The present invention is directed to medical systems and methods for delivering energy to passageways in a patient, such as airways in the lung of a patient to reduce the resistance to airflow.
Asthma is a disease that makes it difficult to breathe and in many cases can be debilitating. Asthma is generally manifested by (i) bronchoconstriction, (ii) excessive mucus production, and/or (iii) inflammation and swelling of airways that cause widespread but variable airflow obstructions. Asthma can be a chronic disorder often characterized by persistent airway inflammation, but asthma can be further characterized by acute episodes of additional airway narrowing via contraction of hyper-responsive airway smooth muscle tissue.
Conventional pharmacological approaches for managing asthma include: (i) administering anti-inflammatories and long-acting bronchodilators for long-term control, and/or (ii) administering short-acting bronchodilators for management of acute episodes. Both of these pharmacological approaches generally require repeated use of the prescribed drugs at regular intervals throughout long periods of time. However, high doses of corticosteroid anti-inflammatory drugs can have serious side effects that require careful management, and some patients are resistant to steroid treatment even at high doses. As such, effective patient compliance with pharmacologic management and avoiding stimulus that triggers asthma are common barriers to successfully managing asthma.
Asthmatx, Inc. has developed new asthma treatments that involve applying energy to alter properties of the smooth muscle tissue or other tissue (e.g., nerves, mucus glands, epithelium, blood vessels, etc.) of airways in a lung of a patient. Several embodiments of methods and apparatus related to such treatments are disclosed in commonly-assigned U.S. Pat. Nos. 6,411,852, 6,634,363, and 7,027,869; and U.S. Published Application No. US2005/0010270, all of which are incorporated by reference herein in their entirety.
Many embodiments of the foregoing asthma treatments that apply energy to tissue of the airways use catheters that can be passed (e.g., navigated) through the tortuous pathways defined by the lung airways.
In a typical application, a first medical practitioner (e.g., a bronchoscopist) navigates a distal portion of a bronchoscope through the tortuous pathways of the lung until the distal tip of the bronchoscope is at a desired region of an airway. A second medical practitioner (e.g., a nurse or medical assistant) in addition to the first practitioner assists in advancing a catheter of a treatment device through a working lumen of the bronchoscope until a distal portion of the catheter projects out from the distal end of the bronchoscope. After positioning the distal portion of the catheter at a desired first airway site, the first or second practitioner uses one hand to hold the catheter in place relative to the bronchoscope while the second practitioner moves the thumb of one or the other free hand to move a slide-type actuator in a distal) direction to drive an electrode array distally out of the catheter. The second practitioner continues to move the slide-type actuator in the distal direction to drive a plurality of electrodes outwardly until the electrodes contact the sidewall of the airway at a first contact site. The first or second medical practitioner then operates a switch that activates an energy source to deliver energy to the first contact site for a treatment period.
After terminating the energy delivery, (i) the second practitioner slides the actuator in a proximal direction to contract the electrodes, (ii) the first or second practitioner repositions the catheter axially along the bronchoscope and the airway to a second contact site, and (iii) with the catheter held in place, the second practitioner slides the actuator distally to re-expand the electrodes until they contact the sidewall of the airway at the second contact site. The first or second practitioner then activates the energy supply to deliver energy to the second contact site for another treatment period. This process is repeated several times at 3-30 mm increments throughout several regions of the variable sized airways in a lung of a patient. As such, this process requires good coordination and communication between the first and second practitioners to treat a patient, but even then such communication takes time. A typical treatment protocol for treating the full lung of a patient can accordingly require three 30-60 minute sessions, which often results in practitioner fatigue.
The tortuous configuration of the lung airways also presents other challenges to efficiently delivering energy to the airway tissue. For example, the treatment device should be sufficiently flexible to follow the working lumen of a bronchoscope and help facilitate accurate steering of the bronchoscope, and the treatment device should enable accurate, reliable deployment of the electrodes at the distal end of the catheter. Friction losses along the catheter, however, can restrict expansion/contraction of the electrodes because only a portion of the force from the actuator is transmitted to the electrode array. This can inhibit the electrodes from appropriately (e.g., fully) contacting the sidewall of the airway, which may reduce the efficacy of the treatment. Additionally, friction along the catheter increases the load on the thumb of the second practitioner as the slide-type actuator is repeatedly moved, which may cause fatigue and also may make it difficult to sense when the electrodes engage the variable sized airways.
