Field
Embodiments of the systems and methods described herein are generally related to detection of battery packs having an operating issue or defect.
Background
An undetected issue or defect in a large, multi-cell battery pack may lead to electrical damage or fire. Typically, a battery pack may be examined only after a failure or during routine service, which may be infrequent. However, an issue or defect may exist even though the battery pack appears to be functioning properly. If the battery pack is part of a larger array of batteries, the array may appear to function properly even when an issue or defect exists in one battery pack, and detecting an issue or defect becomes increasingly difficult.
Systems and methods are disclosed for detecting a battery pack having an operating issue or defect. In an embodiment, a balancing charger may be configured to charge a battery pack. An amount of time that the balancing charger is operating may be recorded. The recorded time may then be compared to a threshold time that indicates a determined variance from an expected operating time. If the recorded time exceeds the threshold time, the battery pack may be determined to have an operating issue or defect. In an embodiment, the threshold time may be adjusted based on an average battery cell or battery module temperature of the battery pack.
In an embodiment, a warning or an alert may be issued in response to determining that the battery pack has an operating issue or defect. Operation of the battery pack determined to have an operating issue or defect may also be halted to prevent any adverse effects.
Further embodiments, features, and advantages of the invention, as well as the structure and operation of the various embodiments, are described in detail below with reference to accompanying drawings.
The accompanying drawings, which are incorporated herein and form part of the specification, illustrate the present disclosure and, together with the description, further serve to explain the principles of the disclosure and to enable a person skilled in the relevant art to make and use the disclosure.
The drawing in which an element first appears is typically indicated by the leftmost digit or digits in the corresponding reference number. In the drawings, like reference numbers may indicate identical or functionally similar elements.
While the present disclosure is described herein with illustrative embodiments for particular applications, it should be understood that the disclosure is not limited thereto. A person skilled in the art with access to the teachings provided herein will recognize additional modifications, applications, and embodiments within the scope thereof and additional fields in which the disclosure would be of significant utility.
The terms “embodiments” or “example embodiments” do not require that all embodiments include the discussed feature, advantage, or mode of operation. Alternate embodiments may be devised without departing from the scope or spirit of the disclosure, and well-known elements may not be described in detail or may be omitted so as not to obscure the relevant details. In addition, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. For example, as used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes” and “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or groups thereof.
The housing of battery pack 100 may be assembled using fasteners 128 shown in
In
The front plate 102 of battery pack 100 may also include a status light and reset button 108. In one embodiment, status button 108 is a push button that can be depressed to reset or restart battery pack 100. In one embodiment, the outer ring around the center of button 108 may be illuminated to indicate the operating status of battery pack 100. The illumination may be generated by a light source, such as one or more light emitting diodes, that is coupled to or part of the status button 108. In this embodiment, different color illumination may indicate different operating states of the battery pack. For example, constant or steady green light may indicate that battery pack 100 is in a normal operating state; flashing or strobing green light may indicate that battery pack 100 is in a normal operating state and that battery pack 100 is currently balancing the batteries; constant or steady yellow light may indicate a warning or that battery pack 100 is in an error state; flashing or strobing yellow light may indicate a warning or that battery pack 100 is in an error state and that battery pack 100 is currently balancing the batteries; constant or steady red light may indicate that the battery pack 100 is in an alarm state; flashing or strobing red light may indicate that battery pack 100 needs to be replaced; and no light emitted from the status light may indicate that battery pack 100 has no power and/or needs to be replaced. In some embodiments, when the status light emits red light (steady or flashing) or no light, connectors in battery pack 100 or in an external controller are automatically opened to prevent charging or discharging of the batteries. As would be apparent to one of ordinary skill in the art, any color, strobing technique, etc., of illumination to indicate the operating status of battery pack 100 is within the scope of this disclosure.
