Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye

Information

  • Patent Grant
  • 11523938
  • Patent Number
    11,523,938
  • Date Filed
    Thursday, May 9, 2019
    5 years ago
  • Date Issued
    Tuesday, December 13, 2022
    a year ago
Abstract
Delivery devices, systems and methods are provided for inserting an implant into an eye. The delivery or inserter devices or systems can be used to dispose or implant an ocular stent or implant, such as a shunt, in communication with a suprachoroidal space of the eye. The implant can drain fluid from an anterior chamber of the eye to a physiologic outflow path of the eye, such as, the suprachoroidal space or other portion of the uveoscleral outflow path. The delivery or inserter devices or systems can be used in conjunction with other ocular surgery, for example, but not limited to, cataract surgery through a preformed corneal incision, or independently with the inserter configured to make a corneal incision. The implant can be preloaded with or within the inserter to advantageously provide a sterile, easy-to-use package for use by an operator.
Description
FIELD

This disclosure generally relates to intraocular pressure reduction and more specifically to systems, devices and methods for delivering an intraocular implant to the suprachoroidal space within an eye to treat glaucoma, ocular hypertension and/or other ocular disorders.


BACKGROUND

A human eye is a specialized sensory organ capable of light reception and is able to receive visual images. Aqueous humor is a transparent liquid that fills at least the region between the cornea, at the front of the eye, and the lens. A trabecular meshwork, located in an anterior chamber angle, which is formed between the iris and the cornea, normally serves as a drainage channel for aqueous humor from the anterior chamber so as to maintain a balanced pressure within the anterior chamber of the eye.


Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is a major treatment goal in glaucomas.


In glaucomas associated with an elevation in eye pressure (intraocular hypertension), a main source of resistance to outflow is typically in the trabecular meshwork. The tissue of the trabecular meshwork normally allows the aqueous humor (hereinafter also referred to as “aqueous”) to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueous veins, which form the episcleral venous system. Aqueous is continuously secreted by a ciliary body around the lens, so there is a constant flow of aqueous from the ciliary body to the anterior chamber of the eye. Pressure within the eye is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) and uveoscleral outflow (minor route) pathways. The portion of the trabecular meshwork adjacent to Schlemm's canal (the juxtacanilicular meshwork) can cause most of the resistance to aqueous outflow.


Glaucoma is broadly classified into two categories: closed-angle glaucoma, also known as angle closure glaucoma, and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous from the anterior chamber of the eye.


Open-angle glaucoma is any glaucoma in which the exit of aqueous through the trabecular meshwork is diminished while the angle of the anterior chamber remains open. For most cases of open-angle glaucoma, the exact cause of diminished filtration is unknown. Primary open-angle glaucoma is the most common of the glaucomas, and is often asymptomatic in the early to moderately advanced stages of glaucoma. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment.


Most current therapies for glaucoma are directed toward decreasing intraocular pressure. Medical therapy includes topical ophthalmic drops or oral medications that reduce the production of aqueous or increase the outflow of aqueous. However, drug therapies for glaucoma are sometimes associated with significant side effects. The most frequent and perhaps most serious drawback to drug therapy, especially the elderly, is patient compliance. Patients often forget to take their medication at the appropriate times or else administer eye drops improperly, resulting in under- or overdosing. Patient compliance is particularly problematic with therapeutic agents requiring dosing frequencies of three times a day or more, such as pilocarpine. Because the effects of glaucoma are irreversible, when patients dose improperly, allowing ocular concentrations to drop below appropriate therapeutic levels, further permanent damage to vision occurs.


SUMMARY

As such, a need exists for a more facile, convenient, less invasive, and less traumatic means of delivering an intraocular pressure controlling implant into an eye while providing a cost-effective but safe surgical procedure. It is one advantage of certain embodiments of the invention(s) disclosed herein to provide delivery devices, systems and methods for inserting an implant into an eye. The delivery or inserter devices or systems can be used to dispose or implant an ocular stent or implant, such as a shunt, in communication with the suprachoroidal space, uveoscleral outflow pathway (sometimes referred to as uveal scleral outflow pathway) and/or supraciliary space of the eye. The implant can drain fluid from an anterior chamber of the eye to a physiologic outflow path of the eye, such as, the suprachoroidal space, uveoscleral outflow pathway, or supraciliary space. Alternatively, or in addition, the implant can elute a drug or therapeutic agent. The delivery or inserter devices or systems can be used in conjunction with other ocular surgery, for example, but not limited to, cataract surgery through a preformed corneal incision, or independently with the inserter configured to make a corneal or limbal incision. The implant can be preloaded with or within the inserter to advantageously provide an operator-friendly package, such as a sterile package, for convenient use by a surgeon, doctor or operator. In some embodiments, the implant is not preloaded within the delivery device or inserter and/or is not provided within the same package as the delivery device or inserter.


While a majority of the aqueous leaves the eye through the trabecular meshwork and Schlemm's canal, it is believed that at least about 10 to about 20 percent of the aqueous in humans leaves through the uveoscleral pathway. The degree with which uveoscleral outflow contributes to the total outflow of the eye appears to be species dependent. As used herein, the term “uveoscleral outflow pathway” is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to the space or passageway whereby aqueous exits the eye by passing through the ciliary muscle bundles located at or near an angle of the anterior chamber and into the tissue planes between the choroid and the sclera, which extend posteriorly to the optic nerve. From these tissue planes, it is believed that the aqueous travels through the surrounding scleral tissue and drains via the scleral and conjunctival vessels, or is absorbed by the uveal blood vessels.


As used herein, the term “supraciliary space” is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to the portion of the uveoscleral pathway through the ciliary muscle and between the ciliary body and the sclera, and the term “suprachoroidal space” is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to the portion of the uveoscleral outflow pathway between the choroid and sclera.


The term “implant” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to drainage shunts, stents, sensors, drug delivery implants, drugs, therapeutic agents, fluids, or any other device or substance capable of being permanently or temporarily inserted within an eye and left within a body after removal of a delivery instrument.


As used herein, “implants” refers to ocular implants which can be implanted into any number of locations in the eye. In some embodiments, the ocular implants are drainage implants designed to facilitate or provide for the drainage of aqueous humor from the anterior chamber of an eye into a physiologic outflow pathway in order to reduce intraocular pressure. In some embodiments, the implant can be configured to provide a fluid flow path for draining aqueous humor from the anterior chamber to a uveoscleral outflow pathway. In some embodiments, the aqueous humor is diverted to the supraciliary space and/or the suprachoroidal space of the uveoscleral outflow pathway.


If desired, more than one implant of the same or different type may be implanted. For example, the implants disclosed herein may be used in combination with trabecular bypass shunts, such as those disclosed in U.S. Patent Publication 2004/0050392, filed Aug. 28, 2002, and those described in U.S. Patent Publication 2005/0271704, filed Mar. 18, 2005, the entire contents of each of which are incorporated herein by reference. Additionally, implantation may be performed in combination with other surgical procedures, such as cataract surgery. All or a portion of the implant may be coated, e.g. with heparin, preferably in the flow path, to reduce blood thrombosis or tissue restenosis.


In some embodiments, at least some slight and/or predetermined flexibility is provided to an obturator, or trocar, of an implant delivery system for ocular tissue penetration and to conform with an eye's structure and anatomy at or along the pathway to an implantation site. In some embodiments, at least some slight and/or predetermined flexibility is provided to an implant or stent to conform with the eye's structure and anatomy at or along the pathway to an implantation site. The terms “obturator” and “trocar” are used interchangeably herein, and in addition to their ordinary meanings, may refer to an elongate instrument with a generally rounded or non-sharp distal tip.


In accordance with several embodiments, an ocular implant delivery system includes a delivery device (e.g., an applicator or inserter) and an ocular implant. The implant may be preloaded on or within the delivery device and provided as a kit within a package for convenient use by an operator. The delivery device may include a generally elongated outer housing that is ergonomically contoured. The delivery device may also include an elongated insertion sleeve partially disposed in the outer housing and having a non-linear exposed distal portion extending out of a distal end of the housing. The non-linear exposed distal portion of the insertion sleeve may have a curvature adapted to conform to an anatomical curvature of the eye, such as the cornea and/or sclera. The delivery device may include an obturator, or trocar, passing through a lumen of the insertion sleeve and having a non-linear distal portion extending beyond the non-linear distal portion of the insertion sleeve. In one embodiment, the obturator has a rounded, blunt or non-faceted distal end. In use, the non-linear distal portion of the obturator is adapted to provide access to a suprachoroidal space through a ciliary muscle attachment. In one embodiment, the access is provided without dissecting a ciliary body portion at the anterior chamber angle from the sclera but instead is provided by insertion of the obturator through a fibrous band of the ciliary muscle. In some embodiments, the non-linear distal portion of the obturator is flexible and has a curvature adapted to maintain pressure against the sclera during insertion into the suprachoroidal space. The delivery device may also include a trigger operatively coupled to the obturator such that movement of the trigger towards a proximal end of the housing retracts the obturator within the insertion sleeve, thereby deploying the implant off of the obturator.


The implant is adapted to be disposed on the non-linear portion of the obturator and positioned distally of the non-linear distal portion of the insertion sleeve prior to insertion of the delivery device into an eye. For example, the implant may be loaded on the obturator by inserting a distal end of the obturator within a lumen of the implant and advancing the implant over the obturator or advancing the obturator toward a distal end of the implant. In some embodiments, in use, a distal end of the insertion sleeve is adapted to react against a proximal end of the implant as the obturator is being retracted to deliver the implant. The insertion sleeve may be sized to extend through a corneal incision and into an anterior chamber of the eye. In some embodiments, the implant has a curvature which substantially matches the curvature of the non-linear portion of the obturator. In some embodiments, the curvature of the non-linear distal portion of the obturator and/or the implant is larger than a diameter of the eye.


In use, the trigger may be manually controlled and held in a forward position, and retracted in a backward motion to cause delivery of the implant once a distal end of the implant has been advanced to a desired location within the suprachoroidal space, wherein the backward motion of the obturator is adapted to prevent against over-insertion of the implant within the suprachoroidal space. In some embodiments, a distal tip of the obturator is rounded so as not to cause scraping of the sclera while still being adapted to provide access to the suprachoroidal space through the ciliary muscle attachment.


In some embodiments, the implant is an elongate tube having an outer diameter of the implant is between 300 and 400 microns. In some embodiments, a distal portion of the implant includes a plurality of circumferential retention members. A distal tip of the implant may be tapered. A proximal end of the implant may include a flange. In some embodiments, the delivery device includes reuse prevention structures configured to limit use to a single use. For example, the reuse prevention structures ma include a pair of glue blocks mounted on each side of a trigger of the obturator adapted to melt upon sterilization to lock the trigger against further use.


In accordance with several embodiments, an ocular implant delivery system includes a delivery device, applicator or inserter having a generally elongated outer housing that is ergonomically contoured and an elongated insertion needle partially disposed in the outer housing and having a non-linear exposed distal portion. The delivery device may further include an implant pusher tube extending through a lumen of the elongated insertion needle and having a non-linear distal portion. In one embodiment, the delivery device includes an obturator passing through a lumen of the pusher tube and having a non-linear distal portion. In use, the non-linear distal portion of the obturator may be adapted to provide access to a suprachoroidal space through a ciliary muscle attachment. The non-linear distal portion of the obturator may be flexible and have a curvature adapted to maintain pressure against the sclera during insertion into the suprachoroidal space. The delivery device may also include a pusher tube trigger operatively coupled to the pusher tube such that movement of the pusher tube trigger towards a proximal end of the housing retracts the obturator toward the housing. In use, a distal end of the pusher tube may be adapted to react against a proximal end of an implant loaded on to the obturator as the obturator is being retracted within the housing to deliver the implant.


In one embodiment, the insertion needle is a corneal penetration needle (e.g., a 25±5 gauge needle) adapted to create a self-sealing corneal incision (e.g., at or near the corneal limbus). The non-linear portions of the insertion needle, pusher tube and/or obturator may have a substantially matching curvature. The system may also include an implant preloaded onto the obturator and provided together with the delivery device in a kit or packaging. The implant may have a curvature that substantially conforms to or matches, the curvatures of the insertion needle, pusher tube and obturator.


In some embodiments, the pusher tube trigger is operatively coupled to a trigger of the obturator. The obturator may be advanceable and retractable by actuation of the trigger of the obturator. In some embodiments, when the pusher tube is fully advanced the pusher tube is locked to prevent further motion. The delivery device may include reuse prevention structures designed and/or adapted to limit use of the delivery device to a single use. For example, the reuse prevention structures may include a pair of glue blocks mounted on each side of the pusher tube trigger adapted to melt upon sterilization to lock the pusher tube trigger against further use.


In accordance with several embodiments, an ocular implant delivery device includes a generally elongated outer housing that is ergonomically contoured and an elongated insertion sleeve partially disposed in the outer housing and having a non-linear exposed distal portion. The ocular implant delivery device may also include a tubular support member surrounding a portion of the elongated insertion sleeve. The tubular support member may have a proximal end within the outer housing and a distal end extending outside of the outer housing. The tubular support member may be configured to facilitate coupling of the elongated insertion sleeve to the outer housing. The tubular support member may surround a portion of the elongated insertion sleeve. The delivery device may also include an obturator passing through a lumen of the elongated insertion sleeve and having a non-linear distal portion extending beyond the non-linear exposed distal portion of the elongated insertion sleeve and a trigger operatively coupled to the obturator such that actuation of the trigger retracts the obturator into the insertion sleeve, thereby causing a proximal end of an implant disposed on the non-linear portion of the obturator to react against a distal end of the insertion sleeve so as to facilitate deployment of the implant from the obturator. In some embodiments, the non-linear distal portion of the obturator carrying the implant is configured to be advanced into a suprachoroidal space of an eye and the non-linear distal portion of the obturator has a curvature configured to be larger than a diameter of the eye.


For purposes of summarizing embodiments of the invention(s), certain aspects, advantages and novel features of the invention have been described herein above. Of course, it is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other advantages as may be taught or suggested herein.


All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS

Having thus summarized the general nature of some of the embodiments of the invention(s) and some of their features and advantages, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, which are intended to illustrate and not to limit the disclosure.



FIG. 1 is a simplified schematic sectional view of a portion of an eye illustrating certain ocular anatomical features thereof and therein.



FIG. 2 is a simplified perspective view of an implant delivery device preloaded with an ocular implant (which is shown in detail in FIG. 2A), illustrating features and advantages in accordance with certain embodiments.



FIG. 3 is a simplified exploded perspective view of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.



FIG. 4 is a simplified partially cut-off side view of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.



FIG. 5 is a simplified side view of an ocular implant illustrating features and advantages in accordance with certain embodiments.



FIG. 6 is a simplified bottom or lower view of the ocular implant of FIG. 5 illustrating features and advantages in accordance with certain embodiments.



FIG. 7 is a simplified top or upper view of the ocular implant of FIG. 5 illustrating features and advantages in accordance with certain embodiments.



FIG. 8 is a simplified sectional view along line 8-8 of the ocular implant of FIG. 7 illustrating features and advantages in accordance with certain embodiments.



FIG. 9 is a simplified side view of an insertion sleeve of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.



FIG. 10 is a simplified perspective view of an insertion sleeve assembly of the implant delivery device of FIG. 2, including the insertion sleeve of FIG. 9, illustrating features and advantages in accordance with certain embodiments.



FIG. 11 is a simplified side view of the insertion sleeve assembly of FIG. 10 illustrating features and advantages in accordance with certain embodiments.



FIG. 12 is a simplified perspective of a trocar assembly of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.



FIG. 13 is a simplified side view of the trocar assembly of FIG. 12 illustrating features and advantages in accordance with certain embodiments.



FIG. 14 is a simplified distal end view of the trocar assembly of FIG. 12 illustrating features and advantages in accordance with certain embodiments.



FIG. 15 is a simplified proximal end view of the trocar assembly of FIG. 12 illustrating features and advantages in accordance with certain embodiments.



FIG. 16 is a simplified perspective view of a trocar trigger of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.



FIG. 17 is a simplified perspective view of a safety clip of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.



FIGS. 18 to 22 are simplified schematic views illustrating a surgical procedure or method of implanting an ocular implant in the suprachoroidal space of an eye using the implant delivery device of FIG. 2, having features and advantages in accordance with certain embodiments, wherein: FIG. 18 illustrates insertion of the implant and the delivery device into an anterior chamber of the eye; FIG. 19 illustrates positioning of the implant at an implantation site; FIG. 20 illustrates advancement and implantation of the implant in a suprachoroidal space formed between the choroid and the sclera; FIG. 21 illustrates retraction of a trocar of the delivery device from the suprachoroidal space; and FIG. 22 illustrates the removal of the delivery device from the anterior chamber of the eye with the implant remaining within the eye.



FIG. 23 is a simplified perspective view of an implant delivery device, preloaded with an ocular implant, illustrating features and advantages in accordance with certain embodiments.



FIG. 24 is a simplified exploded perspective view of the implant delivery device, including the implant, of FIG. 23 illustrating features and advantages in accordance with certain embodiments.



FIG. 25 is a simplified side view of a penetration needle of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.



FIG. 26 is a simplified bottom or lower view of the penetration needle of FIG. 25 illustrating features and advantages in accordance with certain embodiments.



FIG. 27 is a simplified perspective view of a penetration needle assembly of the implant delivery device of FIG. 23, including the penetration needle of FIG. 25, illustrating features and advantages in accordance with certain embodiments.



FIG. 28 is a simplified side view of the penetration needle assembly of FIG. 27 illustrating features and advantages in accordance with certain embodiments.



FIG. 29 is a simplified top or upper view of the penetration needle assembly of FIG. 27 illustrating features and advantages in accordance with certain embodiments.



