The present disclosure is generally related to a computing system used for detecting prejudice bias in machine-learning models and/or data sets used in training, testing, and/or validating the models.
Bias introduced into machine learning (ML) can lead to the production of algorithms that produce results that are inaccurate (and can therefore be unsuitable for their intended purpose). Such bias in machine-learning models can have significant consequences when used in artificial intelligence (AI) applications that may produce such inaccurate results, such as causing computing systems, devices, or other systems that rely on ML outputs to function incorrect.
In general, various aspects of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for detecting prejudice bias in machine-learning models and/or data sets used in training, testing, and/or validating the models. In accordance various aspects, a method is provided. According, the method comprises: receiving a data set used for at least one of training, testing, or validating a machine-learning model, wherein the data set comprises a plurality of data instances; generating, by computing hardware and with a classification model, a prediction of applicability for each sub-category of a plurality of sub-categories for each bias category of a plurality of bias categories for each data instance of the plurality of data instances, wherein (a) the classification model comprises an ensemble comprising a multi-label classifier for each bias category of the plurality of bias categories, and (b) each multi-label classifier is configured to generate the prediction of applicability for each sub-category of the plurality of sub-categories for a corresponding bias category of the plurality of bias categories; determining, by the computing hardware, that a particular sub-category of the plurality of sub-categories for a particular bias category of the plurality of bias categories is applicable to a proportion of the data set, wherein predictions of applicability for the particular sub-category generated for the proportion of the data set satisfies a threshold; determining, by the computing hardware based on the proportion, that the data set has a prejudice bias with respect to the particular bias category; and causing, by the computing hardware, performance of an action based on the prejudice bias.
According to some aspects, the particular bias category comprises at least one of religion, sexual orientation, age, ethnicity, gender, location, or political opinions. According to some aspects, determining the data set has the prejudice bias comprises determining that the proportion of the data set satisfies a threshold. According to some aspects, the action may comprise generating a notification indicating the prejudice bias that is communicated to an individual. According to other aspects, the action may comprise identifying a recommendation comprising at least one of an addition or removal of a plurality of data instances applicable to the particular sub-category to make to the data set and providing the recommendation through a notification communicated to an individual. According to other aspects, the action may comprise modifying the data set by performing at least one of adding or removing a plurality of data instances applicable to the particular sub-category.
According to particular aspects, the method may further comprise generating, by computing hardware and with the classification model, a prediction of applicability for each sub-category of the plurality of sub-categories for each bias category of the plurality of bias categories for each data instance of a plurality of data instances found in the modified data set; and determining, by the computing hardware based on the prediction of applicability generated for each sub-category of the plurality of sub-categories for each bias category of the plurality of bias categories for each data instance, that the data set does not have a prejudice bias. According to some aspects, the proportion of the data set is associated with a location. Here, the method may further comprise mapping, by the computing hardware based on the location, the prejudice bias to a factor influencing a risk associated with the data set having the prejudice bias and determining, by the computing hardware based on the factor, the risk associated with the data set having the prejudice bias.
In accordance with various aspects, a system is provided comprising a non-transitory computer-readable medium storing instructions and a processing device communicatively coupled to the non-transitory computer-readable medium. Accordingly, the processing device is configured to execute the instructions and thereby perform operations comprising: processing a known data set using a machine-learning model to generate a plurality of outputs, wherein the known data set comprises a plurality of data instances associated with a plurality of sub-categories for each bias category in a plurality of bias categories in proportions to sufficiently represent each sub-category of the plurality of sub-categories for each bias category in the plurality of bias categories and a plurality of result instances comprises each data instance of the plurality of data instances and corresponding output in the plurality of outputs; generating, using a classification model, a prediction of applicability for each sub-category of the plurality of sub-categories for each bias category of the plurality of bias categories for each result instance of the plurality of result instances, wherein the classification model comprises an ensemble comprising a multi-label classifier for each bias category of the plurality of bias categories, each multi-label classifier is configured to generate the prediction of applicability for each sub-category of the plurality of sub-categories for the corresponding bias category of the plurality of bias categories; determining that a particular sub-category of the plurality of sub-categories for a particular bias category of the plurality of bias categories is applicable to a proportion of the plurality of result instances, wherein the prediction of applicability for the particular sub-category for each applicable output instance found in the proportion of the plurality of result instances satisfies a threshold; determining, based on the proportion, that the machine-learning model has a prejudice bias with respect to the particular bias category; and causing performance of an action based on the prejudice bias.
According to some aspects, the particular bias category comprises at least one of religion, sexual orientation, age, ethnicity, gender, location, or political opinions. According to some aspects, the action may comprise generating a notification indicating the prejudice bias that is communicated to an individual. According to other aspects, the action may comprise providing an interface to an analytics tool that can be used in identifying a component of the machine-learning model influencing the machine-learning model having the prejudice bias.
According to particular aspects, determining the machine-learning model as having the prejudice bias comprises at least one of determining the proportion of the plurality of result instances is less than a threshold and the prejudice bias indicates the particular sub-category is underrepresented in the plurality of result instances or determining the proportion of the plurality of result instances is greater than a threshold and the prejudice bias indicates the particular sub-category is overrepresented in the plurality of result instances. According to other aspects, determining the machine-learning model has the prejudice bias comprises determining the proportion of the plurality of result instances comprises a number of result instances that are falsely applicable to the particular sub-category satisfies a threshold.
According to some aspects, the proportion of the plurality of result instances is associated with a location. Here, the operations may further comprise mapping, based on the location, the prejudice bias to a factor influencing a risk associated with the machine-learning model having the prejudice bias and determining, based on the factor, the risk associated with the machine-learning model having the prejudice bias.
In accordance with yet various aspects, a system is provided. According to particular aspects, the system comprises first computing hardware configured for: accessing a data set used for at least one of training, testing, or validating a machine-learning model, wherein the data set comprises a plurality of data instances; generating, by using a classification model, a prediction of applicability of a sub-category of a plurality of sub-categories for a bias category of a plurality of bias categories for each data instance of the plurality of data instances, wherein the classification model comprises an ensemble comprising a multi-label classifier for each bias category of the plurality of bias categories, each multi-label classifier is configured to generate the prediction of applicability for each sub-category of the plurality of sub-categories for the corresponding bias category of the plurality of bias categories, determining that a particular sub-category of the plurality of sub-categories for a particular bias category of the plurality of bias categories is applicable to a proportion of the data set, wherein the prediction of applicability for the particular sub-category for each applicable data instance found in the proportion of the data set satisfies a threshold, and determining, based on the proportion, that the data set has a prejudice bias with respect to the particular bias category.
According to particular aspects, the system further comprises second computing hardware communicatively coupled to the first computing hardware and configured for modifying the data set subsequent to the first computing hardware determining that the data set has the prejudice bias. According to some aspects, modifying the data set comprises performing at least one of adding or removing a plurality of data instances applicable to the particular sub-category.
According to particular aspects, the first computing hardware is further configured for generating a notification indicating the prejudice bias that is communicated to an individual and transmitting the notification to the second computing hardware. According to particular aspects, the first computing hardware is further configured for identifying a recommendation comprising at least one of an addition or a removal of a plurality of data instances applicable to the particular sub-category to make to the data set and providing the recommendation through a notification communicated to an individual.
According to some aspects, the proportion of the data set is associated with a location. Here, the operations may further comprise mapping, based on the location, the prejudice bias to a factor influencing a risk associated with the data set having the prejudice bias and determining, based on the factor, the risk associated with the data set having the prejudice bias.
In the course of this description, reference will be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Various aspects for practicing the technologies disclosed herein are described more fully hereinafter with reference to the accompanying drawings, in which some, but not all aspects of the technologies disclosed are shown. Indeed, various aspects disclosed herein are provided so that this disclosure will satisfy applicable legal requirements and should not be construed as limiting or precluding other aspects applying the teachings and concepts disclosed herein. Like numbers in the drawings refer to like elements throughout.
Overview and Technical Contributions of Various Aspects
Many software applications, especially software applications used in artificial intelligence (AI), rely on machine-learning techniques in performing various tasks. For instance, many companies have incorporated AI applications to interface with customers or other users in a variety of ways. For example, an organization may provide AI functionality on its website through the use of machine learning to conduct online chat sessions with customers visiting the web site to purchase a product. Here, a machine learning technique may be used in generating responses (e.g., predicting responses) to answer questions asked by customers through the chat sessions to mimic agents (e.g., humans) conducting the chats with the customers. Therefore, machine learning techniques are often used in automating tasks that are normally carried out by humans. This can be true, not only for software applications, but also in automating tasks for various hardware operations and/or other computational processes.
However, an improperly trained and/or configured machine learning model can lead to errors in the performance of a software application, hardware operation, computational process, and/or the like using the machine learning model. For example, an improperly trained and/or configured machine-learning model can lead to the model generating incorrect and/or inaccurate results (output) that are then applied by a software application, resulting in the software application not functioning in the manner intended.
A common source of error that is encountered in machine learning, especially machine learning used in applications involving data associated with humans such as facial recognition, voice recognition, text recognition, and/or the like, is prejudice bias. Prejudice bias exists in a machine-learning model when the model produces results that reflect existing prejudices, stereotypes, faulty societal assumptions, and/or the like. Accordingly, an application's use of the results having prejudice bias can lead to the application not operating appropriately (e.g., fairly) for each group of individuals (e.g., races, genders, backgrounds, cultures, and/or the like) that use the application. Prejudice bias can be introduced in a machine-learning model when the data used for training, testing, and/or validating the machine-learning model reflects these existing prejudices, stereotypes, and/or faulty societal assumptions. Further, prejudice bias can be introduced in a machine-learning model when the model is configured in manner that reflects these existing prejudices, stereotypes, and/or faulty societal assumptions.
Accordingly, various aspects of the disclosure address several of the technical challenges associated with detecting prejudice bias in machine-learning models and/or data sets used in training, testing, and/or validating the models. Specifically, various aspects of the disclosure provide a bias evaluation process configured to perform an analysis on the machine-learning models and/or data sets used for training, testing, and/or validating machine-learning models to identity prejudice bias found within the data sets and/or machine-learning models.
Turning now to
Referring now to the data set branch 110, a data set can be uploaded 111 into a bias evaluation system to be analyzed (as further detailed herein). For instance, an individual (e.g., a developer) may upload the data set into the bias evaluation system through a portal or interface provided for the system. Once the data set is uploaded, the bias evaluation system processes the data set using a classification engine to scan through the data found in the data set to identify any bias categories that may exist in the data set 112. According to various aspects, the classification engine may initially assign one or more classes for various categories to particular data instances found in the data set. For example, a data instance may comprise a set of data, such as a data record found in the data set, that provides an input and an output used for training, testing, and/or validating a machine-learning model. Therefore, the classification engine may process each data instance to assign one or more classes for various categories to the records.
Many applications that use machine-learning models will process sensitive data such as personal data of individuals. For example, many AI applications may collect personal data from an individual through technologies such as speech recognition and/or image recognition and then process the personal data using a machine-learning model to perform a task. Personal data may include, but is not limited to, personally identifiable information (PII), which may be information that directly (or indirectly) identifies an individual or entity. Examples of PII include names, addresses, dates of birth, social security numbers, and biometric identifiers such as a person's fingerprints or picture. Other personal data may include, for example, individuals' Internet browsing habits, purchase history, or even their preferences (e.g., likes and dislikes, such as provided or obtained through social media). Some personal data may include demographic or other sensitive information (e.g., religion, race, ethnicity, gender, sexual preference, political affiliation, etc.).
Therefore, data sets used in training, testing, and/or validating machine-learning models that are used in applications that process personal data will include the personal data in the data instances found in the data set so that the machine-learning models can be developed accordingly for different groups of individuals. However, when a data set is not constructed in a manner to include personal data to adequately represent relevant groups of individuals (e.g., different races, genders, backgrounds, cultures, and/or the like), then the data set can introduce bias into a machine-learning model that is trained, tested, and/or validated using the data set.
According to various aspects, the classification engine can identify particular categories that may introduce bias into the data set. For example, the bias categories 113 may include religion, sexual orientation, age, ethnicity, gender, location, political opinions, and/or the like. Different sub-categories may be found within each of the categories. For example, the gender category may include the sub-categories male and female. The ethnicity category may include the sub-categories Asian, Black, Hispanic, White, and/or the like. At this point, the bias evaluation system analyzes the different categories 113 identified as represented in the data set to detect 114 whether the data set may be bias with respect to any of the identified categories 113. As detailed further herein, the bias evaluation system may perform this analysis by determining whether any of the identified categories 113 for the data set have a significant impact on the data set. For instance, the bias evaluation system may make a determination as to whether a proportion of the data set (e.g., a number of data instances) that represents any particular sub-category within a category satisfies a threshold amount or percentage of the part of the data set (e.g., number of data instances found in the data set) that represents the entire category. For example, the bias evaluation system may make a determination as to whether a proportion of the data set representing males satisfies a threshold amount or percentage of the part of the data set representing the category gender. If any category has a significant impact on the data set, then the system may be further used in assessing the data set to determine whether the data set is inherently biased 115.
In some instances, a factor, attribute, characteristic, and/or the like may be used in the analysis. For example, location can be integrated into the analysis to further test whether the data set is biasing a certain category 116. Finally, if any particular categories are having a significant impact on the data set, then the bias evaluation system, according to various aspects, indicates the risks of such prejudice bias and provides recommendations to the individual 117. According to some aspects, the individual may label the data set with the sub-categories found in the categorizes and re-scan the data set to detect any previously undetected prejudice bias 118.
Referring now to the model branch 120 of the bias evaluation process 100, instead of, or in addition to, uploading a data set, an individual (e.g., a developer) may upload a machine-learning model to the bias evaluation system to be analyzed 121. The bias evaluation system, according to various aspects, processes a “known” data set using the machine-learning model to determine whether the model may be introducing bias in the output produced by the model 122. The known data set includes data instances that are known be associated with certain bias categories (e.g., religion, sexual orientation, age, ethnicity, gender, location, political opinions, and/or the like). For example, the known data set may include data instances having personal data known to be related to certain bias categories. Here, the known data set includes proportional data 123 (e.g., a proportional number of data instances) that sufficiently represents each of the different sub-categories found in each of the categories so as to not introduce bias into the output produced by the machine-learning model. Therefore, any bias introduced into the output of the machine-learning model is the result of the model itself (e.g., the configuration of the model may be activating or otherwise operating in a manner the introduces bias into the output of the model).