Turning to
As shown, battery pack 100 includes a plurality of battery modules and a BMC (e.g., battery module controller 138) is coupled to each battery module (e.g., battery module 136). In one embodiment, which is described in more detail below, n BMCs (where n is greater than or equal to 2) can be daisy-chained together and coupled to a BPC to form a single-wire communication network. In this example arrangement, each BMC may have a unique address and the BPC may communicate with each of the BMCs by addressing one or more messages to the unique address of any desired BMC. The one or more messages (which include the unique address of the BMC) may include an instruction to, for example, remove energy from a battery module, to stop removing energy from a battery module, to measure and report the temperature of the battery module, and to measure and report the voltage of the battery module. In one embodiment, BPC 134 may Obtain measurements (e.g., temperature, voltage) from each of the BMCs using a polling technique. BPC 134 may calculate or receive (e.g., from a controller outside of battery pack 100) a target voltage for battery pack 100, and may use the balancing charger 132 and the network of BMCs to adjust each of the battery modules to the target voltage. Thus, battery pack 100 may be considered a smart battery pack, able to self-adjust its battery cells to a target voltage.
The electrical wiring that connects various components of battery pack 100 has been omitted from
Battery module 136 includes a plurality of battery cells. Any number of battery cells may be included in battery module 136. Example battery cells include, but are not limited to, Li ion battery cells, such as 18650 or 26650 battery cells. The battery cells may be cylindrical battery cells, prismatic battery cells, or pouch battery cells, to name a few examples. The battery cells or battery modules may be, for example, up to 100 AH battery cells or battery modules. :in some embodiments, the battery cells are connected in series/parallel configuration. Example battery cell configurations include, but are not limited to, 1P16S configuration, 2P16S configuration, 3P16S configuration, 4P16S configuration, 1P12S configuration, 2P12S configuration, 3P12S configuration, and 4P12S configuration. Other configurations known to one of ordinary skill in the art are within the scope of this disclosure. Battery module 136 includes positive and negative terminals for adding energy to and removing energy from the plurality of battery cells included therein.
As shown in
In
Each BMC in the communication network 200 may have a unique address that BCP 210 uses to communicate with individual BMCs. For example, BMC 220 may have an address of 0002, BMC 230 may have an address of 0003, BMC 240 may have an address of 0004. BMC 350 may have an address of 0005, and BMC 360 may have an address of 0006. BPC 210 may communicate with each of the BMCs by addressing one or more messages to the unique address of any desired BMC. The one or more messages (which include the unique address of the BMC) may include an instruction to, for example, remove energy from a battery module, to stop removing energy from a battery module, to measure and report the temperature of the battery module, and to measure and report the voltage of the battery module. BPC 210 may poll the BMCs to obtain measurements related to the battery modules of the battery pack, such as voltage and temperature measurements. Any polling technique known to one of skill in the art may be used. In some embodiments, BPC 210 continuously polls the BMCs for measurements in order to continuously monitor the voltage and temperature of the battery modules in battery pack 100.
For example, BPC 210 may seek to communicate with BMC 240, e.g., in order to obtain temperature and voltage measurements of the battery module that BMC 240 is mounted on. In this example, BPC 210 generates and sends a message (or instruction) addressed to BMC 240 (e.g., address 0004). The other BMCs in the communication network 200 may decode the address of the message sent by BPC 210, but only the BMC (in this example, BMC 240) having the unique address of the message may respond. In this example, BMC 240 receives the message from BPC 210 (e.g., the message traverses communication wires 215, 225, and 235 to reach BMC 240), and generates and sends a response to BPC 210 via the single-wire communication network (e.g., the response traverses communication wires 235, 225, and 215 to reach BPC 210). BPC 210 may receive the response and instruct BMC 240 to perform a function (e.g., remove energy from the battery module it is mounted on). In other embodiments, other types of communication networks (other than communication network 200) may be used, such as, for example, an RS232 or RS485 communication network.
As shown in
In one embodiment, battery pack controller 300 may be powered from energy stored in the battery cells. Battery pack controller 300 may be connected to the battery cells by DC input 302. In other embodiments, battery pack controller 300 may be powered from an AC to DC power supply connected to DC input 302. In these embodiments, a DC-DC power supply may then convert the input DC power to one or more power levels appropriate for operating the various electrical components of battery pack controller 300.