FIG. 30 is a simplified sectional view along line 30-30 of FIG. 29 illustrating features and advantages in accordance with certain embodiments.



FIG. 31 is a simplified perspective view of a trocar assembly of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.



FIG. 32 is a simplified side view of the trocar assembly of FIG. 31 illustrating features and advantages in accordance with certain embodiments.



FIG. 33 is a simplified perspective view of a trocar trigger of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.



FIG. 34 is a simplified perspective view of a pusher tube assembly of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.



FIG. 35 is a simplified side view of the pusher tube assembly of FIG. 34 illustrating features and advantages in accordance with certain embodiments.



FIG. 36 is a simplified perspective view of a pusher tube trigger of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.



FIG. 37 is a simplified perspective detail view from FIG. 24 of the engagement between a collar of the trocar assembly and the trocar trigger and between a collar of the pusher tube assembly and the pusher tube trigger illustrating features and advantages in accordance with certain embodiments.



FIGS. 38A and 38B illustrate an implant loaded on the obturator, or trocar, of the delivery device of FIG. 23 and a distal end of the delivery device of FIG. 23, respectively, in accordance with certain embodiments.



FIGS. 39 to 44 are simplified schematic views illustrating a surgical procedure or method of implanting an ocular implant in the suprachoroidal space of an eye using the implant delivery device of FIG. 23, having features and advantages in accordance with certain embodiments, wherein: FIG. 39 illustrates insertion of the implant and the delivery device into an anterior chamber of the eye through an incision made by an insertion needle of the delivery device; FIG. 40 illustrates deployment of a trocar and a pusher tube of the delivery or inserter system or device such that the implant is exposed within the anterior chamber; FIG. 41 illustrates positioning of the implant at an implantation site; FIG. 42 illustrates advancement and implantation of the implant in the suprachoroidal space; FIG. 43 illustrates retraction of a trocar of the delivery device from the suprachoroidal space; and FIG. 44 illustrates the removal of the delivery device from the anterior chamber of the eye with the implant remaining within the eye.





DETAILED DESCRIPTION

The preferred embodiments of the invention described herein relate generally to intraocular pressure reduction and, in particular, to systems, devices and methods for delivering an intraocular implant to the suprachoroidal space, supraciliary space or other anatomical space within a uveoscleral outflow pathway of an eye to treat glaucoma, ocular hypertension and/or other ocular disorders.


While the description sets forth various embodiment specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein.



FIG. 1 shows relative anatomical features of an eye 10. The features include an anterior chamber 32 and a sclera 38, which is a thick collagenous tissue that covers the entire eye 10 except a portion that is covered by a cornea 36. The cornea 36 is a thin transparent tissue that focuses and transmits light into the eye and through a pupil 42, which is a generally circular hole in the center of an iris 44 (colored portion of the eye), to a lens 48. The cornea 36 merges into the sclera 38 at a juncture referred to as a limbus 45. Ciliary bodies 46 are vascular tissue that extend along the interior of the sclera 38 from the outer edges of the iris in the limbal region to a choroid 40.


The anterior chamber 32 of the eye 10, which is bound anteriorly by the cornea 36 and posteriorly by the iris 44 and the lens 48, is filled with aqueous humor or aqueous fluid (which may be simply referred to herein as aqueous). Aqueous is produced primarily by the ciliary bodies 46 and flows into the posterior chamber, bounded posteriorly by the lens 48 and anteriorly by the iris 44. The aqueous humor then flows anteriorly through the pupil 42 and into the anterior chamber 32 until it reaches an anterior chamber angle 50, formed generally between the iris 44 and the cornea 36.


In a normal eye, at least some of the aqueous humor drains from the anterior chamber 32 through a trabecular meshwork into Schlemm's canal and thereafter through a plurality of collector ducts and aqueous veins, which merge with blood-carrying veins, and into systemic venous circulation. Intraocular pressure is maintained by an intricate balance between secretion and outflow of aqueous humor in the manner described above. Glaucoma is, in most cases, characterized by an excessive buildup of aqueous humor in the anterior chamber 32, which leads to an increase in intraocular pressure. Fluids are relatively incompressible, and thus, intraocular pressure is distributed relatively uniformly throughout the eye 10.


The choroid 40 is a vascular layer of the eye 10 located between the sclera 38 and a retina (not identified in FIG. 1). An optic nerve (not shown) transmits visual information to the brain and is the anatomic structure that is progressively destroyed by glaucoma, ocular hypertension, and/or other ocular or ophthalmic disorders.


Another existing aqueous drainage route is provided through a suprachoroidal space 34, which is a space or region generally defined between the sclera 38 and the choroid 40. The suprachoroidal space 34 is exposed to the anterior chamber 32 through the anterior chamber angle 50. The tissue connection between the anterior chamber 32 and suprachoroidal space 34 is generally via a fibrous attachment zone 60 generally disposed between a scleral spur 62 and iris processes 64 and/or ciliary muscle 66, which is a part of the choroid 40.


Certain embodiments of suprachoroidal implants, delivery devices, associated components and suprachoroidal implantation methods and procedures, and the like, among others, are disclosed in U.S. Patent Application Publication No. 2008/0228127, published Sep. 18, 2008, the entire content of which is incorporated by reference herein.


Delivery Device for Advancing Implant Through Pre-Formed Corneal Incision



FIGS. 2-4 show different views of an implant delivery device or applicator 110, preloaded with an ocular implant 120, in accordance with some embodiments. The delivery device 110 is configured to implant at least a portion of the implant 120 in the suprachoroidal space 34 of the eye 10. In some embodiments, the delivery method is performed via an ab interno insertion procedure. In some embodiments, the implant delivery method is performed in combination with other ocular surgery, such as cataract surgery, and the implant is delivered through a preformed incision in the cornea or at the corneal limbus, which may be formed in conjunction with the other ocular surgery. The incision may be a self-sealing incision to facilitate quick recovery without requiring sutures. In some embodiments, the ocular implant 120 is not preloaded within delivery device 110 (e.g., not preloaded in packaging at time of shipping).


The implant delivery device 110 can be provided in a sterile packaging for single-use operation. For example, a double polythene bag may be used for sterility purposes, in combination with a blister packaging to facilitate use by the operator while still maintaining safe usage.


The delivery device 110 is generally elongate in structure, and generally comprises an outer housing and handpiece 122, an implant retainer 124 (see FIG. 2A), an insertion sleeve, tube or needle assembly 126, a trocar assembly 128, a trocar trigger 130, a trigger safety device 132 and a pair of reuse prevention structures 134a and 134b.


The outer housing 122 encloses various componentry of the delivery device 110 and can comprise two housing portions such as a left housing portion 136a and a right housing portion 136b, which can be attached during fabrication of the delivery device 110.


Selected portions of the outer housing and handpiece 122 have ergonomic features such as the hand grip area 138a, which has a ribbed texture or the like to facilitate manual handling by a surgeon, medical operator or practitioner (a similar hand grip area may be provided on the right housing portion 136b). Various internal structures of the outer housing 122 engage the other components of the delivery device 110, as discussed further below.


The outer housing 122 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the outer housing 122 comprises a thermoplastic material such as medical grade polycarbonate that is gamma stable.


The outer housing 122 can efficaciously be dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the outer housing 122 has a length of about 5.60 inches, though other lengths may also be efficaciously utilized, for example, based on the size of the user's hand (e.g., between about 4 inches and about 8 inches or any length in between).


The implant retainer 124 (see FIG. 2A) is a generally disc shaped structure that is removably mounted on a distal tip of the trocar assembly 128 just distally of the implant 120. The implant retainer 124 is removed before the delivery device 110 is used. The implant retainer 124 may prevent undesirable movement of the implant 120 and prevent the implant 120 from sliding off the distal tip of the trocar assembly 128 during packaging, shipping and travel of the implant delivery device 110. The implant retainer 124 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the implant retainer 124 comprises molded silicone.


The insertion sleeve assembly 126 generally comprises an insertion sleeve 140 and a support member 142 fixedly attached thereto and to the outer housing 122. The insertion sleeve 140 may comprise a sleeve, tube or needle. The support member 142 may comprise a sleeve. Distal portions of the insertion sleeve 140 and support member 142 are exposed and extend beyond the distal tip of the delivery device 110 while proximal portions of the insertion sleeve 140 and support member 142 are contained within the outer housing 122. The insertion sleeve assembly 126 is discussed in further detail later herein.


The trocar assembly 128 generally comprises an obturator, or trocar, 144 and a trocar support member 146 attached thereto. The trocar support member 146 is mechanically coupled, connected or attached to the actuatable trocar trigger 130. In one embodiment, the trocar support member 146 is a clip, as illustrated in FIGS. 2-4. A substantial portion of the trocar 144 can extend through the insertion sleeve 140 with a distal portion extending beyond the insertion sleeve 140 on which the implant 120 is located. A proximal portion of the trocar 144 and the trocar support member 146 are contained within the outer housing 122. The trocar assembly 128 is discussed in further detail later herein.


The trocar trigger 130 generally comprises an upper finger or thumb actuatable portion 148 and a lower main body portion 150. The actuatable trigger portion 148 generally extends above the housing 122 while the main body portion 150 is generally contained within the housing 122. Before use, the trocar trigger 130 is in a forward position and, when in use, it is utilized to retract the trocar 144. The trigger main body portion 150 is mechanically coupled, connected or attached to the trocar assembly 128. The trocar trigger 130 is discussed in further detail later herein.


The trigger safety device 132 is removable and is positioned generally rearwardly with respect to the trocar trigger 130 and is mechanically coupled or engaged with the trocar trigger 130. The trigger safety device 132 prevents undesirable motion of the trocar trigger 130 during packaging, shipping and travel of the implant delivery device 110, as also discussed further below. In one embodiment, the trigger safety device 132 is a clip.


The reuse prevention structures 134a and 134b are mounted on each side of the trocar trigger 130 and within the outer housing 122. The reuse prevention structures 134a and 134b may advantageously provide a safety function to disallow reuse of the delivery device 110 so as to prevent any cross-contamination between unauthorized reuse of the single use device 110. As discussed further below, the reuse prevention structures 134a and 134b, in one embodiment, are glue blocks or preform structures that are adapted to melt, dissolve or otherwise shrink or disappear when any unapproved re-sterilization of the delivery device 110 is attempted and lock or jam the trocar trigger 130 so that its movement is thwarted. In some embodiments, a hot melt adhesive is used to freeze the trigger mechanism and prevent use after autoclave.



FIGS. 5-8 show different views of the ocular implant, stent or shunt 120 in accordance with some embodiments. The implant 120 generally comprises an elongate implant body 151 and a proximal implant sleeve 152. The implant 120 and/or the implant body 151 comprises a lumen, channel, pathway or passage 154 extending therethrough for drainage of fluid (e.g., aqueous) from the anterior chamber 32 to the suprachoroidal space 34 and a plurality of generally circumferential retention features or structures, ribs, rings or anchors 156 to facilitate implantation and retention and/or stability in the suprachoroidal space 34. In the illustrated embodiment, the implant 120 comprises four retention features; however, other numbers of retention features may be used (e.g., two, three, five, six, seven, eight or more).


The implant 120 and/or the implant body 151 further comprises respective distal and proximal ribs, flanges or stops 158 and 160 which may hold the sleeve 152 in place. Moreover, the proximal structure 160 is dimensioned so that the implant cannot move rearwardly with respect to the distal end of the insertion sleeve 140. Thus, the insertion sleeve 140 can act as a backing tube to react against a proximal end of the implant 120 during removal of the implant 120 from the delivery device 110.


Advantageously, the implant 120 and/or the implant body 151 has a predetermined curvature and/or flexibility that substantially matches the curvature of the sclera and/or facilitates proper insertion in the suprachoroidal space 34. In some embodiments, the curvature of the implant 120 is configured to keep pressure on the sclera during implantation and prevent “understeer” and/or choroid penetration. In some embodiments, the curvature of implant is greater than a diameter of the eye (e.g., greater than 1 inch). The lumen 154, in accordance with certain embodiments, allows for drainage or flow of fluid (e.g., aqueous) from the anterior chamber 32 to the suprachoroidal space 34. The length of the implant 120 can range from about 1 mm to about 8 mm (e.g., 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm).


The implant 120 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the implant body 151 comprises a plastic, such as polyethersulfone (PES), and the sleeve 152 comprises a metal or alloy, such as titanium or a titanium alloy. In some embodiments, the sleeve 152 provides a visual aid in determining the proper depth of stent placement during implantation (e.g., one or more radiopaque markers).


The implant 120, in some embodiments, can also comprise a therapeutic agent or drug. For example, at least a portion of the implant 120 is coated with a therapeutic agent or drug. In one embodiment, at least the implant lumen 154 is coated with a therapeutic agent or drug, such as, but not limited to, heparin or the like.


The implant 120 can be efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R8 is about 1 inch, the diameter D8 is about at least 0.0063 inches, and the diameter D5 is about at least 340 microns. In some embodiments, the curvature is larger than the diameter of the eye (e.g., larger than 1 inch) to maintain pressure on the sclera during implantation. The implant 120 can be symmetrically designed such that it may be used in either the left or right eye. Other implants can be delivered by the delivery devices 110, 210 in addition to the implant 120.



FIGS. 9-11 show different views of the insertion sleeve assembly 126 and insertion sleeve 140 in accordance with some embodiments. The insertion sleeve 140 is a generally elongated tubular structure with a lumen 162 extending therethrough and a distal curved or non-linear portion 164 to desirably facilitate ab interno suprachoroidal implantation.


The insertion sleeve support 142 is an elongated member through which a portion of the insertion sleeve 140 extends and is fixedly attached thereto. The insertion sleeve support 142 includes a collar 166 which mates with a corresponding portion of the outer housing 122 to fixedly attach these structures.


The insertion sleeve 140 receives a portion of the trocar 144 which passes through the sleeve lumen 162. The sleeve distal curved or non-linear portion 164 advantageously provides proper curvature and alignment of the trocar 144 and/or the implant 120 for suprachoroidal implantation.


The insertion sleeve assembly 126 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the insertion sleeve 140 and sleeve support 142 comprise a liquid crystal polymer or thermoplastic such as polycarbonate which are molded to form the assembly. In another non-limiting embodiment, the insertion sleeve 140 and sleeve support 142 comprise stainless steel and are welded (spot or continuous) to form the assembly. The insertion sleeve 140 can efficaciously comprise 26±5 gauge hypodermic tubing, as required or desired, including 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 gauge.


The insertion sleeve assembly 126 can be efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the length L91 is about 1.8 inches, the length L92 is about 0.06 inches, the diameter D91 is about 0.018 inches, the diameter D92 is about 0.001 inches, the radius of curvature R9 is about 0.11 inches, and the angle θ9 is about 28° (degrees).



FIGS. 12-15 show different views of the trocar assembly 128, in accordance with some embodiments. The obturator, or trocar, 144 is a generally elongated structure with a curved or non-linear distal portion 168 having a distal-most end 170 that is configured to optimally penetrate ocular tissue so as to access the suprachoroidal space 34. In one embodiment, the distal-most end is rounded to glide smoothly down the sclera while still being adapted to dissect and separate the ciliary muscle attachment in order to enter the suprachoroidal space 34 atraumatically. In one embodiment, the distal-most end is adapted to puncture through a fibrous band at the anterior chamber angle to enter the suprachoroidal space 34.


The obturator, or trocar, 144 extends through the trocar support member 146, which is configured to engage the trocar trigger 130, and be retractable on actuation of the trocar trigger 130. The curved distal portion 168 may have a predetermined curvature to allow a proper angle of attack to penetrate ocular tissue to provide access for implantation of the implant 120 in the suprachoroidal space 34. The trocar may have slight flexibility to facilitate conformance to the eye anatomy during insertion. In one embodiment, the predetermined curvature is adapted to keep pressure on the sclera during implantation and prevent or inhibit “understeer” or choroid penetration.


In some embodiments, the trocar support member 146 is configured to mechanically engage, couple, connect or fixedly attach to a recessed portion of the trocar trigger 130. Thus, actuation or retraction of the trocar trigger 130 may result in movement and retraction of the obturator, or trocar 144.


The trocar assembly 128 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trocar 144 comprises a metal or metal alloy such as spring tempered 304 stainless steel with a predetermined flexibility and resilience, and the trocar support member 146 comprises a metal or metal alloy such as 301 stainless steel with a predetermined hardness. The trocar 144 and trocar support member 146 can be welded together, such as, denoted by weld spots 172, or otherwise attached in other suitable manners, for example molding and the like, as needed or desired.


The trocar assembly 128 can be efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R13 of the trocar distal curved portion 168 is about 1 inch (which generally conforms to the implant's radius of curvature and may prevent implant creep), the diameter D13 is about 0.006 inches (which provides a low tolerance fit within the implant's lumen), the length L13 is about 0.17 inches, the overall unbent length of the trocar 144 is about 2.3 inches, and the radius of curvature of the trocar distal end tip 170 is in the range from about 0.001 to about 0.003 inches. In various embodiments, the radius of curvature R13 of the trocar distal curved portion 168 can range from 0.4 inches to about 2.2 inches. In one embodiment, the curvature of the distal curved portion 168 is configured to be larger than the diameter of the eye (e.g., larger than 1 inch) in order to maintain pressure against the sclera during the implantation procedure.



FIG. 16 shows a different view of the trocar trigger 130, in accordance with some embodiments. The ergonomic upper finger or thumb touch portion 148 has a ribbed texture configuration to facilitate its actuation by the operator. The lower main body portion 150 has several features that allow for the operation of the trocar trigger 130.


