.cc/paper/6699-learning-to-pivot-with-adversarial-networks.pdf. |
Lundberg, Scott M., et al., “A Unified Approach to Interpreting Model Predictions”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, Nov. 25, 2017. |
Lundberg, Scott M., et al., “Consistent Individualized Feature Attribution for Tree Ensembles”, University of Washington, Mar. 7, 2019. |
Merrill, John W. L. , et al., “Generalized Integrated Gradients: A practical method for explaining diverse ensembles”, Journal of Machine Learning Research Under Review (2019). |
Merrill, Douglas C, et al., “Systems and Methods for Decomposition of Non-Differentiable and Differentiable Models”, U.S. Appl. No. 16/434,731, filed Jun. 7, 2019. |
Merrill, Douglas C, et al., “Systems and Methods for Enriching Modeling Tools and Infrastructure with Semantics”, U.S. Appl. No. 16/394,651, filed Apr. 25, 2019. |
Modarres, Ceena , et al., “Towards Explainable Deep Learning for Credit Lending: A Case Study”, arXiv:1811.06471V2 [cs.LG], Nov. 30, 2018. |
Richardson, L. F. , “The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam”, Philosophical Transactions of the Royal Society A. 210 (459-470): 307-357. doi:10.1098/rsta.1911.0009, Nov. 2, 1909. |
Richardson, L. F. , “The deferred approach to the limit”, Philosophical Transactions of the Royal Society A. 226 (636-646): 299-349. doi:10.1098/rsta.1927.0008, Oct. 14, 1926. |
Rumelhart, David E., et al., “Learning representations by back-propagating errors”, Nature vol. 323, Oct. 9, 1986. |
Saabas, Ando , “Diving into data, A blog on machine learning, data mining and visualization, Interpreting random forests”, http://blog.datadive.net/interpreting-random-forests/ (spec), Oct. 19, 2014. |
Saabas, Ando , “Diving into data, A blog on machine learning, data mining and visualization, Random forest interpretation—conditional feature contributions”, http://blog.datadive.net/random-forest-interpretation-conditional-feature-contributions/ (spec), Oct. 26, 2016. |
Saabas, Ando , “Diving into data, A blog on machine learning, data mining and visualization, Random forest interpretation with scikit-learn”, http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/ (spec), Aug. 12, 2015. |
Shapley, L. S. , “A Value For n-Person Games”, P-295, The Rand Corporation, Mar. 18, 1952. |
Strumbelj, Eric , et al., “An Efficient Explanation of Individual Classifications using Game Theory”, Journal of Machine Learning Research 11 (2010) 1-18. |
Sundararajan, Mukund , et al., “Axiomatic Attribution for Deep Networks”, Proceeding of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, Jun. 13, 2017. |
Fonk, Stijn , “Towards fairness in ML with adversarial networks”, https://blog.godatadriven.com/fairness-in-ml, Apr. 27, 2019. |
Wolpert, David H., “Stacked Generalization”, Original contribution: Stacked generalization. Neural Netw., 5(2):241-259, Feb. 1992. |
International Search Report and Written Opinion for application No. PCT/US20/062235, dated Mar. 10, 2021. |
Office Action (Non-Final Rejection) dated Mar. 2, 2022 for U.S. Appl. No. 16/434,731 (pp. 1-6). |
Ward, et al., “An exploration of the influence of path choice in game-theoretic attribuution algorithms,” Journal of Machine Learning Research Under Review (2020), 21 pages. |
“ZestFinance releases new software tool to reduce bias in AI-powered credit scoring models: New fairness filter can put 170,000 more minority families into homes”, Mar. 19, 2019, PR Newswire. |
Nesiba, Reynold F., “The Color of Credit: Mortgage Discrimination, Research Methodology, and Fair-Lending Enforcement”, Journal of Economic Issues, 37 (3), 813-815, 2003. |
Johnson, Kristen , et al., “Artificial Intelligence, Machine Learning, and Bias in Finance: Toward Responsible Innovation”, Fordham Law Review, vol. **, Issue 2, Article 5, 2019, pp. 499-529. |
Lippert, John , “ZestFinance Issues small, high-rate loans, uses big data to weed out deadbeats”, The Washington Post, Oct. 12, 2014. |
Tonk, Stijn , “Towards fairness in ML with adversarial networks”, http://godatadriven.com/, Apr. 27, 2019. |
International Search Report and Written Opinion of the ISA for application No. PCT/20/23370 dated Jun. 18, 2020. |
Boris Sharchilev et al: “Finding Influential Training Samples for Gradient Boosted Decision Trees”, Arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, Feb. 19, 2018 (Feb. 19, 2018), XP081223129, 10 pages. |
European Extended Search Report issued in EP19764112.9, dated Jun. 27, 2022, 11 pages. |
European Extended Search Report issued in EP19764112.9, dated Mar. 24, 2022, 14 pages. |
Kang et al., “A novel credit scoring framework for auto loan using an imbalanced-learning-based reject inference”. 2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr). May 4-5, 2019. DOI: 10.1109/CIFEr 2019.8759110, 8 pages (Year: 2019). |
Marco Ancona et al: “Towards better understanding of gradient-based attribution methods for Deep Neural Networks”, Arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, Mar. 7, 2018 (Mar. 7, 2018), XP081506780, 16 pages. |
Mukund Sundararajan et al: “Axiomatic Attribution for Deep Networks”, Arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, Mar. 4, 2017 (Mar. 4, 2017), XP080754192, 10 pages. |
Office Action (Non-Final Rejection) dated Jun. 24, 2022 for U.S. Appl. No. 17/385,452 (pp. 1-14). |
Wikipedia entry on “Autoencoder”. https://en.wikipedia.org/wiki/Autoencoder Downloaded Jun. 15, 2022 (Year: 2022). |
Bean, D.M., Wu, H., Igbal, E., Dzahini, O., Ibrahim, Z.M., Broadbent, M., Stewart, R. and Dobson, R.J., 2017. Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records. Scientific reports, 7(1), pp. 1-11. |
Office Action (Final Rejection) dated Aug. 16, 2022 for U.S. Appl. No. 15/977,105 (pp. 1-17). |
Office Action (Non-Final Rejection) dated Aug. 1, 2022 for U.S. Appl. No. 16/052,293 (pp. 1-15). |
Office Action (Non-Final Rejection) dated Aug. 26, 2022 for U.S. Appl. No. 16/394,651 (pp. 1-8). |
Office Action (Non-Final Rejection) dated Sep. 15, 2022 for U.S. Appl. No. 17/535,511 (pp. 1-11). |
Office Action (Non-Final Rejection) dated Sep. 22, 2022 for U.S. Appl. No. 17/223,698 (pp. 1-8). |
Zhao, Q., Li, Q. and Wen, J., 2018. Construction and application research of knowledge graph in aviation risk field. In MATEC Web of Conferences (vol. 151, p. 05003). EDP Sciences. |
Number | Date | Country | |
---|---|---|---|
20200265336 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62806603 | Feb 2019 | US |