The following drawings should be read with reference to the detailed description. Like numbers in different drawings refer to like elements. The drawings, which are not necessarily to scale, illustratively depict embodiments of the disclosure and are not intended to limit the scope of the disclosure.
Specific details of several embodiments of the disclosure are described below with reference to systems and methods for delivering energy to passageways in a patient. Although many of the embodiments are described below with respect to delivering radio frequency energy to airways in a lung of a patient to treat asthma, other embodiments that deliver other energy modalities to lung airways or other types of passageways for treating other indications may be within the scope of the invention. For example, other types of energy modalities can include thermal (resistive and/or infrared), microwave, laser, ultrasonic (e.g., HIFU), cryo-ablation, radiation, and/or other energy modalities. Moreover, several other embodiments of the invention can have different configurations, components, or procedures than those described in this section. A person of ordinary skill in the art, therefore, will accordingly understand that the invention may have other embodiments with additional elements, or the invention may have other embodiments without several of the features shown and described below with reference to
Suitable embodiments of the power/control unit are disclosed in U.S. Pat. No. 7,104,987 and U.S. Published Application No. US2006/0247746, the entireties of which are incorporated by reference herein. The system may deliver energy to target sites via the treatment device 100 in a variety of treatment patterns. Further details with respect to energy modalities and/or examples of treatment patterns may be found in commonly-assigned U.S. Pat. No. 6,411,852.
The energy delivery device 120 is an example of a treatment device for treating asthma or other indications associated with passageways in a human. The embodiment of the energy delivery device 120 illustrated in
Several embodiments of the elongated body 130 are flexible catheters configured to slide through the working lumen of an access device (e.g., bronchoscope). The elongated body 130 can also include a plurality of markers 136 at the distal section 132 to position the energy delivery unit 140 relative to an access device (not shown in
The energy delivery unit 140 can have at least one energy delivery element, such as an electrode 142, configured to deliver energy to the tissue of an airway or other passageway in the patient.
The example of the energy delivery unit 140 illustrated in
Referring back to
In one embodiment, the handle 150 has a first portion 151 and a second portion 152 rotatably coupled to the first portion 151 by a joint 153. The first portion 151 and/or the second portion 152 are one example of an actuator for manipulating the electrodes 142. The first and second portions 151-152 can be configured to form a grip 154 and a head 156 located at an upper portion of the grip 154. The head 156, for example, can project outwardly from the grip such that a portion of the grip 154 is narrower than the head 156. In the specific embodiment illustrated in
The portion of the handle 150 at the first and second neck portions 163-164 provides a neck around which the thumb and forefinger of an operator can extend, and the first and second collar portions 165-166 are configured to be supported by the thumb and forefinger of the operator. The handle 150 can also include a torsion spring (not shown) at the joint 153, or another suitable resilient element, to drive the lower ends of the first and second portions 151-152 apart from each other. In addition, the spring torsion may be selected to provide a difference in sensation between handle actuation in air as opposed to a counter force of the airway wall (e.g., a less robust spring). In operation, a single user moves the lower ends of the first and second portions 151-152 together (arrow R in
Referring to
Several embodiments of the system 100 provide an ergonomic and efficient treatment device. The handle 150, for example, reduces thumb-fatigue associated with other devices because the handle 150 is actuated with a squeezing motion using larger muscles instead of a sliding motion using primarily muscles associated with the thumb. The system 100 can also be operated by a single person such that it eliminates delays that can occur in systems that require both a first practitioner and a second practitioner to operate the access device and the treatment device. Several embodiments of the system 100 may accordingly treat more patients in a fixed time period, treat patients with reduced treatment time or sessions, and/or treat more passageways within a patient in a single session. Further, a single operator procedure ensures greater accuracy of treatment device placements, and hence treatment patterns.