The trigger main body portion 150 comprises a slot, cavity, opening or recessed portion 171 which mates with and attaches to a portion of the trocar support member 146 (e.g., clip) thereby effectively coupling and connecting the trocar trigger 130 and the trocar 144. The trigger main body portion 150 may also comprise multiple pins 174 disposed generally symmetrically on either side, which slidably engage the internal structure of the outer housing 122, such as the left and right slots therein (one of which slots is depicted by reference numeral 178b in FIGS. 3 and 4).


The trigger main body portion 150 further comprises slots 176 on each side that respectively receive the reuse prevention structures 134a and 134b (e.g., glue blocks) that are mounted therein. As noted above, and discussed further herein, the glue blocks can be configured to melt, dissolve, or otherwise shrink or disappear and lock the trocar trigger 130 to prevent unapproved use for the safety of the patient. Other reuse prevention mechanisms may also be used. In some embodiments, a hot melt adhesive is used to freeze the trigger mechanism and prevent use after autoclave.


The trocar trigger 130 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trocar trigger 130 comprises a plastic or thermoplastic, such as polyethylene.



FIG. 17 shows a different view of the removable trigger safety device 132, in accordance with some embodiments. An upper portion 178 is exposed above the outer housing 122 and a lower portion 180 is contained within the outer housing 122. As shown, the trigger safety device 132 can comprise a clip mechanism.


As noted earlier, the trigger safety device 132 is configured to prevent or inhibit undesirable motion of the trocar trigger 130 during packaging, shipping and travel of the implant delivery device 110. The lower portion 180 is engaged with the trocar trigger 130 prior to use of the delivery device 110 and, by manipulation of the upper portion 178, the trigger safety device 132 is removed from the delivery device 110 prior to the surgical procedure.


The trigger safety device 132 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trigger safety device 132 comprises a thermoplastic such as a polycarbonate, for example, Makrolon® 2458.


The delivery device 110 generally comprises, but is not limited to, materials composed of stainless steel, molded plastic and silicone, among others and equivalents thereof.


Methods of Implant Delivery Through Pre-Formed Corneal Incision



FIGS. 18-22 show some steps or acts of a surgical procedure or method of implanting the ocular implant 120 in the suprachoroidal space 34 of the eye 10 using the implant delivery device 110 in accordance with some embodiments. Given the details in the figures, the surgical method should be self-explanatory; however some textual description is provided below.


In some embodiments, a cohesive viscoelastic is added to the anterior chamber, as needed, to maintain intraocular pressure for use of a gonioprism (surgeons may select a cohesive viscoelastic of their preference, including but not limited to, Healon, Amvisc or Provisc) through the incision created for implant or stent delivery or other surgery (e.g., cataract surgery).


If a gonioprism is used for visualization, the gonioprism is placed on the cornea. A surgical microscope and patient may be positioned to provide clear visualization of the trabecular meshwork on the nasal side of the eye through the gonioprism. The patient's head may be tilted as far as practical away from the surgeon, and the microscope may be tilted toward the surgeon to ensure a proper viewing angle.


In some embodiments, the anterior chamber angle is inspected using the gonioprism or other visualization member to ensure good visualization at the nasal implant location.


The implant delivery device 110 is removed from the blister tray and the implant retainer 124 is removed from the implant and trocar tip (e.g., using fine forceps) without disrupting the implant position and taking care that the implant 120 does not slide off the trocar 144.


The trigger safety device 132 may then be removed, taking care once again that the implant 120 does not slide off the trocar 144, and that the trocar trigger 130 is maintained in the forward position by the operator, and does not slide rearward.


If required, the anterior chamber can be deepened by injecting additional cohesive viscoelastic into the anterior chamber to aid in chamber maintenance. The inserter tip can be coated with a small drop of viscoelastic, as required.


In accordance with some embodiments, the implantation procedure is performed in conjunction with another ophthalmic procedure, such as cataract surgery, and as illustrated in FIG. 18, the delivery instrument 110 with the implant 120 preloaded thereon at a distal portion thereof is introduced or inserted into the anterior chamber 32 through a preexisting or preformed corneal or limbal incision 70. The insertion sleeve 140 extends through the incision 70 and into the anterior chamber 32. The trocar trigger 130 is maintained in the forward position by the operator. The delivery device 110 may be advanced to the papillary margin before replacing the gonioprism onto the eye. In some embodiments, care is taken to avoid contact with the lens 48, cornea 36 and iris 44. Preloading the implant 120 on the delivery instrument 110 may reduce loading errors and contribute to ease of use.


As illustrated in FIG. 19, the implant 120 may be advanced across the anterior chamber 32 to the anterior chamber angle 50 towards the scleral spur 62, until the trocar distal end 170 is adjacent the fibrous attachment zone 60. The trocar trigger 130 is maintained in the forward position by the operator. In accordance with some embodiments, the angle of attack θ19 is about 15° (degrees), though 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20° (degrees) or other attack angles may efficaciously be utilized, as needed or desired. In some embodiments, the delivery device 110 has a built-in configuration or design for a generally downward angle of about 15° (±5°-10°) (degrees) at the site of implantation or towards this site.


Next, as illustrated in FIG. 20, the trocar distal tip or end 170 penetrates through the tissue of and/or adjacent the fibrous attachment zone 60 and the implant 120 is advanced until its implantation position has been reached in the suprachoroidal space 34 with a predetermined portion of the implant sleeve 152 extending into the anterior chamber 32. The trocar trigger 130 is maintained in the forward position by the operator. In some embodiments, the trocar distal tip or end 170 is adapted to dissect and separate the ciliary muscle attachment in order to enter the suprachoroidal space atraumatically. In some embodiments, a generally narrow passage may be created into the suprachoroidal space by gently separating the iris processes away from the scleral spur with the tip 170 of the insertion trocar until the anterior and posterior portions of the scleral spur are substantially fully visible on a limited area—e.g., create an approximately 0.5 mm to a maximum of about 1 mm width opening. The implant or stent 120 may then be advanced until the anterior surface of the implant or stent is substantially tangent to the posterior margin of the scleral spur. With finger or thumb firmly on the trocar trigger 130 in the forward position, the trocar/implant are carefully advanced into the suprachoroidal space until the implant proximal sleeve 152 just passes the scleral spur and enters the suprachoroidal space—in some embodiments, approximately half (or about 0.4 mm to about 0.7 mm) of the implant sleeve 152 remains in the anterior chamber.


In accordance with several embodiments, during implantation or insertion of the implant 120, an obturator (e.g., trocar 144) extends through the implant or stent lumen 154 to advantageously prevent tissue ingress and lumen clogging during implant insertion (e.g., prior to removal of the trocar 144 from the implant lumen 154). Moreover, advantageously, and in accordance with several embodiments, a generally rounded, and not sharp trocar or obturator tip or distal end 170 is utilized to glide smoothly down the sclera and prevent any undesirable sticking, scraping and/or attendant wound healing/fibrosis/encapsulation issues, while still being sharp enough to dissect and separate the ciliary muscle attachment in order to enter the suprachoroidal space atraumatically.


In accordance with some non-limiting embodiments, the outer diameter of the stent or implant 120 is between about 300 μm and 400 μm (e.g., 350 μm, 360 μm, 375 μm, 380 μm, 390 μm), which can advantageously avoid and/or mitigate any cyclodialysis cleft issues related with implantation. For example, in some embodiments, the delivery device 110 does not create a cyclodialysis cleft substantially larger than the implant 120 itself, and in other embodiments, does not create a cyclodialysis cleft in that the delivery device 110 and implant 120 are delivered through fibrous tissue bands of the ciliary muscle as opposed to dissecting the ciliary muscle from the sclera at the anterior chamber angle.


Next, as illustrated in FIG. 21, the trocar trigger 130 is moved in a rear or proximal direction 182 or position by the operator so that the trocar 144 is retracted from the implant lumen 154 and the suprachoroidal space 34. In some embodiments, once the implant or stent is in position at the proper depth, the trocar trigger button is slid backwards until the implant or stent 120 is released. In accordance with several embodiments, such a backwards movement of the trocar trigger 130 helps to inhibit or prevent deep placement of the stent or implant 120 within the suprachoroidal space. (Similar configurations can be efficaciously employed in connection with the placement of the implant 220, as needed or desired.) In some embodiments, a backing tube (e.g., insertion sleeve 140) is configured to react against a proximal end of the implant 120 during removal of the trocar 144.


As illustrated in FIG. 22, the delivery device 110 may then be retracted and the insertion sleeve 140 can be removed from the anterior chamber 32 with the implant 120 remaining within the eye 10 and at least a portion implanted in the suprachoroidal space 34.


In some embodiments, the operator confirms that the implant is in a proper position (e.g., the proximal end rests in the anterior chamber with an unobstructed inlet) using the operating microscope and gonioprism. The anterior chamber can be irrigated and aspirated with balanced salt solution (BSS) to remove all viscoelastic. If needed, the posterior edge of the incision is pressed down to facilitate substantially complete removal of the viscoelastic. The anterior chamber can then be inflated with saline solution to achieve physiologic pressure, as required.


In some embodiments, a predetermined curvature of both (or at least one of) the implant 120 and delivery device 110 is provided to desirably keep pressure on the sclera during implantation and prevent “understeer” or choroid penetration. The delivery device 110 can be curved to maintain the implant 120 at the same curvature during the shelf life, which desirably prevents plastic creep and thus maintains the implant's or stent's curvature specification. In one non-limiting embodiment, the curvature is larger than a diameter of the eye (e.g., larger than the 1 inch) in order to maintain the pressure on the sclera.


Delivery Device for Advancing Implant Through Device-Formed Corneal Incision



FIGS. 23 and 24 show different views of an implant delivery device, inserter or applicator 210, preloaded with an ocular implant 220, in accordance with some embodiments. The delivery device 210 is configured to deliver and position the implant 220 in the suprachoroidal space 34 of the eye 10. In some embodiments, the delivery method is performed via an ab interno procedure. In some embodiments, the implant is delivered through a self-sealing corneal incision (e.g., at or near the limbus) formed by a corneal penetration needle of the delivery device 210. The implant 220 may be preloaded on or within the delivery device 210 (e.g., on an obturator, or trocar, of the delivery device 210) and provided as a kit within a single packaging. In some embodiments, the implant 220 is not preloaded on the delivery device 210 (e.g. not preloaded prior to shipping in the packaging).


The delivery device 210 can be provided in a sterile packaging for single-use operation. For example, a double polythene bag may be used for sterility purposes, in combination with a blister packaging to facilitate use by the operator while still maintaining safe usage.


The delivery device 210 is generally elongate in structure, and generally comprises an outer housing and handpiece 222, a removable protective tube 224, a corneal penetration needle assembly 226, a trocar assembly 228, a trocar trigger 230, a pusher tube assembly 328, a pusher tube trigger 330, a trigger safety device 232 and/or two pairs of reuse prevention structures 234a, 234b and 334a, 334b.


The outer housing 222 is similar to the outer housing 122 and encloses various componentry of the delivery device 210 and can comprise two housing portions such as a left housing portion 236a and a right housing portion 236b, which are attached during fabrication of the delivery device 210.


Selected portions of the outer housing 222 have ergonomic features such as the hand grip area 238a which has a ribbed texture or the like to facilitate manual handling by a surgeon, medical operator or practitioner (a similar hand grip area is provided on the right housing portion 236b). Various internal structures of the outer housing 222 engage the other components of the delivery device 210, as discussed further below.


The outer housing 222 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the outer housing 222 comprises a thermoplastic material, such as medical grade polycarbonate that is gamma stable.


The outer housing 222 can efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the outer housing 222 has a length of about 5.60 inches, though other lengths may also be efficaciously utilized, for example, based on the size of the user's hand (e.g., from about 4 inches to about 8 inches and any length in between).


The protective cover tube 224 may be removably mounted on a portion of the corneal penetration needle assembly 226 that extends beyond a distal end of the outer housing 222. The protective cover tube 224 may be removed before the delivery device 210 is used. One purpose of the protective cover tube 224 may be to protect the corneal penetration needle assembly 226 and the components therein during packaging, shipping and travel of the implant delivery device 210.


The protective cover tube 224 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the protective cover tube 224 comprises a thermoplastic, such as low density polyethylene (LDPE).


The corneal penetration needle assembly 226 generally comprises a corneal penetration needle 240 and a support member 242 (e.g., sleeve) fixedly attached thereto and to the outer housing 222. Optionally, a seal 243 is provided to further protect the inner componentry of the delivery device 210 from undesirable fluid entrance. Distal portions of the corneal penetration needle 240 and support member 242 may be exposed and extend beyond the distal tip of the delivery device 210, while proximal portions of the corneal penetration needle 240 and support member 242 may be contained within the outer housing 222. Portions of the needle 240 may comprise a hydrophilic or hydrophobic coating. The corneal penetration needle assembly 226 is discussed in further detail later herein.


The trocar assembly 228 generally comprises an obturator, or trocar 244 and a trocar support member 246 (e.g., collar) fixedly attached thereto. The trocar support member 246 is mechanically coupled, connected or attached to the actuatable trocar trigger 230. A substantial distal portion of the trocar 244 extends through the corneal penetration needle 240 (and pusher tube) with a distal end portion also extending through the implant 220. A proximal portion of the trocar 244 and the trocar support member 246 are contained within the outer housing 222. The trocar assembly 228 is discussed in further detail later herein.


The trocar trigger 230 generally comprises an upper finger or thumb actuatable portion 248 and a lower main body portion 250. The actuatable trigger portion 248 generally extends outside the outer housing 222 while the main body portion 250 is generally contained within the outer housing 222. Before use, the trocar trigger 230 is in a rear position and, when in use, it is utilized to first advance and then retract the trocar 244. The trigger main body portion 250 is mechanically coupled, connected or attached to the trocar assembly 228. The trocar trigger 230 is also mechanically and/or operatively coupled to the pusher tube trigger 330. The trocar trigger 230 is discussed in further detail later herein.


The pusher tube assembly 328 generally comprises a pusher tube 344 and a pusher tube collar 346 fixedly attached thereto. The pusher tube collar 346 is mechanically coupled, connected or attached to the actuable pusher tube trigger 330. A substantial portion of the distal portion of the pusher tube 344 extends through the insertion needle 340, with a distal end being positioned proximal of the implant 220. A proximal portion of the pusher tube 344 and the pusher tube collar 346 are contained within the outer housing 222. The pusher tube assembly 328 is discussed in further detail later herein.


The pusher tube trigger 330 generally comprises an upper portion 348 distally proximate to the upper finger or thumb actuable trocar trigger portion 248 and a lower main body portion 350. The upper portion 348 generally extends outside the housing 222 while the main body portion 350 is generally contained within the housing 222. Before use, the pusher tube trigger 330 is in a rear position and, when in use, it is utilized to advance the pusher tube 344 (and the implant 220). The trigger main body portion 350 is mechanically coupled, connected or attached to the pusher tube device 328. The pusher tube trigger 330 is also mechanically and/or operatively coupled to the trocar trigger 230. The pusher tube trigger 330 is discussed in further detail later herein.


The trigger safety member 232 (e.g., clip) may be removable and positioned generally forwardly with respect to the pusher tube trigger 330. The trigger safety member 232 is mechanically coupled or engaged with the pusher tube trigger 330. In some embodiments, the trigger safety member 232 inhibits undesirable motion of the pusher tube trigger 330 and the trocar trigger 230 during packaging, shipping and travel of the implant delivery device 210. The trigger safety member 232 may be substantially the same in structure as the trigger safety device 132 discussed above.


The reuse prevention structures 234a, 234b and 334a, 334b may be mounted on each side of the trocar trigger 230 and the pusher tube trigger 330 respectively, and within the outer housing 222. The reuse prevention structures 234a, 234b and 334a, 334b advantageously provide a safety function to disallow reuse of the delivery device 210 so as to prevent any cross-contamination between unauthorized reuse of the single use device 210. In some embodiments, the reuse prevention structures 234a, 234b and 334a, 334b comprise glue blocks or preforms that are adapted to melt or dissolve when any unapproved re-sterilization of the delivery device 210 is attempted and lock or jam the trocar trigger 230 and the pusher tube trigger 330 so that their movement is thwarted. In some embodiments, a hot melt adhesive is used to freeze the trigger mechanism and prevent use after autoclave.


The implant 220 has an implant body 251 with a proximal sleeve 252 and is located within a distal end portion of the insertion needle 240 when the delivery device 210 is loaded with the implant prior to packaging and storage or before use. The implant 220 is substantially the same in structure as the implant 120 discussed above.



FIGS. 25-40 show different views of the insertion or corneal penetration needle assembly 226 and insertion or corneal penetration needle 240 in accordance with some embodiments. The insertion needle 240 is a generally elongated tubular structure with a lumen 262 extending therethrough and a distal curved or non-linear portion 264 to desirably facilitate ab interno suprachoroidal implantation. The insertion needle 240 has a distal end cutting tip 265 which allows corneal penetration by the device to desirably form a self-sealing incision in the cornea (e.g., at or adjacent the limbus). The cutting tip 265 is advantageously sized, shaped and dimensioned to form such a self-sealing incision.


The insertion needle support 242 is an elongated member through which a portion of the needle 240 extends and is attached thereto. The insertion needle support 242 may include a collar 266 that mates with a corresponding portion of the outer housing 222 to fixedly attach these structures.


A seal 243 is mounted on a proximal end portion of the insertion needle 240. The seal 243 may advantageously protect the inner componentry of the delivery device 210 from undesirable fluid entrance and may engage an internal structure of the delivery device 210 and/or housing 222. The insertion or corneal penetration needle 240 may comprise a hydrophilic or hydrophobic coating along at least a portion of its length.


The insertion needle 240 receives a portion of the pusher tube 344 that passes through the needle lumen 262 and contains the preloaded implant 220 distal of the pusher tube 344, which in turn receives a portion of the trocar 244. The needle distal curved or non-linear portion 264 advantageously provides proper curvature and alignment of the trocar 244 and the implant 220 for suprachoroidal implantation.