Here, the bias evaluation system can analyze the results from processing the known data set using the machine-learning model to evaluate the performance of the model 124. Here, a “result instance” may be viewed as a combination of a data instance found in the known data set and the data instance's corresponding output produced by the machine learning model. Specifically, according to particular aspects, the bias evaluation system can use the classification engine in analyzing the results from the machine-learning model to assign one or more sub-categories of the different categories to the result instances. The bias evaluation system can then determine whether any of the categories associated with the known data set are having a significant impact on the output. For example, a determination may be made as to whether a proportion of the output (e.g., number of output instances) that represents any particular sub-category of a category satisfies a threshold amount or percentage of the part of the results (e.g., number of result instances found in the results) that represents the entire category. In another example, a determination may be made as to whether the machine learning module is generating erroneous output providing false indications of any particular sub-category of a category.
If any particular categories are having a significant impact on the results of the machine-learning model, then the bias evaluation system can indicate the risks of such prejudice bias and share risks and/or recommendations to the individual 125. Accordingly, the individual may then assess the machine-learning model to determine whether the model is inherently biased. For example, according to particular aspects, the bias evaluation system may provide the individual with one or more analytic tools, such as the Language Interpretability Tool (LIT) and/or What-If-Tool (WIT) provided by Google, that can be used in assessing the machine-learning model to determine what may be causing the bias.
Accordingly, various aspects of the disclosure provided herein address many of the technical disadvantages encountered in identifying prejudice bias that may be introduced into machine-learning models via data sets used in training, testing, and/or validating the models, as well as the configuration of the models themselves. Specifically, various aspects of the disclosure provide a novel system that can be used for analyzing and evaluating data sets that are used in training, testing, and/or validating machine-learning models to determine whether the data sets introduce any prejudice bias into the machine-learning models. In addition, various aspects of the disclosure provide a novel system that can be used for analyzing and evaluating machine-learning models using known data sets to determine whether the models, themselves, introduce prejudice bias. As a result, various aspects of the disclosure can assist developers of machine-learning models in developing machine-learning models that can be used in many different AI applications that minimize or eliminate bias. In doing so, various aspects of the present disclosure make major technical contributions to improving the use, fairness, and effectiveness of machine learning in various AI applications.
Example Computing Environment
Referring now to the figures,
Accordingly, a bias evaluation computing system 200 may be provided that includes software components, hardware components, or both for analyzing and evaluating machine-learning models and/or data sets used in training, testing, and/or validating machine-learning models for prejudice bias represented in the machine-learning models and/or data sets. For example, the bias evaluation computing system 200 can retrieve or otherwise access the machine-learning model and/or data set over a network 230 (e.g., the Internet) from a third-party computing system 235 and/or a third-party data storage 240 associated with the entity. The third-party data storage 240 may reside within the third-party computing system 235 or externally, as shown in
According to various aspects of the disclosure, the bias evaluation computing system 200 may comprise computing hardware performing a number of different processes in conducting the analysis and evaluation of the machine-learning model and/or data set. Specifically, according to particular aspects, the bias evaluation computing system 200 executes a data set analysis module 210 in analyzing and evaluating a data set in identifying any prejudice bias in the data set.
As further detailed herein, the data set analysis module 210 can determine one or more sub-categories of bias categories that are applicable to data instances found in the data set. According to particular aspects, the data set analysis module 210 uses a classification engine 215 in determining the sub-categories for the bias categories that are applicable to the data instances found in the data set. The classification engine 215 includes program code that implements a machine-learning model in generating classifications (e.g., predictions) of sub-categories for the different bias categories that are applicable to the data instances found in the data set.
The data set analysis module 210 can also determine whether the data set may be potentially biased based on the particular sub-categories identified for the bias categories. If the data set is determined to have prejudice bias, then the data set analysis module 210 may provide the risks associated with the prejudice bias. According to particular aspects, the data set analysis module 210 may invoke a risk determination module 225 to determine the risks associated with a prejudice bias identified for the data set. In turn, the risk determination module 225 can map the prejudice bias to factors, attributes, characteristics, and/or the like that may influence the risk associated with the prejudice bias. The data set analysis module 210 can report the results of the analysis and evaluation. For example, the data set analysis module 210 may display the results on an interface and/or send one or more communications providing the results.
Similarly, the bias evaluation computing system 200 executes a model analysis module 220 in analyzing and evaluating a machine-learning model in identifying any prejudice bias in the model. As further detailed herein, the model analysis module 220 can process a known data set using the machine learning. The known data set includes data instances that are known to have data that is associated with certain bias categories (e.g., religion, sexual orientation, age, ethnicity, gender, location, political opinions, and/or the like) and can include proportional data that sufficiently represents each sub-category of the different categories so as to not introduce bias into the output produced by the machine-learning model. Therefore, any bias introduced into the output of the machine-learning model is the result of the model itself.
The model analysis module 220 analyzes the output from the machine-learning model to determine the sub-categories of the different bias categories represented in the output. Again, similar to the data set analysis module 210, the model analysis module 220 may use the classification engine 215 in determining the applicable sub-categories. The model analysis module 220 continues with determining whether the machine-learning model may be potentially biased based on the particular sub-categories identified for the bias categories. If the model is determined to have prejudice bias, then the model analysis module 220 may provide the risks associated with the prejudice bias. Similar to the data set analysis module 210, the model analysis module 220 may invoke a risk determination module 225 to determine the risks associated with a prejudice bias identified for the machine-learning model. The model analysis module 220 reports the results of the analysis and evaluation in a similar fashion as the data set analysis module 210. Further detail is now provided on the configuration and functionality of the different modules 210, 220, 225 according to various aspects of the disclosure.
Data Set Analysis Module
Turning now to
The process 300 involves the data set analysis module 210 receiving a data set used for training, testing, and/or validating a machine-learning model that is to be analyzed for prejudice bias in Operation 310. As previously mentioned, the bias evaluation system 200 according to particular aspects may provide some type of mechanism such as an application programming interface (API), a Web portal, a user interface, and/or the like that can be used by an individual (e.g., a developer) to facilitate the uploading of the data set into the system 200. Once uploaded, the data set analysis module 210 may be invoked and receives the data set accordingly.
The data set analysis module 210 then determines one or more sub-categories of various categories that are applicable to data instances found in the data set in Operation 315. In various aspect, a data instance can be a group of data found in the data set that provides an input and/or output using in training, testing, and/or validating a machine-learning model. Here, the data set may be known to include certain types of data that are related to categories of interest (bias categories). For example, as previously noted, many applications that use machine-learning models will process sensitive data such as personal data of individuals. Therefore, the data set may be known to include personal data in the data instances found in the data set so that any machine-learning model developed using the data set can be developed for different sources that can potentially lead to prejudice bias (e.g., different races, genders, backgrounds, cultures, and/or the like). In addition, depending on the circumstances, a data instance may include text data, media data, numerical data, categorical data, the like, and/or any combination thereof. For example, text data may comprise a word, a phrase, a sentence, a paragraph, and/or the like. As another example, media data may comprise an image, a group of images, a recording, a video, and/or the like. Those of ordinary skill in the art can envision various types of data that may be found in the data instances that make up the data set in light of this disclosure.
According to various aspects, the data set analysis module 210 can determine one or more sub-categories of the various categories applicable to each data instance found in the data set by using a classification engine 215. The classification engine 215 identifies one or more sub-categories of various sources of prejudice bias (e.g., bias categories) that are applicable to each data instance. For example, the bias categories may include religion, sexual orientation, age, ethnicity, gender, location, political opinions, and/or the like. Within these bias categories, the sub-categories of “male” and “female” may be found in the bias category “gender,” the sub-categories of “Republican” and “Democrat” may be found in the bias category political opinions, etc. According to various aspects, the classification engine 215 identifies the one or more sub-categories found in the bias categories related to each data instance by processing the data instance (or suitable representation(s) thereof) using a classification model. According to various aspects, the classification model generates an output for a data instance identifying the sub-categories of the bias categories that may be associated with (i.e., relevant to) the data instance.
Here, according to particular aspects, the classification model may comprise an ensemble of multiple classifiers. For instance, the classification model may include a classifier for each bias category. For example, the classification model may include a first classifier for the bias category “ethnicity,” a second classifier for the bias category “gender,” a third classifier for the bias category “age,” and so forth. Each of the classifiers may be a multi-label classifier in which a prediction is provided for each sub-category of the bias category. The classification model may provide a data instance (e.g., different data elements that make up the data instance) from the data set as input to the classification model and the model may generate an output for the data instance that may comprise a representation (e.g., vector representation) that includes a component for each sub-category found in a bias category providing the prediction (e.g., value) on the applicability of the sub-category to the data instance. Furthermore, the representation may provide a confidence (e.g., confidence value) for each prediction on the applicability of the corresponding sub-category of the bias category.
According to some aspects, the classifier may be a Bidirectional Encoder Representations from Transformers (“BERT”) classifier. A fine-tuning process may be carried out for training the BERT classifier that involves using training data sets having attributes that recur across one or more industries to train the classifier for a corresponding classification task. The classification task could include classifying a data instance as belonging to one or more of the different sub-categories found in a particular bias category. As an illustrative example, many credit reporting agencies may use certain common attributes for generating credit scores such as income level, physical address, late payments, and/or the like. In this example, a training data set may be constructed to include those attributes. The training data set would also include ground-truth data identifying which data instances belong to certain bias categories and/or sub-categories The data analysis module 210 (or other suitable program code executed by the bias evaluation computing system 200) performs a fine-tuning process for the BERT classifier using the training data set. For instance, the fine-tuning process could involve adding one or more layers to the BERT classifier that are configured to classify data instances having those attributes according to a particular bias category. The fine-tuning process further involves modifying one or more parameters of the BERT classifier having the added set of layers, thereby minimizing, or otherwise reducing the error between the ground-truth data and the outputs of the BERT classifier.
Additionally or alternatively, the BERT model could be fine-tuned with a training data set having attributes specific to a certain entity who is interested in having a particular data set analyzed. For instance, if the entity is a credit agency, but uses different attributes to compute a credit score than is typical in the industry, then the BERT classifier could be fine-tuned on a training data set specific to those attributes. Here, for example, the third party may provide the training data set having those attributes along with ground-truth data identifying a data instance as having certain values for attributes 1-n actually belong to particular sub-categories found within a bias category.
Therefore, according to various aspects, the classification engine 215 may use a particular classification model based on an association related to the data set being analyzed. For example, the classification engine 215 may use a first classification model developed for a first industry in analyzing a data set associated with a first entity who operates in the first industry and use a second, different classification model developed for a second industry in analyzing a data set associated with a second, different entity who operates in the second industry. Likewise, the classification engine 215 may use a particular classification model based on the type of data (e.g., text data, media data, etc.) found in the data set. Further, the classification engine 125 may use a classification model that may only include certain classifier for bias categories of interest or a single classifier. Furthermore, the classification model may use other types of classifiers such as logistic regression, clustering, decision trees, neural networks, and/or the like.
According to various aspects, the classification engine 215 may recognize sub-categories found in the different bias categories that are applicable to a data instance as those sub-categories having a prediction (e.g., a prediction value) that satisfies a threshold (e.g., a prediction value of at least 0.75). In addition, the classification engine 215 may consider the confidence of the prediction in addition to the prediction (e.g., whether the confidence value also satisfies a threshold) in determining whether a particular sub-category of a bias category is applicable to a data instance.
In some aspects, the classification engine 215 can pre-process data instances found in the data set to convert the data instances into a format that is more suitable for classification analysis prior to identifying the sub-categories. For instance, the data instances may include text data. Here, the classification engine 215 can pre-process the text data for each data instance to generate one or more embedded representations of the text data. For example, according to some aspects, the classification engine 215 may perform some type of natural language processing, such as word embedding, on the text data to generate the one or more embedded representations of the text data. An embedded representation may comprise a vector representation of the text data having components with numerical values. The embedded representation may serve as one or more context information, characteristics, attributes, and/or the like of the text data. Additionally, or alternatively, the data instances may include media data such as images. The classification engine 215 can generate one or more embedded representations of the media data. For example, according to some aspects, the classification engine 215 may process the media data (e.g., an image) using a convolutional neural network to generate the one or more embedded representations of the media data. Again, an embedded representation may comprise a vector representation of the media data having components with numerical values. The embedded representation may serve as one or more context information, characteristics, attributes, and/or the like of the media data. According to various aspects, the classification engine 215 may perform other types of pre-processing to place the data instances in a more favorable format for classification analysis such as one-hot encoding to generate encoded representations of data, such as categorical data, and/or speech-to-text to convert audio data into text data. According to some aspects, the classification engine 215 may concatenate and/or merge the different representations of a data instance to form a combined representation of the data instance.
The data set analysis module 210 can also analyze the sub-categories found in the different bias categories identified for the data set in Operation 320. For instance, the data set analysis module 210 may analyze the sub-categories found in the different bias categories identified for the data set to determine whether any particular sub-category for a bias category is underrepresented or overrepresented in the data set. For example, the data set analysis module 210 may compare the proportion of the data set (e.g., the number of data instances) associated with a particular sub-category found in a bias category to one or more thresholds to determine whether the proportion of the data set associated with the particular sub-category satisfies either of the thresholds. For instance, a first threshold (e.g., 20%) may be used in determining whether the particular sub-category found in the bias category is underrepresented in the data set and a second threshold (e.g., 80%) may be used in determining whether the particular sub-category found in the bias category is overrepresented in the data set. Accordingly, if the proportion of the data set associated with a particular sub-category found in a bias category satisfies one of the thresholds, then the data set analysis module 210 may determine that the data set may be potentially biased with respect to the particular sub-category found in the bias category.
According to particular aspects, the data set analysis module 210 can refine the analysis of the sub-categories found in the different bias categories identified for the data set based on one or more factors, attributes, characteristics, and/or the like. For instance, according to some aspects, each data instance found in the data set may be assigned an indication of a geographical or jurisdictional location associated with the data instance. For example, a particular data instance in the data set may be assigned an indication that the data instance was collected in the European Union (EU) or in the United States. Therefore, according to these aspects, the data set analysis module 210 can analyze the sub-categories for the different bias categories with respect to the factor, attribute, characteristic, and/or the like (e.g., location) and provide results for each bias category that are broken down by the factor, attribute, characteristic, and/or the like (e.g., location). Other factors, attributes, characteristics, and/or the like (e.g., demographic data) may be used in refining the analysis in combination with, or instead of, location.