The lumen 812 of the coil 810 provides a large space “S” (
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the inventions. For example, many of the elements of one embodiment can be combined with other embodiments in addition to, or in lieu of, the elements of the other embodiments. Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is inclusive and therefore used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of features are not precluded. Therefore, the invention is not limited except as by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/777,225, filed on Jul. 12, 2007 (now U.S. Pat. No. 8,235,983), the contents of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1155169 | Starkweather | Sep 1915 | A |
1207479 | Bisgaard | Dec 1916 | A |
2072346 | Smith | Mar 1937 | A |
3320957 | Sokolik | May 1967 | A |
3568659 | Karnegis | Mar 1971 | A |
3667476 | Muller | Jun 1972 | A |
3692029 | Adair | Sep 1972 | A |
4461283 | Doi | Jul 1984 | A |
4503855 | Maslanka | Mar 1985 | A |
4522212 | Gelinas et al. | Jun 1985 | A |
4565200 | Cosman | Jan 1986 | A |
4567882 | Heller | Feb 1986 | A |
4584998 | McGrail | Apr 1986 | A |
4612934 | Borkan | Sep 1986 | A |
4643186 | Rosen et al. | Feb 1987 | A |
4674497 | Ogasawara | Jun 1987 | A |
4706688 | Don Michael et al. | Nov 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4799479 | Spears | Jan 1989 | A |
4802492 | Grunstein | Feb 1989 | A |
4825871 | Cansell | May 1989 | A |
4827935 | Geddes et al. | May 1989 | A |
4862886 | Clarke et al. | Sep 1989 | A |
4920978 | Colvin | May 1990 | A |
4927427 | Kriauciunas et al. | May 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4967765 | Turner et al. | Nov 1990 | A |
4976709 | Sand | Dec 1990 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5019075 | Spears et al. | May 1991 | A |
5053033 | Clarke | Oct 1991 | A |
5056519 | Vince | Oct 1991 | A |
5074860 | Gregory et al. | Dec 1991 | A |
5078716 | Doll | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5096916 | Skupin | Mar 1992 | A |
5100388 | Behl et al. | Mar 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5106360 | Ishiwara et al. | Apr 1992 | A |
5116864 | March et al. | May 1992 | A |
5117828 | Metzger et al. | Jun 1992 | A |
5135517 | McCoy | Aug 1992 | A |
5152286 | Sitko et al. | Oct 1992 | A |
5170803 | Hewson et al. | Dec 1992 | A |
5174288 | Bardy et al. | Dec 1992 | A |
5188602 | Nichols | Feb 1993 | A |
5191883 | Lennox et al. | Mar 1993 | A |
5215103 | Desai | Jun 1993 | A |
5254088 | Lundquist et al. | Oct 1993 | A |
5255678 | Deslauriers et al. | Oct 1993 | A |
5255679 | Imran | Oct 1993 | A |
5265604 | Vince | Nov 1993 | A |
5269758 | Taheri | Dec 1993 | A |
5281218 | Imran | Jan 1994 | A |
5292331 | Boneau | Mar 1994 | A |
5293869 | Edwards et al. | Mar 1994 | A |
5309910 | Edwards et al. | May 1994 | A |
5311866 | Kagan et al. | May 1994 | A |
5313943 | Houser et al. | May 1994 | A |
5322503 | Desai | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5343936 | Beatenbough et al. | Sep 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5370644 | Langberg | Dec 1994 | A |
5370679 | Atlee, III | Dec 1994 | A |
5374287 | Rubin | Dec 1994 | A |
5383917 | Desai et al. | Jan 1995 | A |
5389098 | Tsu Ruta et al. | Feb 1995 | A |
5394880 | Atlee, III | Mar 1995 | A |
5396887 | Imran | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5409469 | Schaerf | Apr 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5415166 | Imran | May 1995 | A |