In the example embodiment illustrated in
Battery pack controller 300 may also include several interfaces and/or connectors for communicating. These interfaces and/or connectors may be coupled to MCU 312 as shown in
Battery pack controller 300 also includes an external EEPROM 316. External EEPROM 316 may store values, measurements, etc., for the battery pack. These values, measurements, etc., may persist when power of battery pack 100 is turned off (i.e., will not be lost due to loss of power). External EEPROM 316 may also store executable code or instructions, such as executable code or instructions to operate microprocessor unit 312.
Microprocessor unit (MCU) 312 is coupled to memory 314. MCU 312 is used to execute an application program that manages the battery pack. As described herein, in an embodiment the application program may perform the following functions (but is not limited thereto): monitor the voltage and temperature of the battery cells of battery pack 100, balance the battery cells of battery pack 100, monitor and control (if needed) the temperature of battery pack 100, handle communications between battery pack 100 and other components of an electrical energy storage system (see
As described above, a battery pack controller may obtain temperature and voltage measurements from battery module controllers. The temperature readings may be used to ensure that the battery cells are operated within their specified temperature limits and to adjust temperature related values calculated and/or used by the application program executing on MCU 312. Similarly, the voltage readings are used, for example, to ensure that the battery cells are operated within their specified voltage limits.
Watchdog timer 322 is used to monitor and ensure the proper operation of battery pack controller 300. In the event that an unrecoverable error or unintended infinite software loop should occur during operation of battery pack controller 300, watchdog timer 322 can reset battery pack controller 300 so that it resumes operating normally. Status light and reset button 320 may be used to manually reset operation of battery pack controller 300. As shown in
In
Battery module controller 400 may communicate with other components of a battery pack (e.g., a battery pack controller) via communication wire 450, which may be a single wire. As described with respect to the example communication network of
Battery module controller 400 may be electrically isolated from other components that are coupled to the communication wire (e.g., battery pack controller, other battery module controllers) via isolation circuit 445. In
As explained above, battery module controller 400 may measure the voltage of the battery module it is mounted on. As shown in
Battery module controller 400 may also remove energy from the battery module that it is mounted on. As shown in
Fail safe circuit 425 may prevent shunt switch 430 from removing too much energy from the battery module. In the event that processor 405 malfunctions, fail safe circuit 425 may instruct shunt switch 430 to stop applying shunt resistor 435 across the positive and negative terminals of the battery module. For example, processor 405 may instruct shunt switch 430 at regular intervals (e.g., once every 30 seconds) to apply shunt resistor 435 in order to continuously discharge the battery module. Fail safe circuit 425, which is disposed between processor 405 and shunt switch 430, may monitor the instructions processor 405 sends to shunt switch 430. In the event that processor 405 fails to send a scheduled instruction to the shunt switch 430 (which may be caused by a malfunction of processor 405) fails safe circuit 425 may instruct or cause shunt switch 430 to open, preventing further discharge of the battery module.
Battery module controller 400 of
As shown in
The battery packs of battery energy storage system 500 may be mounted on racks. A plurality of battery packs may be connected in series, which may be referred to as a string of battery packs or a battery pack string. For example, battery pack 510 may be connected in series with other battery packs to form battery pack string 520.
Each battery pack string may be controlled by a controller, which may be referred to as a string controller. For example, battery pack string 520 may be controlled by string controller 550. As its name suggests, a string controller may monitor and control the battery packs of a string. In an embodiment, the plurality of string controllers may be linked together using CAN (CANBus) communications, which enables the string controllers to operate together as part of an overall network of battery string controllers. This network of battery string controllers can manage and operate any size battery system such as, for example, a multi-megawatt-hour centralized battery energy storage system. In an embodiment, one of the networked battery string controllers (such as battery string controller 550) can be designated as a master battery string controller and used to control battery charge and discharge operations by sending commands that operate one or more inverters and/or chargers connected to the battery system. Alternatively, a computer or system controller 560 may be coupled to and control the string controllers in a battery energy storage system. A string controller may communicate with the battery pack controller in each of the battery packs in its string (e.g., string controller 550 may communicate with the BPC in battery pack 510) to monitor and control charging and discharging of the battery packs. In one embodiment, a string controller sends each battery pack in its string a target voltage, and the battery packs adjust the battery cells to the target voltage. A string controller and BPC may also communicate measurements (e.g., voltage, temperature, current values), and also perform diagnostic procedures, startup procedures, and the like.