For example, the data set analysis module 210 may provide results indicating that the data set reflects a bias with respect to ethnicity sub-category “Asian.” Here, the data set analysis module 210 may determine the particular sub-category is overrepresented in the data set and may provide results that break down the data instances found in the data set that are associated with the particular sub-category by location. Accordingly, the results may show that a significant number of the data instances found in the data set associated with this particular sub-category (e.g., 50 percent of the data instances) are associated with a particular location of the United States (e.g., Pacific coast and/or California). That is to say, the results may indicate the data set is biased with respect to ethnicity for a particular location in the United States, and not for other locations in the United States. Such information may provide an individual who is reviewing the results with further insight to explaining why the data set may reflect the bias.
Once the analysis is completed on the data set, the data set analysis module 210 causes performance of one or more actions based on the results of the analysis in Operation 325. For instance, according to particular aspects, the data set analysis module 210 may generate one or more notifications of the results of the analysis. Here, the notification(s) may involve generating and displaying one or more interfaces to an individual (e.g., the individual who had uploaded the data set) to provide the individual with the results. In other instances, the notification(s) may also, or instead, involve generating and sending one or more electronic communications to individual(s) providing the results of the analysis. Accordingly, the results may include a summary of the analysis and any suitable details regarding the analysis. In addition, the results may indicate any prejudice bias that has been identified for the data set.
Further, according to particular aspects, the results may provide the risks associated with any prejudice bias that has been identified for the data set. Here, the data set analysis module 210 may determine the risks associated with any prejudice bias identified for the data set through the use of a risk determination module 225. As discussed further herein, the risk determination module 225 may determine a risk (e.g., risk value and/or risk score) for each of the prejudice biases identified for the data set based on one or more factors, attributes, characteristics, and/or the like that may influence the risk associated with the use of the data set in training, testing, and/or validating machine-learning models.
According to particular aspects, a suitable computing system, such as the bias evaluation computing system 200 and/or the third-party computing system 235, may modify the data set based on the results. For instance, the results may indicate the data set is biased in that the data set is made up of a number of data instances that results in a sub-category for a particular category being overrepresented in the data set. In this example, a computing system that modifies the data set may remove a number of data instances found in the data set that have been identified as applicable to the sub-category for the particular category. Removal of the data instances could include determining the number of instances to remove from the data set based on the level of overrepresentation of the sub-category found in the data set. For example, the computing system that modifies the data set may remove a percentage and/or number of the data instances based on the level of instances (e.g., percentage and/or number of instances) the sub-category is over the threshold.
Additionally or alternatively, a computing system that modifies the data set (e.g., the bias evaluation computing system 200 and/or the third-party computing system 235) could address the prejudice bias by adding data instances to the data set for a sub-category that is underrepresented in the data set. For instance, the computing system may be provided with a pool of data instances to pull from to add instances to the data set. For example, the entity that has uploaded the data set to the bias evaluation system 200 for analysis may also provide a pool of data instances along with the data set. According to some aspects, the bias evaluation system 200 may also process the data instances in the pool to identify applicable sub-categories for the different bias categories so that they may be used to supplement the data set.
In additional or alternative aspects, the data set analysis module 210 may provide recommendations on modifications that can be made to the data set to address any prejudice bias identified for the data set. Here, the data set analysis module 210 generate and transmit one or more notifications of the recommendations in a similar fashion as the notifications provided on the results of the analysis. For example, the data set analysis module 210 may provide a recommendation based on the risk associated with any prejudice bias that has been identified for the data set satisfying a threshold.
In some aspects, a computing system with access to the data set that has been assessed for prejudice bias can receive the notification. This computing system can be used to modify the dataset based on the notification, where such modifications can occur automatically in responsive to receiving the notification or in a partially automated manner based on one or more inputs received by the computing system following the receipt of the notification.
Furthermore, according to some aspects, the data set analysis module 210 may reevaluate the data set, once modified, to determine whether the prejudice bias has been addressed. Therefore, the data set analysis module may work in a closed loop fashion to address any prejudice bias identified for the data set until the bias has been addressed.
Model Analysis Module
Turning now to
The process 400 involves the model analysis module 220 receiving a machine-learning model for analyzing in Operation 410. As previously mentioned, the bias evaluation system 200 according to particular aspects may provide some type of mechanism such as an application programming interface (API), a Web portal, a user interface, and/or the like that can be used by an individual (e.g., a developer) to facilitate the uploading of the machine-learning model into the system 200.
For instance, the machine-learning model uploaded to the bias evaluation system 200 may be used in an AI application that provides information to individuals on available insurance products provided by a particular insurance provider based on answers to questions presented to the individuals in an audio format. For example, the AI application may entail a software application provided through a kiosk found in a shopping area that shoppers can interact with to learn about the different insurance products offered by the insurance provider. Here, the software application may solicit information from an individual shopper by audibly asking the shopper a series of questions and receiving verbal answers accordingly. The software application may use one or more machine-learning models in processing the shopper's answers and providing information on applicable insurance products that are available through the insurance provider. For example, the software application may use a first machine-learning model to interpret the answers received from the shopper. In addition, the software application may use a second machine-learning model in addition, or instead, to identify (e.g., predict) insurance products that may be of interest to the shopper based on the shopper's answers. Here, some of the information solicited from the shopper through the questions may entail information that may be considered personal in nature. For example, the AI application may request the shopper to identify his or her gender, age, home address, and/or the like. Accordingly, the insurance provider may be interested in evaluating the first or second machine-learning model to determine whether the model may be generating output that reflects prejudice bias. Therefore, the insurance provider (employee thereof) may upload the model to the bias evaluation system 200.
Once uploaded, the model analysis module 220 may be invoked and receives the machine-learning model accordingly. The model analysis module 220 then processes a known data set using the uploaded machine-learning model in Operation 415. In some instances, the entity associated with the machine-learning model may process the known data set, themselves, using the known data set and provide the output instead of uploading the model. Therefore, in these instances, the model analysis module 220 may not need to perform this operations. As previously mentioned, a known data set includes data instances that are known to have data (e.g., personal data) that is associated with certain bias categories (e.g., religion, sexual orientation, age, ethnicity, gender, location, political opinions, and/or the like). Here, the known data set can include proportional data (e.g., a proportional number of data instances) that sufficiently represents each sub-category of the different categories so as to not introduce bias into the output produced by the machine-learning model. For example, the known data set includes data instances where demographics are represented in the same proportions as the wider population that the data set is intended to represent. Therefore, any bias introduced into the output of the machine-learning model is the result of the model itself.
Next, the model analysis module 220 analyzes the results generated from processing the known data set using the uploaded machine-learning model to determine the sub-categories of the different bias categories represented in the result instances found in the results in Operation 420. A “result instance” can be viewed as a data instance found in the known data set and the instance's corresponding output produced by processing the data instance using the machine-learning model. For example, a result instance may represent the answers to one or more questions asked of a shopper who is using the AI application mentioned above that are processed by the second machine-learning model and the one or more insurance products generated as output by the second machine-learning model. According to particular aspects, the model analysis module 220 performs this particular operation by using the classification engine 215 previously described to analyze and assign one or more sub-categories of the different bias categories to result instances. The classification engine 215 can use the classification model to generate a prediction of applicability for each of the sub-categories of the different bias categories in a similar fashion as described above with respect to the data set analysis module 210. In one example, the classification engine 215 uses the output generated by the uploaded machine learning model (e.g., a third-party machine learning model being assessed) as input provided to the classification model. In another example, the classification engine 215 combines the output generated by the uploaded machine learning model and corresponding data instances from the known data set to form result instances, and uses the set of result instances used as input the classification model. In another example, the classification engine 215 combines the output generated by the uploaded machine learning model with other data usable for identifying the bias categories from the known data set that are associated with the output, and uses this set of result instances used as input to the classification model. As previously mentioned, the classification engine 215 according to various aspects may recognize the sub-categories of the bias categories that are applicable to an output instance as those sub-categories having a prediction (e.g., prediction value) that satisfies a threshold (e.g., a prediction value of at least 0.75). In addition, the classification engine 215 may consider the confidence of the prediction (e.g., whether the confidence value also satisfies a threshold) in determining whether a particular sub-category found in a bias category is applicable to an output instance.
The model analysis module 220 then analyzes the sub-categories found in the bias categories identified for the results to determine whether any of the bias categories are significantly impacting the output found in the results in Operation 425. For example, similar to analyzing a data set, a determination may be made as to whether a proportion of the results (e.g., number of result instances) that represents a sub-category for any particular category satisfies a threshold amount or percentage of the part of the results (e.g., total number of result instances) that represents the particular category. Therefore, similar to the data set analysis module 210, the model analysis module 220 may analyze the sub-categories found in the different bias categories identified for the results to determine whether any particular sub-category found in a bias category is underrepresented or overrepresented in the results. Again, the model analysis module 220 may analyze each of the sub-categories of the different bias categories by comparing the proportion of the results (e.g., the number of result instances) associated with the sub-category to one or more thresholds to determine whether the proportion of the results associated with the sub-category satisfies either of the thresholds.
According to other aspects, the model analysis module 220 may determine whether the machine-learning model is generating erroneous output for the known data set that amounts to the model having a prejudice bias. For example, corresponding (correct) sub-categories may be identified for each of the data instances found in the known data set and the model analysis module 220 may identify the data instances that were processed using the machine-learning model and produced outputs having false indications for a particular sub-category found in the bias category. For example, the known data set may include images as data instances in which each image is associated with the sub-category of male or female. In this example, the model analysis module 220 may identify those images found in the known data set in which the image is associated with one gender (e.g., female) and the machine-learning model generated an output associated with the other gender (e.g., male). According to some aspects, the model analysis module 220 may determine whether the machine-learning model has produced erroneous outputs for a particular sub-category found in a bias category that satisfies a threshold. If so, then the model analysis module 220 may identify the machine-learning model as having a prejudice bias with respect to the particular sub-category.
According to particular aspects, the model analysis module 220 can refine the analysis of the bias categories identified for the results based on one or more factors, attributes, characteristics, and/or the like. For instance, according to some aspects, each output instance found in the output may be assigned an indication of a geographical or jurisdictional location associated with the data instance. For example, a particular data instance provided in the known data set may be assigned an indication that the data instance was collected in the European Union (EU) or in the United States. The corresponding output generated by the machine-learning model by processing the particular data instance may be associated with the indication of the geographical or jurisdictional location. In an illustrative example, the machine-learning model being assessed for prejudice could be used to assess a risk level for certain consumers (e.g., in an insurance context). The model analysis module 220 could assess risk levels outputted by the machine-learning model and initially determine that certain outputs (e.g., assessment of higher risk) are skewed toward a certain bias category (e.g., age). The model analysis module 220 could refine this initial determination based on a geographical or jurisdictional location, such as by determining that assessments of higher risk skewed toward a certain age group would be accurate with respect to the population in one region even if those skewed results are inaccurate (i.e., unfairly discriminatory) with respect to a population in a different region.
Therefore, the model analysis module 220 can analyze the different bias categories with respect to the factor, attribute, characteristic, and/or the like (e.g., location) and provide results for each bias category that are broken down by the factor, attribute, characteristic, and/or the like (e.g., location).
The model analysis module 220 causes performance of one or more actions based on the results of the analysis performed on the machine-learning model in Operation 430. For instance, according to particular aspects, the model analysis module 220 may generate one or more notifications providing the results of the analysis. For example, the notification(s) may involve generating and displaying one or more interfaces to an individual (e.g., the individual who had uploaded the machine-learning model) to provide the individual with the results. In other instances, the notification(s) may also, or instead, involve generating and sending one or more electronic communications to individual(s) providing the results of the analysis. Accordingly, the results may include a summary of the analysis and any suitable details regarding the analysis. In addition, the results may indicate any prejudice bias identified for the machine-learning model. Further, according to some aspects, the results may provide the risks associated with any prejudice bias identified for the machine-learning model. Similar to the data set analysis module 210, the model analysis module 220 may determine the risk associated with any prejudice bias identified for the machine-learning model through the use of a risk determination module 225. Further, the model analysis module 220 may provide a recommendation based on the risk satisfying a threshold.
According to particular aspects, a suitable computing system, such as the bias evaluation computing system 200 and/or the third-party computing system 235, may provide one or more analytic techniques, processes, tools, and/or the like that can be used in identifying what components of a machine-learning model are generating (e.g., activating) a resulting output indicating prejudice bias such as, for example, the algorithm (e.g., type of model), input variables, weights, activation function, loss function, number of hidden layers, and/or the like. For example, according to particular aspects, the suitable computing system may provide an individual with one or more interfaces to one or more analytical tools, such as the Language Interpretability Tool (LIT) and/or What-If-Tool (WIT) provided by Google, that can used in determining whether a machine-learning model is inherently biased. In another example, many machine-learning models generate one or more configuration files. According to particular aspects, the suitable computing system may provide individuals with one or more analytical tools for analyzing the configuration file(s) of a machine-learning model to provide further information that can be used in determining whether the model is inherently bias. Therefore, according to some aspects, the one or more actions performed by the model analysis module 220 may involve providing one or more interfaces to such tools, along with the results of the analysis, to an individual who can then use the tools in further analyzing the machine-learning model.
In some aspects, a computing system with access to the machine-learning model that has been assessed for prejudice bias can receive a notification on the results of the analysis. For example, the computing system may receive a notification that the machine-learning model has a prejudice bias and in response, this computing system can be used to take action based on the notification such as have the machine-learning model removed (suspended) from being used in applications. Such action can occur automatically in responsive to receiving the notification or in a partially automated manner based on one or more inputs received by the computing system following the receipt of the notification.