5415656 | Tihon et al. | May 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5423744 | Gencheff et al. | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5425703 | Feiring | Jun 1995 | A |
5431696 | Atlee, III | Jul 1995 | A |
5433730 | Alt | Jul 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5464404 | Abela et al. | Nov 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5474530 | Passafaro et al. | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478350 | Kratsch et al. | Dec 1995 | A |
5496271 | Burton et al. | Mar 1996 | A |
5496311 | Abele et al. | Mar 1996 | A |
5500011 | Desai | Mar 1996 | A |
5505728 | Ellman et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5509411 | Littmann et al. | Apr 1996 | A |
5509419 | Edwards et al. | Apr 1996 | A |
5522862 | Testerman et al. | Jun 1996 | A |
5531779 | Dahl et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5545161 | Imran | Aug 1996 | A |
5545193 | Fleischman et al. | Aug 1996 | A |
5547469 | Rowland et al. | Aug 1996 | A |
5549559 | Eshel | Aug 1996 | A |
5549655 | Erickson | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
RE35330 | Malone et al. | Sep 1996 | E |
5558073 | Pomeranz et al. | Sep 1996 | A |
5562608 | Sekins et al. | Oct 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5578067 | Ekwall et al. | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5598848 | Swanson et al. | Feb 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5601088 | Swanson et al. | Feb 1997 | A |
5605157 | Panescu et al. | Feb 1997 | A |
5607419 | Amplatz et al. | Mar 1997 | A |
5607462 | Imran | Mar 1997 | A |
5620438 | Amplatz et al. | Apr 1997 | A |
5623940 | Daikuzono | Apr 1997 | A |
5624439 | Edwards et al. | Apr 1997 | A |
5626618 | Ward et al. | May 1997 | A |
5630425 | Panescu et al. | May 1997 | A |
5630794 | Lax et al. | May 1997 | A |
5634471 | Fairfax et al. | Jun 1997 | A |
5647870 | Kordis et al. | Jul 1997 | A |
5678535 | DiMarco | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681280 | Rusk et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5693078 | Desai et al. | Dec 1997 | A |
5699799 | Xu et al. | Dec 1997 | A |
5707352 | Sekins et al. | Jan 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5722403 | McGee et al. | Mar 1998 | A |
5722416 | Swanson et al. | Mar 1998 | A |
5725525 | Kordis | Mar 1998 | A |
5728094 | Edwards | Mar 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5730726 | Klingenstein | Mar 1998 | A |
5730741 | Horzewski et al. | Mar 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5752518 | McGee et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5759158 | Swanson | Jun 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5769880 | Truckai | Jun 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5779669 | Haissaguerre et al. | Jul 1998 | A |
5779698 | Clayman et al. | Jul 1998 | A |
5782239 | Webster, Jr. | Jul 1998 | A |
5782795 | Bays | Jul 1998 | A |
5782827 | Gough et al. | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5782899 | Imran | Jul 1998 | A |
5792064 | Panescu et al. | Aug 1998 | A |
5795303 | Swanson et al. | Aug 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5807393 | Williamson et al. | Sep 1998 | A |
5810807 | Ganz et al. | Sep 1998 | A |
5814029 | Hassett | Sep 1998 | A |
5823189 | Kordis | Oct 1998 | A |
5824359 | Khan et al. | Oct 1998 | A |
5827277 | Edwards | Oct 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5836946 | Diaz et al. | Nov 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5837001 | Mackey | Nov 1998 | A |
5843075 | Taylor | Dec 1998 | A |
5843077 | Edwards | Dec 1998 | A |