The insertion needle assembly 226 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the insertion sleeve 240 and support member 242 comprise stainless steel and are welded (spot or continuous) to form the assembly, and the seal 243 can comprise silicone or the like. The insertion or corneal penetration needle 240 can efficaciously comprise 25±5 gauge hypodermic tubing, as required or desired, including, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 gauge.


The insertion needle assembly 226 can efficaciously be dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the length L251 is about 1.22 inches, the curved length L252 is about 0.3 inches, the diameter D25 is about 0.02 inches, the radius of curvature R25 is about 1 inch, and the width W26 is about 0.031 inches. The radius of curvature R25 can have the same or substantially the same radius of curvature as the trocar 244. In some embodiments, the curvature of the insertion needle assembly 226 is adapted to be larger than a diameter of the eye (e.g., greater than 1 inch) to, for example, maintain pressure on the sclera during a delivery or implantation procedure.



FIGS. 31 and 32 show different views of the trocar device or assembly 228, in accordance with some embodiments. The obturator, or trocar 244 is a generally elongated structure with a curved or non-linear distal portion 268 with a distal-most end 270 that is configured to optimally penetrate ocular tissue so as to access the suprachoroidal space 34.


The trocar 244 extends through the trocar support member 246, which is configured to engage the trocar trigger 230, and be advanceable and retractable on actuation of the trigger 230. The curved distal portion 268 has a predetermined curvature to allow a proper angle of attack to penetrate ocular tissue to provide access for implantation of the implant 220 in the suprachoroidal space 34.


More particularly, a collar portion 247 of the trocar support member 246 is mechanically engaged, coupled, connected or fixedly attached to a recessed portion of the trocar trigger 230. Thus, actuation, advancement or retraction of the trocar trigger 230 results in movement, advancement and retraction of the trocar 244.


The trocar assembly 228 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trocar 244 comprises a metal or metal alloy such as spring tempered 304 stainless steel with a predetermined flexibility and resilience, and the trocar support member 246 comprises a metal or metal alloy such as 303 stainless steel with predetermined properties. The trocar 244 and trocar support member 246 (e.g., collar) can be welded together (spot or continuous welding), or otherwise attached in other suitable manners, for example molding and the like, as needed or desired.


The trocar assembly 228 can efficaciously be dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R32 of the trocar distal curved portion 268 is about 1 inch (which generally conforms to the needle's, pusher tube's and implant's radius of curvature and prevents implant creep and disorientation), the diameter D32 is about 0.006 inches (which provides a low tolerance fit within the implant's lumen), the curved length L321 is about 0.67 inches, the length L322 is about 2.1 inches, the overall unbent length of the trocar 244 is about 3.15 inches, the radius of curvature of the trocar distal end tip 270 is in the range from about 0.001 to about 0.003 inches, and the dimension R32 is about 0.22 inches. In various embodiments, the radius of curvature R32 of the trocar distal curved portion 268 can range from 0.4 inches to about 2.2 inches. In some embodiments, the curvature of the distal curved portion 268 is adapted be slightly larger than a diameter of the eye (e.g., larger than 1 inch) to, for example, maintain pressure on the sclera during the delivery or implantation procedure. It should be appreciated, that the above non-limiting dimensions can involve that at least the trocar dimensions H32, R32 and/or L321 (or other related dimensions) can reflect an after “bend” manufacturing or fabrication process or step that has been performed or implemented on the trocar 244.



FIG. 33 shows a different view of the trocar trigger 230, in accordance with some embodiments. The ergonomic upper finger or thumb touch portion 248 has a ribbed texture configuration to facilitate its actuation by the operator. The lower main body portion 250 has several features that allow for the operation of the trocar trigger 230.


The trigger body portion 250 comprises a slot, cavity, opening or recessed portion 271 which mates with and attaches to a portion of the trocar collar portion 247 thereby effectively coupling and connecting the trigger 230 and the trocar 244. The trigger body portion 250 may also comprise multiple pins 274 disposed generally symmetrically on either side which slidably engage the internal structure of the housing 222 such as the left and right slots therein, one of which slots is depicted by reference numeral 278b in FIG. 24.


The trigger body portion 250 may further comprise slots 276 on each side which respectively receive the reuse prevention structures 234a and 234b that are mounted therein. The reuse prevention structures (e.g., glue blocks or preforms) may be configured to melt or otherwise dissolve or degrade and lock the trocar trigger 230 to prevent unapproved use for the safety of the patient. In some embodiments, a hot melt adhesive is used to freeze the trigger mechanism and prevent use after autoclave.


The trocar trigger 230 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trocar trigger 230 comprises a plastic or thermoplastic, such as polyethylene.



FIGS. 34 and 35 show different views of the pusher tube assembly 328, in accordance with some embodiments. The pusher tube 344 is a generally elongated structure with a curved or non-linear distal portion 368.


The pusher tube 344 extends from the pusher tube support member 346 that is configured to engage the pusher tube trigger 330, and be advanceable on actuation of the trigger 330, and desirably be lockable thereafter, in some embodiments. The curved distal portion 368 may have a predetermined curvature to allow a proper angle of attack for the trocar 244 to penetrate ocular tissue to provide access for implantation of the implant 220 in the suprachoroidal space 34. The predetermined curvature may be configured to match the curvature of the sclera.


More particularly, a collar portion 347 of the pusher tube collar 346 mechanically engages, couples, connects or fixedly attaches to a recessed portion of the pusher tube trigger 330. Thus, actuation and advancement of the pusher tube trigger 330 results in movement and advancement of the pusher tube 344.


The pusher tube assembly 328 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the pusher tube 344 comprises nitinol tubing, and the pusher tube collar 346 comprises nitinol bar stock. The pusher tube 344 and collar 346 can be welded together (spot or continuous welding), or otherwise attached in other suitable manners, for example molding and the like, as needed or desired.


The pusher tube assembly 328 can efficaciously be dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R35 of the pusher tube distal curved portion 368 is about 1 inch (which generally conforms to the needle's, trocar's and implant's radius of curvature and prevents implant creep and disorientation), the diameter D35 is about 0.014 inches (which provides a low tolerance fit within the needle's lumen), the curved length L351 is about 0.5 inches, the length L352 is about 2.1 inches, and the overall unbent length of the pusher tube 344 is about 2.57 inches. In various embodiments, the radius of curvature R35 of the pusher tube distal curved portion 368 can range from 0.4 inches to about 2.2 inches. In some embodiments, the curvature of the pusher tube distal curved portion 368 is adapted to be slightly larger than a diameter of an eye (e.g., greater than 1 inch), for example, maintain pressure on the sclera during the delivery or implantation procedure. It should be appreciated, that the above non-limiting dimensions can involve that at least the pusher tube dimensions L351 and/or R35 (or other related dimensions) can reflect an after “bend” manufacturing or fabrication process or step that has been performed or implemented on the pusher tube 344.



FIG. 36 shows a different view of the pusher tube trigger 330, in accordance with some embodiments. The upper trigger portion 348 is distally disposed of the trocar trigger portion 248 and actuable with movement of the same. The lower main body portion 350 has several features that allow for the operation of the pusher tube trigger 330.


The trigger main body portion 350 may comprise a slot, cavity, opening or recessed portion 371 that mates with and attaches to a portion of the pusher tube collar portion 347, thereby effectively coupling and connecting the trigger 330 and the pusher tube 344. The trigger body portion 350 may also comprise multiple pins 374 disposed generally symmetrically on either side that slidably engage the internal structure of the housing 222 such as the left and right slots therein (one of which slots is depicted by reference numeral 278b in FIG. 24.)


The trigger main body portion 350 may further comprise slots 376 on each side which respectively receive the reuse prevention structures 334a and 334b that are mounted therein. The reuse prevention structures 334a and 334b are adapted to prevent unapproved use for the safety of the patient.


The pusher tube trigger 330 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the pusher tube trigger 330 comprises a plastic or thermoplastic such as polyethylene.



FIG. 37 is a detailed view illustrating the attachment or mating between the trocar assembly 228 and the trocar trigger 230 and the attachment or mating between the pusher tube device 328 and the pusher tube trigger 330. In particular, the trocar device collar portion 247 engages and is received within the trocar trigger recessed portion 271 and the pusher tube collar portion 347 engages and is received within the pusher tube trigger recessed portion 371, thereby operatively coupling the trocar 244 with its trigger 230 and the pusher tube 344 with its trigger 330.



FIGS. 38A and 38B illustrate certain non-limiting dimensions based on the positions of the trocar trigger 230 and the pusher tube trigger 330 in connection with, in some embodiments, the ocular implant 220. In FIG. 38A, which also shows the implant 220 loaded, both the trocar and pusher tube triggers and are in the forward position, and in a non-limiting embodiment the length L381 is about 0.002 inches. In FIG. 38B, the pusher tube trigger 330 is in a generally fully forward position, and in some embodiments locked, as needed or desired, and the trocar trigger 230 is retracted, and in a non-limiting embodiment the length L382 is about 0.064 inches.


The delivery device 210 generally comprises, but is not limited to, materials composed of stainless steel, molded plastic and nitinol, among others and equivalents thereof.


Methods of Implant Delivery Through Device-Formed Corneal Incision



FIGS. 39-44 illustrate steps or acts of a surgical procedure or method of implanting the ocular implant 220 in the suprachoroidal space 34 of the eye 10 using the implant delivery or inserter system or device 210 in accordance with some embodiments. Given the details in the figures the surgical method should be self-explanatory, however some textual description is provided below. (Briefly, and in accordance with some embodiments: in FIG. 39 both the triggers 230 and 330 are in a rear position; in FIG. 40 both the triggers 230 and 330 are in a forward position; in FIG. 41 both the triggers 230 and 330 are still or maintained in a generally forward position; in FIG. 42 both the triggers 230 and 330 are still or maintained in a generally forward position; in FIG. 43 the trocar trigger 230 is retracted and/or in a rear position while the pusher tube trigger 330 is in a locked position; and in FIG. 44 the trocar trigger 230 remains in its rear position.)


In some embodiments, a surgical microscope and the patient are positioned to provide a substantially clear visualization of the trabecular meshwork through a gonioprism on the nasal side of the eye. The patient's head can be tilted as far as practical from the surgeon, and the microscope can be tilted toward the surgeon to ensure a proper viewing angle.


The delivery device 210 is removed from its package. The protective cover tube 224 is carefully removed from the insertion needle and the safety member 232 holding the triggers is removed by the operator taking care that the triggers 230 and 330 are maintained in the rear position.


If a gonioprism is used, the gonioprism is placed on the cornea, and the anterior chamber angle is inspected using the gonioprism to ensure a good visualization at the nasal implant location. The gonioprism is then removed. Other visualization devices may be used or the procedure may be performed without use of a visualization device.



FIG. 39 illustrates formation of a self-sealing incision 370 by the insertion or corneal penetration needle 240, and more particularly, the cutting distal end tip 265 of the needle 240 of the delivery device 210, such that a portion of the needle 240 extends into the anterior chamber 32. At this stage, both the trocar trigger 230 and the pusher tube trigger 330 are maintained in the rear position by the operator. In some embodiments, a temporal clear corneal incision is made using a sharp cutting tip of the device. If a clear corneal incision has already been made, a cohesive viscoelastic may be used to maintain the anterior chamber before passing the needle 240 through the incision.



FIG. 40 illustrates forward deployment of the triggers such that the implant 220 is exposed and advanced within the anterior chamber 32 along with the trocar 244 such that the trocar distal end tip 270 extends by a predetermined distance beyond the implant 220. In some embodiments, once the insertion needle enters the eye and is past the pupillary margin, the trocar trigger (and as such the pusher tube trigger 330) are advanced to the fully forward position, thereby exposing the implant or stent 220 and the trocar tip 270.)


As illustrated in FIG. 41, the implant 220 is advanced across the anterior chamber 32 and positioned at the implantation site with the trocar distal end 270 adjacent the fibrous attachment zone 60. At this stage, both triggers are maintained in the forward position by the operator, with the pusher tube trigger 330 desirably locked in position so that the implant 220 cannot be proximally displaced. The angle of attack θ41 is about 15° (degrees), though 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20° (degrees) or other attack angles may efficaciously be utilized, as needed or desired. In some embodiments, a gonioprism is placed on the cornea, and the trocar/implant are guided across the anterior chamber to the nasal angle. Care is taken to avoid contact with the lens, cornea and iris. The trocar/implant may be advanced to the anterior chamber angle just posterior to the scleral spur. In some embodiments, the delivery device 210 has a built-in configuration or design for a generally downward angle of about 15° (±5°-10°) (degrees) at a site of implantation or towards the site of implantation.


Next, as illustrated in FIG. 42, the trocar distal tip or end 270 penetrates through the tissue of and/or adjacent the fibrous attachment zone 60 and the implant 220 is advanced until its implantation position has been reached in the suprachoroidal space 34 with a predetermined portion of the implant sleeve 252 extending into the anterior chamber 32. The trocar trigger 230 is maintained in the forward position by the operator at this stage. In some embodiments, a generally narrow passage is created into the suprachoroidal space by gently separating the iris processes away from the scleral spur with the tip of the insertion trocar until the anterior and posterior portions of the scleral spur are substantially fully visible on a limited area—e.g., create an approximately 0.5 mm to a maximum of about 1 mm width opening. The trocar/implant are continued to be advanced along the posterior margin of the scleral spur. With finger or thumb holding the rear/trocar trigger in the forward position, the trocar/implant are carefully advanced into the suprachoroidal space until the implant proximal sleeve just passes the scleral spur and enters the suprachoroidal space—in some embodiments, approximately half (or about 0.4 mm to about 0.7 mm) of the implant sleeve remains in the anterior chamber.


In accordance with several embodiments, during implantation or insertion of the implant 220 the trocar, or obturator, 244 extends through the implant or stent lumen 154 to advantageously prevent tissue ingress and lumen clogging during implant insertion (prior to removal of the trocar, or obturator, 244 from the implant lumen 154).


Next, as illustrated in FIG. 43, the trocar trigger 230 is moved in a rear or proximal direction 282 by the operator so that the trocar 244 is retracted from the implant lumen and the suprachoroidal space 34. In some embodiments, once the implant or stent 220 is in position at the proper depth, the trocar trigger button is slid backwards until the implant or stent 220 is released. The backwards movement of the trocar trigger 230 may advantageously prevent or inhibit over-insertion of the implant 220. In some embodiments, a backing tube is configured to react against a proximal end of the implant 220 during removal of the trocar 244.


As illustrated in FIG. 44, the delivery device 210 is retracted and the insertion needle 240 is removed from the anterior chamber 32 with the implant 220 remaining within the eye 10 and implanted in the suprachoroidal space 34. In some embodiments, the incision 270 desirably self-seals to facilitate quick recovery without requiring sutures.


In some embodiments, the operator confirms that the implant is in a proper position (e.g., the proximal end rests in the anterior chamber with an unobstructed inlet) using the operating microscope and gonioprism. The anterior chamber can be irrigated and aspirated with balanced salt solution (BSS) to remove all viscoelastic, if used. If needed, the posterior edge of the incision is pressed down to facilitate substantially complete removal of the viscoelastic, if used. The anterior chamber can then be inflated with saline solution to achieve physiologic pressure, as required.


In some embodiments, a predetermined curvature of both (or at least one of) the implant or stent 220 and delivery device 210 is provided to desirably keep pressure on the sclera during implantation and prevent “understeer” or choroid penetration. The delivery device 210 can be curved to maintain the implant or stent 220 at the same curvature during the shelf life which desirably prevents plastic creep and thus maintain the implant's or stent's curvature specification. In one non-limiting embodiment, the curvature is larger than a diameter of the eye (e.g., larger than a 1 inch diameter) in order to maintain the pressure on the sclera.


In some embodiments, the pusher tube 344 is configured to react against a proximal end of the implant or stent 220 during trocar or obturator removal. Advantageously, the “lazy” curve or curvature of the needle 240 and/or substantially the entire system 210 (see, e.g., FIGS. 39 to 44) maintains, in accordance with some embodiments, about a 15° angle at the implantation site, though 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20° (degrees) or other angles may efficaciously be utilized, as needed or desired.


Moreover, in accordance with some embodiments, the needle 240 advantageously traverses across the eye (finite height anterior chamber clearance) without contacting the iris or cornea. In some embodiments, the implant or stent 220 is maintained at its specified, predetermined or required or desired curvature throughout substantially its shelf life, for example, to prevent plastic creep.


Drugs and Therapeutic Agents


In some embodiments, the implants disclosed herein can provide for delivery of a therapeutic agent or drug. The therapeutic agent can be, for example, an intraocular pressure-lowering drug. In some embodiments, the therapeutic agent or drug is introduced concurrently with the delivery of the shunt to the eye. The therapeutic agent or drug can be part of the implant itself. For example, the therapeutic agent or drug can be embedded in the material of the shunt, or coat at least a portion of the implant. The therapeutic agent or drug may be present on various portions of the implant. For example, the therapeutic agent or drug may be present on the distal end of the implant, or the proximal end of the implant. The implant can include combination of therapeutic agents or drugs. The different therapeutic agents or drugs can be separated or combined. One kind of therapeutic agent or drug can be present at the proximal end of the implant, and a different kind of therapeutic agent or drug can be present at the distal end of the implant. For example, an anti-proliferative agent may be present at the distal end of the implant to prevent growth, and a growth-promoting agent may be applied to the proximal end of the implant to promote growth.