In an embodiment battery energy storage system 500 includes or is otherwise coupled to a hi-directional power converter. The bi-directional power converter may charge and discharge battery packs using commands issued, for example, via a computer over a network (e.g. the Internet, an Ethernet, etc.). In one embodiment, an operator at a utility may use a networked computer to control battery energy storage system 500. Both the real power and the reactive power of the bi-directional power converter may be controlled. Also, in some embodiments, the bi-directional power converter can be operated as a backup power source when grid power is not available and/or the battery energy storage unit is disconnected from the power grid.
Battery energy storage system 500 may be used as a part of a renewable wind energy system, which includes wind turbines. Energy from the wind turbines may be stored in and selectively discharged from battery energy storage system 500. Similarly, battery energy storage system 500 may be used as a part of a renewable solar energy system, which includes a solar array. Energy from the solar array may be stored in and selectively discharged from the battery energy storage system 500. Additionally, battery energy storage system 500 may be used as a part of a grid energy system (power grid), which includes electrical equipment. Energy from grid energy system may be stored in and selectively discharged from battery energy storage system 500.
Cells of a battery pack, such as battery pack 100 of
Plot 608 shows an analogous distribution of battery packs based on the charge time 610 of each battery pack. In an embodiment, a timer may track the operating time of a balancing charger, such as balancing charger 132 of
As illustrated in
Temperature has a significant effect on the performance of a battery pack. For example, higher temperatures may increase the rate of self-discharge of a battery. In a non-limiting example, a battery pack may self-discharge 2% per month at a constant 20° C. and increase to 10% per month at a constant 30° C. Plot 710 shows the distribution of battery packs based on charge time 706 with each battery pack having a temperature of 30° C. At 30° C., the charge times of each battery pack maintain a normal distribution, but the mean and expected charge time is shifted.
Because of distribution shifts at different temperatures, maximum variance 708 may be updated to compensate for temperature fluctuations. In an embodiment, one or more temperature sensors may monitor the average battery cell or battery module temperature of a battery pack. The temperature sensors may be internal or external to the battery pack. Maximum variance 708 may then be adjusted dynamically in response to temperature changes. For example, if the average battery module temperature of a battery pack is determined to be 30° C., the maximum expected variance may be adjusted to maximum variance 712. This may prevent replacement of healthy battery packs, for example, when charge time of a battery pack falls between maximum variance 708 and maximum variance 712 at a temperature of 30° C. In other embodiments, environmental temperature may be monitored instead of or in combination with battery module temperatures, and maximum variance 708 may be adjusted dynamically in response to environmental temperature changes.
In an embodiment, timer 806 records the amount of time that balancing charger 804 is operating. Timer 806 may be embedded in the battery pack as part of a battery pack controller, such as battery pack controller 300 of
In an embodiment, timer 806 may periodically send recorded operating times to analyzer 808, In an embodiment, analyzer 808 may be a part of battery pack 802. For example, analyzer 808 may be integrated into a battery pack controller of battery pack 802, such as battery pack controller 300 of
In an embodiment, analyzer 808 may select a time period and compare recorded operating times for the selected time period to a threshold time. The threshold time may indicate a maximum determined variance from the expected operating time of balancing charger 806. The expected operating time may represent the expected charge time of the battery pack for the selected time period, taking into account factors such as, but not limited to, battery usage and self-discharge rate. Analyzer 808 may set expected operating times and threshold times based on statistical analysis of data collected from a plurality of battery packs and may be adjusted as additional data is collected. If battery pack 802 is part of an array of battery packs, expected and threshold operating times may be determined based on analysis of all or a subset of battery packs in the array. Additionally, in an embodiment, the threshold time may be dynamically adjusted based on the average battery cell or battery module temperature of the battery back or the environmental temperature surrounding the battery pack, as described with respect to
In an embodiment, if the recorded operating time exceeds the threshold time, analyzer 808 may determine that the battery pack has an operating issue or defect and may require maintenance and/or replacement in this case, analyzer 808 may issue an alert to an appropriate party, such as an operator responsible for monitoring the battery pack. In an embodiment, the alert may be issued as an email or other electronic communication. In other embodiments, the issued alert may be audial or visual, for example a flashing red light on the battery pack, such as the warnings described above with respect to status button 108 of
In an embodiment, analyzer 808 may also halt operation of the battery pack in response to determining that the battery pack has an operating issue or defect. This may act as a mechanism to preclude any adverse effects that may occur from operating a battery pack having an operating issue or defect.