Risk Determination Module
Turning now to
As noted, the risk associated with a prejudice bias identified for a data set may be based on one or more factors, attributes, characteristics, and/or the like that may influence the risk with using the data set in training, testing, and/or validating a machine-learning model. Likewise, the risk associated with a prejudice bias identified for a machine-learning model may be based on one or more factors, attributes, characteristics, and/or the like that may influence the risk with using the machine-learning model for some type of application (e.g., AI application). Therefore, in many instances, the risk associated with a prejudice bias may be dependent on the machine-learning model that is produced from a biased data set, that can lead to a biased machine-learning model, as well as the applications in which a biased machine-learning model is used.
For instance, in an increasing number of jurisdictions around the globe, the use of AI that may exhibit prejudice bias with respect to different races, genders, backgrounds, cultures, and/or the like may violate one or more laws or regulations put in place addressing privacy and/or the use of individual's personal and/or sensitive data. For example, laws and/or regulations associated with the handling of personal and/or sensitive data of individuals may include bias-related compliance requirements. Violations of the requirements may occur regardless of whether such bias was the result of human activity, automated computing activity, or any combination thereof. Therefore, an entity operating AI applications in a jurisdiction in which bias-related requirements are applicable may wish to be aware of any prejudice bias that may be generated by any machine learning used within its AI applications.
Turning now to
The risk determination module 225 then maps the prejudice bias to any applicable factors, attributes, characteristics, and/or the like that may influence the risk in Operation 515. For instance, returning to the example in which one or more regulations, law, standards, and/or the like may have one or more bias-related compliance requirements that are applicable to the use of a machine-learning model that has been trained, tested, and/or validated using a biased data set and/or a biased machine-learning model, itself, the risk determination module may map the location(s) associated with the prejudice bias to the bias-related compliance requirements for the applicable regulations, standards, and/or the like.
Once mapped to the applicable factors, attributes, characteristics, and/or the like, the risk determination module 225 determines the risk associated with the prejudice bias in Operation 520. For example, the risk determination module 225 may determine the risk (e.g., a risk level and/or score) for the prejudice bias based on one or more fines and/or penalties associated with not complying with the bias-related compliance requirements. Those of ordinary skill in the art can envision other criteria that may be used in determining a risk associated with a prejudice bias in light of this disclosure.
Other Aspects of the System
It is noted that according to particular aspects of the bias evaluation system 200, rather than analyze every data instance found in a particular data set, the analysis may be carried out by sampling the data set and analyzing a subset of the data instances found in the data set. This may improve the efficiency of the analysis, especially in instances in which the data set is quite large.
In addition, according to particular aspects, the thresholds, and/or any other data, used to determine whether the analysis of a data set (or sampled data set) and/or machine-learning model indicates prejudice bias may be based, at least in part, on one or more regulations, laws, standards, requirements, and/or the like. For example, such thresholds and/or any other data used to determine whether the analysis of a data set and/or machine-learning model indicates prejudice bias may also, or instead, be based, at least in part, on one or more fines or other penalties associated with such regulations, laws, standards, requirements, and/or the like. According to particular aspects, the bias evaluation system 200 may retrieve such information from a data repository that stores legal requirements and penalties from across the globe and/or requirements and penalties associated with one or more standards bodies.
Example Technical Platforms
Aspects of the present disclosure may be implemented in various ways, including as computer program products that comprise articles of manufacture. Such computer program products may include one or more software components including, for example, software objects, methods, data structures, and/or the like. A software component may be coded in any of a variety of programming languages. An illustrative programming language may be a lower-level programming language such as an assembly language associated with a particular hardware architecture and/or operating system platform. A software component comprising assembly language instructions may require conversion into executable machine code by an assembler prior to execution by the hardware architecture and/or platform. Another example programming language may be a higher-level programming language that may be portable across multiple architectures. A software component comprising higher-level programming language instructions may require conversion to an intermediate representation by an interpreter or a compiler prior to execution.
Other examples of programming languages include, but are not limited to, a macro language, a shell or command language, a job control language, a script language, a database query, or search language, and/or a report writing language. In one or more example aspects, a software component comprising instructions in one of the foregoing examples of programming languages may be executed directly by an operating system or other software component without having to be first transformed into another form. A software component may be stored as a file or other data storage construct. Software components of a similar type or functionally related may be stored together such as, for example, in a particular directory, folder, or library. Software components may be static (e.g., pre-established, or fixed) or dynamic (e.g., created or modified at the time of execution).
A computer program product may include a non-transitory computer-readable storage medium storing applications, programs, program modules, scripts, source code, program code, object code, byte code, compiled code, interpreted code, machine code, executable instructions, and/or the like (also referred to herein as executable instructions, instructions for execution, computer program products, program code, and/or similar terms used herein interchangeably). Such non-transitory computer-readable storage media include all computer-readable media (including volatile and non-volatile media).
According to various aspects, a non-volatile computer-readable storage medium may include a floppy disk, flexible disk, hard disk, solid-state storage (SSS) (e.g., a solid-state drive (SSD), solid state card (SSC), solid state module (SSM), enterprise flash drive, magnetic tape, or any other non-transitory magnetic medium, and/or the like. A non-volatile computer-readable storage medium may also include a punch card, paper tape, optical mark sheet (or any other physical medium with patterns of holes or other optically recognizable indicia), compact disc read only memory (CD-ROM), compact disc-rewritable (CD-RW), digital versatile disc (DVD), Blu-ray disc (BD), any other non-transitory optical medium, and/or the like. Such a non-volatile computer-readable storage medium may also include read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory (e.g., Serial, NAND, NOR, and/or the like), multimedia memory cards (MMC), secure digital (SD) memory cards, SmartMedia cards, CompactFlash (CF) cards, Memory Sticks, and/or the like. Further, a non-volatile computer-readable storage medium may also include conductive-bridging random access memory (CBRAM), phase-change random access memory (PRAM), ferroelectric random-access memory (FeRAM), non-volatile random-access memory (NVRAM), magnetoresistive random-access memory (MRAM), resistive random-access memory (RRAM), Silicon-Oxide-Nitride-Oxide-Silicon memory (SONOS), floating junction gate random access memory (FJG RAM), Millipede memory, racetrack memory, and/or the like.
According to various aspects, a volatile computer-readable storage medium may include random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), fast page mode dynamic random access memory (FPM DRAM), extended data-out dynamic random access memory (EDO DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), double data rate type two synchronous dynamic random access memory (DDR2 SDRAM), double data rate type three synchronous dynamic random access memory (DDR3 SDRAM), Rambus dynamic random access memory (RDRAM), Twin Transistor RAM (TTRAM), Thyristor RAM (T-RAM), Zero-capacitor (Z-RAM), Rambus in-line memory module (RIMM), dual in-line memory module (DIMM), single in-line memory module (SIMM), video random access memory (VRAM), cache memory (including various levels), flash memory, register memory, and/or the like. It will be appreciated that where various aspects are described to use a computer-readable storage medium, other types of computer-readable storage media may be substituted for or used in addition to the computer-readable storage media described above.
Various aspects of the present disclosure may also be implemented as methods, apparatuses, systems, computing devices, computing entities, and/or the like. As such, various aspects of the present disclosure may take the form of a data structure, apparatus, system, computing device, computing entity, and/or the like executing instructions stored on a computer-readable storage medium to perform certain steps or operations. Thus, various aspects of the present disclosure also may take the form of entirely hardware, entirely computer program product, and/or a combination of computer program product and hardware performing certain steps or operations.
Various aspects of the present disclosure are described below with reference to block diagrams and flowchart illustrations. Thus, each block of the block diagrams and flowchart illustrations may be implemented in the form of a computer program product, an entirely hardware aspect, a combination of hardware and computer program products, and/or apparatuses, systems, computing devices, computing entities, and/or the like carrying out instructions, operations, steps, and similar words used interchangeably (e.g., the executable instructions, instructions for execution, program code, and/or the like) on a computer-readable storage medium for execution. For example, retrieval, loading, and execution of code may be performed sequentially such that one instruction is retrieved, loaded, and executed at a time. In some example of aspects, retrieval, loading, and/or execution may be performed in parallel such that multiple instructions are retrieved, loaded, and/or executed together. Thus, such aspects can produce specially configured machines performing the steps or operations specified in the block diagrams and flowchart illustrations. Accordingly, the block diagrams and flowchart illustrations support various combinations of aspects for performing the specified instructions, operations, or steps.
Example System Architecture
As may be understood from
The ML bias server(s) 610 may acquire a data set and/or machine-learning model that is uploaded over a network 230 from a remote third-party computing system 235 and may execute a data set analysis module 210, model analysis module 220, and/or risk determination module 225 as described herein to analyze the data set and/or machine-learning model and to identify any prejudice bias that may be associated with the data set and/or machine-learning model, and/or determine a risk associated with an identified prejudice bias for a data set and/or machine-learning model. Accordingly, the repository server(s) 620 can store information (e.g., results) generated by the analysis conducted on the machine-learning model and/or data set. In addition, the repository server(s) 620 may be used according to various aspects for storing other information used in conducting the analysis on the machine-learning model and/or the data set such as, for example, information on legal requirements and penalties from across the globe and/or requirements and penalties associated with one or more standards bodies.
In addition, according to particular aspects, the ML bias server(s) 610 are configured to provide one or more interfaces (e.g., APIs, Web portals, websites, direct connections, and/or the like) through which a data set and/or machine-learning model may be updated, as well as one or more interfaces (e.g., websites, transfer protocol interfaces, and/or the like) for displaying and/or communicating results of analysis conducted on a data set and/or machine-learning model. Furthermore, according to particular aspects, the ML bias server(s) 610 are configured to provide analytical tools that may be accessed by individuals who are conducting further analysis on data sets and/or machine-learning models. Accordingly, the ML bias server(s) 610 and/or repository server(s) 620 may interface with the third-party computing system(s) 235 via one or more suitable application programming interfaces (APIs), direct connections, and/or the like.
Example Computing Hardware
A hardware device 700 includes a processor 702, a main memory 704 (e.g., read-only memory (ROM), flash memory, dynamic random-access memory (DRAM) such as synchronous DRAM (SDRAM), Rambus DRAM (RDRAM), and/or the like), a static memory 706 (e.g., flash memory, static random-access memory (SRAM), and/or the like), and a data storage device 718, that communicate with each other via a bus 732.
The processor 702 may represent one or more general-purpose processing devices such as a microprocessor, a central processing unit, and/or the like. According to some aspects, the processor 702 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, processors implementing a combination of instruction sets, and/or the like. According to some aspects, the processor 702 may be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, and/or the like. The processor 702 can execute processing logic 726 for performing various operations and/or steps described herein.
The hardware device 700 may further include a network interface device 708, as well as a video display unit 710 (e.g., a liquid crystal display (LCD), a cathode ray tube (CRT), and/or the like), an alphanumeric input device 712 (e.g., a keyboard), a cursor control device 714 (e.g., a mouse, a trackpad), and/or a signal generation device 716 (e.g., a speaker). The hardware device 700 may further include a data storage device 718. The data storage device 718 may include a non-transitory computer-readable storage medium 730 (also known as a non-transitory computer-readable storage medium or a non-transitory computer-readable medium) on which is stored one or more modules 722 (e.g., sets of software instructions) embodying any one or more of the methodologies or functions described herein. For instance, according to particular aspects, the modules 722 include a data set analysis module 210, a model analysis module 220, and/or a risk determination module 225 as described herein. The one or more modules 722 may also reside, completely or at least partially, within main memory 704 and/or within the processor 702 during execution thereof by the hardware device 700—main memory 704 and processor 702 also constituting computer-accessible storage media. The one or more modules 722 may further be transmitted or received over a network 230 via the network interface device 708.
While the computer-readable storage medium 730 is shown to be a single medium, the terms “computer-readable storage medium” and “machine-accessible storage medium” should be understood to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable storage medium” should also be understood to include any medium that is capable of storing, encoding, and/or carrying a set of instructions for execution by the hardware device 700 and that causes the hardware device 700 to perform any one or more of the methodologies of the present disclosure. The term “computer-readable storage medium” should accordingly be understood to include, but not be limited to, solid-state memories, optical and magnetic media, and/or the like.
System Operation
The logical operations described herein may be implemented (1) as a sequence of computer implemented acts or one or more program modules running on a computing system and/or (2) as interconnected machine logic circuits or circuit modules within the computing system. The implementation is a matter of choice dependent on the performance and other requirements of the computing system. Accordingly, the logical operations described herein are referred to variously as states, operations, steps, structural devices, acts, or modules. These states, operations, steps, structural devices, acts, and modules may be implemented in software, in firmware, in special purpose digital logic, and any combination thereof. Greater or fewer operations may be performed than shown in the figures and described herein. These operations also may be performed in a different order than those described herein.
While this specification contains many specific aspect details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular aspects of particular inventions. Certain features that are described in this specification in the context of separate aspects also may be implemented in combination in a single aspect. Conversely, various features that are described in the context of a single aspect also may be implemented in multiple aspects separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be a sub-combination or variation of a sub-combination.
Similarly, while operations are described in a particular order, this should not be understood as requiring that such operations be performed in the particular order described or in sequential order, or that all described operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various components in the various aspects described above should not be understood as requiring such separation in all aspects, and the described program components (e.g., modules) and systems may generally be integrated together in a single software product or packaged into multiple software products.