Examples of drugs may include various anti-secretory agents; antimitotics and other anti-proliferative agents, including among others, anti-angiogenesis agents such as angiostatin, anecortave acetate, thrombospondin, VEGF receptor tyrosine kinase inhibitors and anti-vascular endothelial growth factor (anti-VEGF) drugs such as ranibizumab (LUCENTIS®) and bevacizumab (AVASTIN®), pegaptanib (MACUGEN®), sunitinib and sorafenib and any of a variety of known small-molecule and transcription inhibitors having anti-angiogenesis effect (additional non-limiting examples of such anti-VEGF compounds are described in Appendix A, which is attached herewith and made a part of this application); classes of known ophthalmic drugs, including: glaucoma agents, such as adrenergic antagonists, including for example, beta-blocker agents such as atenolol, propranolol, metipranolol, betaxolol, carteolol, levobetaxolol, levobunolol and timolol; adrenergic agonists or sympathomimetic agents such as epinephrine, dipivefrin, clonidine, aparclonidine, and brimonidine; parasympathomimetics or cholingeric agonists such as pilocarpine, carbachol, phospholine iodine, and physostigmine, salicylate, acetylcholine chloride, eserine, diisopropyl fluorophosphate, demecarium bromide); muscarinics; carbonic anhydrase inhibitor agents, including topical and/or systemic agents, for example acetozolamide, brinzolamide, dorzolamide and methazolamide, ethoxzolamide, diamox, and dichlorphenamide; mydriatic-cycloplegic agents such as atropine, cyclopentolate, succinylcholine, homatropine, phenylephrine, scopolamine and tropicamide; prostaglandins such as prostaglandin F2 alpha, antiprostaglandins, prostaglandin precursors, or prostaglandin analog agents such as bimatoprost, latanoprost, travoprost and unoprostone.


Other examples of drugs may also include anti-inflammatory agents including for example glucocorticoids and corticosteroids such as betamethasone, cortisone, dexamethasone, dexamethasone 21-phosphate, methylprednisolone, prednisolone 21-phosphate, prednisolone acetate, prednisolone, fluorometholone, loteprednol, medrysone, fluocinolone acetonide, triamcinolone acetonide, triamcinolone, beclomethasone, budesonide, flunisolide, fluticasone, hydrocortisone, hydrocortisone acetate, loteprednol, rimexolone and non-steroidal anti-inflammatory agents including, for example, diclofenac, flurbiprofen, ibuprofen, bromfenac, nepafenac, and ketorolac, salicylate, indomethacin, ibuprofen, naxopren, piroxicam and nabumetone; anti-infective or antimicrobial agents such as antibiotics including, for example, tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, cephalexin, oxytetracycline, chloramphenicol, rifampicin, ciprofloxacin, tobramycin, gentamycin, erythromycin, penicillin, sulfonamides, sulfadiazine, sulfacetamide, sulfamethizole, sulfisoxazole, nitrofurazone, sodium propionate, aminoglycosides such as gentamicin and tobramycin; fluoroquinolones such as ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin; bacitracin, erythromycin, fusidic acid, neomycin, polymyxin B, gramicidin, trimethoprim and sulfacetamide; antifungals such as amphotericin B and miconazole; antivirals such as idoxuridine trifluorothymidine, acyclovir, gancyclovir, interferon; antimicotics; immune-modulating agents such as antiallergenics, including, for example, sodium chromoglycate, antazoline, methapyriline, chlorpheniramine, cetrizine, pyrilamine, prophenpyridamine; anti-histamine agents such as azelastine, emedastine and levocabastine; immunological drugs (such as vaccines and immune stimulants); MAST cell stabilizer agents such as cromolyn sodium, ketotifen, lodoxamide, nedocrimil, olopatadine and pemirolastciliary body ablative agents, such as gentimicin and cidofovir; and other ophthalmic agents such as verteporfin, proparacaine, tetracaine, cyclosporine and pilocarpine; inhibitors of cell-surface glycoprotein receptors; decongestants such as phenylephrine, naphazoline, tetrahydrazoline; lipids or hypotensive lipids; dopaminergic agonists and/or antagonists such as quinpirole, fenoldopam, and ibopamine; vasospasm inhibitors; vasodilators; antihypertensive agents; angiotensin converting enzyme (ACE) inhibitors; angiotensin-1 receptor antagonists such as olmesartan; microtubule inhibitors; molecular motor (dynein and/or kinesin) inhibitors; actin cytoskeleton regulatory agents such as cyctchalasin, latrunculin, swinholide A, ethacrynic acid, H-7, and Rho-kinase (ROCK) inhibitors; remodeling inhibitors; modulators of the extracellular matrix such as tert-butylhydro-quinolone and AL-3037A; adenosine receptor agonists and/or antagonists such as N-6-cylclophexyladenosine and (R)-phenylisopropyladenosine; serotonin agonists; hormonal agents such as estrogens, estradiol, progestational hormones, progesterone, insulin, calcitonin, parathyroid hormone, peptide and vasopressin hypothalamus releasing factor; growth factor antagonists or growth factors, including, for example, epidermal growth factor, fibroblast growth factor, platelet derived growth factor or antagonists thereof, transforming growth factor beta, somatotrapin, fibronectin, connective tissue growth factor, bone morphogenic proteins (BMPs); cytokines such as interleukins, CD44, cochlin, and serum amyloids, such as serum amyloid A.


Other therapeutic agents may include neuroprotective agents such as lubezole, nimodipine and related compounds, and including blood flow enhancers such as dorzolamide or betaxolol; compounds that promote blood oxygenation such as erythropoeitin; sodium channels blockers; calcium channel blockers such as nilvadipine or lomerizine; glutamate inhibitors such as memantine nitromemantine, riluzole, dextromethorphan or agmatine; acetylcholinsterase inhibitors such as galantamine; hydroxylamines or derivatives thereof, such as the water soluble hydroxylamine derivative OT-440; synaptic modulators such as hydrogen sulfide compounds containing flavonoid glycosides and/or terpenoids, such as Ginkgo biloba; neurotrophic factors such as glial cell-line derived neutrophic factor, brain derived neurotrophic factor; cytokines of the IL-6 family of proteins such as ciliary neurotrophic factor or leukemia inhibitory factor; compounds or factors that affect nitric oxide levels, such as nitric oxide, nitroglycerin, or nitric oxide synthase inhibitors; cannabinoid receptor agonsists such as WIN55-212-2; free radical scavengers such as methoxypolyethylene glycol thioester (MPDTE) or methoxypolyethlene glycol thiol coupled with EDTA methyl triester (MPSEDE); anti-oxidants such as astaxathin, dithiolethione, vitamin E, or metallocorroles (e.g., iron, manganese or gallium corroles); compounds or factors involved in oxygen homeostasis such as neuroglobin or cytoglobin; inhibitors or factors that impact mitochondrial division or fission, such as Mdivi-1 (a selective inhibitor of dynamin related protein 1 (Drp1)); kinase inhibitors or modulators such as the Rho-kinase inhibitor H-1152 or the tyrosine kinase inhibitor AG1478; compounds or factors that affect integrin function, such as the Beta 1-integrin activating antibody HUTS-21; N-acyl-ethanaolamines and their precursors, N-acyl-ethanolamine phospholipids; stimulators of glucagon-like peptide 1 receptors (e.g., glucagon-like peptide 1); polyphenol containing compounds such as resveratrol; chelating compounds; apoptosis-related protease inhibitors; compounds that reduce new protein synthesis; radiotherapeutic agents; photodynamic therapy agents; gene therapy agents; genetic modulators; auto-immune modulators that prevent damage to nerves or portions of nerves (e.g., demyelination) such as glatimir; myelin inhibitors such as anti-NgR Blocking Protein, NgR(310)ecto-Fc; other immune modulators such as FK506 binding proteins (e.g., FKBP51); and dry eye medications such as cyclosporine A, delmulcents, and sodium hyaluronate.


Other therapeutic agents that may be used include: other beta-blocker agents such as acebutolol, atenolol, bisoprolol, carvedilol, asmolol, labetalol, nadolol, penbutolol, and pindolol; other corticosteroidal and non-steroidal anti-inflammatory agents such aspirin, betamethasone, cortisone, diflunisal, etodolac, fenoprofen, fludrocortisone, flurbiprofen, hydrocortisone, ibuprofen, indomethacine, ketoprofen, meclofenamate, mefenamic acid, meloxicam, methylprednisolone, nabumetone, naproxen, oxaprozin, prednisolone, prioxicam, salsalate, sulindac and tolmetin; COX-2 inhibitors like celecoxib, rofecoxib and. Valdecoxib; other immune-modulating agents such as aldesleukin, adalimumab (HUMIRA®), azathioprine, basiliximab, daclizumab, etanercept (ENBREL®), hydroxychloroquine, infliximab (REMICADE®), leflunomide, methotrexate, mycophenolate mofetil, and sulfasalazine; other anti-histamine agents such as loratadine, desloratadine, cetirizine, diphenhydramine, chlorpheniramine, dexchlorpheniramine, clemastine, cyproheptadine, fexofenadine, hydroxyzine and promethazine; other anti-infective agents such as aminoglycosides such as amikacin and streptomycin; anti-fungal agents such as amphotericin B, caspofungin, clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole, terbinafine and nystatin; anti-malarial agents such as chloroquine, atovaquone, mefloquine, primaquine, quinidine and quinine; anti-mycobacterium agents such as ethambutol, isoniazid, pyrazinamide, rifampin and rifabutin; anti-parasitic agents such as albendazole, mebendazole, thiobendazole, metronidazole, pyrantel, atovaquone, iodoquinaol, ivermectin, paromycin, praziquantel, and trimatrexate; other anti-viral agents, including anti-CMV or anti-herpetic agents such as acyclovir, cidofovir, famciclovir, gangciclovir, valacyclovir, valganciclovir, vidarabine, trifluridine and foscarnet; protease inhibitors such as ritonavir, saquinavir, lopinavir, indinavir, atazanavir, amprenavir and nelfinavir; nucleotide/nucleoside/non-nucleoside reverse transcriptase inhibitors such as abacavir, ddI, 3TC, d4T, ddC, tenofovir and emtricitabine, delavirdine, efavirenz and nevirapine; other anti-viral agents such as interferons, ribavirin and trifluridiene; other anti-bacterial agents, including cabapenems like ertapenem, imipenem and meropenem; cephalosporins such as cefadroxil, cefazolin, cefdinir, cefditoren, cephalexin, cefaclor, cefepime, cefoperazone, cefotaxime, cefotetan, cefoxitin, cefpodoxime, cefprozil, ceftaxidime, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime and loracarbef; other macrolides and ketolides such as azithromycin, clarithromycin, dirithromycin and telithromycin; penicillins (with and without clavulanate) including amoxicillin, ampicillin, pivampicillin, dicloxacillin, nafcillin, oxacillin, piperacillin, and ticarcillin; tetracyclines such as doxycycline, minocycline and tetracycline; other anti-bacterials such as aztreonam, chloramphenicol, clindamycin, linezolid, nitrofurantoin and vancomycin; alpha blocker agents such as doxazosin, prazosin and terazosin; calcium-channel blockers such as amlodipine, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nisoldipine and verapamil; other anti-hypertensive agents such as clonidine, diazoxide, fenoldopan, hydralazine, minoxidil, nitroprusside, phenoxybenzamine, epoprostenol, tolazoline, treprostinil and nitrate-based agents; anti-coagulant agents, including heparins and heparinoids such as heparin, dalteparin, enoxaparin, tinzaparin and fondaparinux; other anti-coagulant agents such as hirudin, aprotinin, argatroban, bivalirudin, desirudin, lepirudin, warfarin and ximelagatran; anti-platelet agents such as abciximab, clopidogrel, dipyridamole, optifibatide, ticlopidine and tirofiban; prostaglandin PDE-5 inhibitors and other prostaglandin agents such as alprostadil, carboprost, sildenafil, tadalafil and vardenafil; thrombin inhibitors; antithrombogenic agents; anti-platelet aggregating agents; thrombolytic agents and/or fibrinolytic agents such as alteplase, anistreplase, reteplase, streptokinase, tenecteplase and urokinase; anti-proliferative agents such as sirolimus, tacrolimus, everolimus, zotarolimus, paclitaxel and mycophenolic acid; hormonal-related agents including levothyroxine, fluoxymestrone, methyltestosterone, nandrolone, oxandrolone, testosterone, estradiol, estrone, estropipate, clomiphene, gonadotropins, hydroxyprogesterone, levonorgestrel, medroxyprogesterone, megestrol, mifepristone, norethindrone, oxytocin, progesterone, raloxifene and tamoxifen; anti-neoplastic agents, including alkylating agents such as carmustine lomustine, melphalan, cisplatin, fluorouracil3, and procarbazine antibiotic-like agents such as bleomycin, daunorubicin, doxorubicin, idarubicin, mitomycin and plicamycin; anti proliferative agents (such as 1,3-cis retinoic acid, 5-fluorouracil, taxol, rapamycin, mitomycin C and cisplatin); antimetabolite agents such as cytarabine, fludarabine, hydroxyurea, mercaptopurine and 5-fluorouracil (5-FU); immune modulating agents such as aldesleukin, imatinib, rituximab and tositumomab; mitotic inhibitors docetaxel, etoposide, vinblastine and vincristine; radioactive agents such as strontium-89; and other anti-neoplastic agents such as irinotecan, topotecan and mitotane.


In some embodiments, the therapeutic agent is delivered through the implant to the desired location in the eye, such as the suprachoroidal space of the uveoscleral outflow pathway. In some embodiments, the therapeutic agent is delivered to the suprachoroidal space of the uveoscleral outflow pathway in combination with a therapeutic agent delivered via trans pars plana vitrectomy, thereby delivering a therapeutic agent to both sides of the retina. In some embodiments, the implant can improve access of topical medication to the posterior uvea. In some embodiments, the implant is used to deliver a topical medication to treat a chorio-retinal disease.


In some embodiments, the delivery device 110 provides implantation through a preformed or prior corneal incision while the delivery device 210 does so through a self-created and self-sealing incision such that a “closed chamber” operation is performed.


The delivery device 110 is configured, in some embodiments, so that the implant is supported on a trocar wire or obturator in an exposed configuration. In some embodiments, the delivery device 210 supports the implant on a trocar wire or obturator within an insertion or corneal penetration needle.


In some embodiments, the delivery device 110 comprises a silicone retainer to hold the implant in place during travel. The delivery device 210, in some embodiments, incorporates a curved delivery system that provides adequate side loads and friction to hold the implant in place during travel and shipping.


The delivery device 110, in certain embodiments, employs a single trigger operation to release the implant. The delivery device 210, in accordance with some embodiments, utilizes a dual trigger operation to expose and release the implant—trocar and implant pusher tube triggers. Once the insertion needle penetrates the cornea, both triggers advance to expose the implant or stent and the trocar and obturator. The front pusher tube trigger locks the pusher tube in a forward position, thereby preventing the implant or stent from retracting back into the needle. After implant or stent implantation, the rear trocar trigger is retracted to retract the trocar and release the implant or stent.


It should be appreciated, in accordance with some embodiments, that the disclosed implant is prevented from backward movement based advantageously on the delivery device configuration. For example, the implant 120 is prevented from backward movement because of the insertion sleeve's distal end relative dimensioning and the implant 220 is prevented from backward movement because of pusher tube's distal end relative dimensioning.


Moreover, because of the material properties of the disclosed trocars, creep during shelf life should advantageously not be an issue of concern. Also, in accordance with some embodiments, given that the implants and trocars are asymmetrically curved, this orientation as packaged, prevents any undesirable rotation of the implants with respect to the trocars even when in use. Furthermore, in accordance with some embodiments, at least the implants and trocars have predetermined curvatures which, because of their selected flexibility, can conform to the particular space or ocular location they are inserted or advanced into.


In some embodiments, the delivery device 110 is configured for use in combination with another ocular surgery, such as cataract surgery. The delivery device 110 can include a preloaded implant 120 and have a pre-curved tip. The device 110 advantageously may have an ergonomic handpiece.


In some embodiments, the delivery device 210 is configured for stand-alone, in-office surgery without being performed in conjunction with other ocular surgery (e.g., cataract surgery). The delivery device 210 can include a preloaded implant 220 and can have a pre-curved tip. Also, in some embodiments, the device 210 has integrated corneal penetration and closed chamber capability so as to perform the procedure through a self-sealing incision. The device 210 may advantageously include an ergonomic handpiece. Preloading the implant 220 on the delivery instrument 210 may reduce loading errors and contribute to ease of use.


Certain embodiments provide for the implant, trocar and/or the pusher tube to flex and allow for the implant to conform to the anatomy of the suprachoroidal space.


The delivery device geometries, such as with respect to the attack angle and curvature, can advantageously ensure proper placement of the implant in the suprachoroidal space, supraciliary space, or other anatomical space.


In some embodiments, the low friction (e.g., polyethylene on polycarbonate) trigger operation, in accordance with some embodiments, advantageously allows for smooth operation during the delivery procedures. The safety members (e.g., safety clips) may advantageously prevent undesirable trigger motion during shipment and transportation of the delivery devices.


Embodiments of the trocar or obturator material and tip shape provide several advantages which include: use of high temper stainless spring steel; pointed enough tip to pierce ciliary muscle attachment; rounded enough tip to prevent irritation/tissue damage in suprachoroidal space at sclera/choroid; material and shape allows constant force against sclera during advancement in order to assure proper placement of implant within suprachoroidal space; and trocar curvature generally matches implant or stent shape to prevent plastic creep during shelf life. Moreover, advantageously, and in accordance with some embodiments, a generally rounded, and not sharp trocar or obturator tip or distal end, e.g. 170 or 270, is utilized to glide smoothly down the sclera and prevent any undesirable sticking, scraping and attendant wound healing/fibrosis/encapsulation issues, while still being sharp enough to dissect and separate the ciliary muscle attachment in order to enter the suprachoroidal space atraumatically.