5846238 | Jackson et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5848972 | Triedman et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5855577 | Murphy-Chutorian et al. | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5863291 | Schaer | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5868740 | Leveen et al. | Feb 1999 | A |
5871443 | Edwards et al. | Feb 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5873865 | Horzewski et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5881727 | Edwards | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5891135 | Jackson et al. | Apr 1999 | A |
5891136 | McGee et al. | Apr 1999 | A |
5891138 | Tu et al. | Apr 1999 | A |
5893847 | Kordis | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5899882 | Waksman et al. | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906636 | Casscells, III et al. | May 1999 | A |
5908445 | Whayne et al. | Jun 1999 | A |
5908446 | Imran | Jun 1999 | A |
5911218 | DiMarco | Jun 1999 | A |
5916235 | Guglielmi | Jun 1999 | A |
5919147 | Jain | Jul 1999 | A |
5921999 | Dileo | Jul 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5935079 | Swanson et al. | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5951494 | Wang et al. | Sep 1999 | A |
5954661 | Greenspon et al. | Sep 1999 | A |
5954662 | Swanson et al. | Sep 1999 | A |
5954717 | Behl et al. | Sep 1999 | A |
5957842 | Littmann et al. | Sep 1999 | A |
5957961 | Maguire et al. | Sep 1999 | A |
5964753 | Edwards | Oct 1999 | A |
5964756 | McGaffigan et al. | Oct 1999 | A |
5964796 | Imran | Oct 1999 | A |
5968087 | Hess et al. | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5972026 | Laufer et al. | Oct 1999 | A |
5979456 | Magovern | Nov 1999 | A |
5980519 | Hahnen et al. | Nov 1999 | A |
5980563 | Tu et al. | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
5992419 | Sterzer et al. | Nov 1999 | A |
5993462 | Pomeranz et al. | Nov 1999 | A |
5997534 | Tu et al. | Dec 1999 | A |
5999855 | DiMarco | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6006755 | Edwards | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6010500 | Sherman et al. | Jan 2000 | A |
6014579 | Pomeranz et al. | Jan 2000 | A |
6016437 | Tu et al. | Jan 2000 | A |
6023638 | Swanson | Feb 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6029091 | De La Rama et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6033397 | Laufer et al. | Mar 2000 | A |
6033404 | Melzer et al. | Mar 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6039731 | Taylor et al. | Mar 2000 | A |
6045549 | Smethers et al. | Apr 2000 | A |
6045550 | Simpson et al. | Apr 2000 | A |
6050992 | Nichols | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6071279 | Whayne et al. | Jun 2000 | A |
6071280 | Edwards et al. | Jun 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6071282 | Fleischman | Jun 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6092528 | Edwards | Jul 2000 | A |
6102886 | Lundquist et al. | Aug 2000 | A |
6119030 | Morency | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
H0001905 | Hill | Oct 2000 | H |
6129751 | Lucchesi et al. | Oct 2000 | A |
6139527 | Laufer et al. | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6149647 | Tu et al. | Nov 2000 | A |
6152899 | Farley et al. | Nov 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6179833 | Taylor | Jan 2001 | B1 |
6183468 | Swanson et al. | Feb 2001 | B1 |
6198970 | Freed et al. | Mar 2001 | B1 |
6200311 | Danek et al. | Mar 2001 | B1 |
6200332 | Del Giglio | Mar 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6210367 | Carr | Apr 2001 | B1 |