In an embodiment, recorded times for each battery pack may be aggregated by one or more string controllers, such as string controller 550 of
In an embodiment, the aggregated recorded times may be sent by the one or more string controllers or the system controller to one or more analyzers 910, such as analyzer 808 of
Method 1000 begins at stage 1002 by recording the amount of time that a balancing charger is operating. The balancing charger may be part of the battery pack, such as balancing charger 132 of
At stage 1004, the recorded operating time for a particular time period is compared to a threshold time. The threshold time may indicate a maximum determined variance from the expected operating time of the balancing charger. The expected operating time may represent the expected charge time of the battery pack for the time period, taking into account factors such as, but not limited to, battery usage and self-discharge rate.
At stage 1006, it is determined whether the recorded operating time exceeds the threshold time. This may indicate that the battery pack is charging longer than expected and may require maintenance and/or replacement. At stage 1008, if the recorded operating time exceeds the threshold time, an alert may be provided to an appropriate party, such as an operator responsible for monitoring the battery pack. In an embodiment, the alert may be issued as an email or other electronic communication. In other embodiments, the issued alert may be audial or visual, for example a red light on the battery pack. Returning to stage 1006, if the recorded operating time does not exceed the threshold time, the method ends.
Computer system 1100 includes one or more processors (also called central processing units, or CPUs), such as a processor 1104. Processor 1104 may be connected to a communication infrastructure or bus 1106.
One or more processors 1104 may each be a graphics processing unit (GPU). In an embodiment a GPU is a processor that is a specialized electronic circuit designed to rapidly process mathematically intensive applications on electronic devices. The GPU may have a highly parallel structure that is efficient for parallel processing of large blocks of data, such as mathematically intensive data common to computer graphics applications, images and videos.
Computer system 1100 also includes user input/output device(s) 1103, such as monitors, keyboards, pointing devices, etc., which communicate with communication infrastructure 1106 through user input/output interface(s) 1102.
Computer system 1100 also includes a main or primary memory 1108, such as random access memory (RAM). Main memory 1108 may include one or more levels of cache. Main memory 1108 has stored therein control logic (i.e., computer software) and/or data.
Computer system 1100 may also include one or more secondary storage devices or memory 1110. Secondary memory 1110 may include, for example, a hard disk drive 1112 and/or a removable storage device or drive 1114. Removable storage drive 1114 may be a floppy disk drive, a magnetic tape drive, a compact disk drive, an optical storage device, tape backup device, and/or any other storage device/drive.
Removable storage drive 1114 may interact with a removable storage unit 1118. Removable storage unit 1118 includes a computer usable or readable storage device having stored thereon computer software (control logic) and/or data. Removable storage unit 1118 may be a floppy disk, magnetic tape, compact disk, DVD, optical storage disk, and/or any other computer data storage device. Removable storage drive 1114 reads from and/or writes to removable storage unit 1118 in a well-known manner.
According to an exemplary embodiment, secondary memory 1110 may include other means, instrumentalities or other approaches for allowing computer programs and/or other instructions and/or data to be accessed by computer system 1100. Such means, instrumentalities or other approaches may include, for example, a removable storage unit 1122 and an interface 1120. Examples of the removable storage unit 1122 and the interface 1120 may include a program cartridge and cartridge interface (such as that found in video game devices), a removable memory chip (such as an EPROM or PROM) and associated socket, a memory stick and USB port, a memory card and associated memory card slot, and/or any other removable storage unit and associated interface.