Many modifications and other aspects of the disclosure will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific aspects disclosed and that modifications and other aspects are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 63/087,443, filed Oct. 5, 2020, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4536866 | Jerome et al. | Aug 1985 | A |
4574350 | Starr | Mar 1986 | A |
5193162 | Bordsen et al. | Mar 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5329447 | Leedom, Jr. | Jul 1994 | A |
5404299 | Tsurubayashi et al. | Apr 1995 | A |
5535393 | Reeve et al. | Jul 1996 | A |
5560005 | Hoover et al. | Sep 1996 | A |
5668986 | Nilsen et al. | Sep 1997 | A |
5710917 | Musa et al. | Jan 1998 | A |
5761529 | Raji | Jun 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5872973 | Mitchell et al. | Feb 1999 | A |
5913041 | Ramanathan et al. | Jun 1999 | A |
5913214 | Madnick et al. | Jun 1999 | A |
6016394 | Walker | Jan 2000 | A |
6122627 | Carey et al. | Sep 2000 | A |
6148297 | Swor et al. | Nov 2000 | A |
6148342 | Ho | Nov 2000 | A |
6240416 | Immon et al. | May 2001 | B1 |
6240422 | Atkins et al. | May 2001 | B1 |
6243816 | Fang et al. | Jun 2001 | B1 |
6253203 | Oflaherty et al. | Jun 2001 | B1 |
6263335 | Paik et al. | Jul 2001 | B1 |
6272631 | Thomlinson et al. | Aug 2001 | B1 |
6275824 | Oflaherty et al. | Aug 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6363488 | Ginter et al. | Mar 2002 | B1 |
6374237 | Reese | Apr 2002 | B1 |
6374252 | Althoff et al. | Apr 2002 | B1 |
6408336 | Schneider et al. | Jun 2002 | B1 |
6427230 | Goiffon et al. | Jul 2002 | B1 |
6442688 | Moses et al. | Aug 2002 | B1 |
6446120 | Dantressangle | Sep 2002 | B1 |
6463488 | San Juan | Oct 2002 | B1 |
6484149 | Jammes et al. | Nov 2002 | B1 |
6484180 | Lyons et al. | Nov 2002 | B1 |
6516314 | Birkler et al. | Feb 2003 | B1 |
6516337 | Tripp et al. | Feb 2003 | B1 |
6519571 | Guheen et al. | Feb 2003 | B1 |
6574631 | Subramanian et al. | Jun 2003 | B1 |
6591272 | Williams | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6611812 | Hurtado et al. | Aug 2003 | B2 |
6625602 | Meredith et al. | Sep 2003 | B1 |
6629081 | Cornelius et al. | Sep 2003 | B1 |
6633878 | Underwood | Oct 2003 | B1 |
6662192 | Rebane | Dec 2003 | B1 |
6662357 | Bowman-Amuah | Dec 2003 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6699042 | Smith et al. | Mar 2004 | B2 |
6701314 | Conover et al. | Mar 2004 | B1 |
6721713 | Guheen et al. | Apr 2004 | B1 |
6725200 | Rost | Apr 2004 | B1 |
6732109 | Lindberg et al. | May 2004 | B2 |
6754665 | Futagami et al. | Jun 2004 | B1 |
6755344 | Mollett et al. | Jun 2004 | B1 |
6757685 | Raffaele et al. | Jun 2004 | B2 |
6757888 | Knutson et al. | Jun 2004 | B1 |
6816944 | Peng | Nov 2004 | B2 |
6826693 | Yoshida et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6886101 | Glazer et al. | Apr 2005 | B2 |
6901346 | Tracy et al. | May 2005 | B2 |
6904417 | Clayton et al. | Jun 2005 | B2 |
6909897 | Kikuchi | Jun 2005 | B2 |
6925443 | Baggett, Jr. et al. | Aug 2005 | B1 |
6938041 | Brandow et al. | Aug 2005 | B1 |
6956845 | Baker et al. | Oct 2005 | B2 |
6978270 | Carty et al. | Dec 2005 | B1 |
6980927 | Tracy et al. | Dec 2005 | B2 |
6980987 | Kaminer | Dec 2005 | B2 |
6983221 | Tracy et al. | Jan 2006 | B2 |
6985887 | Sunstein et al. | Jan 2006 | B1 |
6990454 | McIntosh | Jan 2006 | B2 |
6993448 | Tracy et al. | Jan 2006 | B2 |
6993495 | Smith, Jr. et al. | Jan 2006 | B2 |
6996807 | Vardi et al. | Feb 2006 | B1 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7003662 | Genty et al. | Feb 2006 | B2 |
7013290 | Ananian | Mar 2006 | B2 |
7017105 | Flanagin et al. | Mar 2006 | B2 |
7023979 | Wu et al. | Apr 2006 | B1 |
7039594 | Gersting | May 2006 | B1 |
7039654 | Eder | May 2006 | B1 |
7047517 | Brown et al. | May 2006 | B1 |
7051036 | Rosnow et al. | May 2006 | B2 |
7051038 | Yeh et al. | May 2006 | B1 |
7058970 | Shaw | Jun 2006 | B2 |
7069427 | Adler et al. | Jun 2006 | B2 |
7076558 | Dunn | Jul 2006 | B1 |
7093200 | Schreiber et al. | Aug 2006 | B2 |
7095854 | Ginter et al. | Aug 2006 | B1 |
7100195 | Underwood | Aug 2006 | B1 |
7120800 | Ginter et al. | Oct 2006 | B2 |
7124101 | Mikurak | Oct 2006 | B1 |
7124107 | Pishevar et al. | Oct 2006 | B1 |
7127705 | Christfort et al. | Oct 2006 | B2 |
7127741 | Bandini et al. | Oct 2006 | B2 |
7133845 | Ginter et al. | Nov 2006 | B1 |
7139999 | Bowman-Amuah | Nov 2006 | B2 |
7143091 | Charnock et al. | Nov 2006 | B2 |
7149698 | Guheen et al. | Dec 2006 | B2 |
7165041 | Guheen et al. | Jan 2007 | B1 |
7167842 | Josephson, II et al. | Jan 2007 | B1 |
7167844 | Leong et al. | Jan 2007 | B1 |
7171379 | Menninger et al. | Jan 2007 | B2 |
7181438 | Szabo | Feb 2007 | B1 |
7203929 | Vinodkrishnan et al. | Apr 2007 | B1 |
7213233 | Vinodkrishnan et al. | May 2007 | B1 |
7216340 | Vinodkrishnan et al. | May 2007 | B1 |
7219066 | Parks et al. | May 2007 | B2 |
7223234 | Stupp et al. | May 2007 | B2 |
7225460 | Barzilai et al. | May 2007 | B2 |
7234065 | Breslin et al. | Jun 2007 | B2 |
7247625 | Zhang et al. | Jul 2007 | B2 |
7251624 | Lee et al. | Jul 2007 | B1 |
7260830 | Sugimoto | Aug 2007 | B2 |
7266566 | Kennaley et al. | Sep 2007 | B1 |
7272818 | Ishimitsu et al. | Sep 2007 | B2 |
7275063 | Horn | Sep 2007 | B2 |
7281020 | Fine | Oct 2007 | B2 |
7284232 | Bates et al. | Oct 2007 | B1 |
7284271 | Lucovsky et al. | Oct 2007 | B2 |
7287280 | Young | Oct 2007 | B2 |
7290275 | Baudoin et al. | Oct 2007 | B2 |
7293119 | Beale | Nov 2007 | B2 |
7299299 | Hollenbeck et al. | Nov 2007 | B2 |
7302569 | Betz et al. | Nov 2007 | B2 |
7313575 | Carr et al. | Dec 2007 | B2 |
7313699 | Koga | Dec 2007 | B2 |
7313825 | Redlich et al. | Dec 2007 | B2 |
7315826 | Guheen et al. | Jan 2008 | B1 |
7315849 | Bakalash et al. | Jan 2008 | B2 |
7322047 | Redlich et al. | Jan 2008 | B2 |
7330850 | Seibel et al. | Feb 2008 | B1 |
7340447 | Ghatare | Mar 2008 | B2 |
7340776 | Zobel et al. | Mar 2008 | B2 |
7343434 | Kapoor et al. | Mar 2008 | B2 |
7346518 | Frank et al. | Mar 2008 | B1 |
7353204 | Liu | Apr 2008 | B2 |
7353283 | Henaff et al. | Apr 2008 | B2 |
7356559 | Jacobs et al. | Apr 2008 | B1 |
7367014 | Griffin | Apr 2008 | B2 |
7370025 | Pandit | May 2008 | B1 |
7376835 | Olkin et al. | May 2008 | B2 |
7380120 | Garcia | May 2008 | B1 |
7382903 | Ray | Jun 2008 | B2 |
7383570 | Pinkas et al. | Jun 2008 | B2 |
7391854 | Salonen et al. | Jun 2008 | B2 |
7398393 | Mont et al. | Jul 2008 | B2 |
7401235 | Mowers et al. | Jul 2008 | B2 |
7403942 | Bayliss | Jul 2008 | B1 |
7409354 | Putnam et al. | Aug 2008 | B2 |
7412402 | Cooper | Aug 2008 | B2 |
7424680 | Carpenter | Sep 2008 | B2 |
7428546 | Nori et al. | Sep 2008 | B2 |
7428707 | Quimby | Sep 2008 | B2 |
7430585 | Sibert | Sep 2008 | B2 |
7454457 | Lowery et al. | Nov 2008 | B1 |
7454508 | Mathew et al. | Nov 2008 | B2 |
7478157 | Bohrer et al. | Jan 2009 | B2 |
7480694 | Blennerhassett et al. | Jan 2009 | B2 |
7480755 | Herrell et al. | Jan 2009 | B2 |
7487170 | Stevens | Feb 2009 | B2 |
7493282 | Manly et al. | Feb 2009 | B2 |
7500607 | Williams | Mar 2009 | B2 |
7512987 | Williams | Mar 2009 | B2 |
7516882 | Cucinotta | Apr 2009 | B2 |
7523053 | Pudhukottai et al. | Apr 2009 | B2 |
7529836 | Bolen | May 2009 | B1 |
7533113 | Haddad | May 2009 | B1 |
7548968 | Bura et al. | Jun 2009 | B1 |
7552480 | Voss | Jun 2009 | B1 |
7562339 | Racca et al. | Jul 2009 | B2 |
7565685 | Ross et al. | Jul 2009 | B2 |
7567541 | Karimi et al. | Jul 2009 | B2 |
7584505 | Mondri et al. | Sep 2009 | B2 |
7584508 | Kashchenko et al. | Sep 2009 | B1 |
7587749 | Leser et al. | Sep 2009 | B2 |
7590705 | Mathew et al. | Sep 2009 | B2 |
7590972 | Axelrod et al. | Sep 2009 | B2 |
7603356 | Schran et al. | Oct 2009 | B2 |
7606783 | Carter | Oct 2009 | B1 |
7606790 | Levy | Oct 2009 | B2 |
7607120 | Sanyal et al. | Oct 2009 | B2 |
7613700 | Lobo et al. | Nov 2009 | B1 |
7617136 | Lessing et al. | Nov 2009 | B1 |
7617167 | Griffis et al. | Nov 2009 | B2 |
7620644 | Cote et al. | Nov 2009 | B2 |
7627666 | DeGiulio et al. | Dec 2009 | B1 |
7630874 | Fables et al. | Dec 2009 | B2 |
7630998 | Zhou et al. | Dec 2009 | B2 |
7636742 | Olavarrieta et al. | Dec 2009 | B1 |
7640322 | Wendkos et al. | Dec 2009 | B2 |
7650497 | Thornton et al. | Jan 2010 | B2 |
7653592 | Flaxman et al. | Jan 2010 | B1 |
7657476 | Barney | Feb 2010 | B2 |
7657694 | Mansell et al. | Feb 2010 | B2 |
7665073 | Meijer et al. | Feb 2010 | B2 |
7665125 | Heard et al. | Feb 2010 | B2 |
7668947 | Hutchinson et al. | Feb 2010 | B2 |
7673282 | Amaru et al. | Mar 2010 | B2 |
7676034 | Wu et al. | Mar 2010 | B1 |
7681034 | Lee et al. | Mar 2010 | B1 |
7681140 | Ebert | Mar 2010 | B2 |
7685561 | Deem et al. | Mar 2010 | B2 |
7685577 | Pace et al. | Mar 2010 | B2 |
7693593 | Ishibashi et al. | Apr 2010 | B2 |
7698398 | Lai | Apr 2010 | B1 |
7702639 | Stanley et al. | Apr 2010 | B2 |
7707224 | Chastagnol et al. | Apr 2010 | B2 |
7711995 | Morris | May 2010 | B1 |
7712029 | Ferreira et al. | May 2010 | B2 |
7716242 | Pae et al. | May 2010 | B2 |
7725474 | Tamai et al. | May 2010 | B2 |
7725875 | Waldrep | May 2010 | B2 |
7729940 | Harvey et al. | Jun 2010 | B2 |
7730142 | Levasseur et al. | Jun 2010 | B2 |
7752124 | Green et al. | Jul 2010 | B2 |
7756826 | Bots et al. | Jul 2010 | B2 |
7756987 | Wang et al. | Jul 2010 | B2 |
7761586 | Olenick et al. | Jul 2010 | B2 |
7774745 | Fildebrandt et al. | Aug 2010 | B2 |
7788212 | Beckmann et al. | Aug 2010 | B2 |
7788222 | Shah et al. | Aug 2010 | B2 |
7788632 | Kuester et al. | Aug 2010 | B2 |
7788726 | Teixeira | Aug 2010 | B2 |
7797726 | Ashley et al. | Sep 2010 | B2 |
7801758 | Gracie et al. | Sep 2010 | B2 |
7801826 | Labrou et al. | Sep 2010 | B2 |
7801912 | Ransil et al. | Sep 2010 | B2 |
7802305 | Leeds | Sep 2010 | B1 |
7805349 | Yu et al. | Sep 2010 | B2 |
7805451 | Hosokawa | Sep 2010 | B2 |