6214002 | Fleischman et al. | Apr 2001 | B1 |
6216043 | Swanson et al. | Apr 2001 | B1 |
6216044 | Kordis | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6231571 | Ellman et al. | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6241727 | Tu et al. | Jun 2001 | B1 |
6251104 | Kesten et al. | Jun 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6258083 | Daniel et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6273907 | Laufer | Aug 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6296639 | Truckai et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6322584 | Ingle et al. | Nov 2001 | B2 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6338727 | Noda et al. | Jan 2002 | B1 |
6338836 | Kuth et al. | Jan 2002 | B1 |
6355031 | Edwards et al. | Mar 2002 | B1 |
6379349 | Muller et al. | Apr 2002 | B1 |
6379352 | Reynolds et al. | Apr 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6423058 | Edwards et al. | Jul 2002 | B1 |
6423105 | Iijima et al. | Jul 2002 | B1 |
6425895 | Swanson et al. | Jul 2002 | B1 |
6428538 | Blewett et al. | Aug 2002 | B1 |
6438400 | Beard et al. | Aug 2002 | B1 |
6440129 | Simpson | Aug 2002 | B1 |
6442435 | King et al. | Aug 2002 | B2 |
6460545 | Kordis | Oct 2002 | B2 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6496738 | Carr | Dec 2002 | B2 |
6514246 | Swanson et al. | Feb 2003 | B1 |
6526320 | Mitchell | Feb 2003 | B2 |
6529756 | Phan et al. | Mar 2003 | B1 |
6544226 | Gaiser et al. | Apr 2003 | B1 |
6544262 | Fleischman | Apr 2003 | B2 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6572612 | Stewart et al. | Jun 2003 | B2 |
6575623 | Werneth | Jun 2003 | B2 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582430 | Hall | Jun 2003 | B2 |
6589235 | Wong et al. | Jul 2003 | B2 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6613002 | Clark et al. | Sep 2003 | B1 |
6620159 | Hegde | Sep 2003 | B2 |
6626903 | McGuckin, Jr. et al. | Sep 2003 | B2 |
6634363 | Danek et al. | Oct 2003 | B1 |
6638273 | Farley et al. | Oct 2003 | B1 |
6638275 | McGaffigan et al. | Oct 2003 | B1 |
6640120 | Swanson et al. | Oct 2003 | B1 |
6645199 | Jenkins et al. | Nov 2003 | B1 |
6645200 | Koblish et al. | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6669693 | Friedman | Dec 2003 | B2 |
6673068 | Berube | Jan 2004 | B1 |
6692492 | Simpson et al. | Feb 2004 | B2 |
6699243 | West et al. | Mar 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6743197 | Edwards | Jun 2004 | B1 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6749606 | Keast et al. | Jun 2004 | B2 |
6749607 | Edwards et al. | Jun 2004 | B2 |
6767347 | Sharkey et al. | Jul 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6805131 | Kordis | Oct 2004 | B2 |
6827717 | Brommersma et al. | Dec 2004 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6840243 | Deem et al. | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6852091 | Edwards et al. | Feb 2005 | B2 |
6852110 | Roy et al. | Feb 2005 | B2 |
6866662 | Fuimaono et al. | Mar 2005 | B2 |
6869437 | Hausen et al. | Mar 2005 | B1 |
6872206 | Edwards et al. | Mar 2005 | B2 |
6881213 | Ryan et al. | Apr 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6893439 | Fleischman | May 2005 | B2 |
6895267 | Panescu et al. | May 2005 | B2 |
6904303 | Phan et al. | Jun 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6923806 | Hooven et al. | Aug 2005 | B2 |
6954977 | Maguire et al. | Oct 2005 | B2 |
7001382 | Gallo, Sr. | Feb 2006 | B2 |
7027869 | Danek et al. | Apr 2006 | B2 |
