All publications and patent applications mentioned in this specification are herein incorporated by reference for all intents and purposes to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Embodiments of the disclosure relate generally to fixation or fusion of a bone joint, and more specifically, to decorticating a joint in preparation for joint fixation or fusion.
Sacroiliac joint (SI-Joint) fusion is a surgical procedure that is performed to alleviate pain coming from the SI-Joint in patients who have failed to receive adequate pain relief with non-surgical treatments of the SI-Joint. Some conditions of the SI-Joint that may be treated with SI-Joint fusion (arthrodesis) are: degenerative sacroiliitis, inflammatory sacroiliitis, iatrogenic instability of the sacroiliac joint, osteitis condensans ilii, or traumatic fracture dislocation of the pelvis. Historically, screws and screws with plates were used as the standard instrumentation for sacro-iliac fusion. An SI-Joint fusion consisted of an open surgical approach to the SI-Joint from an anterior, a posterior, or a lateral direction. The surgeon would then debride (remove) the cartilage from the articular portion of the joint and the interosseous ligament from the fibrous portion of the joint. These open approaches require a large incision and deep soft tissue dissection to approach the damaged, subluxed, dislocated, fractured, or degenerative SI-Joint.
With more recent advancements in SI-Joint surgery, a typical technique for placing implants involves placement of one or multiple implants from a lateral to medial direction across the SI-Joint. These implants are placed with a starting point on the lateral aspect of the ilium. The implants are then directed across the ilium, across the sacroiliac joint and into the sacrum.
No debridement or decortication of the articular surfaces of the SI-Joint is done in many SI-Joint fusion procedures performed today. However, some surgeons believe that decortication of the joint would promote faster and stronger fusion of the joint.
Accordingly, it would be desirable to provide systems and methods for decorticating portions of the SI-Joint in a minimally invasive fashion during SI-Joint fusion surgery.
According to aspects of the disclosure, systems and methods for decorticating at least one bone surface are provided. In some embodiments, the systems include an elongated soft tissue protector, an elongated drive shaft and a cutter. The elongated soft tissue protector has a bore extending therethrough. The bore has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The elongated drive shaft has a proximal and a distal end. The cutter may be located on or near the distal end of the drive shaft. The cutter has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The maximum lateral extent of the cutter is greater than the minimum lateral extent of the bore but is no greater than the maximum lateral extent of the bore. The bore of the soft tissue protector is configured to slidably receive the cutter therethrough. The minimum lateral extent of the bore prevents the maximum lateral extent of the cutter from rotating when inside the bore but allows the drive shaft to rotate when the cutter is extended from a distal end of the bore.
In some embodiments, the bore of the soft tissue protector has a rectilinear lateral cross-sectional profile. The rectilinear lateral cross-sectional profile may be generally triangular in shape. The system may further include a body that is provided with a cylindrical bore therethrough, wherein the cylindrical bore is configured to slidably and rotatably receive the drive shaft. The body may be configured to be slidably received within the bore of soft tissue protector. In some embodiments, the drive shaft and cutter are provided with a longitudinal bore sized to slide over a guide pin.
In some embodiments, the proximal end of the drive shaft is provided with a handle configured to allow the drive shaft to be manually rotated and moved longitudinally relative to the soft tissue protector. The proximal end of the drive shaft may be provided with an indexing feature configured to show a rotational orientation of the drive shaft and the cutter relative to the soft tissue protector so that the cutter can be aligned with and retracted into the soft tissue protector. In some embodiments, the system includes a navigation array mounted near the proximal end of the drive shaft. The array includes a plurality of emitters or reflectors located at predetermined and unique distances from one another to generate a signal to aid in navigation of the cutter with regard to a reference frame associated with a patient on an imaging system.
In some embodiments, a method of decorticating at least one bone surface includes the steps of forming an implant bore across a first bone into a space between the first bone and an adjacent second bone, inserting a cutter of a decorticating device through the implant bore, and rotating the cutter. In this embodiment, the implant bore has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The cutter has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The maximum lateral extent of the cutter is greater than the minimum lateral extent of the implant bore but no greater than the maximum lateral extent of the implant bore. In the cutter rotating step, the maximum lateral extent of the cutter extends laterally beyond the implant bore and decorticates a surface of at least one of the first and second bones.
In some embodiments of the above methods, the first bone is an ilium and the second bone is a sacrum. The method may further include withdrawing the cutter from the implant bore and placing an implant into the implant bore. In some embodiments, the implant bore has a rectilinear lateral cross-sectional profile. The rectilinear lateral cross-sectional profile may be generally triangular in shape. In some embodiments, the method further includes inserting a guide pin across the first bone and into the second bone, and sliding the cutter of the decortication device over the guide pin.
In some embodiments, the decorticating device further comprises a handle and a drive shaft interconnecting the handle to the cutter. The method may further include manually manipulating the handle to rotate the cutter and to move the cutter longitudinally relative to the implant bore. The handle or a proximal end of the drive shaft may be provided with an indexing feature configured to show a rotational orientation of the drive shaft and the cutter relative to the implant bore. In some embodiments, the method further includes manipulating the handle to align the cutter with and retract the cutter through the non-circular implant bore.
In some embodiments, systems for decorticating at least one bone surface include an elongated drive shaft, an elongated body and a non-symmetrical offset cutter. The elongated body has a central longitudinal axis and a bore extending therethrough. The bore is parallel to and laterally offset from the central longitudinal axis and is configured to slidably and rotatably receive the drive shaft therethrough. The non-symmetrical offset cutter is located on or near a distal end of the drive shaft. The cutter has a profile that fits within a lateral cross-section of the elongated body in at least one orientation and extends laterally outside of the cross-section when the drive shaft and cutter are rotated.
In some embodiments of the above systems, the lateral cross-section of the elongated body has a rectilinear profile. The rectilinear profile may be generally triangular in shape. In some embodiments, the system further includes a navigation array mounted near a proximal end of the drive shaft. The array includes a plurality of emitters or reflectors located at predetermined and unique distances from one another to generate a signal to aid in navigation of the cutter with regard to a reference frame associated with a patient on an imaging system.
A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:
A joint of a patient can be decorticated or selectively decorticated in order to promote bone regeneration and fusion at the implant site. Many types of hardware are available both for the fixation of bones that are fractured and for the fixation of bones that are to be fused (arthrodesed). While the following examples focus on the SI-Joint, the methods, instrumentation and implants disclosed herein may be used for decortication of other body joints as well.
Referring to
The SI-Joint functions in the transmission of forces from the spine to the lower extremities, and vice-versa. The SI-Joint has been described as a pain generator for up to 22% of lower back pain patients.
To relieve pain generated from the SI-Joint, sacroiliac joint fusion is typically indicated as surgical treatment, e.g., for degenerative sacroiliitis, inflammatory sacroiliitis, iatrogenic instability of the sacroiliac joint, osteitis condensans ilii, or traumatic fracture dislocation of the pelvis. In some currently performed procedures, screws or screws with plates are used for sacro-iliac fusion. At the time of the procedure, articular cartilage may be removed from the “synovial joint” portion of the SI-Joint. This can require a large incision to approach the damaged, subluxed, dislocated, fractured, or degenerated joint. The large incision and removal of tissue can cause significant trauma to the patient, resulting in pain and increasing the time to heal after surgery.
In addition, screw type implants tend to be susceptible to rotation and loosening, especially in joints that are subjected to torsional forces, such as the SI-Joint. Excessive movement of the implant after implantation may result in the failure of the implant to incorporate and fuse with the bone, which may result in the need to remove and replace the failed implant.
Referring to
In this exemplary embodiment, one or more implant structures 20 are introduced laterally through the ilium, the SI-Joint, and into the sacrum. This path and resulting placement of the implant structure(s) 20 are best shown in
Before undertaking a lateral implantation procedure, the physician diagnoses the SI-Joint segments that are to be fixated or fused (arthrodesed) using, e.g., the Fortin finger test, thigh thrust, FABER, Gaenslen's, compression, distraction, and or diagnostic SI-Joint injection.
Aided by lateral, inlet, and outlet C-arm views, and with the patient lying in a prone position, the physician aligns the greater sciatic notches and then the alae (using lateral visualization) to provide a true lateral position. A 3 cm incision is made starting aligned with the posterior cortex of the sacral canal, followed by blunt tissue separation to the ilium. From the lateral view, the guide pin 38 (with pin sleeve (not shown)) (e.g., a Steinmann Pin) is started resting on the ilium at a position inferior to the sacrum end plate and just anterior to the sacral canal. In the outlet view, the guide pin 38 should be parallel to the sacrum end plate at a shallow angle anterior (e.g., 15 degree to 20 degree off the floor, as
Over the guide pin 38 (and through the soft tissue protector and drill sleeve), a pilot bore 42 may be drilled with cannulated drill bit 40, as is diagrammatically shown in
A shaped broach 44 may be tapped into the pilot bore 42 over the guide pin 38 (and through the soft tissue protector, not shown) to create a broached bore 48 with the desired profile for the implant structure 20, which, in the illustrated embodiment, is triangular. This generally corresponds to the sequence shown diagrammatically in
In some embodiments, a dilator can be used to open a channel though the tissue prior to sliding the soft tissue protector assembly 210 over the guide pin. The dilator(s) can be placed over the guide pin, using for example a plurality of sequentially larger dilators or using an expandable dilator. After the channel has been formed through the tissue, the dilator(s) can be removed and the soft tissue protector assembly can be slid over the guide pin. In some embodiments, the expandable dilator can serve as a soft tissue protector after being expanded. For example, after expansion the drill sleeve and guide pin sleeve can be inserted into the expandable dilator.
As shown in
The implant structures 20 are sized according to the local anatomy. For the SI-Joint, representative implant structures 20 can range in size, depending upon the local anatomy, from about 35 mm to about 60 mm in length, and about a 7 mm inscribed diameter (i.e. a triangle having a height of about 10.5 mm and a base of about 12 mm). The morphology of the local structures can be generally understood by medical professionals using textbooks of human skeletal anatomy along with their knowledge of the site and its disease or injury. The physician is also able to ascertain the dimensions of the implant structure 20 based upon prior analysis of the morphology of the targeted bone using, for example, plain film x-ray, fluoroscopic x-ray, or MM or CT scanning.
Using a lateral approach, one or more implant structures 20 can be individually inserted in a minimally invasive fashion across the SI-Joint, as has been described. Conventional tissue access tools, obturators, cannulas, and/or drills can be used for this purpose. Alternatively, the novel tissue access tools described above and in U.S. Provisional Patent Application No. 61/609,043, titled “TISSUE DILATOR AND PROTECTOR” and filed Mar. 9, 2012, and in U.S. Published Application No. 2017/0007409, titled “SYSTEMS, DEVICES, AND METHODS FOR JOINT FUSION” and filed Jul. 12, 2016, can also be used. No joint preparation, removal of cartilage, or scraping are required before formation of the insertion path or insertion of the implant structures 20, so a minimally invasive insertion path sized approximately at or about the maximum outer diameter of the implant structures 20 can be formed.
The implant structures 20 can obviate the need for autologous bone graft material, additional pedicle screws and/or rods, hollow modular anchorage screws, cannulated compression screws, threaded cages within the joint, or fracture fixation screws. Still, in the physician's discretion, bone graft material and other fixation instrumentation can be used in combination with the implant structures 20.
In a representative procedure, one to six, or perhaps up to eight, implant structures 20 can be used, depending on the size of the patient and the size of the implant structures 20. After installation, the patient would be advised to prevent or reduce loading of the SI-Joint while fusion occurs. This could be about a six to twelve week period or more, depending on the health of the patient and his or her adherence to post-op protocol.