Also, in accordance with some non-limiting embodiments, the outer diameter of the stent or implant 220 is between about 300 μm and 400 μm (e.g., 350 μm, 360 μm, 375 μm, 380 μm, 390 μm), which can advantageously avoid and/or mitigate any cyclodialysis cleft issues related with implantation. For example, in some embodiments, the delivery device 210 does not create a cyclodialysis cleft substantially larger than the implant 220 itself, and in other embodiments, does not create a cyclodialysis cleft in that the delivery device 210 and implant 220 are delivered through fibrous tissue bands of the ciliary muscle as opposed to dissecting the ciliary muscle from the sclera at the anterior chamber angle.


With respect to embodiments of the delivery device 210, the curved, flared and coated stainless steel insertion or corneal penetration needle is advantageously shaped to fit anatomically within eye the and avoid iris touch. Also, the tight corneal incision can minimize fluid loss from the eye by forming a substantially closed chamber self-sealing entry. Moreover, the lowered sliding friction of the needle shaft once in the eye may advantageously prevent movement during this delicate surgery, and any resultant loss of view during any interoperative gonioscopy.


In some embodiments, and once again with respect to embodiments of the delivery device 210, the superelastic nitinol pusher tube provides backup support for the implant or stent during implantation, and allows minimal sliding force during trigger operation. Also, in accordance with some embodiments, the polyethylene protective tube prevents damage to the needle tip during shipment.


The delivery device 210, in accordance with some embodiments, can advantageously be used in a “closed chamber” procedure, which may have one or more of the following advantages: no viscoelastic is required to inflate the anterior chamber; there is minimal loss of fluid from anterior chamber (this reduces chance of hypotony); no separate blade is required to form the corneal incision; results in faster surgery; there is only one time entry into the eye; a safer procedure with less chance or lowered probability for adverse event (e.g., endophthalmitis); and less expensive and more cost effective.


The curved insertion needle, trocar or obturator, and pusher tube of the delivery device 210 also, in certain embodiments allows for retention of the implant or stent shape during its entire shelf life (including during shipping) to prevent creep (such as, loss of implant or stent curvature). Moreover, the closed-chamber procedure can allow for enhanced surgical safety in a non-deepened anterior chamber by substantially matching the curvature of the cornea and allowing traversing of the eye in an ab interno procedure.


Terminology

Conditional language, for example, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps.


Methods


The methods which are described and illustrated herein are not limited to the sequence of acts described, nor are they necessarily limited to the practice of all of the acts set forth. Other sequences of acts, or less than all of the acts, or simultaneous occurrence of the acts, may be utilized in practicing embodiments of the invention(s). The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “forming an incision” include “instructing the formation of an incision.”


Ranges


The ranges disclosed herein encompass any and all overlap, sub-ranges, and combinations thereof, as well as individual numerical values within that range. For example, description of a range such as from about 5 to about 30 degrees should be considered to have specifically disclosed subranges such as from 5 to 10 degrees, from 10 to 20 degrees, from 5 to 25 degrees, from 15 to 30 degrees etc., as well as individual numbers within that range, for example, 5, 10, 15, 20, 25, 12, 15.5 and any whole and partial increments therebetween. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 10%” includes “10%.” For example, the terms “approximately”, “about”, and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result.


CONCLUSION

From the foregoing description, it will be appreciated that a novel approach for intraocular pressure control has been disclosed. While the components, techniques and aspects of embodiments of the invention have been described with a certain degree of particularity, it is manifest that many changes may be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.


While a number of preferred embodiments of the invention and variations thereof have been described in detail, other modifications and methods of using and medical, diagnostic, research and therapeutic applications for the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, and substitutions may be made of equivalents without departing from the spirit of embodiments of the invention or the scope of the claims.


Various modifications and applications of the embodiments of the invention may occur to those who are skilled in the art, without departing from the true spirit or scope of the embodiments of the invention. It should be understood that the invention(s) is not limited to the embodiments set forth herein for purposes of exemplification, but is to be defined only by a fair reading of the appended claims, including the full range of equivalency to which each element thereof is entitled.