7043307 | Zelickson et al. | May 2006 | B1 |
7104987 | Biggs et al. | Sep 2006 | B2 |
7118568 | Hassett et al. | Oct 2006 | B2 |
7122033 | Wood | Oct 2006 | B2 |
7186251 | Malecki et al. | Mar 2007 | B2 |
7198635 | Danaek et al. | Apr 2007 | B2 |
7200445 | Dalbec et al. | Apr 2007 | B1 |
7211041 | Mueller | May 2007 | B2 |
7335197 | Sage et al. | Feb 2008 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
7507232 | Garito et al. | Mar 2009 | B1 |
7556624 | Laufer et al. | Jul 2009 | B2 |
8409194 | Ellman | Apr 2013 | B1 |
8814856 | Elmouelhi et al. | Aug 2014 | B2 |
20020022870 | Truckai | Feb 2002 | A1 |
20020072737 | Belden et al. | Jun 2002 | A1 |
20020123748 | Edwards et al. | Sep 2002 | A1 |
20020147391 | Morency | Oct 2002 | A1 |
20020173785 | Spear et al. | Nov 2002 | A1 |
20030050631 | Mody et al. | Mar 2003 | A1 |
20030065371 | Satake | Apr 2003 | A1 |
20030109778 | Rashidi | Jun 2003 | A1 |
20030149395 | Zawacki | Aug 2003 | A1 |
20030159700 | Laufer et al. | Aug 2003 | A1 |
20030233099 | Danaek et al. | Dec 2003 | A1 |
20040024410 | Olson et al. | Feb 2004 | A1 |
20040031494 | Danek et al. | Feb 2004 | A1 |
20040153056 | Muller et al. | Aug 2004 | A1 |
20040182399 | Danek et al. | Sep 2004 | A1 |
20040193243 | Mangiardi et al. | Sep 2004 | A1 |
20040249401 | Rabiner et al. | Dec 2004 | A1 |
20050010138 | Mangiardi et al. | Jan 2005 | A1 |
20050010270 | Laufer | Jan 2005 | A1 |
20050049586 | Daniel et al. | Mar 2005 | A1 |
20050061771 | Murphy | Mar 2005 | A1 |
20050085880 | Truckai | Apr 2005 | A1 |
20050096644 | Hall et al. | May 2005 | A1 |
20050154386 | West et al. | Jul 2005 | A1 |
20050182431 | Hausen et al. | Aug 2005 | A1 |
20050203503 | Edwards et al. | Sep 2005 | A1 |
20050240176 | Oral et al. | Oct 2005 | A1 |
20050272971 | Ohnishi et al. | Dec 2005 | A1 |
20050288664 | Ford et al. | Dec 2005 | A1 |
20060062808 | Laufer et al. | Mar 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060100652 | Beaupre | May 2006 | A1 |
20060135953 | Kania et al. | Jun 2006 | A1 |
20060212032 | Daniel et al. | Sep 2006 | A1 |
20060247617 | Danek et al. | Nov 2006 | A1 |
20060247618 | Kaplan et al. | Nov 2006 | A1 |
20060247619 | Kaplan et al. | Nov 2006 | A1 |
20060247746 | Danek et al. | Nov 2006 | A1 |
20060259028 | Utley et al. | Nov 2006 | A1 |
20060259029 | Utley et al. | Nov 2006 | A1 |
20060259030 | Utley et al. | Nov 2006 | A1 |
20060265035 | Yachi et al. | Nov 2006 | A1 |
20060282071 | Utley et al. | Dec 2006 | A1 |
20070021745 | McIntyre et al. | Jan 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070093802 | Danek et al. | Apr 2007 | A1 |
20070100390 | Danaek | May 2007 | A1 |
20070106292 | Kaplan et al. | May 2007 | A1 |
20070106296 | Laufer et al. | May 2007 | A1 |
20070118184 | Danek et al. | May 2007 | A1 |
20070123958 | Laufer | May 2007 | A1 |
20070123961 | Danek et al. | May 2007 | A1 |
20070208336 | Kim et al. | Sep 2007 | A1 |
20080103498 | West et al. | May 2008 | A1 |
20080172048 | Martin et al. | Jul 2008 | A1 |
20080312649 | Guerra et al. | Dec 2008 | A1 |
20080312650 | Daniel et al. | Dec 2008 | A1 |
20080319436 | Daniel et al. | Dec 2008 | A1 |
20090018538 | Webster et al. | Jan 2009 | A1 |
20090043301 | Jarrard et al. | Feb 2009 | A1 |
20090043302 | Ford et al. | Feb 2009 | A1 |
20090069797 | Danek et al. | Mar 2009 | A1 |
20090275864 | Hirai | Nov 2009 | A1 |
20100023006 | Ellman | Jan 2010 | A1 |
20100042096 | Ellman | Feb 2010 | A1 |
20100094288 | Kerr | Apr 2010 | A1 |
20100160906 | Jarrard | Jun 2010 | A1 |
20100193569 | Yates et al. | Aug 2010 | A1 |
20100292684 | Cybulski et al. | Nov 2010 | A1 |