7813947 | Deangelis et al. | Oct 2010 | B2 |
7822620 | Dixon et al. | Oct 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7836078 | Dettinger et al. | Nov 2010 | B2 |
7844640 | Bender et al. | Nov 2010 | B2 |
7849143 | Vuong | Dec 2010 | B2 |
7853468 | Callahan et al. | Dec 2010 | B2 |
7853470 | Sonnleithner et al. | Dec 2010 | B2 |
7853925 | Kemmler | Dec 2010 | B2 |
7860816 | Fokoue-Nkoutche et al. | Dec 2010 | B2 |
7870540 | Zare et al. | Jan 2011 | B2 |
7870608 | Shraim et al. | Jan 2011 | B2 |
7873541 | Klar et al. | Jan 2011 | B1 |
7877327 | Gwiazda et al. | Jan 2011 | B2 |
7877812 | Koved et al. | Jan 2011 | B2 |
7885841 | King | Feb 2011 | B2 |
7890461 | Oeda et al. | Feb 2011 | B2 |
7895260 | Archer et al. | Feb 2011 | B2 |
7904360 | Evans | Mar 2011 | B2 |
7904478 | Yu et al. | Mar 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7917888 | Chong et al. | Mar 2011 | B2 |
7917963 | Goyal et al. | Mar 2011 | B2 |
7921152 | Ashley et al. | Apr 2011 | B2 |
7930197 | Ozzie et al. | Apr 2011 | B2 |
7930753 | Mellinger et al. | Apr 2011 | B2 |
7953725 | Burris et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
7958087 | Blumenau | Jun 2011 | B2 |
7958494 | Chaar et al. | Jun 2011 | B2 |
7962900 | Barraclough et al. | Jun 2011 | B2 |
7966310 | Sullivan et al. | Jun 2011 | B2 |
7966599 | Malasky et al. | Jun 2011 | B1 |
7966663 | Strickland et al. | Jun 2011 | B2 |
7974992 | Fastabend et al. | Jul 2011 | B2 |
7975000 | Dixon et al. | Jul 2011 | B2 |
7991559 | Dzekunov et al. | Aug 2011 | B2 |
7991747 | Upadhyay et al. | Aug 2011 | B1 |
7996372 | Rubel, Jr. | Aug 2011 | B2 |
8005891 | Knowles et al. | Aug 2011 | B2 |
8010612 | Costea et al. | Aug 2011 | B2 |
8010720 | Iwaoka et al. | Aug 2011 | B2 |
8019881 | Sandhu et al. | Sep 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8024384 | Prabhakar et al. | Sep 2011 | B2 |
8032721 | Murai | Oct 2011 | B2 |
8036374 | Noble, Jr. | Oct 2011 | B2 |
8037409 | Jacob et al. | Oct 2011 | B2 |
8041749 | Beck | Oct 2011 | B2 |
8041763 | Kordun et al. | Oct 2011 | B2 |
8041913 | Wang | Oct 2011 | B2 |
8069161 | Bugir et al. | Nov 2011 | B2 |
8069471 | Boren | Nov 2011 | B2 |
8082539 | Schelkogonov | Dec 2011 | B1 |
8090754 | Schmidt et al. | Jan 2012 | B2 |
8095923 | Harvey et al. | Jan 2012 | B2 |
8099709 | Baikov et al. | Jan 2012 | B2 |
8099765 | Parkinson | Jan 2012 | B2 |
8103962 | Embley et al. | Jan 2012 | B2 |
8117441 | Kurien et al. | Feb 2012 | B2 |
8135815 | Mayer | Mar 2012 | B2 |
8146054 | Baker et al. | Mar 2012 | B2 |
8146074 | Ito et al. | Mar 2012 | B2 |
8150717 | Whitmore | Apr 2012 | B2 |
8156105 | Altounian et al. | Apr 2012 | B2 |
8156158 | Rolls et al. | Apr 2012 | B2 |
8156159 | Ebrahimi et al. | Apr 2012 | B2 |
8166406 | Goldfeder et al. | Apr 2012 | B1 |
8176061 | Swanbeck et al. | May 2012 | B2 |
8176177 | Sussman et al. | May 2012 | B2 |
8176334 | Vainstein | May 2012 | B2 |
8176470 | Klumpp et al. | May 2012 | B2 |
8180759 | Hamzy | May 2012 | B2 |
8181151 | Sedukhin et al. | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8185497 | Vermeulen et al. | May 2012 | B2 |
8196176 | Berteau et al. | Jun 2012 | B2 |
8205093 | Argott | Jun 2012 | B2 |
8205140 | Hafeez et al. | Jun 2012 | B2 |
8214362 | Djabarov | Jul 2012 | B1 |
8214803 | Horii et al. | Jul 2012 | B2 |
8234377 | Cohn | Jul 2012 | B2 |
8239244 | Ginsberg et al. | Aug 2012 | B2 |
8250051 | Bugir et al. | Aug 2012 | B2 |
8255468 | Vitaldevara et al. | Aug 2012 | B2 |
8260262 | Ben Ayed | Sep 2012 | B2 |
8261362 | Goodwin et al. | Sep 2012 | B2 |
8266231 | Golovin et al. | Sep 2012 | B1 |
8275632 | Awaraji et al. | Sep 2012 | B2 |
8275793 | Ahmad et al. | Sep 2012 | B2 |
8286239 | Sutton | Oct 2012 | B1 |
8312549 | Goldberg et al. | Nov 2012 | B2 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8332908 | Hatakeyama et al. | Dec 2012 | B2 |
8340999 | Kumaran et al. | Dec 2012 | B2 |
8341405 | Meijer et al. | Dec 2012 | B2 |
8346929 | Lai | Jan 2013 | B1 |
8364713 | Pollard | Jan 2013 | B2 |
8370224 | Grewal | Feb 2013 | B2 |
8370794 | Moosmann et al. | Feb 2013 | B2 |
8380630 | Felsher | Feb 2013 | B2 |
8380743 | Convertino et al. | Feb 2013 | B2 |
8381180 | Rostoker | Feb 2013 | B2 |
8381297 | Touboul | Feb 2013 | B2 |
8386314 | Kirkby et al. | Feb 2013 | B2 |
8392982 | Harris et al. | Mar 2013 | B2 |
8418226 | Gardner | Apr 2013 | B2 |
8423954 | Ronen et al. | Apr 2013 | B2 |
8429179 | Mirhaji | Apr 2013 | B1 |
8429597 | Prigge | Apr 2013 | B2 |
8429630 | Nickolov et al. | Apr 2013 | B2 |
8429758 | Chen et al. | Apr 2013 | B2 |
8438644 | Watters et al. | May 2013 | B2 |
8448252 | King et al. | May 2013 | B1 |
8452693 | Shah et al. | May 2013 | B2 |
8463247 | Misiag | Jun 2013 | B2 |
8464311 | Ashley et al. | Jun 2013 | B2 |
8468244 | Redlich et al. | Jun 2013 | B2 |
8473324 | Alvarez et al. | Jun 2013 | B2 |
8474012 | Ahmed et al. | Jun 2013 | B2 |
8494894 | Jaster et al. | Jul 2013 | B2 |
8504481 | Motahari et al. | Aug 2013 | B2 |
8510199 | Erlanger | Aug 2013 | B1 |
8515988 | Jones et al. | Aug 2013 | B2 |
8516076 | Thomas | Aug 2013 | B2 |
8527337 | Lim et al. | Sep 2013 | B1 |
8533746 | Nolan et al. | Sep 2013 | B2 |
8533844 | Mahaffey et al. | Sep 2013 | B2 |
8538817 | Wilson | Sep 2013 | B2 |
8539359 | Rapaport et al. | Sep 2013 | B2 |
8539437 | Finlayson et al. | Sep 2013 | B2 |
8560645 | Linden et al. | Oct 2013 | B2 |
8560841 | Chin et al. | Oct 2013 | B2 |
8560956 | Curtis et al. | Oct 2013 | B2 |
8561100 | Hu et al. | Oct 2013 | B2 |
8561153 | Grason et al. | Oct 2013 | B2 |
8565729 | Moseler et al. | Oct 2013 | B2 |
8566726 | Dixon et al. | Oct 2013 | B2 |
8566938 | Prakash et al. | Oct 2013 | B1 |
8571909 | Miller et al. | Oct 2013 | B2 |
8572717 | Narayanaswamy | Oct 2013 | B2 |
8578036 | Holfelder et al. | Nov 2013 | B1 |
8578166 | De Monseignat et al. | Nov 2013 | B2 |
8578481 | Rowley | Nov 2013 | B2 |
8578501 | Ogilvie | Nov 2013 | B1 |
8583694 | Siegel et al. | Nov 2013 | B2 |
8583766 | Dixon et al. | Nov 2013 | B2 |
8589183 | Awaraji et al. | Nov 2013 | B2 |
8589372 | Krislov | Nov 2013 | B2 |
8601467 | Hofhansl et al. | Dec 2013 | B2 |
8601591 | Krishnamurthy et al. | Dec 2013 | B2 |
8606746 | Yeap et al. | Dec 2013 | B2 |
8612420 | Sun et al. | Dec 2013 | B2 |
8612993 | Grant et al. | Dec 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8615731 | Doshi | Dec 2013 | B2 |
8620952 | Bennett et al. | Dec 2013 | B2 |
8621637 | Al-Harbi et al. | Dec 2013 | B2 |
8626671 | Federgreen | Jan 2014 | B2 |
8627114 | Resch et al. | Jan 2014 | B2 |
8630961 | Beilby et al. | Jan 2014 | B2 |
8631048 | Davis et al. | Jan 2014 | B1 |
8640110 | Kopp et al. | Jan 2014 | B2 |
8646072 | Savant | Feb 2014 | B1 |
8650399 | Le Bihan et al. | Feb 2014 | B2 |
8655939 | Redlich et al. | Feb 2014 | B2 |
8656265 | Paulin et al. | Feb 2014 | B1 |
8656456 | Maxson et al. | Feb 2014 | B2 |
8661036 | Turski et al. | Feb 2014 | B2 |
8667074 | Farkas | Mar 2014 | B1 |
8667487 | Boodman et al. | Mar 2014 | B1 |
8677472 | Dotan et al. | Mar 2014 | B1 |
8681984 | Lee et al. | Mar 2014 | B2 |
8682698 | Cashman et al. | Mar 2014 | B2 |
8683502 | Shkedi et al. | Mar 2014 | B2 |
8688601 | Jaiswal | Apr 2014 | B2 |
8689292 | Williams et al. | Apr 2014 | B2 |
8693689 | Belenkiy et al. | Apr 2014 | B2 |
8700524 | Williams et al. | Apr 2014 | B2 |
8700699 | Shen et al. | Apr 2014 | B2 |
8706742 | Ravid et al. | Apr 2014 | B1 |
8707451 | Ture et al. | Apr 2014 | B2 |
8712813 | King | Apr 2014 | B2 |
8713098 | Adya et al. | Apr 2014 | B1 |
8713638 | Hu et al. | Apr 2014 | B2 |
8719366 | Mathew et al. | May 2014 | B2 |
8732839 | Hohl | May 2014 | B2 |
8744894 | Christiansen et al. | Jun 2014 | B2 |
8751285 | Deb et al. | Jun 2014 | B2 |
8762406 | Ho et al. | Jun 2014 | B2 |
8762413 | Graham, Jr. et al. | Jun 2014 | B2 |
8763071 | Sinha et al. | Jun 2014 | B2 |
8763082 | Huber et al. | Jun 2014 | B2 |
8763131 | Archer et al. | Jun 2014 | B2 |
8767947 | Ristock et al. | Jul 2014 | B1 |
8769242 | Tkac et al. | Jul 2014 | B2 |
8769412 | Gill et al. | Jul 2014 | B2 |
8769671 | Shraim et al. | Jul 2014 | B2 |
8776241 | Zaitsev | Jul 2014 | B2 |
8788935 | Hirsch et al. | Jul 2014 | B1 |
8793614 | Wilson et al. | Jul 2014 | B2 |
8793650 | Hilerio et al. | Jul 2014 | B2 |
8793781 | Grossi et al. | Jul 2014 | B2 |
8793809 | Falkenburg et al. | Jul 2014 | B2 |
8799984 | Ahn | Aug 2014 | B2 |
8805707 | Schumann, Jr. et al. | Aug 2014 | B2 |
8805806 | Amarendran et al. | Aug 2014 | B2 |
8805925 | Price et al. | Aug 2014 | B2 |
8812342 | Barcelo et al. | Aug 2014 | B2 |
8812752 | Shih et al. | Aug 2014 | B1 |
8812766 | Kranendonk et al. | Aug 2014 | B2 |
8813028 | Farooqi | Aug 2014 | B2 |
8813214 | McNair et al. | Aug 2014 | B1 |
8819253 | Simeloff et al. | Aug 2014 | B2 |
8819617 | Koenig et al. | Aug 2014 | B1 |
8819800 | Gao et al. | Aug 2014 | B2 |
8826446 | Liu et al. | Sep 2014 | B1 |
8832649 | Bishop et al. | Sep 2014 | B2 |
8832854 | Staddon et al. | Sep 2014 | B1 |
8839232 | Taylor et al. | Sep 2014 | B2 |
8839346 | Murgia | Sep 2014 | B2 |
8843487 | McGraw et al. | Sep 2014 | B2 |
8843745 | Roberts, Jr. | Sep 2014 | B2 |
8849757 | Kruglick | Sep 2014 | B2 |
8856534 | Khosravi et al. | Oct 2014 | B2 |
8856936 | Datta Ray et al. | Oct 2014 | B2 |
8862507 | Sandhu et al. | Oct 2014 | B2 |
8863261 | Yang | Oct 2014 | B2 |
8875232 | Blom et al. | Oct 2014 | B2 |
8893078 | Schaude et al. | Nov 2014 | B2 |
8893286 | Oliver | Nov 2014 | B1 |
8893297 | Eversoll et al. | Nov 2014 | B2 |
8904494 | Kindler et al. | Dec 2014 | B2 |
8914263 | Shimada et al. | Dec 2014 | B2 |
8914299 | Pesci-Anderson et al. | Dec 2014 | B2 |
8914342 | Kalaboukis et al. | Dec 2014 | B2 |
8914902 | Moritz et al. | Dec 2014 | B2 |
8918306 | Cashman et al. | Dec 2014 | B2 |
8918392 | Brooker et al. | Dec 2014 | B1 |
8918632 | Sartor | Dec 2014 | B1 |