Claims
  • 1. An ocular implant delivery system, comprising: a generally elongated outer housing;an elongated insertion needle partially disposed in and extending outwardly from the outer housing, the insertion needle having a lumen;an implant pusher tube, a distal portion of the implant pusher tube extending through the lumen of the insertion needle;a trocar comprising a distal portion that passes through a lumen of the implant pusher tube;an implant supported on the distal portion of the trocar; anda manually controlled trocar trigger, an actuatable portion of which extends outside the outer housing, mechanically coupled to the trocar such that a first actuation of the trocar trigger causes the pusher tube to move distally relative to the insertion needle to an exposed position, wherein at the exposed position the implant is exposed from the insertion needle for implantation in a suprachoroidal space of an eye, the trocar trigger being further configured such that a second actuation of the trocar trigger causes the distal tip of the trocar to move proximal to the proximal-most end of the implant, thereby releasing the implant from being supported on the distal portion of the trocar.
  • 2. The delivery system of claim 1, wherein the first actuation of the trocar trigger comprises moving the trocar trigger longitudinally along the generally elongated outer housing toward a distal end of the generally elongated outer housing.
  • 3. The delivery system of claim 1, wherein the second actuation of the trocar trigger comprises moving the trocar trigger longitudinally along the generally elongated outer housing toward a proximal end of the generally elongated outer housing.
  • 4. The delivery system of claim 1, wherein the distal portion of the implant pusher tube has a first radius of curvature that provides alignment of the trocar for suprachoroidal implantation of the implant.
  • 5. The delivery system of claim 1, wherein the distal portion of the trocar has a radius of curvature that is between 0.4 inches to 2.2 inches.
  • 6. The delivery system of claim 1, wherein a distal tip of the trocar is rounded so as not to cause scraping of the sclera while still being adapted to provide access to the suprachoroidal space through the ciliary muscle attachment.
  • 7. An ocular implant delivery device, comprising: a generally elongated outer housing and handpiece that is ergonomically contoured;an implant pusher tube comprising a non-linear distal portion;a trocar passing through a lumen of the implant pusher tube and having a non-linear distal portion;an implant disposed on the non-linear distal portion of the trocar;a pusher tube trigger mechanically coupled to the implant pusher tube; anda manually controlled trocar trigger, an actuatable portion of which extends outside the outer housing, mechanically coupled to the trocar, the trocar trigger configured such that actuation of the trocar trigger in a first direction advances a distal tip of the trocar distally away from the housing and actuation of the trocar trigger in a second direction retracts the distal tip of the trocar proximally toward the housing, the trocar trigger further being configured such that actuation of the trocar trigger in the first direction moves the pusher tube trigger.
  • 8. The delivery system of claim 7, wherein the pusher tube trigger is disposed distal of the trocar trigger.
  • 9. The delivery system of claim 7, wherein the non-linear distal portions of the pusher tube and the trocar have a matching curvature.
  • 10. The delivery system of claim 7, wherein the non-linear distal portion of the pusher tube has a radius of curvature that is smaller than a radius of curvature of the non-linear distal portion of the trocar.
  • 11. The delivery system of claim 7, wherein the implant has a curvature that matches a curvature of the non-linear distal portion of the trocar.
  • 12. The delivery system of claim 7, wherein when the trocar trigger is fully advanced in the first direction, the pusher tube trigger is locked to prevent further motion of the pusher tube trigger.
  • 13. The delivery system of claim 7, wherein the implant is sized to drain fluid from an anterior chamber to a suprachoroidal space.
  • 14. An ocular implant delivery system comprising: a generally elongated outer housing that is contoured;an elongated insertion needle partially disposed in the outer housing and comprising a non-linear exposed distal portion;an implant pusher tube extending through a lumen of the elongated insertion needle and comprising a non-linear distal portion that has a first radius of curvature;a trocar passing through a lumen of the pusher tube and comprising a non-linear distal portion that has a second radius of curvature;wherein, in use, the non-linear distal portion of the trocar is adapted to provide access to a suprachoroidal space through a ciliary muscle attachment,wherein the non-linear distal portion of the trocar is flexible and has a curvature adapted to facilitate insertion into the suprachoroidal space; anda trocar trigger mechanically coupled to the trocar such that movement of the trocar trigger towards a proximal end of the housing retracts the trocar toward the housing,wherein, in use, a distal end of the pusher tube is adapted to react against a proximal end of an implant loaded on to the trocar as the trocar is being retracted within the housing to deliver the implant.
  • 15. The delivery system of claim 14, wherein the first radius of curvature is greater than the second radius of curvature.
  • 16. The delivery system of claim 15, wherein the second radius of curvature that is between 0.4 inches to 2.2 inches.
  • 17. The delivery system of claim 14, wherein the implant has a radius of curvature that matches the second radius of curvature.
  • 18. The delivery system of claim 14, wherein the implant is sized to drain fluid from an anterior chamber to a suprachoroidal space.
  • 19. The delivery system of claim 14, wherein a distal portion of the implant includes a plurality of circumferential retention members.
US Referenced Citations (664)
Number Name Date Kind
2031754 Bacigalupi Feb 1936 A
2127903 Bowen Aug 1938 A
2269963 Frederick Jan 1942 A
3439675 Cohen Apr 1969 A
3717151 Collett Feb 1973 A
3809093 Abraham May 1974 A
3827700 Kaller Aug 1974 A
3863623 Trueblood et al. Feb 1975 A
3915172 Krejci et al. Oct 1975 A
3948271 Aklyama Apr 1976 A
3948871 Butterfield et al. Apr 1976 A
3976077 Kerfoot, Jr. Aug 1976 A
4030480 Meyer Jun 1977 A
4043346 Mobley et al. Aug 1977 A
4113088 Binkhorst Sep 1978 A
4168697 Cantekin Sep 1979 A
4175563 Arenberg et al. Nov 1979 A
4299227 Lincoff Nov 1981 A
4328803 Pape May 1982 A
4366582 Faulkner Jan 1983 A
4402681 Haas et al. Sep 1983 A
4449529 Burns et al. May 1984 A
4449974 Messingschlager May 1984 A
4501274 Skjaerpe Feb 1985 A
4521210 Wong Jun 1985 A
4560383 Leiske Dec 1985 A
4578058 Grandon Mar 1986 A
4632842 Karwoski et al. Dec 1986 A
4634418 Binder Jan 1987 A
4642090 Ultrata Feb 1987 A
4692142 Dignam et al. Sep 1987 A
4718907 Karwoski et al. Jan 1988 A
4733665 Palmaz Mar 1988 A
4782819 Adair Nov 1988 A
4800870 Reid, Jr. Jan 1989 A
4800890 Cramer Jan 1989 A
4804382 Turina et al. Feb 1989 A
4820626 Wiliams et al. Apr 1989 A
4846172 Berlin Jul 1989 A
4846793 Leonard et al. Jul 1989 A
4867173 Leoni Sep 1989 A
4870953 DonMicheal et al. Oct 1989 A
4886488 White Dec 1989 A
4900300 Lee Feb 1990 A
4905667 Foerster et al. Mar 1990 A
4986810 Semrad Jan 1991 A
4991602 Amplatz et al. Feb 1991 A
5005577 Frenekl Apr 1991 A
5053040 Goldsmith, III Oct 1991 A
5053044 Mueller et al. Oct 1991 A
5095887 Leon et al. Mar 1992 A
5116327 Seder et al. May 1992 A
5129895 Vassiliadis et al. Jul 1992 A
5139502 Berg et al. Aug 1992 A
5169386 Becker et al. Dec 1992 A
5180362 Worst Jan 1993 A
5207685 Cinberg et al. May 1993 A
5221255 Mahurkar et al. Jun 1993 A
5246451 Trescony et al. Sep 1993 A
5248231 Denham et al. Sep 1993 A
5284476 Koch Feb 1994 A
5290295 Querals et al. Mar 1994 A
5318513 Leib et al. Jun 1994 A
5324306 Makower et al. Jun 1994 A
5334137 Freeman Aug 1994 A
5342370 Simon et al. Aug 1994 A
5358492 Feibus Oct 1994 A
5360399 Stegmann Nov 1994 A
5415666 Gourlay et al. May 1995 A
5443505 Wong et al. Aug 1995 A
5445637 Bretton Aug 1995 A
5462558 Kolesa et al. Oct 1995 A
5472440 Beckman Dec 1995 A
5486165 Stegmann Jan 1996 A
5556400 Tunis Sep 1996 A
5558637 Allonen et al. Sep 1996 A
5562641 Flomenblit et al. Oct 1996 A
5601094 Reiss Feb 1997 A
5626588 Sauer et al. May 1997 A
5639278 Dereume et al. Jun 1997 A
5643321 McDevitt Jul 1997 A
5651782 Simon et al. Jul 1997 A
5651783 Reynard Jul 1997 A
5653724 Imonti Aug 1997 A
5669501 Hissong et al. Sep 1997 A
5676679 Simon et al. Oct 1997 A
5681275 Ahmed Oct 1997 A
5681323 Arick Oct 1997 A
5695479 Jagpal Dec 1997 A
5702414 Richter et al. Dec 1997 A
5702419 Berry et al. Dec 1997 A
5723005 Herrick Mar 1998 A
5725529 Nicholson et al. Mar 1998 A
5725546 Samson Mar 1998 A
5733256 Costin Mar 1998 A
5741292 Mendius Apr 1998 A
5741333 Frid Apr 1998 A
5762625 Igaki Jun 1998 A
5766243 Christensen et al. Jun 1998 A
5785674 Mateen Jul 1998 A
5792099 DeCamp et al. Aug 1998 A
5800376 Vaskelis Sep 1998 A
5807244 Barot Sep 1998 A
5810870 Myers et al. Sep 1998 A
5817100 Igaki Oct 1998 A
5824071 Nelson et al. Oct 1998 A
5830171 Wallace Nov 1998 A
5833694 Poncet Nov 1998 A
5836939 Negus et al. Nov 1998 A
5846199 Hijlkema et al. Dec 1998 A
5865831 Cozean et al. Feb 1999 A
5868697 Ritcher et al. Feb 1999 A
5891084 Lee Apr 1999 A
5893837 Eagles et al. Apr 1999 A
5908449 Bruchman et al. Jun 1999 A
5913852 Magram Jun 1999 A
5927585 Moorman et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5941250 Aramant et al. Aug 1999 A
5984913 Kritzinger et al. Nov 1999 A
6004302 Brierley Dec 1999 A
6007511 Prywes Dec 1999 A
6030416 Huo et al. Feb 2000 A
6033434 Borghi Mar 2000 A
6036678 Giungo Mar 2000 A
6036682 Lange et al. Mar 2000 A
6045557 White et al. Apr 2000 A
6050999 Paraschac et al. Apr 2000 A
6071286 Mawad Jun 2000 A
6074395 Trott et al. Jun 2000 A
6077299 Adelberg et al. Jun 2000 A
6135977 Drasler et al. Oct 2000 A
6142990 Burk Nov 2000 A
6146387 Trott et al. Nov 2000 A
6165210 Lau et al. Dec 2000 A
6174305 Mikus et al. Jan 2001 B1
6186974 Allan et al. Feb 2001 B1
6187016 Hedges et al. Feb 2001 B1
6221078 Bylsma Apr 2001 B1
6224570 Le et al. May 2001 B1
6231597 Deem et al. May 2001 B1
6241721 Cozean et al. Jun 2001 B1
6254612 Hieshima Jul 2001 B1
6264668 Prywes Jul 2001 B1
6287313 Sasso Sep 2001 B1
6299603 Hecker et al. Oct 2001 B1
6306114 Freeman et al. Oct 2001 B1
6342058 Portney Jan 2002 B1
6355033 Moorman et al. Mar 2002 B1
6358222 Grundei Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6363938 Saadat Apr 2002 B2
6375642 Grieshaber et al. Apr 2002 B1
6402734 Weiss Jun 2002 B1
6405732 Edwards et al. Jun 2002 B1
6428501 Reynard Aug 2002 B1
6428566 Holt Aug 2002 B1
6450937 Mercereau et al. Sep 2002 B1
6450984 Lynch et al. Sep 2002 B1
6454787 Maddalo et al. Sep 2002 B1
6464724 Lynch et al. Oct 2002 B1
6517483 Park et al. Feb 2003 B2
6524275 Lynch et al. Feb 2003 B1
6530896 Elliott Mar 2003 B1
6544249 Yu et al. Apr 2003 B1
6561974 Grieshaber et al. May 2003 B1
6582426 Moorman et al. Jun 2003 B2
6582453 Tran et al. Jun 2003 B1
6585680 Bugge Jul 2003 B2
6585753 Eder et al. Jul 2003 B2
6589198 Soltanpour et al. Jul 2003 B1
6589203 Mitrev Jul 2003 B1
6605053 Kamm et al. Aug 2003 B1
6607542 Wild Aug 2003 B1
6613343 Dillingham et al. Sep 2003 B2
6620154 Amirkhanian et al. Sep 2003 B1
6626858 Lynch et al. Sep 2003 B2
6629981 Bui et al. Oct 2003 B2
6638239 Bergheim et al. Oct 2003 B1
6666841 Gharib et al. Dec 2003 B2
6676607 De Juan, Jr. et al. Jan 2004 B2
6682500 Soltanpour et al. Jan 2004 B2
6699272 Slepian et al. Mar 2004 B2
D490152 Myall et al. May 2004 S
6730056 Ghaem et al. May 2004 B1
6736791 Tu et al. May 2004 B1
6763833 Khera et al. Jul 2004 B1
6764439 Schaaf et al. Jul 2004 B2
6767346 Damasco et al. Jul 2004 B2
6780164 Bergheim et al. Aug 2004 B2
6780165 Kadziauskas et al. Aug 2004 B2
6783544 Lynch et al. Aug 2004 B2
6827699 Lynch et al. Dec 2004 B2
6827700 Lynch et al. Dec 2004 B2
6827738 Willis et al. Dec 2004 B2
6893413 Martin May 2005 B2
6902577 Lipshitz et al. Jun 2005 B2
6939298 Brown et al. Sep 2005 B2
6955656 Bergheim et al. Oct 2005 B2
6966888 Cullen Nov 2005 B2
6981958 Gharib et al. Jan 2006 B1
7077821 Durgin Jul 2006 B2
7077848 de Juan et al. Jul 2006 B1
7090681 Weber et al. Aug 2006 B2
7094225 Tu et al. Aug 2006 B2
7101402 Phelps et al. Sep 2006 B2
7135009 Tu et al. Nov 2006 B2
7135016 Asia et al. Nov 2006 B1
7144616 Unger et al. Dec 2006 B1
7163543 Smedley et al. Jan 2007 B2
7186232 Smedley et al. Mar 2007 B1
7192412 Zhou et al. Mar 2007 B1
7192484 Chappa et al. Mar 2007 B2
7217263 Humayun et al. May 2007 B2
7220238 Lynch et al. May 2007 B2
7273475 Tu et al. Sep 2007 B2
7294115 Wilk Nov 2007 B1
7297130 Bergheim et al. Nov 2007 B2
7331984 Tu et al. Feb 2008 B2
7344528 Tu et al. Mar 2008 B1
7431710 Tu et al. Oct 2008 B2
7468065 Weber et al. Dec 2008 B2
7488303 Haffner et al. Feb 2009 B1
7520876 Ressemann et al. Apr 2009 B2
D592846 Highley et al. May 2009 S
RE40722 Chappa Jun 2009 E
7563241 Tu et al. Jul 2009 B2
D606190 Pruitt et al. Dec 2009 S
7678065 Haffner et al. Mar 2010 B2
7708711 Tu et al. May 2010 B2
7758624 Dorn et al. Jul 2010 B2
7771388 Olsen et al. Aug 2010 B2
7850637 Lynch et al. Dec 2010 B2
7857782 Tu et al. Dec 2010 B2
7867186 Haffner et al. Jan 2011 B2
7867205 Bergheim et al. Jan 2011 B2
7879001 Haffner et al. Feb 2011 B2
7879079 Tu et al. Feb 2011 B2
7905904 Stone et al. Mar 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7945336 Sauter/Starace et al. May 2011 B2
7951155 Smedley et al. May 2011 B2
7959632 Fugo Jun 2011 B2
7967772 McKenzie et al. Jun 2011 B2
7997460 Pardes et al. Aug 2011 B2
8007459 Haffner et al. Aug 2011 B2
D645489 Gille et al. Sep 2011 S
D645490 Gille et al. Sep 2011 S
8062244 Tu et al. Nov 2011 B2
8070290 Giile et al. Dec 2011 B2
8075511 Tu et al. Dec 2011 B2
8118768 Tu et al. Feb 2012 B2
8142364 Haffner et al. Mar 2012 B2
8152752 Lynch et al. Apr 2012 B2
8197418 Lal et al. Jun 2012 B2
8267882 Euteneuer et al. Sep 2012 B2
8273050 Bergheim et al. Sep 2012 B2
8333742 Bergheim et al. Dec 2012 B2
8337445 Tu et al. Dec 2012 B2
8348877 Tu et al. Jan 2013 B2
8388568 Lynch et al. Mar 2013 B2
8506515 Burns et al. Aug 2013 B2
8540659 Berlin Sep 2013 B2
8579846 Tu et al. Nov 2013 B2
8617094 Smedley et al. Dec 2013 B2
8656958 Unger et al. Feb 2014 B2
8679089 Berlin Mar 2014 B2
8771217 Lynch et al. Jul 2014 B2
8801648 Bergheim et al. Aug 2014 B2
8808219 Bergheim et al. Aug 2014 B2
8808220 Coroneo Aug 2014 B2
8814820 Bergheim et al. Aug 2014 B2
8852137 Horvath et al. Oct 2014 B2
8852266 Brooks et al. Oct 2014 B2
8882781 Smedley et al. Nov 2014 B2
8998983 Auld Apr 2015 B2
9066782 Tu et al. Jun 2015 B2
9155654 Tu et al. Oct 2015 B2
9173775 Haffner et al. Nov 2015 B2
9220632 Smedley et al. Dec 2015 B2
9301875 Tu et al. Apr 2016 B2
9492320 Lynch et al. Nov 2016 B2
9554940 Haffner et al. Jan 2017 B2
9561131 Tu et al. Feb 2017 B2
9572963 Tu et al. Feb 2017 B2
9592151 Rangel-Friedman et al. Mar 2017 B2
9597230 Haffner et al. Mar 2017 B2
9603738 Haffner et al. Mar 2017 B2
9603741 Berlin Mar 2017 B2
9636255 Haffner et al. May 2017 B2
9668915 Haffner et al. Jun 2017 B2
9730638 Haffner et al. Aug 2017 B2
9789001 Tu et al. Oct 2017 B2
9827143 Lynch et al. Nov 2017 B2
9833357 Berlin Dec 2017 B2
9849027 Highley et al. Dec 2017 B2
9962290 Burns et al. May 2018 B2
9987472 Tu et al. Jun 2018 B2
9993368 Bergheim et al. Jun 2018 B2
D833008 Kalina, Jr. et al. Nov 2018 S
10188551 Rangel-Friedman et al. Jan 2019 B2
10206813 Haffner et al. Feb 2019 B2
D846738 Kalina, Jr. et al. Apr 2019 S
10245178 Heitzmann et al. Apr 2019 B1
10271989 Haffner et al. Apr 2019 B2
10285853 Rangel-Friedman May 2019 B2
10285856 Tu et al. May 2019 B2
10406029 Tu et al. Sep 2019 B2
10485701 Haffner et al. Nov 2019 B2
10485702 Bergheim et al. Nov 2019 B2
10492950 Lynch et al. Dec 2019 B2
10499809 Kalina, Jr. et al. Dec 2019 B2
10517759 Crimaldi et al. Dec 2019 B2
10568762 Lynch et al. Feb 2020 B2
D886997 Kalina, Jr. et al. Jun 2020 S
10674906 Kalina, Jr. et al. Jun 2020 B2
10813789 Haffner et al. Oct 2020 B2
D901683 Kalina, Jr. et al. Nov 2020 S
10828195 Burns et al. Nov 2020 B2
10828473 Haffner et al. Nov 2020 B2
10959941 Haffner Mar 2021 B2
11019996 Kalina, Jr. et al. Jun 2021 B2
11019997 Kalina, Jr. et al. Jun 2021 B2
11116625 Kalina, Jr. Sep 2021 B2
D938585 Kalina, Jr. et al. Dec 2021 S
11197780 Haffner et al. Dec 2021 B2
11253394 Haffner et al. Feb 2022 B2
11318043 Heitzmann et al. May 2022 B2
11376040 Kalina, Jr. et al. Jul 2022 B2
20010000527 Yaron et al. Apr 2001 A1
20010025150 de Juan et al. Sep 2001 A1
20010053873 Schaaf et al. Dec 2001 A1
20020052640 Bigus et al. May 2002 A1
20020072673 Yamamoto et al. Jun 2002 A1
20020099434 Buscemi et al. Jul 2002 A1
20020111608 Baerveldt et al. Aug 2002 A1
20020120284 Schachar et al. Aug 2002 A1
20020120285 Schachar et al. Aug 2002 A1
20020133168 Smedley et al. Sep 2002 A1
20020143284 Tu et al. Oct 2002 A1
20020165522 Holmen Nov 2002 A1
20020177856 Richter et al. Nov 2002 A1
20030014021 Holmen Jan 2003 A1
20030014092 Neuhann Jan 2003 A1
20030019833 Unger et al. Jan 2003 A1
20030055372 Lynch et al. Mar 2003 A1
20030060752 Bergheim et al. Mar 2003 A1
20030079329 Yaron et al. May 2003 A1
20030093084 Nissan et al. May 2003 A1
20030097117 Buono May 2003 A1
20030097151 Smedley et al. May 2003 A1
20030105456 Lin Jun 2003 A1
20030109907 Shadduck Jun 2003 A1
20030135149 Cullen et al. Jul 2003 A1
20030139729 Stegmann et al. Jul 2003 A1
20030181848 Bergheim et al. Sep 2003 A1
20030187384 Bergheim et al. Oct 2003 A1
20030195438 Petillo Oct 2003 A1
20030208163 Yaron et al. Nov 2003 A1
20030208217 Dan Nov 2003 A1
20030212383 Cote et al. Nov 2003 A1
20030229303 Haffner et al. Dec 2003 A1
20030236483 Ren Dec 2003 A1
20030236484 Lynch et al. Dec 2003 A1
20040015140 Shields Jan 2004 A1
20040024345 Gharib et al. Feb 2004 A1
20040088048 Richter et al. May 2004 A1
20040098122 Lee et al. May 2004 A1
20040102729 Haffner et al. May 2004 A1
20040111050 Smedley et al. Jun 2004 A1
20040147870 Burns et al. Jul 2004 A1
20040154946 Solovay et al. Aug 2004 A1
20040193095 Shadduck Sep 2004 A1
20040193262 Shadduck Sep 2004 A1
20040210185 Tu et al. Oct 2004 A1
20040215126 Ahmed Oct 2004 A1
20040216749 Tu Nov 2004 A1
20040225250 Yablonski Nov 2004 A1
20040236343 Taylor et al. Nov 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040249404 Haefliger Dec 2004 A1
20040254517 Quiroz/Mercado et al. Dec 2004 A1
20040254519 Tu et al. Dec 2004 A1
20040254520 Porteous et al. Dec 2004 A1
20040254521 Simon Dec 2004 A1
20040260227 Lisk, Jr. et al. Dec 2004 A1
20040260228 Lynch et al. Dec 2004 A1
20050038498 Dubrow et al. Feb 2005 A1
20050049578 Tu et al. Mar 2005 A1
20050055075 Pinchuk et al. Mar 2005 A1
20050096639 Slatkine et al. May 2005 A1
20050107734 Coroneo May 2005 A1
20050125003 Pinchuk et al. Jun 2005 A1
20050165385 Simon Jul 2005 A1