20110028963 | Gilbert | Feb 2011 | A1 |
20110071518 | Gilbert | Mar 2011 | A1 |
20110087213 | Messerly et al. | Apr 2011 | A1 |
20140350553 | Okuyama | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
1078595 | Nov 1993 | CN |
189329 | Jun 1987 | EP |
0 873 710 | Oct 1998 | EP |
908713 | Apr 1999 | EP |
908150 | May 2003 | EP |
1297795 | Aug 2005 | EP |
2 170 459 | Feb 2014 | EP |
2659240 | Jul 1997 | FR |
7289557 | Nov 1995 | JP |
2053814 | Feb 1996 | RU |
2091054 | Sep 1997 | RU |
WO-8911311 | Nov 1989 | WO |
WO-9304734 | Mar 1993 | WO |
WO-9502370 | Jan 1995 | WO |
WO-951 0322 | Apr 1995 | WO |
WO-9604860 | Feb 1996 | WO |
WO-9610961 | Apr 1996 | WO |
WO-9732532 | Sep 1997 | WO |
WO-9733715 | Sep 1997 | WO |
WO-9737715 | Oct 1997 | WO |
WO 9846150 | Oct 1998 | WO |
WO-9844854 | Oct 1998 | WO |
WO-9852480A 1 | Nov 1998 | WO |
WO-9856324 | Dec 1998 | WO |
WO-9903413 | Jan 1999 | WO |
WO-9858681 | Mar 1999 | WO |
WO-9913779 | Mar 1999 | WO |
WO-9934741 | Jul 1999 | WO |
WO-9944506 | Sep 1999 | WO |
WO-9945855 | Sep 1999 | WO |
WO-0051510 | Sep 2000 | WO |
WO 0062699 | Oct 2000 | WO |
WO-0103642 | Jan 2001 | WO |
WO 0232334 | Apr 2002 | WO |
WO 2006007284 | Jan 2006 | WO |
WO 2006044581 | Apr 2006 | WO |
WO 2008051706 | May 2008 | WO |
Entry |
---|
International Search Report and Written Opinion dated Oct. 1, 2008, International Application No. PCT/US2008/065867 (8 pages). |
Co-pending U.S. Appl. No. 09/095,323, filed Jun. 10, 1998. |
Co-pending U.S. Appl. No. 09/244,173, filed Feb. 4, 1999. |
U.S. Appl. No. 60/951,655, filed Jul. 24, 2007. |
Co-pending U.S. Appl. No. 12/640,644, filed Dec. 17, 2009, Inventor Jerry Jarrard. |
PCT International Search Report for application No. PCT/US08/65867 dated Oct. 1, 2008, 1 page. |
Co-pending U.S. Appl. No. 11/551,639. |
Co-pending U.S. Appl. No. 09/095,323. |
Co-pending U.S. Appl. No. 09/244,173. |
U.S. Appl. No. 60/951,655. |
Dierkesmann et al. Indication and Results of Endobronchial Laser Therapy, Lung, 1990, 168, 1095-1102. |
Ivanyuta O. M. et al. Effect of Low-Power Laser Irradiation of Bronchial Mucosa on the State of Systemic and Local Immunity in Patients with Chronic Bronchitis, Problemy Tuberkuleza, 1991, 6, 26-29. |
James C. Hogg, The Pathology of Asthma, APMIS, Oct. 1997, 105(10), 735-745. |
Macklem P.T., Mechanical Factors Determining Maximum Bronchoconstriction, European Respiratory Journal, Jun. 1989, 6, 516s-519s. |
Netter, F.H, Respiratory System: A Compilation of Paintings Depicting Anatomy and Embryology, Physiology, Pathology, Pathophysiology, and Clinical Features and Treatment of Diseases ,In The CIBA Collection of Medical Illustrations M.B. Divertie, ed., Summit: New Jersey, 1979, vol. 7, 119-135. |
Provotorov et al. The Clinical Efficacy of Treating Patients with Nonspecific Lung Disease by Using Low-energy Laser Irradiation and Intrapulmonary Drug Administration, ISSN: 0040-3660., Terapevticheskii Arkhiv (USSR), 1991, 62 (12),18-23. |
Simon R. Johnson, et al. Synthetic Functions of Airway Smooth Muscle in Asthma, Trends Pharmacol. Sci., Aug. 1997, 18(8), 288-292. |
Vorotnev et al. Low energy laser treatment of chronic obstructive bronchitis in a general rehabilitation center ,ISSN: 0040-3660., Terapevticheskii Arkhiv, 1997, 69 (3), 17-19. |
Wiggs B.R. et al. On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways, J. Appl. Physiol., Dec. 1997, 83(6), 1814-1821. |
Number | Date | Country | |
---|---|---|---|
20120330299 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11777225 | Jul 2007 | US |
Child | 13540091 | US |