The implant structures 20 make possible surgical techniques that are less invasive than traditional open surgery with no extensive soft tissue stripping. The lateral approach to the SI-Joint provides a straightforward surgical approach that complements the minimally invasive surgical techniques. The profile and design of the implant structures 20 minimize or reduce rotation and micromotion. Rigid implant structures 20 made from titanium provide immediate post-op SI-Joint stability. A bony in-growth region 24 comprising a porous plasma spray coating with irregular surface supports stable bone fixation/fusion. The implant structures 20 and surgical approaches make possible the placement of larger fusion surface areas designed to maximize post-surgical weight bearing capacity and provide a biomechanically rigorous implant designed specifically to stabilize the heavily loaded SI-Joint. In some embodiments, a fenestrated matrix implant may be used, providing cavities in which to pack bone growth material, and or providing additional surface area for bone on-growth, in-growth and or through-growth.
To improve the stability and weight bearing capacity of the implant, the implant can be inserted across three or more cortical walls. For example, after insertion the implant can traverse two cortical walls of the ilium and at least one cortical wall of the sacrum. The cortical bone is much denser and stronger than cancellous bone and can better withstand the large stresses found in the SI-Joint. By crossing three or more cortical walls, the implant can spread the load across more load bearing structures, thereby reducing the amount of load borne by each structure. In addition, movement of the implant within the bone after implantation is reduced by providing structural support in three locations around the implant versus two locations.
Further details of bone joint implants and methods of use can be found in U.S. Pat. No. 8,308,779 entitled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE” filed Feb. 25, 2008, U.S. Pat. No. 7,922,765 entitled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE” filed Mar. 24, 2005, U.S. Pat. No. 8,986,348 entitled “SYSTEMS AND METHODS FOR THE FUSION OF THE SACRAL-ILIAC JOINT” filed Oct. 5, 2010, and U.S. Pat. No. 8,414,648 entitled “APPARATUS, SYSTEMS, AND METHODS FOR ACHIEVING TRANS-ILIAC LUMBAR FUSION” filed Dec. 6, 2010
In the previously described methods, the implant(s) 10 or 20 (
Referring to
Body 310 is provided with a cylindrical bore therethrough along its longitudinal axis for slidably and rotatably receiving drive shaft 318. Drive shaft 318 may be provided with a longitudinal bore 320 sized to slide over guide pin 208 (shown in
In the embodiment illustrated in
Referring to
Cutter 322 may be sized to completely fill the interior cross-section of the soft tissue protector 200 so that the reach of its cutting tips when rotated outside of this cross-section can be maximized. The outer circle 340 in
In some embodiments, the axial thickness of cutter 322 is 3 mm. In some embodiments, the axial thickness of cutter 322 may be sized to be thicker than the space or joint between the bone segments so that the surfaces of both bone segments can be decorticated at the same time. In other embodiments, the axial thickness of cutter 322 may be sized to be thinner than the space or joint between the bone segments so that only one of the surfaces of the bone segments can be decorticated, or so that one surface can first be decorticated, cutter 322 can be moved axially, and then the other surface can be decorticated. In such embodiments, the surgeon is provided with the ability to decorticate each surface independently, with different depths of decortication, different amounts of force applied, etc.
As shown in
According to aspects of the present disclosure, cutting instrument 300 may be used to decorticate bone surface(s) as follows. As previously described, an incision through soft tissue may be made and a guide pin 208 (shown in
In an embodiment similar to system 300 shown in
Referring to
Referring to
Referring to
If the outer surfaces 422 of hexagonal rod portion 418 were parallel to the central longitudinal axis 424 of drive shaft 412, cutter 414 of cutting instrument 400 would rotate in the same way as cutter 322 of cutting instrument 300 shown in
In other embodiments (not shown), the hexagonal rod portion 418 and the hexagonal bore in cutter 414 may be replaced with a resilient material (such as Tygon® or other biocompatible polymer) at the distal end of the drive shaft 412 and or central hub section of cutter 414. Such an arrangement allows the cutter to have a passively compliant angle, as described above.
In other embodiments (not shown), the angle of the cutter may be actively controlled or adjusted. In some embodiments, one or more movable pins may be provided through the main body of the cutting instrument. When a pin is pushed distally against the proximal side of the cutter, that side of the cutter is angled away from the pin and the cutter's angle relative to the axis of rotation is actively changed from being perpendicular to non-perpendicular. As the cutter rotates, it maintains this set angle, even if forces from the bone joint may be urging it back towards perpendicular. In some embodiments, the distal end of the pin(s) directly contact a circular race located on the proximal side of the cutter. In other embodiments, the distal end of the pin(s) contact a ring that is set to a desired angle, and the ring in turn urges the cutter to the desired angle. If the pin(s) are connected to the ring, they may be pushed or pulled by the surgeon to change the angle of the ring and cutter.
Referring now to
Triangularly shaped main body 512 may have a reduced cross-section near its distal end to enable it to more freely pass through an implant bore in bone, while the larger cross-section at the proximal end maintains a sliding fit with a soft tissue protector (not shown), as previously described. Similarly, drive shaft 514 may be stepped down at its distal end as shown in
As best seen in
Handle 520 may be attached to the proximal end of drive shaft 514 to allow a surgeon to rotate cutter 510. Handle 520 may also be shaped and angularly oriented similar to cutter 510 so the surgeon has a visual indication of what cutter 510 is doing inside the implant bore. In some embodiments, the proximal end of drive shaft 514 is provided with a flat portion on one side which protrudes from the proximal end of main body 524, through washer 516 and into a D-shaped mating hole in handle 520 to maintain a proper orientation between drive shaft 514 and handle 520. Similar features (not shown) may be provided between cutter 510 and the distal end of drive shaft 514 to maintain a desired angular orientation between the two.
Set screw 522 may be threadably engaged with handle 520, offset from the axis of rotation of drive shaft 514 and handle 520. A detent bore (not shown) may be provided in the proximal end of main body 512 for receiving the distal end of set screw 522 when it is distally advanced through handle 520. With this arrangement, a surgeon may lock the angular orientation of cutter 510 by threading set screw 522 into its detent so that the cutter is aligned for passing through the soft tissue protector and into the implant bore in the bone segment(s). Once the cutter is in position within the joint, set screw 522 may be unscrewed until it is withdrawn from the detent bore in main body 512, thereby allowing cutter 510 to be rotated by handle 520. Before cutter 510 is withdrawn from the joint along with main body 512 through the soft tissue protector, set screw 522 can be aligned with the detent bore so that set screw 522 may be threaded into it. In other embodiments (not shown), an indicia line or other marking may be used instead of or in addition to handle 520 to indicate when cutter 510 is in a proper orientation for removal.
In some embodiments (not shown), off-axis cutting instrument 500 may be cannulated so as to slide over a guide wire that has been placed into the joint. In such embodiments, a handle at the proximal end of drive shaft 514 may be configured so that it may be rotated without interfering with the guide wire. In some embodiments (cannulated or non-cannulated), a removable wrench may be provided such that additional torque may be applied to the cutter.
Referring to
Cutter 510 may be provided with a bore 536 for receiving the distal end of the drive shaft, as previously described. The proximal (top) and distal (bottom) faces of cutter 510 may each be provided with an inner scraper 538 and an outer scraper 540 (also shown in
The concave side 530 of cutter 510 may be provided with flat section and a curved section radially outward from the flat section (best seen in
In some implementations, cutter tool 500 is first operated in a counterclockwise direction such that convex side 534 is the leading edge of cutter 510, then operated in a clockwise direction such that concave side 530 becomes the leading edge. This allows convex side 534 to first cut through the cartilage of the joint, then allows concave side 530 to scrape the cartilage from the bone faces. Scrapers or teeth 538 and 540 on both ends of cutter 510 allow for further scraping of cartilage. In some embodiments the scooped side of the cutter when rotated directs cartilage and or bone tissue into the implant bore.
Referring to
In some procedures, off-axis cutter 510 may be operated in all three apices of the soft tissue protector to achieve an even larger area of decortication. In other words, main body 512 of instrument 500 may be introduced into a soft tissue protector in one orientation as described above to achieve the decortication pattern depicted in
Referring to
Referring to
Referring now to
In this embodiment, cap rod 664 has a semi-circular cross-section, with the flat side facing down (not seen in the figures.) When instrument 650 is assembled, nitinol strip 662 extends along the flat bottom side of cap rod 664, up along the rounded distal end of cap rod 664, and into slot 672. Cap rod 664 and strip 662 are received within a central bore (not shown) in tube 660. An upwardly curved surface (not shown) may be provided at the distal end of the central bore to help guide strip 662 from the end of the central bore out through window 668. In some embodiments one or both edges of the distal loop 670 of strip 662 are left square, and in other embodiments one or both edges are sharpened.
In operation, the distal end of instrument 650 may be advanced through a soft tissue protector as with previously described embodiments and into a bone joint of a patient. Loop 670 of strip 662 remains retracted within tube 660 (or only slightly protruding through window 668) as instrument 650 is being advanced. Once window 668 is positioned within the joint space, a proximal portion of strip 662 may be distally advanced, such as with a handle or other means (not shown.) In this embodiment, the radial extension of loop 670 may be varied depending on how far strip 662 is distally advanced, but the width of loop 670 is held to a predetermined constant width by the proximal and distal edges of window 668. After loop 670 has been extended to a desired length, handle 666 is turned in one or both directions to decorticate one or both sides of the joint. The proximal portion of strip 662 is then retracted proximally to retract loop 670 into window 668 so that instrument 650 may be withdrawn.
In some embodiments, instrument 650 may be used in conjunction with a guidewire (not shown.) With the guidewire in place across a bone joint, main tube 660 may be advanced along the guidewire without nitinol strip 662 and cap rod 664 in place inside the tube. The guidewire may then be removed from the joint and nitinol strip 662 and cap rod 664 inserted through main tube 660. Alternatively, instrument 650 may be configured to allow nitinol strip 662 and cap rod 664 to be inserted into main tube 660 before it is placed over the guidewire and into the bone joint.
Referring now to
Referring now to
As best seen in
In operation, when cutting arm 716 is extended as just described, cutting instrument 700 may be rotated to allow cutting arm 716 to decorticate the bone joint. In some embodiments, connecting arm 714 may serve as a cutter as well, or instead of arm 716.
Referring now to
In this embodiment, wedge 742 is an elongated rod with a ramp formed on its distal end and external threads formed on its proximal end. Wedge 742 may be received within a central bore of main tube 740. Inter-engaging features (not shown) may be provided on main tube 740 and wedge 742 to allow longitudinal movement but prevent rotational movement with respect to one another. The proximal end of main tube 740 may be provided with an outwardly protruding ring 750 or similar feature to captivate actuation knob 744 on main tube 740, prevent it from moving longitudinally but allow it to rotate with respect to main tube 740 and wedge 742. The proximal end of wedge 742 may be provided with external threads that mate with the internal threads of actuation knob 744, such that when knob 744 is turned in one direction wedge 742 is driven distally, and when turned in the opposite direction knob 744 drives wedge 742 proximally.