20050171562 Criscuolo et al. Aug 2005 A1
20050209549 Bergheim et al. Sep 2005 A1
20050209672 George et al. Sep 2005 A1
20050240143 Dohlman Oct 2005 A1
20050240222 Shipp Oct 2005 A1
20050250788 Tu et al. Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050277864 Haffner et al. Dec 2005 A1
20050288619 Gharib et al. Dec 2005 A1
20060032507 Tu Feb 2006 A1
20060069340 Simon Mar 2006 A1
20060074375 Bergheim et al. Apr 2006 A1
20060084907 Bergheim et al. Apr 2006 A1
20060106370 Baerveldt et al. May 2006 A1
20060116626 Smedley et al. Jun 2006 A1
20060155238 Shields Jul 2006 A1
20060155300 Stamper et al. Jul 2006 A1
20060173397 Tu et al. Aug 2006 A1
20060195055 Bergheim et al. Aug 2006 A1
20060195056 Bergheim et al. Aug 2006 A1
20060200113 Haffner et al. Sep 2006 A1
20060210605 Chang et al. Sep 2006 A1
20060217741 Ghannoum Sep 2006 A1
20060241580 Mittelstein et al. Oct 2006 A1
20060241749 Tu et al. Oct 2006 A1
20070004998 Rodgers et al. Jan 2007 A1
20070021653 Hattenbach et al. Jan 2007 A1
20070073275 Conston et al. Mar 2007 A1
20070073390 Lee Mar 2007 A1
20070078471 Schachar et al. Apr 2007 A1
20070088242 Coroneo Apr 2007 A1
20070088432 Solovay et al. Apr 2007 A1
20070093740 Shetty Apr 2007 A1
20070106199 Krivoy et al. May 2007 A1
20070106235 Coroneo May 2007 A1
20070118065 Pinchuk et al. May 2007 A1
20070118066 Pinchuk et al. May 2007 A1
20070123812 Pinchuk et al. May 2007 A1
20070123919 Schachar et al. May 2007 A1
20070149915 Yablonski Jun 2007 A1
20070149927 Itou et al. Jun 2007 A1
20070154621 Raad Jul 2007 A1
20070156079 Brown Jul 2007 A1
20070161981 Sanders et al. Jul 2007 A1
20070179426 Selden Aug 2007 A1
20070179471 Christian et al. Aug 2007 A1
20070191863 De Juan, Jr. et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070212386 Patravale et al. Sep 2007 A1
20070212387 Patravale et al. Sep 2007 A1
20070212388 Patravale et al. Sep 2007 A1
20070212393 Patravale et al. Sep 2007 A1
20070276315 Haffner Nov 2007 A1
20070282244 Tu et al. Dec 2007 A1
20070282245 Tu et al. Dec 2007 A1
20070287958 McKenzie et al. Dec 2007 A1
20070292470 Thornton Dec 2007 A1
20070293807 Lynch et al. Dec 2007 A1
20070293873 Chang Dec 2007 A1
20080033351 Trogden et al. Feb 2008 A1
20080039931 Jelle et al. Feb 2008 A1
20080045878 Bergheim et al. Feb 2008 A1
20080051681 Schwartz Feb 2008 A1
20080058704 Hee et al. Mar 2008 A1
20080082078 Berlin Apr 2008 A1
20080091224 Griffis, III et al. Apr 2008 A1
20080097214 Meyers et al. Apr 2008 A1
20080097335 Trogden et al. Apr 2008 A1
20080108932 Rodgers May 2008 A1
20080108933 Yu et al. May 2008 A1
20080109037 Steiner et al. May 2008 A1
20080114440 Hlavka et al. May 2008 A1
20080125691 Yaron et al. May 2008 A1
20080140059 Schachar et al. Jun 2008 A1
20080147083 Vold et al. Jun 2008 A1
20080161907 Chen et al. Jul 2008 A1
20080183289 Werblin Jul 2008 A1
20080188860 Vold Aug 2008 A1
20080195027 Coroneo Aug 2008 A1
20080200860 Tu et al. Aug 2008 A1
20080200923 Beckman et al. Aug 2008 A1
20080208176 Loh Aug 2008 A1
20080210322 Unger et al. Sep 2008 A1
20080215062 Bowen et al. Sep 2008 A1
20080221501 Cote et al. Sep 2008 A1
20080228127 Burns et al. Sep 2008 A1
20080236669 Unger et al. Oct 2008 A1
20080243156 John Oct 2008 A1
20080243243 Williams et al. Oct 2008 A1
20080255545 Mansfield et al. Oct 2008 A1
20080269730 Dotson Oct 2008 A1
20080277007 Unger et al. Nov 2008 A1
20080281250 Bergsneider et al. Nov 2008 A1
20080289710 Unger et al. Nov 2008 A1
20080306429 Shields et al. Dec 2008 A1
20090043242 Bene et al. Feb 2009 A1
20090043321 Conston et al. Feb 2009 A1
20090043365 Friedland et al. Feb 2009 A1
20090076436 Gharib et al. Mar 2009 A2
20090112245 Haefliger Apr 2009 A1
20090124973 D'Agostino et al. May 2009 A1
20090132040 Frion et al. May 2009 A1
20090137989 Kataoka May 2009 A1
20090138081 Bergheim et al. May 2009 A1
20090151422 Unger et al. Jun 2009 A1
20090182421 Silvestrini et al. Jul 2009 A1
20090198213 Tanaka Aug 2009 A1
20090204053 Nissan et al. Aug 2009 A1
20090227934 Eutenever et al. Sep 2009 A1
20090264813 Chang Oct 2009 A1
20090287233 Huculak Nov 2009 A1
20090326432 Schmidt et al. Dec 2009 A1
20100004581 Brigatti et al. Jan 2010 A1
20100010416 Juan, Jr. et al. Jan 2010 A1
20100010452 Paques et al. Jan 2010 A1
20100025613 Tai et al. Feb 2010 A1
20100030150 Paques et al. Feb 2010 A1
20100042209 Guarnieri Feb 2010 A1
20100056979 Smedley et al. Mar 2010 A1
20100057055 Camras et al. Mar 2010 A1
20100057093 Ide et al. Mar 2010 A1
20100076419 Chew et al. Mar 2010 A1
20100121248 Yu et al. May 2010 A1
20100121249 Yu et al. May 2010 A1
20100121342 Schieber et al. May 2010 A1
20100137981 Silvestrini et al. Jun 2010 A1
20100152626 Schwartz Jun 2010 A1
20100152641 Yablonski Jun 2010 A1
20100173866 Hee et al. Jul 2010 A1
20100175767 Unger et al. Jul 2010 A1
20100185138 Yaron et al. Jul 2010 A1
20100185205 Novakovic et al. Jul 2010 A1
20100191103 Stamper et al. Jul 2010 A1
20100234791 Lynch et al. Sep 2010 A1
20100234817 Nazzaro et al. Sep 2010 A1
20100240987 Christian et al. Sep 2010 A1
20100241046 Pinchuk et al. Sep 2010 A1
20100262174 Sretavan Oct 2010 A1
20100274258 Silvestrini et al. Oct 2010 A1
20100274259 Yaron et al. Oct 2010 A1
20100280317 Silvestrini et al. Nov 2010 A1
20110009874 Wardle et al. Jan 2011 A1
20110009958 Wardle et al. Jan 2011 A1
20110022065 Shipp Jan 2011 A1
20110028883 Juan, Jr. et al. Feb 2011 A1
20110028884 Coroneo Feb 2011 A1
20110028983 Silvestrini et al. Feb 2011 A1
20110046536 Stegmann et al. Feb 2011 A1
20110046728 Shareef et al. Feb 2011 A1
20110066098 Stergiopulos Mar 2011 A1
20110071454 Dos Santos et al. Mar 2011 A1
20110071456 Rickard Mar 2011 A1
20110071458 Rickard Mar 2011 A1
20110071459 Rickard et al. Mar 2011 A1
20110071505 Rickard et al. Mar 2011 A1
20110071524 Keller Mar 2011 A1
20110077626 Baerveldt et al. Mar 2011 A1
20110082385 Diaz et al. Apr 2011 A1
20110087151 Coroneo Apr 2011 A1
20110092965 Slatkine et al. Apr 2011 A1
20110098629 Juan, Jr. et al. Apr 2011 A1
20110098809 Wardle et al. Apr 2011 A1
20110112546 Juan, Jr. et al. May 2011 A1
20110118649 Stegmann et al. May 2011 A1
20110118835 Silvestrini et al. May 2011 A1
20110144641 Dimalanta, Jr. et al. Jun 2011 A1
20110202049 Jia et al. Aug 2011 A1
20110224597 Stegmann et al. Sep 2011 A1
20110230877 Huculak et al. Sep 2011 A1
20110244014 Williams et al. Oct 2011 A1
20110245753 Sunalp Oct 2011 A1
20110257623 Marshall et al. Oct 2011 A1
20110306915 De Juan, Jr. et al. Dec 2011 A1
20110319793 Hyhynen Dec 2011 A1
20110319806 Wardle Dec 2011 A1
20120016286 Silvestrini et al. Jan 2012 A1
20120022409 Gertner et al. Jan 2012 A1
20120022424 Yamamoto et al. Jan 2012 A1
20120022429 Silvestrini et al. Jan 2012 A1
20120035524 Silvestrini Feb 2012 A1
20120035525 Silvestrini Feb 2012 A1
20120065570 Yeung et al. Mar 2012 A1
20120071908 Sorensen et al. Mar 2012 A1
20120078158 Haffner et al. Mar 2012 A1
20120078281 Cox et al. Mar 2012 A1
20120078362 Haffner et al. Mar 2012 A1
20120089072 Cunningham, Jr. Apr 2012 A1
20120089073 Cunningham, Jr. Apr 2012 A1
20120123439 Romoda et al. May 2012 A1
20120123440 Horvath et al. May 2012 A1
20120165721 Grabner et al. Jun 2012 A1
20120165722 Horvath et al. Jun 2012 A1
20120165723 Horvath et al. Jun 2012 A1
20120165933 Haffner et al. Jun 2012 A1
20120197175 Horvath Aug 2012 A1
20120203262 Connors et al. Aug 2012 A1
20120220917 Silvestrini et al. Aug 2012 A1
20120232570 Jenson et al. Sep 2012 A1
20120257167 Giile et al. Oct 2012 A1
20120259195 Haffner et al. Oct 2012 A1
20120271272 Hammack et al. Oct 2012 A1
20120283557 Berlin Nov 2012 A1
20120289883 Meng et al. Nov 2012 A1
20120310137 Silvestrini Dec 2012 A1
20120323159 Wardle et al. Dec 2012 A1
20130006164 Yaron et al. Jan 2013 A1
20130006165 Eutenener et al. Jan 2013 A1
20130018295 Haffner et al. Jan 2013 A1
20130018296 Bergheim et al. Jan 2013 A1
20130018412 Journey et al. Jan 2013 A1
20130079701 Schieber et al. Mar 2013 A1
20130079759 Dotson et al. Mar 2013 A1
20130090534 Burns Apr 2013 A1
20130110125 Silvestrini et al. May 2013 A1
20130131577 Bronstein et al. May 2013 A1
20130144202 Field et al. Jun 2013 A1
20130150770 Horvath et al. Jun 2013 A1
20130150773 Nissan et al. Jun 2013 A1
20130150774 Field et al. Jun 2013 A1
20130150776 Bohm et al. Jun 2013 A1
20130150777 Bohm et al. Jun 2013 A1
20130158381 Rickard Jun 2013 A1
20130158462 Wardle et al. Jun 2013 A1
20130165840 Orge Jun 2013 A1
20130184631 Pinchuk Jul 2013 A1
20130245532 Tu et al. Sep 2013 A1
20130253404 Tu Sep 2013 A1
20130253405 Tu Sep 2013 A1
20130281910 Tu Oct 2013 A1
20130289467 Haffner et al. Oct 2013 A1
20130310930 Tu et al. Nov 2013 A1
20140034607 Meng et al. Feb 2014 A1
20140052046 Peartree et al. Feb 2014 A1
20140081194 Burns et al. Mar 2014 A1
20140135916 Clauson et al. May 2014 A1
20140155803 Silvestrini Jun 2014 A1
20150223981 Smedley et al. Aug 2015 A1
20150342875 Haffner Dec 2015 A1
20150374546 Hill Dec 2015 A1
20160354309 Heitzmann et al. Dec 2016 A1
20170135857 Haffner et al. May 2017 A1
20180021170 Haffner et al. Jan 2018 A1
20180028361 Haffner et al. Feb 2018 A1
20180085065 Haffner et al. Mar 2018 A1
20180104102 Lynch et al. Apr 2018 A1
20180161205 Tu et al. Jun 2018 A1
20180280194 Heitzmann et al. Oct 2018 A1
20180303665 Heitzmann et al. Oct 2018 A1
20180333296 Heitzmann et al. Nov 2018 A1
20190000673 Fjield et al. Jan 2019 A1
20190021991 Heitzmann et al. Jan 2019 A9
20190053704 Burns et al. Feb 2019 A1
20190083307 Burns et al. Mar 2019 A1
20190104936 Gunn et al. Apr 2019 A1
20190105077 Kalina, Jr. et al. Apr 2019 A1
20190125581 Heitzmann et al. May 2019 A1
20190224046 Heitzmann et al. Jul 2019 A1
20190314199 Haffner et al. Oct 2019 A1
20190321225 Smedley et al. Oct 2019 A1
20200155349 Haffner et al. May 2020 A1
20200179171 Crimaldi et al. Jun 2020 A1
20200367745 Kalina, Jr. et al. Nov 2020 A1
20210015662 Haffner et al. Jan 2021 A1
20210137737 Burns et al. May 2021 A1
20210154449 Haffner et al. May 2021 A1
20210298948 Haffner et al. Sep 2021 A1
20210315806 Haffner Oct 2021 A1
20210369447 Kalina, Jr. Dec 2021 A1
20220000663 Haffner et al. Jan 2022 A1
20220015628 Kalina, Jr. et al. Jan 2022 A1
Foreign Referenced Citations (41)
Number Date Country
200072059 Dec 2000 AU
2244646 Feb 1999 CA
2643357 Nov 1999 CA
2766131 Jan 2011 CA
92111244 Jul 1993 CH
10042310 Mar 2002 DE
10127666 Jan 2003 DE
0436232 Jul 1991 EP
2553658 Apr 1985 FR
2757068 Jun 1998 FR
2003-520077 Jul 2003 JP
2009-542370 Dec 2009 JP
5328788 Oct 2013 JP
2022539 Nov 1994 RU
2143250 Dec 1999 RU
2160573 Dec 2000 RU
WO 198900869 Feb 1989 WO
WO 199208406 May 1992 WO
WO 199402081 Feb 1994 WO
WO 199413234 Jun 1994 WO
WO 1996020742 Jul 1996 WO
WO 199823237 Jun 1998 WO
WO 199837831 Sep 1998 WO
WO 199926567 Jun 1999 WO
WO 199930641 Jun 1999 WO
WO 200067687 Nov 2000 WO
WO 200168016 Sep 2001 WO
WO 2001085065 Nov 2001 WO
WO 200197727 Dec 2001 WO
WO 200236052 May 2002 WO
WO 2003041622 May 2003 WO
WO 2003045290 Jun 2003 WO
WO 2003073968 Sep 2003 WO
WO 2004008945 Jun 2004 WO
WO 2004093761 Nov 2004 WO
WO 2005107664 Nov 2005 WO
WO 2005107845 Nov 2005 WO
WO 2005117780 Dec 2005 WO
WO 2009012406 Jan 2009 WO
WO 2010093945 Aug 2010 WO
WO 2011020633 Feb 2011 WO
Non-Patent Literature Citations (49)
Entry
Bae, et al., “In vitro experiment of the pressure regulating valve for a glaucoma implant”, Journal of Micromechanics and Microengineering 13.5, 13:613-619, No. 5, Sep. 2003.
Bartolomei et al., “Seton implantation to divert aqueous humor”, Journal of Glaucoma, 13:348-349, No. 4, Aug. 2004.
Chen, et al., “Trabeculetomy combined with Implantation of sil-icon rubber slice for intractable glaucoma”, Eye Science, 18:95-98, vol. 2, Jun. 2002.
Chu, Jennifer, “Detecting the Danger Signs of Glaucoma”, Technology Review Published by MIT, Aug. 15, 2007, 2 pp., http://www.technologyreview.com/printer_friendly__article.aspx?id=19257.
Constad, William H., et al., Use of an Angiotensin Converting Enzyme Inhibitor in Ocular Hypertension and Primary Open-Angle Glaucoma, 103 Am J Opthalmol 674 (1988).
Coote, “Glaucoma Hollow Fiber Filters—A New Glaucoma Seton. Preliminary Results,” J. Glaucoma, vol. 8, No. 1, Supplement (1999), p. S4 (1 page).
Duane's Ophthalmology on CD-ROM, 2006 Edition, Chapter 56—Medical Therapy of Glaucoma by Marc Weitzman and Joseph Caprioli.
De Juan et al., “Refinements in microinstrumentation for vitrous surgery,” Am. J. Ophthalmol. 109:218-20 (1990).
Dorland's Illustrated Medical Dictionary, 28th Edition, Philadelphia: W.B. Saunders Company, 1994, p. 167.
Fletcher et al., “Intravascular Drug Delivery With a Pulsed Liquid Microjet”, (Reprinted) Arch Ophthalmology; vol. 120, Sep. 2002, pp. 1206-1208.
Gal, “A novel glaucoma drainage valve”, ProQuest Dissertations Publishing, 131 pages, 1999.
Hill et al., “Laser Trabecular Ablation (LTA)”, Lasers in Surgery and Medicine, vol. 11:341-346 (1991).
Hoskins et al., “Diagnosis and Therapy of the Glaucomas”, Chapter 4: Aqueous Humor Outflow, 61 Edition, pp. 41-66 (1989) (28 pages).
Johnson et al, “Basic Sciences in Clinical Glaucoma: How Does Nonpenetrating Glaucoma Surgery Work? Aqueous Outflow Resistance and Glaucoma Surger”, Journal of Glaucoma; 2001, vol. 10, No. 1, pp. 55-67.
Johnson et al., “Schlemm's Canal Becomes Smaller After Successful Filtration Surgery”, (reprinted) ARCM Ophthalmol/vol. 118, Sep. 2000 (www.archophthalmol.com) p. 1251-1256.
Johnstone et al., American Glaucoma Society, 12th Annual Meeting, “Cylindrical Tubular Structures Spanning from Trabecular Meshwork Across SC, Laboratory Studies with SEM, TEM and Tracers Correlated with Clinical Findings”, p. 39, 2002.
Jordan et al., “A Novel Approach to Suprachoroidal Drainage for the Surgical Treatment of Intractable Glaucoma”, J Glaucoma, vol. 15, No. 3, Jun. 2006, pp. 200-205.
Jordan et al., “Cyclodialysis ab intemo as a surgical approach to intractable glaucoma”, Graefe's Arch Clin Exp Ophthalmol (2007) 245:1071-1076.
Karlen, M. E., et al., “Deep sclerectomy with collagen implant: medium term results”, Br. J. Ophthalmol. vol. 83, No. 1, Jan. 1999, pp. 6-11 (abstract only).
Katuri et al., “Intraocular Pressure Monitoring Sensors”, IEEE Sensors Journal, vol. 8, No. 1, Jan. 2008, 8 pp.
Kim et al., “Controlled Drug Release from an Ocular Implant: An Evaluation Using Dynamic Three-Diminsional Magnetic Resonance Imaging”, Invest Ophthalmol Vis Sci. 2004;45:2722-2731.
Kimura et al., “The Efficacy of Isopropyl Unoppostone in the Concomitant Application of B Blocker, Dipivefrin and Pilocarpine”, Glaucoma Clinical Pharmacology II, Abstract B56, IVOS 1998 vol. 39, (cover page and page No. S258).
Klemm et al., “Experimental use of space-retaining substances with extended duration: functional and morphological results”, Graefe's Arch Clin Exp Ophthalmol (1995) 233:592-597.
Krejci, “Cyclodialysis with Hydroxyethyl Methacrylate Capillary Strip (HCS),” Opthalmologica, vol. 164 (1972), pp. 113-121 (9 pages).
Lim, “Development of a new glaucoma drainage device”, ProQuest Dissertations Publishing, 147 pages, 2001.
Moses, Robert A., et al., “Blood Reflux in Schlemm's Canal”, Arch Ophthamol., vol. 97, Jul. 1979, pp. 1307-1310.
Ning, “Optimum Design of a New Aqueous Humor Drainage Implant for Glaucoma and the Animal”, ProQuest Dissertations Publishing, 2004.
Ozdamar et al., “Suprachoroidal Seton implantation in Refractory Glaucoma: A novel Surgical Technique”, Journal of Glaucoma 12:354-359, 2003.
Pajic, Bojan et al., “A novel technique of ab interno glaucoma surgery: follow-up results after 24 months”, Graefe's Arch Clin Exp Ophthalmol, Jul. 2005, (2006) 244:22-27.
Pederson, Jonathan et al., “Uveoscleral Aqueous Outflow in the Rhesus Monkey: Importance of Uveal Reabsorption,” Invest. Ophthalmol, Visual Sci. Nov. 1977, Uveal Reabsorption of Aqueous Humor, vol. 16, No. 11, pp. 1008-1017.
Qu et al., “Isolation and characterization of noncytopathic pestivirus mutants reveals a role for nonstructural protein NS4B in viral cytopathogenicity”, Nov. 2001 Journal of Virology. vol. 75, No. 22, 10651-62, see Fig. 1 and p. 10654.
Refojo, “Current status of biomaterials in ophthalmology”, Survey of ophthalmology, 26:257-265, No. 5, 1982.
Rizq, et al., “Intraocular Pressure measurement at the Chroid Surface: A Feasibility Study with implications for Implantable Microsystems”, Br J Ophthalmol 2001; 85:868-871, Jul. 2001.
Rosenberg, et al., “Implants in Glaucoma Surgery”, The Glaucomas, 1996, Chapter 88, pp. 1783-1807 (27 pages).
Scott, et al., “Use of glaucoma drainage devices in the management of glaucoma associated with aniridia”, American Journal of Ophthalmology, 135:155-159, No. 2, Feb. 1, 2003.
Sherman et al., “The Fate of Anterior Chamber Fluorescein in the Monkey Eye 1. The Anterior Chamber Outflow Pathways”, Exp. Eye Res. vol. 27, pp. 159-173 (1978) (15 pages).
Tham, et al., “Incisional surgery for angle closure glaucoma”, Seminars in Ophthalmology, 17:92-99, No. 2, Jun. 2002.
Timmermans et al., “Possible Subdivion of Postsynapic Adrenoceptors Mediating Pressor Responses in the Pithed Rat”, Nauyn-Schmeideberg's Arch. Pharmacol., 310, pp. 189-193 (1979).
Troncoso, Manuel U., M.D., “Cyclodialysis with Insertion of a Metal Implant in the Treatment, of Glaucoma”, read before the Section on Ophthalmology at the Ninetieth Annual Session of the American Medical Association, St. Louis, May 17, 1939, Archives of Ophthalmology, pp. 270-300, downloaded from www.archophthalmol.com on Aug. 5, 2010.
Tsontcho Ianchulev, Chapter 21: The CyPass Suprachoroidal Micro-Stent, in J.R. Samples & I.I.K. Ahmed (eds.), Surgical Innovations in Glaucoma 229 (Springer Science+Business Media 2014).
Ianchulev, Chapter 3: Suprachoroidal Space as a Therapeutic Target, in J.R. Samples & I.I.K. Ahmed (eds.), Surgical Innovations in Glaucoma 33 (Springer Science+Business Media 2014).
Van Der Veen et al., “The Gonioseton, A Surgical Treatment for Chronic Glaucoma,” Documenta Ophthalmologica, 1990 (75) pp. 365-375.
Webster's Third New International Dictionary of the English Language (Unabridged), definitions of “deploy” and “deployment”, p. 605 (2002) (4 pages).
Welsh et al., “The ‘deroofing’ of Schlemm's canal in patients with open-angle glaucoma through placement of a collagen drainage device”, Ophthalmic Surg. Lasers, vol. 29, No. 3, Mar. 1998,pp. 216-226 (abstract only).
Yablonski, “Internal tube shunt from anterior chamber to suprachoroidal space: A novel glaucoma surgery”, IOVS, vol. 46, No. Suppl., p. 1223, 2005.
Yablonski, Trabeculectomy with internal Tube Shunt—A novel Glaucoma surgery, Journal of Glaucoma, vol. 14, No. 2:91-97, 2005.
Yan et al., “Schlemm's Canal and Trabecular Meshworkin Eyes with Primary Open Angle Glaucoma: A Comparative Study Using High-Frequency”, PLOS ONE, 15 pages, Jan. 4, 2016.
Zhou et al., “A Trabecular Bypass Flow Hypothesis”, Feb. 2005, vol. 14 No. 1, pp. 74-83.
Oatts et al., “In vitro an in vivo comparison of two suprachoroidal shunts,” Invest. Opthalmol, Vis. Sci. 54:5416-23 (2013).
Related Publications (1)
Number Date Country
20190321220 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
61790759 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14776563 US
Child 16408283 US