8924388 | Elliot et al. | Dec 2014 | B2 |
8930364 | Brooker | Jan 2015 | B1 |
8930896 | Wiggins | Jan 2015 | B1 |
8930897 | Nassar | Jan 2015 | B2 |
8935198 | Phillips et al. | Jan 2015 | B1 |
8935266 | Wu | Jan 2015 | B2 |
8935342 | Patel | Jan 2015 | B2 |
8935804 | Clark et al. | Jan 2015 | B1 |
8938221 | Brazier et al. | Jan 2015 | B2 |
8943076 | Stewart et al. | Jan 2015 | B2 |
8943548 | Drokov et al. | Jan 2015 | B2 |
8943602 | Roy et al. | Jan 2015 | B2 |
8949137 | Crapo et al. | Feb 2015 | B2 |
8955038 | Nicodemus et al. | Feb 2015 | B2 |
8959568 | Hudis et al. | Feb 2015 | B2 |
8959584 | Piliouras | Feb 2015 | B2 |
8966575 | McQuay et al. | Feb 2015 | B2 |
8966597 | Saylor et al. | Feb 2015 | B1 |
8973108 | Roth et al. | Mar 2015 | B1 |
8977234 | Chava | Mar 2015 | B2 |
8977643 | Schindlauer et al. | Mar 2015 | B2 |
8978158 | Rajkumar et al. | Mar 2015 | B2 |
8983972 | Kriebel et al. | Mar 2015 | B2 |
8984031 | Todd | Mar 2015 | B1 |
8990933 | Magdalin | Mar 2015 | B1 |
8996417 | Channakeshava | Mar 2015 | B1 |
8996480 | Agarwala et al. | Mar 2015 | B2 |
8997213 | Papakipos et al. | Mar 2015 | B2 |
9001673 | Birdsall et al. | Apr 2015 | B2 |
9002939 | Laden et al. | Apr 2015 | B2 |
9003295 | Baschy | Apr 2015 | B2 |
9003552 | Goodwin et al. | Apr 2015 | B2 |
9009851 | Droste et al. | Apr 2015 | B2 |
9014661 | Decharms | Apr 2015 | B2 |
9015796 | Fujioka | Apr 2015 | B1 |
9021469 | Hilerio et al. | Apr 2015 | B2 |
9026526 | Bau et al. | May 2015 | B1 |
9030987 | Bianchetti et al. | May 2015 | B2 |
9032067 | Prasad et al. | May 2015 | B2 |
9043217 | Cashman et al. | May 2015 | B2 |
9043480 | Barton et al. | May 2015 | B2 |
9047463 | Porras | Jun 2015 | B2 |
9047582 | Hutchinson et al. | Jun 2015 | B2 |
9047583 | Patton et al. | Jun 2015 | B2 |
9047639 | Quintiliani et al. | Jun 2015 | B1 |
9049244 | Prince et al. | Jun 2015 | B2 |
9049314 | Pugh et al. | Jun 2015 | B2 |
9055071 | Gates et al. | Jun 2015 | B1 |
9058590 | Criddle et al. | Jun 2015 | B2 |
9064033 | Jin et al. | Jun 2015 | B2 |
9069940 | Hars | Jun 2015 | B2 |
9076231 | Hill et al. | Jul 2015 | B1 |
9077736 | Werth et al. | Jul 2015 | B2 |
9081952 | Sagi et al. | Jul 2015 | B2 |
9087090 | Cormier et al. | Jul 2015 | B1 |
9092478 | Vaitheeswaran et al. | Jul 2015 | B2 |
9092796 | Eversoll et al. | Jul 2015 | B2 |
9094434 | Williams et al. | Jul 2015 | B2 |
9098515 | Richter et al. | Aug 2015 | B2 |
9100778 | Stogaitis et al. | Aug 2015 | B2 |
9106691 | Burger et al. | Aug 2015 | B1 |
9106710 | Feimster | Aug 2015 | B1 |
9110918 | Rajaa et al. | Aug 2015 | B1 |
9111105 | Barton et al. | Aug 2015 | B2 |
9111295 | Tietzen et al. | Aug 2015 | B2 |
9123330 | Sharifi et al. | Sep 2015 | B1 |
9123339 | Shaw et al. | Sep 2015 | B1 |
9129311 | Schoen et al. | Sep 2015 | B2 |
9135261 | Maunder et al. | Sep 2015 | B2 |
9135444 | Carter et al. | Sep 2015 | B2 |
9141823 | Dawson | Sep 2015 | B2 |
9141911 | Zhao et al. | Sep 2015 | B2 |
9152818 | Hathaway et al. | Oct 2015 | B1 |
9152820 | Pauley, Jr. et al. | Oct 2015 | B1 |
9154514 | Prakash | Oct 2015 | B1 |
9154556 | Dotan et al. | Oct 2015 | B1 |
9158655 | Wadhwani et al. | Oct 2015 | B2 |
9165036 | Mehra | Oct 2015 | B2 |
9170996 | Lovric et al. | Oct 2015 | B2 |
9172706 | Krishnamurthy et al. | Oct 2015 | B2 |
9177293 | Gagnon et al. | Nov 2015 | B1 |
9178901 | Xue et al. | Nov 2015 | B2 |
9183100 | Gventer et al. | Nov 2015 | B2 |
9189642 | Perlman | Nov 2015 | B2 |
9201572 | Lyon et al. | Dec 2015 | B2 |
9201770 | Duerk | Dec 2015 | B1 |
9202026 | Reeves | Dec 2015 | B1 |
9202085 | Mawdsley et al. | Dec 2015 | B2 |
9215076 | Roth et al. | Dec 2015 | B1 |
9215252 | Smith et al. | Dec 2015 | B2 |
9218596 | Ronca et al. | Dec 2015 | B2 |
9224009 | Liu et al. | Dec 2015 | B1 |
9230036 | Davis | Jan 2016 | B2 |
9231935 | Bridge et al. | Jan 2016 | B1 |
9232040 | Barash et al. | Jan 2016 | B2 |
9235476 | McHugh et al. | Jan 2016 | B2 |
9240987 | Barrett-Bowen et al. | Jan 2016 | B2 |
9241259 | Daniela et al. | Jan 2016 | B2 |
9245126 | Christodorescu et al. | Jan 2016 | B2 |
9245266 | Hardt | Jan 2016 | B2 |
9253609 | Hosier, Jr. | Feb 2016 | B2 |
9258116 | Moskowitz | Feb 2016 | B2 |
9264443 | Weisman | Feb 2016 | B2 |
9274858 | Milliron et al. | Mar 2016 | B2 |
9280581 | Grimes et al. | Mar 2016 | B1 |
9286149 | Sampson et al. | Mar 2016 | B2 |
9286282 | Ling, III et al. | Mar 2016 | B2 |
9288118 | Pattan | Mar 2016 | B1 |
9288556 | Kim et al. | Mar 2016 | B2 |
9294498 | Yampolskiy et al. | Mar 2016 | B1 |
9299050 | Stiffler et al. | Mar 2016 | B2 |
9306939 | Chan et al. | Apr 2016 | B2 |
9317697 | Maier et al. | Apr 2016 | B2 |
9317715 | Schuette et al. | Apr 2016 | B2 |
9325731 | McGeehan | Apr 2016 | B2 |
9336184 | Mital et al. | May 2016 | B2 |
9336220 | Li et al. | May 2016 | B2 |
9336324 | Lomme et al. | May 2016 | B2 |
9336332 | Davis et al. | May 2016 | B2 |
9336400 | Milman et al. | May 2016 | B2 |
9338188 | Ahn | May 2016 | B1 |
9342706 | Chawla et al. | May 2016 | B2 |
9344297 | Shah et al. | May 2016 | B2 |
9344424 | Tenenboym et al. | May 2016 | B2 |
9344484 | Ferris | May 2016 | B2 |
9348802 | Massand | May 2016 | B2 |
9348862 | Kawecki, III | May 2016 | B2 |
9348929 | Eberlein | May 2016 | B2 |
9349016 | Brisebois et al. | May 2016 | B1 |
9350718 | Sondhi et al. | May 2016 | B2 |
9355157 | Mohammed et al. | May 2016 | B2 |
9356961 | Todd et al. | May 2016 | B1 |
9361446 | Demirjian et al. | Jun 2016 | B1 |
9369488 | Woods et al. | Jun 2016 | B2 |
9372869 | Joseph et al. | Jun 2016 | B2 |
9374693 | Olincy et al. | Jun 2016 | B1 |
9384199 | Thereska et al. | Jul 2016 | B2 |
9384357 | Patil et al. | Jul 2016 | B2 |
9386078 | Reno et al. | Jul 2016 | B2 |
9386104 | Adams et al. | Jul 2016 | B2 |
9395959 | Hatfield et al. | Jul 2016 | B2 |
9396332 | Abrams et al. | Jul 2016 | B2 |
9401900 | Levasseur et al. | Jul 2016 | B2 |
9411967 | Parecki et al. | Aug 2016 | B2 |
9411982 | Dippenaar et al. | Aug 2016 | B1 |
9417859 | Gounares et al. | Aug 2016 | B2 |
9418221 | Turgeman | Aug 2016 | B2 |
9424021 | Zamir | Aug 2016 | B2 |
9424414 | Demirjian et al. | Aug 2016 | B1 |
9426177 | Wang et al. | Aug 2016 | B2 |
9450940 | Belov et al. | Sep 2016 | B2 |
9460136 | Todd et al. | Oct 2016 | B1 |
9460171 | Marrelli et al. | Oct 2016 | B2 |
9460307 | Breslau et al. | Oct 2016 | B2 |
9461876 | Van Dusen et al. | Oct 2016 | B2 |
9462009 | Kolman et al. | Oct 2016 | B1 |
9465702 | Gventer et al. | Oct 2016 | B2 |
9465800 | Lacey | Oct 2016 | B2 |
9473446 | Vijay et al. | Oct 2016 | B2 |
9473505 | Asano et al. | Oct 2016 | B1 |
9473535 | Sartor | Oct 2016 | B2 |
9477523 | Warman et al. | Oct 2016 | B1 |
9477660 | Scott et al. | Oct 2016 | B2 |
9477685 | Leung et al. | Oct 2016 | B1 |
9477942 | Adachi et al. | Oct 2016 | B2 |
9483659 | Bao et al. | Nov 2016 | B2 |
9489366 | Scott et al. | Nov 2016 | B2 |
9495547 | Schepis et al. | Nov 2016 | B1 |
9501523 | Hyatt et al. | Nov 2016 | B2 |
9507960 | Bell et al. | Nov 2016 | B2 |
9509674 | Nasserbakht et al. | Nov 2016 | B1 |
9509702 | Grigg et al. | Nov 2016 | B2 |
9514231 | Eden | Dec 2016 | B2 |
9516012 | Chochois et al. | Dec 2016 | B2 |
9521166 | Wilson | Dec 2016 | B2 |
9524500 | Dave et al. | Dec 2016 | B2 |
9529989 | Kling et al. | Dec 2016 | B2 |
9536108 | Powell et al. | Jan 2017 | B2 |
9537546 | Cordeiro et al. | Jan 2017 | B2 |
9542568 | Francis et al. | Jan 2017 | B2 |
9549047 | Fredinburg et al. | Jan 2017 | B1 |
9552395 | Bayer et al. | Jan 2017 | B2 |
9552470 | Turgeman et al. | Jan 2017 | B2 |
9553918 | Manion et al. | Jan 2017 | B1 |
9558497 | Carvalho | Jan 2017 | B2 |
9569752 | Deering et al. | Feb 2017 | B2 |
9571506 | Boss et al. | Feb 2017 | B2 |
9571509 | Satish et al. | Feb 2017 | B1 |
9571526 | Sartor | Feb 2017 | B2 |
9571559 | Raleigh et al. | Feb 2017 | B2 |
9571991 | Brizendine et al. | Feb 2017 | B1 |
9576289 | Henderson et al. | Feb 2017 | B2 |
9578060 | Brisebois et al. | Feb 2017 | B1 |
9578173 | Sanghavi et al. | Feb 2017 | B2 |
9582681 | Mishra | Feb 2017 | B2 |
9584964 | Pelkey | Feb 2017 | B2 |
9589110 | Carey et al. | Mar 2017 | B2 |
9600181 | Patel et al. | Mar 2017 | B2 |
9602529 | Jones et al. | Mar 2017 | B2 |
9606971 | Seolas et al. | Mar 2017 | B2 |
9607041 | Himmelstein | Mar 2017 | B2 |
9619652 | Slater | Apr 2017 | B2 |
9619661 | Finkelstein | Apr 2017 | B1 |
9621357 | Williams et al. | Apr 2017 | B2 |
9621566 | Gupta et al. | Apr 2017 | B2 |
9626124 | Lipinski et al. | Apr 2017 | B2 |
9626680 | Ryan et al. | Apr 2017 | B1 |
9629064 | Graves et al. | Apr 2017 | B2 |
9642008 | Wyatt et al. | May 2017 | B2 |
9646095 | Gottlieb et al. | May 2017 | B1 |
9647949 | Varki et al. | May 2017 | B2 |
9648036 | Seiver et al. | May 2017 | B2 |
9652314 | Mahiddini | May 2017 | B2 |
9654506 | Barrett | May 2017 | B2 |
9654541 | Kapczynski et al. | May 2017 | B1 |
9665722 | Nagasundaram et al. | May 2017 | B2 |
9665733 | Sills et al. | May 2017 | B1 |
9665883 | Roullier et al. | May 2017 | B2 |
9672053 | Tang et al. | Jun 2017 | B2 |
9672355 | Titonis et al. | Jun 2017 | B2 |
9678794 | Barrett et al. | Jun 2017 | B1 |
9691090 | Barday | Jun 2017 | B1 |
9699209 | Ng et al. | Jul 2017 | B2 |
9703549 | Dufresne | Jul 2017 | B2 |
9704103 | Suskind et al. | Jul 2017 | B2 |
9705840 | Pujare et al. | Jul 2017 | B2 |
9705880 | Siris | Jul 2017 | B2 |
9721078 | Cornick et al. | Aug 2017 | B2 |
9721108 | Krishnamurthy et al. | Aug 2017 | B2 |
9727751 | Oliver et al. | Aug 2017 | B2 |
9729583 | Barday | Aug 2017 | B1 |
9734148 | Bendersky et al. | Aug 2017 | B2 |
9734255 | Jiang | Aug 2017 | B2 |
9736004 | Jung et al. | Aug 2017 | B2 |
9740985 | Byron et al. | Aug 2017 | B2 |
9740987 | Dolan | Aug 2017 | B2 |
9749408 | Subramani et al. | Aug 2017 | B2 |
9753796 | Mahaffey et al. | Sep 2017 | B2 |
9754091 | Kode et al. | Sep 2017 | B2 |
9756059 | Demirjian et al. | Sep 2017 | B2 |