The distal end of main tube 740 may be provided with a window 752 which permits cutting piece 746 to move radially outward from a retracted position (as shown) to an extended position (not shown), in which a portion of cutting piece 746 extends beyond the outer diameter of main tube 740. Cutting piece 746 may be provided with a portion that engages with the ramp formed on the distal end of wedge 742. With this arrangement, when actuation knob 744 drives wedge 742 distally, wedge 742 in turn drives a portion of cutting piece 746 radially outward through window 752 against the force of compression spring 748. With cutting piece 746 extended, instrument 730 may be rotated to decorticate a bone joint. When wedge 742 is driven proximally by knob 744, spring 748 returns cutting piece 746 to the retracted position.
Referring now to
Drive rod 772 may be slidably received within a central bore in main body 770. Cutter arm 774 may be pivotably attached to the distal end of drive rod 772 with a pin (not shown.) The distal end of main body 770 may be provided with a window 776 radially connecting the central bore of main body 770 with the exterior. An outwardly extending ramp 778 may be provided at the distal end of the central bore such that when drive rod 772 and cutter arm 774 are urged in a distal direction, a distal, curved portion of cutter arm 774 engages with ramp 778 and cutter arm 774 is pivoted radially outward through window 776. Once cutter arm 774 is radially extended, instrument 760 may be rotated to decorticate the bone joint. Pulling proximally on drive rod 772 causes the proximal side of cutter arm 774 to contact the proximal side of window 776, causing cutter arm 774 to retract within main body 770.
A longitudinally extending spline 780 or similar feature may be provided on the exterior of drive rod 772 for mating with a groove 782 located on the interior of main body 770. This arrangement allows drive rod 772 to slide longitudinally but not rotate inside main body 770, to preserve the correct orientation of cutter arm 774 with respect to window 776. In some embodiments, the main body may be provided with telescoping features to allow its length to be adjusted.
Referring now to
In this embodiment, the distal tip of main assembly 810 is provided with a broach 814. Broach 814 may have a triangular cross-section as shown, for forming a channel across a bone joint for receiving a triangular implant. The distal end of rasp assembly 812 may be provided with a flexible, tubular-shaped wire rasp 816. Both
In operation, the distal end of instrument 800 is tapped across a bone joint as broach 814 forms or further forms an implant bore in the bone segments on either side of the bone joint. Rasp 816 is positioned such that its center generally resides in the joint space. Actuation handle 818 is then pushed distally, causing tubular rasp 816 to be pushed against the proximal side of broach 814, foreshorten and expand into the joint space. Once expanded (not shown), the central portion of rasp 816 will generally take on a disc shape having a larger diameter, and a thickness generally equal to the width of the joint space. The proximal and distal portions of rasp 816 may maintain their original cylindrical shape. Instrument 800 may then be rotated, causing rasp 816 to decorticate bone face(s) of the joint. By urging instrument 800 in the proximal and or distal direction(s), more force may be applied to one bone face as rasp 816 is rotated. In some embodiments, because of the braided wire structure of rasp 816, it is able to provide a more resilient force against the bone surfaces of the joint than a fixed cutting blade, resulting in a more uniform decortication of the joint. After the joint has been decorticated, actuation handle 818 may be pulled proximally to retract rasp 816 toward its original shape so that it may be removed from the bone joint.
Referring to
Referring to
Referring to
As shown in
Referring to
In operation, the distal tip of instrument 940 may be advanced into the bone joint of a patient when the instrument is in the closed position. The instrument may then be moved into its open position as described above to extend the cutting wire 954, and the entire instrument may then be rotated about its longitudinal axis to decorticate the bone joint with wire 954. The wire 954 may then be retracted again to remove the instrument from the patient.
In some embodiments, wire 954 of instrument 940 may be coated with an abrasive. Wire 954 may include attached cutters, barbs, sharp edges, a square cross-section, twisted filaments, lines/slots cut therein, etc. (not shown.)
Referring to
In operation, inner drive shaft 982 may be rotated with respect to outer tube 980 by using handle 984. With the previously described arrangement of right and left-hand threaded tubes on drive shaft 982, turning drive shaft 982 in one direction causes threaded tubes 986 and 988 to move closer together, and turning drive shaft 982 in the opposite direction causes threaded tubes 986 and 988 to move farther apart. When threaded tubes 986 and 988 move closer together, a middle portion of band 990 extends radially outward from inner drive shaft 982 and through a window 1000 in outer tube 980. The farther handle 984 is rotated, the farther band 990 extends outwardly through window. However, in some embodiments, regardless of the distance that band 990 extends through window 1000, the distance between its two extending portions (in the axial direction of the instrument) remains essentially the same, controlled by the axial width of window 1000.
With band 990 retracted within outer tube 980, the distal end of instrument 970 may be inserted into a bone joint in a manner similar to previously described embodiments. Band 990 may then be extended through window 1000 in outer tube 980 and the instrument rotated to decorticate the bone joint. In some embodiments, the center tip of band 990 is extended about 10 to 15 mm outside of window 1000. In some embodiments, band 990 is extended to a first radius to decorticate a first inner region of the joint, and then further extended to at least a second radius to decorticate a second outer region of the joint. After the joint has been sufficiently decorticated, band 990 may be retracted into outer tube 980 by turning handle 984 in an opposite direction and instrument 970 may be withdrawn from the patient.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present disclosure.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the disclosure as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the disclosure as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application is a continuation of U.S. application Ser. No. 16/143,061, filed Sep. 26, 2018, which claims the benefit of U.S. Provisional Application No. 62/563,271, filed Sep. 26, 2017, each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1951278 | Ericsson | Mar 1934 | A |
2136471 | Schneider | Nov 1938 | A |
2243717 | Moreira | May 1941 | A |
2414882 | Longfellow | Jul 1947 | A |
2562419 | Ferris | Jul 1951 | A |
2675801 | Bambara et al. | Apr 1954 | A |
2697433 | Zehnder | Dec 1954 | A |
3076453 | Tronzo | Feb 1963 | A |
3506982 | Steffee | Apr 1970 | A |
3694821 | Moritz | Oct 1972 | A |
3709218 | Halloran | Jan 1973 | A |
3744488 | Cox | Jul 1973 | A |
4059115 | Jumashev et al. | Nov 1977 | A |
4156943 | Collier | Jun 1979 | A |
4197645 | Scheicher | Apr 1980 | A |
4292964 | Ulrich | Oct 1981 | A |
4341206 | Perrett et al. | Jul 1982 | A |
4344190 | Lee et al. | Aug 1982 | A |
4399813 | Barber | Aug 1983 | A |
4423721 | Otte et al. | Jan 1984 | A |
4475545 | Ender | Oct 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4569338 | Edwards | Feb 1986 | A |
4612918 | Slocum | Sep 1986 | A |
4622959 | Marcus | Nov 1986 | A |
4630601 | Harder et al. | Dec 1986 | A |
4638799 | Moore | Jan 1987 | A |
4657550 | Daher | Apr 1987 | A |
4743256 | Brantigan | May 1988 | A |
4773402 | Asher et al. | Sep 1988 | A |
4787378 | Sodhi | Nov 1988 | A |
4790303 | Steffee | Dec 1988 | A |
4834757 | Brantigan | May 1989 | A |
4846162 | Moehring | Jul 1989 | A |
4877019 | Vives | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4898186 | Ikada et al. | Feb 1990 | A |
4904261 | Dove et al. | Feb 1990 | A |
4950270 | Bowman et al. | Aug 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4981481 | Kranz et al. | Jan 1991 | A |
5034011 | Howland | Jul 1991 | A |
5034013 | Kyle et al. | Jul 1991 | A |
5035697 | Frigg | Jul 1991 | A |
5041118 | Wasilewski | Aug 1991 | A |
5053035 | McLaren | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5066296 | Chapman et al. | Nov 1991 | A |