Computer system 1100 may further include a communication or network interface 1124. Communication interface 1124 enables computer system 1100 to communicate and interact with any combination of remote devices, remote networks, remote entities, etc. (individually and collectively referenced by reference number 1128). For example, communication interface 1124 may allow computer system 1100 to communicate with remote devices 1128 over communications path 1126, which may be wired and/or wireless, and which may include any combination of LANs, WANs, the Internet, etc. Control logic and/or data may be transmitted to and from computer system 1100 via communication path 1126.
In an embodiment, a tangible apparatus or article of manufacture comprising a tangible computer useable or readable medium having control logic (software) stored thereon is also referred to herein as a computer program product or program storage device. This includes, but is not limited to, computer system 1100, main memory 1108, secondary memory 1110, and removable storage units 1118 and 1122, as well as tangible articles of manufacture embodying any combination of the foregoing. Such control logic, when executed by one or more data processing devices (such as computer system 1100), causes such data processing devices to operate as described herein.
Based on the teachings contained in this disclosure, it will be apparent to persons skilled in the relevant art(s) how to make and use the inventions using data processing devices, computer systems and/or computer architectures other than that shown in
Software described throughout this disclosure may be embodied as one or more computer-readable instruction(s) on a computer-readable storage device that is tangible—such as a persistent memory device (e.g., read-only memory (ROM), flash memory, a magnetic storage device, an optical disc, and the like), a non-persistent memory device (e.g., random-access memory (RAM)), and the like—that can be executed by a processor to perform one or more operations.
Embodiments of the present inventions have been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so tong as the specified functions and relationships thereof are appropriately performed. Also, Identifiers, such as “(a),” “(b),” “(i),” “(ii),” etc., are sometimes used for different elements or steps. These identifiers are used fur clarity and do not necessarily designate an order for the elements or steps.
The foregoing description of specific embodiments will so fully reveal the general nature of the inventions that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present inventions. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is fur the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present inventions should not be limited by any of the above-described embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5047961 | Simonsen | Sep 1991 | A |
5825155 | Ito et al. | Oct 1998 | A |
5952815 | Rouillard et al. | Sep 1999 | A |
6051976 | Bertness | Apr 2000 | A |
6060864 | Ito et al. | May 2000 | A |
6172481 | Curtiss | Jan 2001 | B1 |
6184656 | Karunasiri et al. | Feb 2001 | B1 |
7497285 | Radev | Mar 2009 | B1 |
7583053 | Kamohara | Sep 2009 | B2 |
8111035 | Rosenstock | Feb 2012 | B2 |
9168836 | Jacobsen | Oct 2015 | B2 |
9331497 | Beaston | May 2016 | B2 |
9647463 | Brandl et al. | May 2017 | B2 |
9847654 | Beaston | Dec 2017 | B2 |
20020193955 | Bertness et al. | Dec 2002 | A1 |