5098434 | Serbousek | Mar 1992 | A |
5102414 | Kirsch | Apr 1992 | A |
5108397 | White | Apr 1992 | A |
5122141 | Simpson et al. | Jun 1992 | A |
5139498 | Astudillo Ley | Aug 1992 | A |
5139500 | Schwartz | Aug 1992 | A |
5147367 | Ellis | Sep 1992 | A |
5147402 | Bohler et al. | Sep 1992 | A |
5190551 | Chin et al. | Mar 1993 | A |
5197961 | Castle | Mar 1993 | A |
5242444 | MacMillan | Sep 1993 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5334205 | Cain | Aug 1994 | A |
5380325 | Lahille et al. | Jan 1995 | A |
5390683 | Pisharodi | Feb 1995 | A |
5433718 | Brinker | Jul 1995 | A |
5443466 | Shah | Aug 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5470334 | Ross et al. | Nov 1995 | A |
5480402 | Kim | Jan 1996 | A |
5569249 | James et al. | Oct 1996 | A |
5591235 | Kuslich | Jan 1997 | A |
5593409 | Michelson | Jan 1997 | A |
5607424 | Tropiano | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5626616 | Speece | May 1997 | A |
5643264 | Sherman et al. | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5667510 | Combs | Sep 1997 | A |
5669909 | Zdeblick et al. | Sep 1997 | A |
5672178 | Petersen | Sep 1997 | A |
5683391 | Boyd | Nov 1997 | A |
5709683 | Bagby | Jan 1998 | A |
5713904 | Errico et al. | Feb 1998 | A |
5716358 | Ochoa et al. | Feb 1998 | A |
5725581 | Brånemark | Mar 1998 | A |
5743912 | LaHille et al. | Apr 1998 | A |
5759035 | Ricci | Jun 1998 | A |
5766174 | Perry | Jun 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5766261 | Neal et al. | Jun 1998 | A |
5788699 | Bobst et al. | Aug 1998 | A |
5800440 | Stead | Sep 1998 | A |
5868749 | Reed | Feb 1999 | A |
5897556 | Drewry et al. | Apr 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5941885 | Jackson | Aug 1999 | A |
5961522 | Mehdizadeh | Oct 1999 | A |
5961554 | Janson et al. | Oct 1999 | A |
6010507 | Rudloff | Jan 2000 | A |
6015409 | Jackson | Jan 2000 | A |
6030162 | Huebner et al. | Feb 2000 | A |
6053916 | Moore | Apr 2000 | A |
6056749 | Kuslich | May 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6086589 | Kuslich et al. | Jul 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6120292 | Buser et al. | Sep 2000 | A |
6120504 | Brumback et al. | Sep 2000 | A |
6143031 | Knothe et al. | Nov 2000 | A |
6197062 | Fenlin | Mar 2001 | B1 |
6206924 | Timm | Mar 2001 | B1 |
6210442 | Wing et al. | Apr 2001 | B1 |
6214049 | Gayer et al. | Apr 2001 | B1 |
6221074 | Cole et al. | Apr 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6241732 | Overaker et al. | Jun 2001 | B1 |
6264657 | Urbahns et al. | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6287343 | Kuslich et al. | Sep 2001 | B1 |
6302885 | Essiger | Oct 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6306140 | Siddiqui | Oct 2001 | B1 |
6319253 | Ackeret et al. | Nov 2001 | B1 |
6406498 | Tormala et al. | Jun 2002 | B1 |
6409768 | Tepic et al. | Jun 2002 | B1 |
6436139 | Shapiro et al. | Aug 2002 | B1 |
6451020 | Zucherman et al. | Sep 2002 | B1 |
6471707 | Miller et al. | Oct 2002 | B1 |
6485518 | Cornwall et al. | Nov 2002 | B1 |
6497707 | Bowman et al. | Dec 2002 | B1 |
6517541 | Sesic | Feb 2003 | B1 |
6520969 | Lambrecht et al. | Feb 2003 | B2 |
6524314 | Dean et al. | Feb 2003 | B1 |
6527775 | Warburton | Mar 2003 | B1 |
6556857 | Estes et al. | Apr 2003 | B1 |
6558386 | Cragg | May 2003 | B1 |
6565566 | Wagner et al. | May 2003 | B1 |
6575899 | Foley et al. | Jun 2003 | B1 |
6575991 | Chesbrough et al. | Jun 2003 | B1 |
6579293 | Chandran | Jun 2003 | B1 |
6582431 | Ray | Jun 2003 | B1 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6602293 | Biermann et al. | Aug 2003 | B1 |
6605090 | Trieu et al. | Aug 2003 | B1 |
6607530 | Carl et al. | Aug 2003 | B1 |
6620163 | Michelson | Sep 2003 | B1 |
6635059 | Randall et al. | Oct 2003 | B2 |
6666868 | Fallin | Dec 2003 | B2 |
6669529 | Scaries | Dec 2003 | B1 |
6673075 | Santilli | Jan 2004 | B2 |
6692501 | Michelson | Feb 2004 | B2 |
6712852 | Chung et al. | Mar 2004 | B1 |
6723099 | Goshert | Apr 2004 | B1 |
6723100 | Biedermann et al. | Apr 2004 | B2 |
6740118 | Eisermann et al. | May 2004 | B2 |
6743257 | Castro | Jun 2004 | B2 |
D493533 | Blain | Jul 2004 | S |
6793656 | Mathews | Sep 2004 | B1 |
6827740 | Michelson | Dec 2004 | B1 |
6984235 | Huebner | Jan 2006 | B2 |
6989033 | Schmidt | Jan 2006 | B1 |
6991461 | Gittleman | Jan 2006 | B2 |
6993406 | Cesarano et al. | Jan 2006 | B1 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7118579 | Michelson | Oct 2006 | B2 |
7147666 | Grisoni | Dec 2006 | B1 |
7175663 | Stone | Feb 2007 | B1 |
7211085 | Michelson | May 2007 | B2 |
7223269 | Chappuis | May 2007 | B2 |
7314488 | Reiley | Jan 2008 | B2 |
7335205 | Aeschlimann et al. | Feb 2008 | B2 |
7338500 | Chappuis | Mar 2008 | B2 |
7396365 | Michelson | Jul 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7452369 | Barry | Nov 2008 | B2 |
7481831 | Bonutt | Jan 2009 | B2 |
7527649 | Blain | May 2009 | B1 |
7534254 | Michelson | May 2009 | B1 |
7537616 | Branch et al. | May 2009 | B1 |
7569054 | Michelson | Aug 2009 | B2 |
7569059 | Cerundolo | Aug 2009 | B2 |
7601155 | Petersen | Oct 2009 | B2 |
7608097 | Kyle | Oct 2009 | B2 |
7608098 | Stone et al. | Oct 2009 | B1 |
7648509 | Stark | Jan 2010 | B2 |
7686805 | Michelson | Mar 2010 | B2 |
7699852 | Frankel et al. | Apr 2010 | B2 |
7708761 | Petersen | May 2010 | B2 |
7727235 | Contiliano et al. | Jun 2010 | B2 |
7758646 | Khandkar et al. | Jul 2010 | B2 |
7780704 | Markworth et al. | Aug 2010 | B2 |
7846162 | Nelson et al. | Dec 2010 | B2 |
7850732 | Heinz | Dec 2010 | B2 |
7857832 | Culbert et al. | Dec 2010 | B2 |
7887565 | Michelson | Feb 2011 | B2 |
7892265 | Perez-Cruet et al. | Feb 2011 | B2 |
7901439 | Horton | Mar 2011 | B2 |
7909832 | Michelson | Mar 2011 | B2 |
7922765 | Reiley | Apr 2011 | B2 |
7942879 | Christie et al. | May 2011 | B2 |
7951176 | Grady et al. | May 2011 | B2 |
8052728 | Hestad | Nov 2011 | B2 |
8062365 | Schwab | Nov 2011 | B2 |
8066705 | Michelson | Nov 2011 | B2 |
8066709 | Michelson | Nov 2011 | B2 |
8092505 | Sommers | Jan 2012 | B2 |
8142481 | Warnick | Mar 2012 | B2 |
8202305 | Reiley | Jun 2012 | B2 |
8221499 | Lazzara et al. | Jul 2012 | B2 |
8257398 | Jackson | Sep 2012 | B2 |
8268099 | O'Neill et al. | Sep 2012 | B2 |
8308779 | Reiley | Nov 2012 | B2 |
8308783 | Morris et al. | Nov 2012 | B2 |
8317862 | Troger et al. | Nov 2012 | B2 |
8348950 | Assell et al. | Jan 2013 | B2 |
8350186 | Jones et al. | Jan 2013 | B2 |
8388667 | Reiley et al. | Mar 2013 | B2 |
8394129 | Morgenstern Lopez | Mar 2013 | B2 |
8398635 | Vaidya | Mar 2013 | B2 |
8398682 | Jackson et al. | Mar 2013 | B2 |
8414648 | Reiley | Apr 2013 | B2 |
8425570 | Reiley | Apr 2013 | B2 |
8430930 | Hunt | Apr 2013 | B2 |
8444693 | Reiley | May 2013 | B2 |
8449585 | Wallenstein et al. | May 2013 | B2 |
8467851 | Mire et al. | Jun 2013 | B2 |
8470004 | Reiley | Jun 2013 | B2 |
8475505 | Nebosky et al. | Jul 2013 | B2 |
8529608 | Terrill et al. | Sep 2013 | B2 |
8597299 | Farr et al. | Dec 2013 | B2 |
8608802 | Bagga et al. | Dec 2013 | B2 |
D697209 | Walthall et al. | Jan 2014 | S |
8641737 | Matthis et al. | Feb 2014 | B2 |
8663332 | To et al. | Mar 2014 | B1 |
8672986 | Klaue et al. | Mar 2014 | B2 |
8734462 | Reiley et al. | May 2014 | B2 |
8778026 | Mauldin | Jul 2014 | B2 |
8840623 | Reiley | Sep 2014 | B2 |
8840651 | Reiley | Sep 2014 | B2 |
8845693 | Smith et al. | Sep 2014 | B2 |
8858601 | Reiley | Oct 2014 | B2 |
8888827 | Harper et al. | Nov 2014 | B2 |
8894685 | Mickiewicz et al. | Nov 2014 | B2 |
8920477 | Reiley | Dec 2014 | B2 |
8926670 | Jackson | Jan 2015 | B2 |
8936623 | Jackson | Jan 2015 | B2 |
8945190 | Culbert et al. | Feb 2015 | B2 |
8945193 | Kirschman | Feb 2015 | B2 |
8951254 | Mayer et al. | Feb 2015 | B2 |
8951293 | Glazer et al. | Feb 2015 | B2 |
8951295 | Matityahu et al. | Feb 2015 | B2 |
8961571 | Lee et al. | Feb 2015 | B2 |
8979911 | Martineau et al. | Mar 2015 | B2 |
8986348 | Reiley | Mar 2015 | B2 |
RE45484 | Foley et al. | Apr 2015 | E |
9039743 | Reiley | May 2015 | B2 |
9044321 | Mauldin et al. | Jun 2015 | B2 |
9060876 | To et al. | Jun 2015 | B1 |
9089371 | Faulhaber | Jul 2015 | B1 |
D738498 | Frey et al. | Sep 2015 | S |
9131955 | Swofford | Sep 2015 | B2 |
9149286 | Greenhalgh et al. | Oct 2015 | B1 |
9198676 | Pilgeram et al. | Dec 2015 | B2 |
9220535 | Röbling et al. | Dec 2015 | B2 |
9314286 | Bottlang et al. | Apr 2016 | B2 |
9314348 | Emstad | Apr 2016 | B2 |
9358047 | Mishra et al. | Jun 2016 | B2 |
9358057 | Whipple et al. | Jun 2016 | B1 |
9375243 | Vestgaarden | Jun 2016 | B1 |
9375323 | Reiley | Jun 2016 | B2 |
9445852 | Sweeney | Sep 2016 | B2 |
9451999 | Simpson et al. | Sep 2016 | B2 |
9452065 | Lawson | Sep 2016 | B1 |
9486264 | Reiley et al. | Nov 2016 | B2 |
9492201 | Reiley | Nov 2016 | B2 |
9498264 | Harshman et al. | Nov 2016 | B2 |
9510872 | Donner et al. | Dec 2016 | B2 |
9517095 | Vaidya | Dec 2016 | B2 |
9526548 | Asfora | Dec 2016 | B2 |
9554909 | Donner | Jan 2017 | B2 |
9561063 | Reiley | Feb 2017 | B2 |
9566100 | Asfora | Feb 2017 | B2 |
9603613 | Schoenefeld et al. | Mar 2017 | B2 |
9603644 | Sweeney | Mar 2017 | B2 |
D783821 | Folsom et al. | Apr 2017 | S |
9615856 | Arnett et al. | Apr 2017 | B2 |
9622783 | Reiley et al. | Apr 2017 | B2 |
9655656 | Whipple | May 2017 | B2 |
9662124 | Assell et al. | May 2017 | B2 |
9662128 | Reiley | May 2017 | B2 |
9662157 | Schneider et al. | May 2017 | B2 |
9662158 | Reiley | May 2017 | B2 |
9675394 | Reiley | Jun 2017 | B2 |
9743969 | Reiley | Aug 2017 | B2 |
9757154 | Donner et al. | Sep 2017 | B2 |
9763695 | Mirda | Sep 2017 | B2 |
9763802 | Baynham | Sep 2017 | B2 |
9775648 | Greenberg et al. | Oct 2017 | B2 |
9788961 | Donner et al. | Oct 2017 | B2 |
9808298 | Stroncek et al. | Nov 2017 | B2 |
9808299 | Goel et al. | Nov 2017 | B2 |
9808337 | Housman et al. | Nov 2017 | B2 |
9820789 | Reiley | Nov 2017 | B2 |
9833321 | Rindal et al. | Dec 2017 | B2 |
9839448 | Reckling et al. | Dec 2017 | B2 |
9848889 | Taylor et al. | Dec 2017 | B2 |
9848892 | Biedermann et al. | Dec 2017 | B2 |
9883874 | Vestgaarden | Feb 2018 | B1 |
9888911 | Siegal | Feb 2018 | B2 |
9936983 | Mesiwala et al. | Apr 2018 | B2 |
9949776 | Mobasser et al. | Apr 2018 | B2 |
9949843 | Reiley et al. | Apr 2018 | B2 |
D816843 | Lewis | May 2018 | S |
9956013 | Reiley et al. | May 2018 | B2 |
9993276 | Russell | Jun 2018 | B2 |
9993277 | Krinke et al. | Jun 2018 | B2 |
9999449 | Bonutti | Jun 2018 | B2 |
10004547 | Reiley | Jun 2018 | B2 |
10034676 | Donner | Jul 2018 | B2 |
10058430 | Donner et al. | Aug 2018 | B2 |
10064670 | Mootien et al. | Sep 2018 | B2 |
D831828 | Horton et al. | Oct 2018 | S |
10166022 | Early et al. | Jan 2019 | B2 |
10166033 | Reiley et al. | Jan 2019 | B2 |
10179014 | Menmuir et al. | Jan 2019 | B1 |
10188403 | Mirochinik et al. | Jan 2019 | B2 |
10188442 | Mazel | Jan 2019 | B2 |
10194951 | Jackson et al. | Feb 2019 | B2 |
10194962 | Schneider et al. | Feb 2019 | B2 |
10201427 | Mauldin et al. | Feb 2019 | B2 |
10219841 | Compton et al. | Mar 2019 | B1 |
10219885 | Mamo et al. | Mar 2019 | B2 |
D846977 | Williams et al. | Apr 2019 | S |
D847336 | Asfora et al. | Apr 2019 | S |
10245044 | Petersen | Apr 2019 | B2 |
10245076 | Fitzpatrick | Apr 2019 | B2 |
10245087 | Donner et al. | Apr 2019 | B2 |
10258380 | Sinha | Apr 2019 | B2 |
10258393 | Caploon et al. | Apr 2019 | B2 |
10258394 | Harshman et al. | Apr 2019 | B2 |
10271882 | Biedermann et al. | Apr 2019 | B2 |
D847994 | Asfora et al. | May 2019 | S |
10278737 | Smith | May 2019 | B2 |
10285745 | Cummins et al. | May 2019 | B2 |
10292778 | Kostrzewski et al. | May 2019 | B2 |
D850616 | Asfora et al. | Jun 2019 | S |
10314631 | Gonzalez Blohm et al. | Jun 2019 | B2 |
10321937 | Cormier et al. | Jun 2019 | B2 |
10321945 | Schifano et al. | Jun 2019 | B2 |
10335202 | Ziolo et al. | Jul 2019 | B2 |
10335204 | Matthis et al. | Jul 2019 | B2 |
10335206 | Nichols et al. | Jul 2019 | B2 |
10335211 | Chan et al. | Jul 2019 | B2 |
10335212 | Paolino et al. | Jul 2019 | B2 |
10335216 | Mari et al. | Jul 2019 | B2 |
10335217 | Lindner | Jul 2019 | B2 |
10342586 | Schneider | Jul 2019 | B2 |
10349983 | Purcell et al. | Jul 2019 | B2 |
10349986 | Wall et al. | Jul 2019 | B2 |
10357287 | Schlaepfer et al. | Jul 2019 | B2 |
10363070 | Jackson et al. | Jul 2019 | B2 |
10363073 | Raina et al. | Jul 2019 | B2 |
10363140 | Mauldin et al. | Jul 2019 | B2 |
10363143 | Neubardt | Jul 2019 | B2 |
10368919 | Pham et al. | Aug 2019 | B2 |
10413332 | Schumacher et al. | Sep 2019 | B2 |
10426533 | Mauldin et al. | Oct 2019 | B2 |
10426539 | Schifano et al. | Oct 2019 | B2 |
10433880 | Donner et al. | Oct 2019 | B2 |
10456268 | Mercier et al. | Oct 2019 | B2 |
10463402 | Biester et al. | Nov 2019 | B2 |
10478227 | Leff et al. | Nov 2019 | B2 |
10485596 | Koller et al. | Nov 2019 | B2 |
10492841 | Hartdegen et al. | Dec 2019 | B2 |
10492921 | McShane, III et al. | Dec 2019 | B2 |
10517734 | Donner | Dec 2019 | B2 |
10531898 | Boulot | Jan 2020 | B2 |
10531904 | Kolb | Jan 2020 | B2 |
10537340 | Mirochinik et al. | Jan 2020 | B2 |
D875931 | Asfora et al. | Feb 2020 | S |
10555758 | Magee et al. | Feb 2020 | B2 |
10588676 | Kang et al. | Mar 2020 | B2 |
10588677 | McDonnell | Mar 2020 | B2 |
10595917 | Loftus | Mar 2020 | B2 |
10596003 | Donner et al. | Mar 2020 | B2 |
10603054 | Asfora et al. | Mar 2020 | B2 |
10603055 | Donner et al. | Mar 2020 | B2 |
10603087 | Brenzel et al. | Mar 2020 | B2 |
10603176 | Arnold et al. | Mar 2020 | B2 |
10610275 | Brianza | Apr 2020 | B2 |
10610276 | Lutz | Apr 2020 | B2 |
10610370 | Baynham | Apr 2020 | B2 |
10610728 | Fano et al. | Apr 2020 | B2 |
10617453 | Beckett et al. | Apr 2020 | B2 |
10653454 | Frey et al. | May 2020 | B2 |
10653455 | Lehman et al. | May 2020 | B2 |
10660657 | Slobitker et al. | May 2020 | B2 |
10660679 | Kang et al. | May 2020 | B2 |
10660684 | Kang et al. | May 2020 | B2 |
10667923 | Sullivan et al. | Jun 2020 | B2 |
10682131 | Fallin et al. | Jun 2020 | B2 |
10682150 | Stark | Jun 2020 | B2 |
10682437 | Roth | Jun 2020 | B2 |
10711334 | Patel et al. | Jul 2020 | B2 |
10729475 | Childs | Aug 2020 | B2 |
10729482 | Fantigrossi et al. | Aug 2020 | B2 |
10743995 | Fallin et al. | Aug 2020 | B2 |
D895111 | Frey et al. | Sep 2020 | S |
10758283 | Frey et al. | Sep 2020 | B2 |
10758285 | Geist et al. | Sep 2020 | B2 |
10792074 | Jackson | Oct 2020 | B2 |
10799277 | Kulper et al. | Oct 2020 | B2 |
10799367 | Vrionis et al. | Oct 2020 | B2 |
10806597 | Soumac et al. | Oct 2020 | B2 |
10842511 | Patel et al. | Nov 2020 | B2 |
10842634 | Pasini et al. | Nov 2020 | B2 |
D904615 | Asfora et al. | Dec 2020 | S |
D905232 | Schifano et al. | Dec 2020 | S |
10856922 | Loke et al. | Dec 2020 | B2 |
10864029 | Redmond et al. | Dec 2020 | B2 |
10898333 | Cordaro | Jan 2021 | B2 |
10905472 | Mari et al. | Feb 2021 | B2 |
10912654 | Scheland | Feb 2021 | B2 |
10932838 | Mehl et al. | Mar 2021 | B2 |
10939944 | Wapner et al. | Mar 2021 | B2 |
10959758 | Mesiwala et al. | Mar 2021 | B2 |
10959830 | Williams et al. | Mar 2021 | B2 |
10987142 | Poelstra et al. | Apr 2021 | B2 |
10993754 | Kuntz et al. | May 2021 | B2 |
10993757 | Schifano et al. | May 2021 | B2 |
11006985 | Caploon et al. | May 2021 | B2 |
D921898 | Schifano et al. | Jun 2021 | S |
D922568 | Schifano et al. | Jun 2021 | S |
11033309 | Zadeh | Jun 2021 | B2 |
11052229 | Althoff et al. | Jul 2021 | B2 |
11058443 | Siccardi et al. | Jul 2021 | B2 |
11071573 | Schneider et al. | Jul 2021 | B2 |
11116519 | Sand et al. | Sep 2021 | B2 |
11116557 | Zander et al. | Sep 2021 | B2 |
11147591 | Jackson | Oct 2021 | B2 |
11147597 | Jackson | Oct 2021 | B2 |
11147688 | Reckling et al. | Oct 2021 | B2 |
D935025 | Schifano et al. | Nov 2021 | S |
11172939 | Donner et al. | Nov 2021 | B2 |
11224467 | Peterson et al. | Jan 2022 | B2 |
11259854 | Thores et al. | Mar 2022 | B2 |
11266767 | Roth et al. | Mar 2022 | B2 |
11273043 | Abbasi | Mar 2022 | B1 |
11284798 | Donner et al. | Mar 2022 | B2 |
11284887 | Hartdegen et al. | Mar 2022 | B2 |
11298747 | Klein et al. | Apr 2022 | B2 |
D951455 | Ginn | May 2022 | S |
11419653 | Castro | Aug 2022 | B2 |
11419654 | Castro | Aug 2022 | B2 |
11452548 | Harshman et al. | Sep 2022 | B2 |
20010012942 | Estes et al. | Aug 2001 | A1 |
20010046518 | Sawhney | Nov 2001 | A1 |
20010047207 | Michelson | Nov 2001 | A1 |
20010049529 | Cachia et al. | Dec 2001 | A1 |
20020019637 | Frey et al. | Feb 2002 | A1 |
20020029043 | Ahrens et al. | Mar 2002 | A1 |
20020038123 | Visotsky et al. | Mar 2002 | A1 |
20020049497 | Mason | Apr 2002 | A1 |
20020077641 | Michelson | Jun 2002 | A1 |
20020082598 | Teitelbaum | Jun 2002 | A1 |
20020120275 | Schmieding et al. | Aug 2002 | A1 |
20020120335 | Angelucci et al. | Aug 2002 | A1 |
20020128652 | Ferree | Sep 2002 | A1 |
20020143334 | von Hoffmann et al. | Oct 2002 | A1 |
20020143335 | von Hoffmann et al. | Oct 2002 | A1 |
20020151903 | Takei et al. | Oct 2002 | A1 |
20020169507 | Malone | Nov 2002 | A1 |
20020183858 | Contiliano et al. | Dec 2002 | A1 |
20020198527 | Mückter | Dec 2002 | A1 |
20030018336 | Vandewalle | Jan 2003 | A1 |
20030032961 | Pelo et al. | Feb 2003 | A1 |
20030050642 | Schmieding et al. | Mar 2003 | A1 |
20030065332 | TenHuisen et al. | Apr 2003 | A1 |