20040130292 | Buchanan et al. | Jul 2004 | A1 |
20040189248 | Boskovitch et al. | Sep 2004 | A1 |
20050024016 | Breen et al. | Feb 2005 | A1 |
20050230976 | Yang | Oct 2005 | A1 |
20060038572 | Philbrook | Feb 2006 | A1 |
20060097698 | Plett | May 2006 | A1 |
20060116797 | Moran | Jun 2006 | A1 |
20060261780 | Edington et al. | Nov 2006 | A1 |
20070124037 | Moran | May 2007 | A1 |
20070191180 | Yang | Aug 2007 | A1 |
20070229032 | Elder et al. | Oct 2007 | A1 |
20080093851 | Maeda et al. | Apr 2008 | A1 |
20080211459 | Choi | Sep 2008 | A1 |
20080238356 | Batson et al. | Oct 2008 | A1 |
20080309288 | Benckenstein et al. | Dec 2008 | A1 |
20090015206 | Seman, Jr. et al. | Jan 2009 | A1 |
20090167247 | Bai et al. | Jul 2009 | A1 |
20090222158 | Kubota et al. | Sep 2009 | A1 |
20090243540 | Choi et al. | Oct 2009 | A1 |
20100076706 | Elder et al. | Mar 2010 | A1 |
20100145562 | Moran | Jun 2010 | A1 |
20100237829 | Tatebayashi et al. | Sep 2010 | A1 |
20100248008 | Sugawara et al. | Sep 2010 | A1 |
20110014501 | Scheucher | Jan 2011 | A1 |
20110133920 | Meadors | Jun 2011 | A1 |
20110137502 | Kato et al. | Jun 2011 | A1 |
20110231049 | Le Brusq et al. | Sep 2011 | A1 |
20110244283 | Seto et al. | Oct 2011 | A1 |
20110258126 | Patil et al. | Oct 2011 | A1 |
20110313613 | Kawahara et al. | Dec 2011 | A1 |
20120046892 | Fink | Feb 2012 | A1 |
20120062187 | Shim | Mar 2012 | A1 |
20120068715 | Martaeng | Mar 2012 | A1 |
20120074911 | Murao | Mar 2012 | A1 |
20120089352 | Librizzi | Apr 2012 | A1 |
20120105001 | Gallegos et al. | May 2012 | A1 |
20120303225 | Futahashi et al. | Nov 2012 | A1 |
20130002197 | Hernandez et al. | Jan 2013 | A1 |
20130002203 | Kuraishi | Jan 2013 | A1 |
20130065093 | White | Mar 2013 | A1 |
20130106356 | Nakao et al. | May 2013 | A1 |
20130135110 | Xie et al. | May 2013 | A1 |
20130328530 | Beaston | Dec 2013 | A1 |
20130337299 | Sugawara | Dec 2013 | A1 |
20140015469 | Beaston et al. | Jan 2014 | A1 |
20140015488 | Despesse | Jan 2014 | A1 |
20140042973 | Kawahara et al. | Feb 2014 | A1 |
20140079963 | Takeuchi | Mar 2014 | A1 |
20140123310 | Cherry et al. | May 2014 | A1 |
20140220396 | Lee et al. | Aug 2014 | A1 |
20140225622 | Kudo et al. | Aug 2014 | A1 |
20140312828 | Vo et al. | Oct 2014 | A1 |
20150104673 | de Greef et al. | Apr 2015 | A1 |
20150202973 | Chang | Jul 2015 | A1 |
20150349569 | Christensen et al. | Dec 2015 | A1 |
20160111900 | Beaston et al. | Apr 2016 | A1 |
20160141894 | Beaston | May 2016 | A1 |
20170038433 | Beaston et al. | Feb 2017 | A1 |
20170077558 | Nystrom et al. | Mar 2017 | A1 |
20170077559 | Beaston | Mar 2017 | A1 |
20170106764 | Beaston et al. | Apr 2017 | A1 |
20170126032 | Beaston | May 2017 | A1 |
20170345101 | Beaston | Nov 2017 | A1 |
20180123357 | Beaston et al. | May 2018 | A1 |
20180181967 | Beaston et al. | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
1367565 | Sep 2002 | CN |
2648617 | Oct 2004 | CN |
2796215 | Jul 2006 | CN |
1819395 | Aug 2006 | CN |
1011992755 | Jun 2008 | CN |
101222150 | Jul 2008 | CN |
102570568 | Jul 2012 | CN |
102882263 | Jan 2013 | CN |
202663154 | Jan 2013 | CN |
103119828 | May 2013 | CN |
103253143 | Aug 2013 | CN |
103812150 | May 2014 | CN |
WO 2012110497 | Aug 2012 | WO |
Entry |
---|
Non-Final Office Action dated Dec. 29, 2016 in U.S. Appl. No. 14/678,074, filed Apr. 3, 2015; 16 pages. |
U.S. Appl. No. 15/389,188, “Battery Pack Monitoring and Warranty System,” to Beaston et al., filed Dec. 22, 2016. |