20030074000 | Roth et al. | Apr 2003 | A1 |
20030078660 | Clifford et al. | Apr 2003 | A1 |
20030083668 | Rogers et al. | May 2003 | A1 |
20030083688 | Simonson | May 2003 | A1 |
20030088251 | Braun et al. | May 2003 | A1 |
20030097131 | Schon et al. | May 2003 | A1 |
20030139815 | Grooms et al. | Jul 2003 | A1 |
20030181979 | Ferree | Sep 2003 | A1 |
20030181982 | Kuslich | Sep 2003 | A1 |
20030199983 | Michelson | Oct 2003 | A1 |
20030229358 | Errico et al. | Dec 2003 | A1 |
20030233146 | Grinberg et al. | Dec 2003 | A1 |
20030233147 | Nicholson et al. | Dec 2003 | A1 |
20040010315 | Song | Jan 2004 | A1 |
20040024458 | Senegas et al. | Feb 2004 | A1 |
20040034422 | Errico et al. | Feb 2004 | A1 |
20040073216 | Lieberman | Apr 2004 | A1 |
20040073314 | White et al. | Apr 2004 | A1 |
20040082955 | Zirkle | Apr 2004 | A1 |
20040087948 | Suddaby | May 2004 | A1 |
20040097927 | Yeung et al. | May 2004 | A1 |
20040106925 | Culbert | Jun 2004 | A1 |
20040117022 | Marnay et al. | Jun 2004 | A1 |
20040127990 | Bartish, Jr. et al. | Jul 2004 | A1 |
20040138750 | Mitchell | Jul 2004 | A1 |
20040138753 | Ferree | Jul 2004 | A1 |
20040147929 | Biedermann et al. | Jul 2004 | A1 |
20040158324 | Lange | Aug 2004 | A1 |
20040176287 | Harrison et al. | Sep 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040181282 | Zucherman et al. | Sep 2004 | A1 |
20040186572 | Lange et al. | Sep 2004 | A1 |
20040210221 | Kozak et al. | Oct 2004 | A1 |
20040225360 | Malone | Nov 2004 | A1 |
20040230305 | Gorensek et al. | Nov 2004 | A1 |
20040260286 | Ferree | Dec 2004 | A1 |
20040267369 | Lyons et al. | Dec 2004 | A1 |
20050015059 | Sweeney | Jan 2005 | A1 |
20050015146 | Louis et al. | Jan 2005 | A1 |
20050033435 | Belliard et al. | Feb 2005 | A1 |
20050037319 | Bulard et al. | Feb 2005 | A1 |
20050049590 | Alleyne et al. | Mar 2005 | A1 |
20050055023 | Sohngen et al. | Mar 2005 | A1 |
20050070905 | Donnelly et al. | Mar 2005 | A1 |
20050071004 | Re et al. | Mar 2005 | A1 |
20050075641 | Singhatat et al. | Apr 2005 | A1 |
20050080415 | Keyer et al. | Apr 2005 | A1 |
20050107878 | Conchy | May 2005 | A1 |
20050112397 | Rolfe et al. | May 2005 | A1 |
20050113919 | Cragg et al. | May 2005 | A1 |
20050124993 | Chappuis | Jun 2005 | A1 |
20050131409 | Chervitz et al. | Jun 2005 | A1 |
20050137605 | Assell et al. | Jun 2005 | A1 |
20050143837 | Ferree | Jun 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050159749 | Levy et al. | Jul 2005 | A1 |
20050159812 | Dinger et al. | Jul 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050192572 | Abdelgany et al. | Sep 2005 | A1 |
20050216082 | Wilson et al. | Sep 2005 | A1 |
20050228384 | Zucherman et al. | Oct 2005 | A1 |
20050246021 | Ringeisen et al. | Nov 2005 | A1 |
20050251146 | Martz et al. | Nov 2005 | A1 |
20050273101 | Schumacher | Dec 2005 | A1 |
20050277940 | Neff | Dec 2005 | A1 |
20060004396 | Easley et al. | Jan 2006 | A1 |
20060036247 | Michelson | Feb 2006 | A1 |
20060036251 | Reiley | Feb 2006 | A1 |
20060036252 | Baynham et al. | Feb 2006 | A1 |
20060054171 | Dall | Mar 2006 | A1 |
20060058793 | Michelson | Mar 2006 | A1 |
20060058800 | Ainsworth et al. | Mar 2006 | A1 |
20060062825 | Maccecchini | Mar 2006 | A1 |
20060084986 | Grinberg et al. | Apr 2006 | A1 |
20060089656 | Allard et al. | Apr 2006 | A1 |
20060111779 | Petersen | May 2006 | A1 |
20060129247 | Brown et al. | Jun 2006 | A1 |
20060142772 | Ralph et al. | Jun 2006 | A1 |
20060161163 | Shino | Jul 2006 | A1 |
20060178673 | Curran | Aug 2006 | A1 |
20060195094 | McGraw et al. | Aug 2006 | A1 |
20060217717 | Whipple | Sep 2006 | A1 |
20060241600 | Ensign et al. | Oct 2006 | A1 |
20060241776 | Brown et al. | Oct 2006 | A1 |
20060271054 | Sucec et al. | Nov 2006 | A1 |
20060293662 | Boyer, II et al. | Dec 2006 | A1 |
20070027544 | McCord et al. | Feb 2007 | A1 |
20070038219 | Matthis et al. | Feb 2007 | A1 |
20070049933 | Ahn et al. | Mar 2007 | A1 |
20070066977 | Assell et al. | Mar 2007 | A1 |
20070083265 | Malone | Apr 2007 | A1 |
20070088362 | Bonutti et al. | Apr 2007 | A1 |
20070093841 | Hoogland | Apr 2007 | A1 |
20070093898 | Schwab et al. | Apr 2007 | A1 |
20070106383 | Abdou | May 2007 | A1 |
20070149976 | Hale et al. | Jun 2007 | A1 |
20070156144 | Ulrich et al. | Jul 2007 | A1 |
20070156241 | Reiley et al. | Jul 2007 | A1 |
20070156246 | Meswania et al. | Jul 2007 | A1 |
20070161985 | Demakas et al. | Jul 2007 | A1 |
20070161989 | Heinz et al. | Jul 2007 | A1 |
20070173820 | Trieu | Jul 2007 | A1 |
20070219634 | Greenhalgh et al. | Sep 2007 | A1 |
20070233080 | Na et al. | Oct 2007 | A1 |
20070233146 | Henniges et al. | Oct 2007 | A1 |
20070233247 | Schwab | Oct 2007 | A1 |
20070250166 | McKay | Oct 2007 | A1 |
20070270833 | Bonutti et al. | Nov 2007 | A1 |
20070270879 | Isaza et al. | Nov 2007 | A1 |
20070282443 | Globerman et al. | Dec 2007 | A1 |
20080021454 | Chao et al. | Jan 2008 | A1 |
20080021455 | Chao et al. | Jan 2008 | A1 |
20080021456 | Gupta et al. | Jan 2008 | A1 |
20080021461 | Barker et al. | Jan 2008 | A1 |
20080021480 | Chin et al. | Jan 2008 | A1 |
20080065093 | Assell et al. | Mar 2008 | A1 |
20080065215 | Reiley | Mar 2008 | A1 |
20080071356 | Greenhalgh et al. | Mar 2008 | A1 |
20080109083 | Van Hoeck et al. | May 2008 | A1 |
20080125868 | Branemark et al. | May 2008 | A1 |
20080132901 | Recoules-Arche et al. | Jun 2008 | A1 |
20080140082 | Erdem et al. | Jun 2008 | A1 |
20080147079 | Chin et al. | Jun 2008 | A1 |
20080154374 | Labrom | Jun 2008 | A1 |
20080161810 | Melkent | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080234758 | Fisher et al. | Sep 2008 | A1 |
20080255562 | Gil et al. | Oct 2008 | A1 |
20080255618 | Fisher et al. | Oct 2008 | A1 |
20080255622 | Mickiewicz et al. | Oct 2008 | A1 |
20080255664 | Hogendijk et al. | Oct 2008 | A1 |
20080255666 | Fisher et al. | Oct 2008 | A1 |
20080255667 | Horton | Oct 2008 | A1 |
20080275454 | Geibel | Nov 2008 | A1 |
20080294202 | Peterson et al. | Nov 2008 | A1 |
20080306554 | McKinley | Dec 2008 | A1 |
20090012529 | Blain et al. | Jan 2009 | A1 |
20090018660 | Roush | Jan 2009 | A1 |
20090024174 | Stark | Jan 2009 | A1 |
20090036927 | Vestgaarden | Feb 2009 | A1 |
20090037148 | Lin et al. | Feb 2009 | A1 |
20090043393 | Duggal et al. | Feb 2009 | A1 |
20090082810 | Bhatnagar et al. | Mar 2009 | A1 |
20090082869 | Slemker et al. | Mar 2009 | A1 |
20090099602 | Aflatoon | Apr 2009 | A1 |
20090099610 | Johnson et al. | Apr 2009 | A1 |
20090105770 | Berrevooets et al. | Apr 2009 | A1 |
20090118771 | Gonzalez-Hernandez | May 2009 | A1 |
20090131986 | Lee et al. | May 2009 | A1 |
20090138053 | Assell et al. | May 2009 | A1 |
20090157119 | Hale | Jun 2009 | A1 |
20090163920 | Hochschuler et al. | Jun 2009 | A1 |
20090171394 | Adbou | Jul 2009 | A1 |
20090187247 | Metcalf, Jr. et al. | Jul 2009 | A1 |
20090216238 | Stark | Aug 2009 | A1 |
20090270929 | Suddaby | Oct 2009 | A1 |
20090287254 | Nayet et al. | Nov 2009 | A1 |
20090312798 | Varela | Dec 2009 | A1 |
20090319043 | McDevitt et al. | Dec 2009 | A1 |
20090324678 | Thorne et al. | Dec 2009 | A1 |
20100003638 | Collins et al. | Jan 2010 | A1 |
20100022535 | Lee et al. | Jan 2010 | A1 |
20100076502 | Guyer et al. | Mar 2010 | A1 |
20100081107 | Bagambisa et al. | Apr 2010 | A1 |
20100094290 | Vaidya | Apr 2010 | A1 |
20100094295 | Schnieders et al. | Apr 2010 | A1 |
20100094420 | Grohowski | Apr 2010 | A1 |
20100106194 | Bonutti et al. | Apr 2010 | A1 |
20100106195 | Serhan et al. | Apr 2010 | A1 |
20100114174 | Jones et al. | May 2010 | A1 |
20100114317 | Lambrecht et al. | May 2010 | A1 |
20100131011 | Stark | May 2010 | A1 |
20100137990 | Apatsidis et al. | Jun 2010 | A1 |
20100145461 | Landry et al. | Jun 2010 | A1 |
20100160977 | Gephart et al. | Jun 2010 | A1 |
20100168798 | Clineff et al. | Jul 2010 | A1 |
20100191292 | DeMeo et al. | Jul 2010 | A1 |
20100262242 | Chavatte et al. | Oct 2010 | A1 |
20100268228 | Petersen | Oct 2010 | A1 |
20100280619 | Yuan et al. | Nov 2010 | A1 |
20100280622 | McKinley | Nov 2010 | A1 |
20100286778 | Eisermann et al. | Nov 2010 | A1 |
20100331851 | Huene | Dec 2010 | A1 |
20100331893 | Geist et al. | Dec 2010 | A1 |
20110009869 | Marino et al. | Jan 2011 | A1 |
20110009966 | Michelson | Jan 2011 | A1 |
20110022089 | Assell et al. | Jan 2011 | A1 |
20110029019 | Ainsworth et al. | Feb 2011 | A1 |
20110040362 | Godara et al. | Feb 2011 | A1 |
20110046737 | Teisen | Feb 2011 | A1 |
20110060373 | Russell et al. | Mar 2011 | A1 |
20110060375 | Bonutti | Mar 2011 | A1 |
20110066190 | Schaller et al. | Mar 2011 | A1 |
20110082551 | Kraus | Apr 2011 | A1 |
20110093020 | Wu | Apr 2011 | A1 |
20110098747 | Donner et al. | Apr 2011 | A1 |
20110098816 | Jacob et al. | Apr 2011 | A1 |
20110098817 | Eckhardt et al. | Apr 2011 | A1 |
20110106175 | Rezach | May 2011 | A1 |
20110153018 | Walters et al. | Jun 2011 | A1 |
20110160866 | Laurence et al. | Jun 2011 | A1 |
20110178561 | Roh | Jul 2011 | A1 |
20110184417 | Kitch et al. | Jul 2011 | A1 |
20110184518 | Trieu | Jul 2011 | A1 |
20110184519 | Trieu | Jul 2011 | A1 |
20110184520 | Trieu | Jul 2011 | A1 |
20110196372 | Murase | Aug 2011 | A1 |
20110213432 | Geist et al. | Sep 2011 | A1 |
20110230966 | Trieu | Sep 2011 | A1 |
20110238074 | Ek | Sep 2011 | A1 |
20110238124 | Richelsoph | Sep 2011 | A1 |
20110238181 | Trieu | Sep 2011 | A1 |
20110245930 | Alley et al. | Oct 2011 | A1 |
20110257755 | Bellemere et al. | Oct 2011 | A1 |
20110264229 | Donner | Oct 2011 | A1 |
20110276098 | Biedermann et al. | Nov 2011 | A1 |
20110295272 | Assell et al. | Dec 2011 | A1 |
20110295370 | Suh et al. | Dec 2011 | A1 |
20110313471 | McLean et al. | Dec 2011 | A1 |
20110313532 | Hunt | Dec 2011 | A1 |
20110319995 | Voellmicke et al. | Dec 2011 | A1 |
20120004730 | Castro | Jan 2012 | A1 |
20120035667 | Van Nortwick et al. | Feb 2012 | A1 |
20120083887 | Purcell et al. | Apr 2012 | A1 |
20120095560 | Donner | Apr 2012 | A1 |
20120179256 | Reiley | Jul 2012 | A1 |
20120191191 | Trieu | Jul 2012 | A1 |
20120215315 | Hochschuler et al. | Aug 2012 | A1 |
20120226318 | Wenger et al. | Sep 2012 | A1 |
20120253398 | Metcalf et al. | Oct 2012 | A1 |
20120259372 | Glazer et al. | Oct 2012 | A1 |
20120271424 | Crawford | Oct 2012 | A1 |
20120277866 | Kalluri et al. | Nov 2012 | A1 |
20120296428 | Donner | Nov 2012 | A1 |
20120323285 | Assell et al. | Dec 2012 | A1 |
20130018427 | Pham et al. | Jan 2013 | A1 |
20130030456 | Assell et al. | Jan 2013 | A1 |
20130030529 | Hunt | Jan 2013 | A1 |
20130035727 | Datta | Feb 2013 | A1 |
20130053852 | Greenhalgh et al. | Feb 2013 | A1 |
20130053854 | Schoenefeld et al. | Feb 2013 | A1 |
20130053902 | Trudeau | Feb 2013 | A1 |
20130053963 | Davenport | Feb 2013 | A1 |
20130072984 | Robinson | Mar 2013 | A1 |
20130085535 | Greenhalgh et al. | Apr 2013 | A1 |
20130096683 | Kube | Apr 2013 | A1 |
20130116793 | Kloss | May 2013 | A1 |
20130123850 | Schoenefeld et al. | May 2013 | A1 |
20130123935 | Hunt et al. | May 2013 | A1 |
20130131678 | Dahners | May 2013 | A1 |
20130144343 | Arnett et al. | Jun 2013 | A1 |
20130158609 | Mikhail et al. | Jun 2013 | A1 |
20130172736 | Abdou | Jul 2013 | A1 |
20130197590 | Assell et al. | Aug 2013 | A1 |
20130203088 | Baerlecken et al. | Aug 2013 | A1 |
20130218215 | Ginn et al. | Aug 2013 | A1 |
20130218282 | Hunt | Aug 2013 | A1 |
20130231746 | Ginn et al. | Sep 2013 | A1 |
20130237988 | Mauldin | Sep 2013 | A1 |
20130245703 | Warren et al. | Sep 2013 | A1 |
20130245763 | Mauldin | Sep 2013 | A1 |
20130267836 | Mauldin et al. | Oct 2013 | A1 |
20130267961 | Mauldin et al. | Oct 2013 | A1 |
20130267989 | Mauldin et al. | Oct 2013 | A1 |
20130274890 | McKay | Oct 2013 | A1 |
20130325129 | Huang | Dec 2013 | A1 |
20140012334 | Armstrong et al. | Jan 2014 | A1 |
20140012340 | Beck et al. | Jan 2014 | A1 |
20140012384 | Kana et al. | Jan 2014 | A1 |
20140031934 | Trieu | Jan 2014 | A1 |
20140031935 | Donner et al. | Jan 2014 | A1 |
20140031938 | Lechmann et al. | Jan 2014 | A1 |
20140031939 | Wolfe et al. | Jan 2014 | A1 |
20140046380 | Asfora | Feb 2014 | A1 |
20140074175 | Ehler et al. | Mar 2014 | A1 |
20140088596 | Assell et al. | Mar 2014 | A1 |
20140088707 | Donner et al. | Mar 2014 | A1 |
20140121776 | Hunt | May 2014 | A1 |
20140135927 | Pavlov et al. | May 2014 | A1 |
20140142700 | Donner et al. | May 2014 | A1 |
20140172027 | Biedermann et al. | Jun 2014 | A1 |
20140200618 | Donner et al. | Jul 2014 | A1 |
20140207240 | Stoffman et al. | Jul 2014 | A1 |
20140257294 | Gedet et al. | Sep 2014 | A1 |
20140257408 | Trieu et al. | Sep 2014 | A1 |
20140276846 | Mauldin | Sep 2014 | A1 |
20140276851 | Schneider et al. | Sep 2014 | A1 |
20140277139 | Vrionis et al. | Sep 2014 | A1 |
20140277165 | Katzman et al. | Sep 2014 | A1 |
20140277460 | Schifano et al. | Sep 2014 | A1 |
20140277462 | Yerby et al. | Sep 2014 | A1 |
20140277463 | Yerby et al. | Sep 2014 | A1 |
20140288649 | Hunt | Sep 2014 | A1 |
20140288650 | Hunt | Sep 2014 | A1 |
20140296982 | Cheng | Oct 2014 | A1 |
20140330382 | Mauldin | Nov 2014 | A1 |
20140364917 | Sandstrom et al. | Dec 2014 | A1 |
20150012051 | Warren et al. | Jan 2015 | A1 |
20150039037 | Donner et al. | Feb 2015 | A1 |
20150080951 | Yeh | Mar 2015 | A1 |
20150080972 | Chin et al. | Mar 2015 | A1 |
20150094765 | Donner et al. | Apr 2015 | A1 |
20150112444 | Aksu | Apr 2015 | A1 |
20150147397 | Altschuler | May 2015 | A1 |
20150150683 | Donner et al. | Jun 2015 | A1 |
20150173805 | Donner et al. | Jun 2015 | A1 |
20150173904 | Stark | Jun 2015 | A1 |
20150182268 | Donner et al. | Jul 2015 | A1 |
20150190149 | Assell et al. | Jul 2015 | A1 |
20150190187 | Parent et al. | Jul 2015 | A1 |
20150209094 | Anderson | Jul 2015 | A1 |
20150216566 | Mikhail et al. | Aug 2015 | A1 |
20150238203 | Asfora | Aug 2015 | A1 |
20150250513 | De Lavigne Sainte | Sep 2015 | A1 |
20150250611 | Schifano et al. | Sep 2015 | A1 |
20150250612 | Schifano et al. | Sep 2015 | A1 |
20150257892 | Lechmann et al. | Sep 2015 | A1 |
20150313720 | Lorio | Nov 2015 | A1 |
20150320450 | Mootien et al. | Nov 2015 | A1 |
20150320451 | Mootien et al. | Nov 2015 | A1 |
20150320469 | Biedermann et al. | Nov 2015 | A1 |
20150342753 | Donner et al. | Dec 2015 | A1 |
20160000488 | Cross, III | Jan 2016 | A1 |
20160022429 | Greenhalgh et al. | Jan 2016 | A1 |
20160095711 | Castro | Apr 2016 | A1 |
20160095721 | Schell et al. | Apr 2016 | A1 |
20160100870 | Lavigne et al. | Apr 2016 | A1 |
20160106477 | Hynes et al. | Apr 2016 | A1 |
20160106479 | Hynes et al. | Apr 2016 | A1 |
20160120661 | Schell et al. | May 2016 | A1 |
20160143671 | Jimenez | May 2016 | A1 |
20160016630 | Papangelou et al. | Jun 2016 | A1 |
20160157908 | Cawley et al. | Jun 2016 | A1 |
20160166301 | Papangelou et al. | Jun 2016 | A1 |
20160175113 | Lins | Jun 2016 | A1 |
20160184103 | Fonte et al. | Jun 2016 | A1 |
20160213487 | Wilson et al. | Jul 2016 | A1 |
20160242820 | Whipple et al. | Aug 2016 | A1 |
20160242912 | Lindsey et al. | Aug 2016 | A1 |
20160249940 | Stark | Sep 2016 | A1 |
20160287171 | Sand et al. | Oct 2016 | A1 |
20160287301 | Mehl et al. | Oct 2016 | A1 |
20160310188 | Marino et al. | Oct 2016 | A1 |
20160310197 | Black et al. | Oct 2016 | A1 |
20160324643 | Donner et al. | Nov 2016 | A1 |
20160324656 | Morris et al. | Nov 2016 | A1 |
20160374727 | Greenhalgh et al. | Dec 2016 | A1 |
20170014235 | Jones et al. | Jan 2017 | A1 |
20170020573 | Cain et al. | Jan 2017 | A1 |
20170020585 | Harshman et al. | Jan 2017 | A1 |
20170049488 | Vestgaarden | Feb 2017 | A1 |
20170086885 | Duncan et al. | Mar 2017 | A1 |
20170128083 | Germain | May 2017 | A1 |
20170128214 | Mayer | May 2017 | A1 |
20170135733 | Donner et al. | May 2017 | A1 |
20170135737 | Krause | May 2017 | A1 |
20170143513 | Sandstrom et al. | May 2017 | A1 |
20170156879 | Janowski | Jun 2017 | A1 |
20170156880 | Halverson et al. | Jun 2017 | A1 |
20170202511 | Chang et al. | Jul 2017 | A1 |
20170209155 | Petersen | Jul 2017 | A1 |
20170216036 | Cordaro | Aug 2017 | A1 |
20170224393 | Lavigne et al. | Aug 2017 | A1 |
20170246000 | Pavlov et al. | Aug 2017 | A1 |
20170258498 | Redmond et al. | Sep 2017 | A1 |
20170258506 | Redmond et al. | Sep 2017 | A1 |
20170258606 | Afzal | Sep 2017 | A1 |
20170266007 | Gelaude et al. | Sep 2017 | A1 |
20170296344 | Souza et al. | Oct 2017 | A1 |
20170303938 | Rindal et al. | Oct 2017 | A1 |
20170333205 | Joly et al. | Nov 2017 | A1 |
20170348034 | LaPierre et al. | Dec 2017 | A1 |
20170360570 | Berndt et al. | Dec 2017 | A1 |
20180008256 | Fallin et al. | Jan 2018 | A1 |
20180036041 | Pham et al. | Feb 2018 | A1 |
20180042652 | Mari et al. | Feb 2018 | A1 |
20180042735 | Schell et al. | Feb 2018 | A1 |
20180104063 | Asaad | Apr 2018 | A1 |
20180104068 | Sack | Apr 2018 | A1 |
20180110624 | Arnone | Apr 2018 | A1 |
20180110626 | McShane, III et al. | Apr 2018 | A1 |
20180200063 | Kahmer et al. | Jul 2018 | A1 |
20180214192 | Roby et al. | Aug 2018 | A1 |
20180228613 | Jones et al. | Aug 2018 | A1 |
20180228617 | Srour et al. | Aug 2018 | A1 |
20180228621 | Reiley et al. | Aug 2018 | A1 |
20180235643 | Lins et al. | Aug 2018 | A1 |
20180243097 | Jones et al. | Aug 2018 | A1 |
20180256232 | Russell | Sep 2018 | A1 |
20180256351 | Bishop et al. | Sep 2018 | A1 |
20180256352 | Nyahay et al. | Sep 2018 | A1 |
20180256361 | Bishop et al. | Sep 2018 | A1 |