Non-Final Office Action dated May 12, 2015, in U.S. Appl. No. 13/978,689, filed Aug. 27, 2013; 12 pages. |
Final Office Action dated Sep. 21, 2015, in U.S. Appl. No. 13/978,689, filed Aug. 27, 2013; 12 pages. |
Non-Final Office Action dated Nov. 23, 2015, in U.S. Appl. No. 13/978,689, filed Aug. 27, 2013; 11 pages. |
Notice of Allowance dated Mar. 21, 2016, in U.S. Appl. No. 13/978,689, filed Aug. 27, 2013; 8 pages. |
International Preliminary Report on Patentability, dated Sep. 10, 2013, in International Patent Application No. PCT/CN2011/071548; 5 pages. |
International Search Report and Written Opinion on Patentability, dated Dec. 1, 2011, in International Patent Application No. PCT/CN2011/071548; 10 pages. |
U.S. Appl. No. 14/678,074, “Electrical Energy Storage Unit and Control System and Applications Thereof,” to Beaston, et al., filed Apr. 3, 2015. |
U.S. Appl. No. 14/851,460, “Battery Management System (BMS) Having Isolated, Distributed, Daisy-Chained Battery Module Controllers,” to Nystrom, et al., filed. Sep. 11, 2015. |
U.S. Appl. No. 14/851,482, “Battery Pack with Integrated Battery Management System,” to Beaston, et al., filed Sep. 11, 2015. |
U.S. Appl. No. 14/932,688, “Battery Energy Storage System,” to Beaston, filed Nov. 4, 2015. |
U.S. Appl. No. 14/962,491, “Battery Energy Storage System and Control System and Applications Thereof,” to Beaston, filed Dec. 8, 2015. |
U.S. Appl. No. 14/819,779, “Warranty Tracker for a Battery Pack,” to Beaston, filed Aug. 6, 2015. |
U.S. Appl. No. 14/884,463, “Battery-Assisted Electric Vehicle Charging System and Method,” to Beaston et al., filed Oct. 15, 2015. |
U.S. Appl. No. 15/604,329, “World-Wide Web of Networked, Smart, Scalable, Plug & Play Battery Packs Having a Battery Pack Operating System, and Applications Thereof,” to Beaston, filed May 24, 2017. |
https://www.merriam-webster.com/dictionary/daisy%20chain. |
Chris Bakken and Ives Meadors, applicants; U.S. Appl. No. 61/313,548; publicly available as of Jun. 9, 2011 (filed Mar. 12, 2010); 14 pages including filing receipt, provisional cover sheet, and EFS receipt. |
English language abstract of Chinese Patent Publication No. CN 101222150 A, published Jul. 16, 2008, 1 page, retrieved from https://worldwide.espacenet.com. |
English language abstract of Chinese Patent Publication No. CN 102570568 A, published Jul. 11, 2012, 1 page, retrieved from https://worldwide.espacenet.com. |
English language abstract of Chinese Patent Publication No. CN 102882263 A, published Jan. 16, 2013, 1 page, retrieved from https://worldwide.espacenet.com. |
English language abstract of Chinese Patent Publication No. CN 103253143 A, published Aug. 21, 2013, 1 page, retrieved from https://worldwide.espacenet.com. |
English language abstract of Chinese Patent Publication No. CN 202663154 U, published Jan. 9, 2013, 1 page, retrieved from https://worldwide.espacenet.com. |
English translation for Chinese patent publication No. CN 103119828 A, published May 22, 2013, 13 pages, translated by Google Patents at https://patents.google.com. |
English translation for Chinese patent publication No. CN 103812150 A, published May 21, 2014, 7 pages, translated by Google Patents at https://patents.google.com. |
“bq78412 Pb-Acid Battery State-of-Charge Indicator With Run-Time Display,” Texas Instruments SLUAA0—Oct. 2010, 37 pages. |
Number | Date | Country | |
---|---|---|---|
20170040646 A1 | Feb 2017 | US |