20180280139 | Jones et al. | Oct 2018 | A1 |
20180280140 | Jones et al. | Oct 2018 | A1 |
20180289504 | Arthurs et al. | Oct 2018 | A1 |
20180296227 | Meek et al. | Oct 2018 | A1 |
20180296347 | Hamzey et al. | Oct 2018 | A1 |
20180296363 | Berry | Oct 2018 | A1 |
20180303520 | Rajpal | Oct 2018 | A1 |
20180303623 | Shoshtaev | Oct 2018 | A1 |
20180303624 | Shoshtaev | Oct 2018 | A1 |
20180317971 | Prevost | Nov 2018 | A1 |
20180360512 | Mari | Dec 2018 | A1 |
20180368894 | Wieland et al. | Dec 2018 | A1 |
20190000636 | Kim et al. | Jan 2019 | A1 |
20190008562 | Melton et al. | Jan 2019 | A1 |
20190046684 | Roth | Feb 2019 | A1 |
20190076258 | Black et al. | Mar 2019 | A1 |
20190076266 | Trudeau et al. | Mar 2019 | A1 |
20190083270 | Milz et al. | Mar 2019 | A1 |
20190091027 | Asaad et al. | Mar 2019 | A1 |
20190117827 | Roth | Apr 2019 | A1 |
20190125371 | Asfora et al. | May 2019 | A1 |
20190125408 | Asfora et al. | May 2019 | A1 |
20190133613 | Reiley et al. | May 2019 | A1 |
20190133769 | Tetsworth et al. | May 2019 | A1 |
20190133783 | Unger et al. | May 2019 | A1 |
20190142606 | Freudenberger | May 2019 | A1 |
20190150910 | Jones et al. | May 2019 | A1 |
20190151113 | Sack | May 2019 | A1 |
20190151114 | Sack | May 2019 | A1 |
20190159901 | Mauldin et al. | May 2019 | A1 |
20190183653 | Gregersen et al. | Jun 2019 | A1 |
20190231554 | Bishop et al. | Aug 2019 | A1 |
20190239935 | Willis et al. | Aug 2019 | A1 |
20190247094 | Yacoub et al. | Aug 2019 | A1 |
20190254840 | Gray et al. | Aug 2019 | A1 |
20190262048 | Sutika | Aug 2019 | A1 |
20190262049 | Tempco et al. | Aug 2019 | A1 |
20190290441 | Tong et al. | Sep 2019 | A1 |
20190298528 | Lindsey et al. | Oct 2019 | A1 |
20190298542 | Kloss | Oct 2019 | A1 |
20190328546 | Palagi et al. | Oct 2019 | A1 |
20190343564 | Tempco et al. | Nov 2019 | A1 |
20190343565 | Tempco et al. | Nov 2019 | A1 |
20190343566 | Tempco et al. | Nov 2019 | A1 |
20190343567 | Tempco et al. | Nov 2019 | A1 |
20190343640 | Donner et al. | Nov 2019 | A1 |
20190343641 | Mauldin et al. | Nov 2019 | A1 |
20190343644 | Ryan et al. | Nov 2019 | A1 |
20190343645 | Miccio et al. | Nov 2019 | A1 |
20190343652 | Petersheim et al. | Nov 2019 | A1 |
20190343653 | McKay | Nov 2019 | A1 |
20190388131 | Mehl et al. | Dec 2019 | A1 |
20190388228 | Donner et al. | Dec 2019 | A1 |
20190388242 | Harris et al. | Dec 2019 | A1 |
20200000595 | Jones et al. | Jan 2020 | A1 |
20200008817 | Reiley et al. | Jan 2020 | A1 |
20200008850 | Mauldin et al. | Jan 2020 | A1 |
20200022817 | Crossgrove et al. | Jan 2020 | A1 |
20200038069 | Jones et al. | Feb 2020 | A1 |
20200046512 | Newman et al. | Feb 2020 | A1 |
20200069431 | Boehm et al. | Mar 2020 | A1 |
20200100822 | Lipow | Apr 2020 | A1 |
20200129214 | Pepper et al. | Apr 2020 | A1 |
20200146721 | Sadiq | May 2020 | A1 |
20200149137 | Roth | May 2020 | A1 |
20200222195 | Assell et al. | Jul 2020 | A1 |
20200246158 | Bergey | Aug 2020 | A1 |
20200261240 | Mesiwala et al. | Aug 2020 | A1 |
20200268525 | Mesiwala et al. | Aug 2020 | A1 |
20200315647 | Fojtik et al. | Oct 2020 | A1 |
20200315666 | Nichols et al. | Oct 2020 | A1 |
20200315669 | Dejardin | Oct 2020 | A1 |
20200345507 | Reiley | Nov 2020 | A1 |
20200345508 | Reiley | Nov 2020 | A1 |
20200345509 | Reiley | Nov 2020 | A1 |
20200345510 | Reiley | Nov 2020 | A1 |
20200375750 | Abbasi et al. | Dec 2020 | A1 |
20200397491 | Frey et al. | Dec 2020 | A1 |
20210022882 | Dang et al. | Jan 2021 | A1 |
20210107093 | Tempco | Apr 2021 | A1 |
20210153911 | Stuart et al. | May 2021 | A1 |
20210169660 | Reckling et al. | Jun 2021 | A1 |
20210212734 | Mesiwala et al. | Jul 2021 | A1 |
20210228360 | Hunt et al. | Jul 2021 | A1 |
20210236146 | Donner et al. | Aug 2021 | A1 |
20210338454 | Afzal | Nov 2021 | A1 |
20210353337 | Kaufmann et al. | Nov 2021 | A1 |
20210393408 | Ginn | Dec 2021 | A1 |
20210393409 | Ginn | Dec 2021 | A1 |
20220031474 | Reckling et al. | Feb 2022 | A1 |
20220151668 | Mauldin et al. | May 2022 | A1 |
20220273446 | Stuart et al. | Sep 2022 | A1 |
20220273447 | Ginn | Sep 2022 | A1 |
20220273448 | Ginn et al. | Sep 2022 | A1 |
20220280303 | Mauldin et al. | Sep 2022 | A1 |
20220296377 | Ginn et al. | Sep 2022 | A1 |
20220296378 | Ginn | Sep 2022 | A1 |
20220304813 | Ginn et al. | Sep 2022 | A1 |
20220304814 | Ginn | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
1128944 | Aug 1996 | CN |
1190882 | Aug 1998 | CN |
1909848 | Feb 2007 | CN |
101795632 | Aug 2010 | CN |
102361601 | Feb 2012 | CN |
102011001264 | Sep 2012 | DE |
102012106336 | Jan 2014 | DE |
1287796 | Mar 2003 | EP |
2070481 | Feb 2012 | EP |
2796104 | Oct 2014 | EP |
2590576 | Oct 2015 | EP |
2749238 | Mar 2017 | EP |
2887899 | Aug 2017 | EP |
2341852 | Aug 2018 | EP |
2496162 | Oct 2018 | EP |
3484387 | May 2019 | EP |
3593745 | Jan 2020 | EP |
3616634 | Mar 2020 | EP |
3661441 | Jun 2020 | EP |
2408389 | Apr 2021 | EP |
59200642 | Nov 1984 | JP |
05-176942 | Jul 1993 | JP |
05184615 | Jul 1993 | JP |
09149906 | Oct 1997 | JP |
10-85231 | Apr 1998 | JP |
11318931 | Nov 1999 | JP |
2002509753 | Apr 2002 | JP |
2003511198 | Mar 2003 | JP |
2003533329 | Nov 2003 | JP |
2003534046 | Nov 2003 | JP |
2004121841 | Apr 2004 | JP |
2004512895 | Apr 2004 | JP |
2004516866 | Jun 2004 | JP |
2006506181 | Feb 2006 | JP |
2007535973 | Dec 2007 | JP |
2008540036 | Nov 2008 | JP |
2009521990 | Jun 2009 | JP |
2009533159 | Sep 2009 | JP |
2010137016 | Jun 2010 | JP |
2015510506 | Apr 2015 | JP |
WO9731517 | Aug 1997 | WO |
WO0117445 | Mar 2001 | WO |
WO0238054 | May 2002 | WO |
WO03007839 | Jan 2003 | WO |
WO0402344 | Jan 2004 | WO |
WO2004043277 | May 2004 | WO |
WO2005009729 | Feb 2005 | WO |
WO2006003316 | Jan 2006 | WO |
WO2006023793 | Mar 2006 | WO |
WO2006074321 | Jul 2006 | WO |
WO2006116850 | Nov 2006 | WO |
WO2009025884 | Feb 2009 | WO |
WO2009029074 | Mar 2009 | WO |
WO2010105196 | Sep 2010 | WO |
WO2011010463 | Jan 2011 | WO |
WO2011110865 | Sep 2011 | WO |
WO2011124874 | Oct 2011 | WO |
WO2011149557 | Dec 2011 | WO |
WO2012015976 | Feb 2012 | WO |
WO2012048008 | Apr 2012 | WO |
WO2013000071 | Jan 2013 | WO |
WO2013052807 | Apr 2013 | WO |
WO2013119907 | Aug 2013 | WO |
WO2014145902 | Sep 2014 | WO |
WO2017147140 | Aug 2017 | WO |
WO2017147537 | Aug 2017 | WO |
Entry |
---|
Follini et al.; U.S. Appl. No. 17/777,679 entitled “Rod coupling assemblies for bone stabilization constructs,” filed May 18, 2022. |
Stuart et al.; U.S. Appl. No. 17/812,945 entitled “Sacro-iliac joint stabilizing implants and methods of implantation,” filed Jul. 15, 2022. |
Mauldin et al.; U.S. Appl. No. 17/805,165 entitled “Systems, device, and methods for joint fusion,” filed Jun. 2, 2022. |
Mauldin et al.; U.S. Appl. No. 17/822,360 entitled “Fenestrated implant,” filed Aug. 25, 2022. |
Acumed: Acutrak Headless Compressioin Screw (product information); 12 pgs; © 2005; retrieved Sep. 25, 2014 from http://www.rcsed.ac.uk/fellows/Ivanrensburg/classification/surgtech/acumed/manuals/acutrak-brochure%200311.pdf. |
Al-Khayer et al.; Percutaneous sacroiliac joint arthrodesis, a novel technique; J Spinal Disord Tech; vol. 21; No. 5; pp. 359-363; Jul. 2008. |
Khurana et al.; Percutaneous fusion of the sacroiliac joint with hollow modular anchorage screws, clinical and radiological outcome; J Bone Joint Surg; vol. 91-B; No. 5; pp. 627-631; May 2009. |
Lu et al.; Mechanical properties of porous materials; Journal of Porous Materials; 6(4); pp. 359-368; Nov. 1, 1999. |
Peretz et al.; The internal bony architecture of the sacrum; Spine; 23(9); pp. 971-974; May 1, 1998. |
Richards et al.; Bone density and cortical thickness in normal, osteopenic, and osteoporotic sacra; Journal of Osteoporosis; 2010(ID 504078); 5 pgs; Jun. 9, 2010. |
Wise et al.; Minimally invasive sacroiliac arthrodesis, outcomes of a new technique; J Spinal Disord Tech; vol. 21; No. 8; pp. 579-584; Dec. 2008. |
Schneider et al.; U.S. Appl. No. 17/443,388 entitled “Matrix implant,” filed Jul. 26, 2021. |
Lindsey et al.; U.S. Appl. No. 18/066,872 entitled “Threaded implants and methods of use across bone segments,” filed Dec. 15, 2022. |
Mesiwala et al.; U.S. Appl. No. 17/649,265 entitled “Implants for spinal fixation and or fusion,” filed Jan. 28, 2022. |
Mesiwala et al.; U.S. Appl. No. 17/649,296 entitled “Implants for spinal fixation and or fusion,” filed Jan. 28, 2022. |
Mauldin et al.; U.S. Appl. No. 17/650,473 entitled “Fenestrated implant,” filed Feb. 9, 2022. |
Number | Date | Country | |
---|---|---|---|
20220096098 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62563271 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16143061 | Sep 2018 | US |
Child | 17447550 | US |