9760620 | Nachnani et al. | Sep 2017 | B2 |
9760635 | Bliss et al. | Sep 2017 | B2 |
9760697 | Walker | Sep 2017 | B1 |
9760849 | Vinnakota et al. | Sep 2017 | B2 |
9762553 | Ford et al. | Sep 2017 | B2 |
9767202 | Darby et al. | Sep 2017 | B2 |
9767309 | Patel et al. | Sep 2017 | B1 |
9769124 | Yan | Sep 2017 | B2 |
9773269 | Lazarus | Sep 2017 | B1 |
9785795 | Grondin et al. | Oct 2017 | B2 |
9787671 | Bogrett | Oct 2017 | B1 |
9798749 | Saner | Oct 2017 | B2 |
9798826 | Wilson et al. | Oct 2017 | B2 |
9798896 | Jakobsson | Oct 2017 | B2 |
9800605 | Baikalov et al. | Oct 2017 | B2 |
9800606 | Yumer | Oct 2017 | B1 |
9804649 | Cohen et al. | Oct 2017 | B2 |
9804928 | Davis et al. | Oct 2017 | B2 |
9805381 | Frank et al. | Oct 2017 | B2 |
9811532 | Parkison et al. | Nov 2017 | B2 |
9817850 | Dubbels et al. | Nov 2017 | B2 |
9817978 | Marsh et al. | Nov 2017 | B2 |
9819684 | Cernoch et al. | Nov 2017 | B2 |
9825928 | Lelcuk et al. | Nov 2017 | B2 |
9830563 | Paknad | Nov 2017 | B2 |
9832633 | Gerber, Jr. et al. | Nov 2017 | B2 |
9836598 | Iyer et al. | Dec 2017 | B2 |
9838407 | Oprea et al. | Dec 2017 | B1 |
9838839 | Vudali et al. | Dec 2017 | B2 |
9841969 | Seibert, Jr. et al. | Dec 2017 | B2 |
9842042 | Chhatwal et al. | Dec 2017 | B2 |
9842349 | Sawczuk et al. | Dec 2017 | B2 |
9848005 | Ardeli et al. | Dec 2017 | B2 |
9848061 | Jain et al. | Dec 2017 | B1 |
9852150 | Sharpe et al. | Dec 2017 | B2 |
9853959 | Kapczynski et al. | Dec 2017 | B1 |
9860226 | Thormaehlen | Jan 2018 | B2 |
9864735 | Lamprecht | Jan 2018 | B1 |
9876825 | Amar et al. | Jan 2018 | B2 |
9877138 | Franklin | Jan 2018 | B1 |
9880157 | Levak et al. | Jan 2018 | B2 |
9882935 | Barday | Jan 2018 | B2 |
9887965 | Kay et al. | Feb 2018 | B2 |
9888377 | McCorkendale et al. | Feb 2018 | B1 |
9892441 | Barday | Feb 2018 | B2 |
9892442 | Barday | Feb 2018 | B2 |
9892443 | Barday | Feb 2018 | B2 |
9892444 | Barday | Feb 2018 | B2 |
9894076 | Li et al. | Feb 2018 | B2 |
9898613 | Swerdlow et al. | Feb 2018 | B1 |
9898739 | Monastyrsky et al. | Feb 2018 | B2 |
9898769 | Barday | Feb 2018 | B2 |
9912625 | Mutha et al. | Mar 2018 | B2 |
9912677 | Chien | Mar 2018 | B2 |
9912810 | Segre et al. | Mar 2018 | B2 |
9916703 | Levinson et al. | Mar 2018 | B2 |
9922124 | Rathod | Mar 2018 | B2 |
9923927 | McClintock et al. | Mar 2018 | B1 |
9928379 | Hoffer | Mar 2018 | B1 |
9934406 | Khan et al. | Apr 2018 | B2 |
9934493 | Castinado et al. | Apr 2018 | B2 |
9934544 | Whitfield et al. | Apr 2018 | B1 |
9936127 | Todasco | Apr 2018 | B2 |
9942214 | Burciu et al. | Apr 2018 | B1 |
9942244 | Lahoz et al. | Apr 2018 | B2 |
9942276 | Sartor | Apr 2018 | B2 |
9946897 | Lovin | Apr 2018 | B2 |
9948652 | Yu et al. | Apr 2018 | B2 |
9948663 | Wang et al. | Apr 2018 | B1 |
9953189 | Cook et al. | Apr 2018 | B2 |
9954879 | Sadaghiani et al. | Apr 2018 | B1 |
9954883 | Ahuja et al. | Apr 2018 | B2 |
9959551 | Schermerhorn et al. | May 2018 | B1 |
9959582 | Sukman et al. | May 2018 | B2 |
9961070 | Tang | May 2018 | B2 |
9973518 | Lee et al. | May 2018 | B2 |
9973585 | Ruback et al. | May 2018 | B2 |
9977904 | Khan et al. | May 2018 | B2 |
9977920 | Danielson et al. | May 2018 | B2 |
9983936 | Dornemann et al. | May 2018 | B2 |
9984252 | Pollard | May 2018 | B2 |
9990499 | Chan et al. | Jun 2018 | B2 |
9992213 | Sinnema | Jun 2018 | B2 |
10001975 | Bharthulwar | Jun 2018 | B2 |
10002064 | Muske | Jun 2018 | B2 |
10007895 | Vanasco | Jun 2018 | B2 |
10013577 | Beaumont et al. | Jul 2018 | B1 |
10015164 | Hamburg et al. | Jul 2018 | B2 |
10019339 | Von Hanxleden et al. | Jul 2018 | B2 |
10019588 | Garcia et al. | Jul 2018 | B2 |
10019591 | Beguin | Jul 2018 | B1 |
10019741 | Hesselink | Jul 2018 | B2 |
10021143 | Cabrera et al. | Jul 2018 | B2 |
10025804 | Vranyes et al. | Jul 2018 | B2 |
10025836 | Batchu et al. | Jul 2018 | B2 |
10028226 | Ayyagari et al. | Jul 2018 | B2 |
10032172 | Barday | Jul 2018 | B2 |
10044761 | Ducatel et al. | Aug 2018 | B2 |
10055426 | Arasan et al. | Aug 2018 | B2 |
10055869 | Borrelli et al. | Aug 2018 | B2 |
10061847 | Mohammed et al. | Aug 2018 | B2 |
10069858 | Robinson et al. | Sep 2018 | B2 |
10069914 | Smith | Sep 2018 | B1 |
10073924 | Karp et al. | Sep 2018 | B2 |
10075437 | Costigan et al. | Sep 2018 | B1 |
10075451 | Hall et al. | Sep 2018 | B1 |
10084817 | Saher et al. | Sep 2018 | B2 |
10091214 | Godlewski et al. | Oct 2018 | B2 |
10091312 | Khanwalkar et al. | Oct 2018 | B1 |
10097551 | Chan et al. | Oct 2018 | B2 |
10102533 | Barday | Oct 2018 | B2 |
10108409 | Pirzadeh et al. | Oct 2018 | B2 |
10122663 | Hu et al. | Nov 2018 | B2 |
10122760 | Terrill et al. | Nov 2018 | B2 |
10127403 | Kong et al. | Nov 2018 | B2 |
10129211 | Heath | Nov 2018 | B2 |
10140666 | Wang et al. | Nov 2018 | B1 |
10142113 | Zaidi et al. | Nov 2018 | B2 |
10152560 | Potiagalov et al. | Dec 2018 | B2 |
10158676 | Barday | Dec 2018 | B2 |
10165011 | Barday | Dec 2018 | B2 |
10169762 | Ogawa | Jan 2019 | B2 |
10176503 | Barday et al. | Jan 2019 | B2 |
10181043 | Pauley, Jr. et al. | Jan 2019 | B1 |
10181051 | Barday et al. | Jan 2019 | B2 |
10187363 | Smirnoff et al. | Jan 2019 | B2 |
10187394 | Bar et al. | Jan 2019 | B2 |
10204154 | Barday et al. | Feb 2019 | B2 |
10205994 | Splaine et al. | Feb 2019 | B2 |
10212134 | Rai | Feb 2019 | B2 |
10212175 | Seul et al. | Feb 2019 | B2 |
10223533 | Dawson | Mar 2019 | B2 |
10230571 | Rangasamy et al. | Mar 2019 | B2 |
10230711 | Kohli | Mar 2019 | B2 |
10250594 | Chathoth et al. | Apr 2019 | B2 |
10255602 | Wang | Apr 2019 | B2 |
10257127 | Dotan-Cohen et al. | Apr 2019 | B2 |
10257181 | Sherif et al. | Apr 2019 | B1 |
10268838 | Yadgiri et al. | Apr 2019 | B2 |
10275221 | Thattai et al. | Apr 2019 | B2 |
10275614 | Barday et al. | Apr 2019 | B2 |
10282370 | Barday et al. | May 2019 | B1 |
10282559 | Barday et al. | May 2019 | B2 |
10284604 | Barday et al. | May 2019 | B2 |
10289584 | Chiba | May 2019 | B2 |
10289857 | Brinskelle | May 2019 | B1 |
10289866 | Barday et al. | May 2019 | B2 |
10289867 | Barday et al. | May 2019 | B2 |
10289870 | Barday et al. | May 2019 | B2 |
10296504 | Hock et al. | May 2019 | B2 |
10304442 | Rudden et al. | May 2019 | B1 |
10310723 | Rathod | Jun 2019 | B2 |
10311042 | Kumar | Jun 2019 | B1 |
10311475 | Yuasa | Jun 2019 | B2 |
10311492 | Gelfenbeyn et al. | Jun 2019 | B2 |
10318761 | Barday et al. | Jun 2019 | B2 |
10320940 | Brennan et al. | Jun 2019 | B1 |
10324960 | Skvortsov et al. | Jun 2019 | B1 |
10326768 | Verweyst et al. | Jun 2019 | B2 |
10326798 | Lambert | Jun 2019 | B2 |
10326841 | Bradley et al. | Jun 2019 | B2 |
10331689 | Sorrentino et al. | Jun 2019 | B2 |
10331904 | Sher-Jan et al. | Jun 2019 | B2 |
10333975 | Soman et al. | Jun 2019 | B2 |
10339470 | Dutta et al. | Jul 2019 | B1 |
10346186 | Kalyanpur | Jul 2019 | B2 |
10346635 | Kumar et al. | Jul 2019 | B2 |
10346637 | Barday et al. | Jul 2019 | B2 |
10346638 | Barday et al. | Jul 2019 | B2 |
10346849 | Ionescu et al. | Jul 2019 | B2 |
10348726 | Caluwaert | Jul 2019 | B2 |
10348775 | Barday | Jul 2019 | B2 |
10353673 | Barday et al. | Jul 2019 | B2 |
10361857 | Woo | Jul 2019 | B2 |
10366241 | Sartor | Jul 2019 | B2 |
10373119 | Driscoll et al. | Aug 2019 | B2 |
10373409 | White et al. | Aug 2019 | B2 |
10375115 | Mallya | Aug 2019 | B2 |
10387559 | Wendt et al. | Aug 2019 | B1 |
10387577 | Hill et al. | Aug 2019 | B2 |
10387657 | Belfiore, Jr. et al. | Aug 2019 | B2 |
10387952 | Sandhu et al. | Aug 2019 | B1 |
10395201 | Vescio | Aug 2019 | B2 |
10402545 | Gorfein et al. | Sep 2019 | B2 |
10404729 | Turgeman | Sep 2019 | B2 |
10417401 | Votaw et al. | Sep 2019 | B2 |
10417621 | Cassel et al. | Sep 2019 | B2 |
10419476 | Parekh | Sep 2019 | B2 |
10423985 | Dutta et al. | Sep 2019 | B1 |
10425492 | Comstock et al. | Sep 2019 | B2 |
10430608 | Peri et al. | Oct 2019 | B2 |
10435350 | Ito et al. | Oct 2019 | B2 |
10437412 | Barday et al. | Oct 2019 | B2 |
10437860 | Barday et al. | Oct 2019 | B2 |
10438016 | Barday et al. | Oct 2019 | B2 |
10438273 | Burns et al. | Oct 2019 | B2 |
10440062 | Barday et al. | Oct 2019 | B2 |
10445508 | Sher-Jan et al. | Oct 2019 | B2 |
10445526 | Barday et al. | Oct 2019 | B2 |
10452864 | Barday et al. | Oct 2019 | B2 |
10452866 | Barday et al. | Oct 2019 | B2 |
10453076 | Parekh et al. | Oct 2019 | B2 |
10453092 | Wang et al. | Oct 2019 | B1 |
10454934 | Parimi et al. | Oct 2019 | B2 |
10460322 | Williamson et al. | Oct 2019 | B2 |
10481763 | Bartkiewicz et al. | Nov 2019 | B2 |
10489454 | Chen | Nov 2019 | B1 |
10503926 | Barday et al. | Dec 2019 | B2 |
10510031 | Barday et al. | Dec 2019 | B2 |
10521623 | Rodriguez et al. | Dec 2019 | B2 |
10534851 | Chan et al. | Jan 2020 | B1 |
10535081 | Ferreira et al. | Jan 2020 | B2 |
10536475 | McCorkle, Jr. et al. | Jan 2020 | B1 |
10536478 | Kirti et al. | Jan 2020 | B2 |
10540212 | Feng et al. | Jan 2020 | B2 |
10541938 | Timmerman et al. | Jan 2020 | B1 |
10546135 | Kassoumeh et al. | Jan 2020 | B1 |
10552462 | Hart | Feb 2020 | B1 |
10558809 | Joyce et al. | Feb 2020 | B1 |
10558821 | Barday et al. | Feb 2020 | B2 |
10564815 | Soon-Shiong | Feb 2020 | B2 |
10564935 | Barday et al. | Feb 2020 | B2 |
10564936 | Barday et al. | Feb 2020 | B2 |
10565161 | Barday et al. | Feb 2020 | B2 |
10565236 | Barday et al. | Feb 2020 | B1 |
10567439 | Barday | Feb 2020 | B2 |
10567517 | Weinig et al. | Feb 2020 | B2 |
10572684 | Lafever et al. | Feb 2020 | B2 |
10572686 | Barday et al. | Feb 2020 | B2 |
10574705 | Barday et al. | Feb 2020 | B2 |
10581825 | Poschel et al. | Mar 2020 | B2 |
10592648 | Barday et al. | Mar 2020 | B2 |
10592692 | Brannon et al. | Mar 2020 | B2 |
10599456 | Lissack | Mar 2020 | B2 |
10606916 | Brannon et al. | Mar 2020 | B2 |
10613971 | Vasikarla | Apr 2020 | B1 |
10614365 | Sathish et al. | Apr 2020 | B2 |
10628553 | Murrish et al. | Apr 2020 | B1 |
10645102 | Hamdi | May 2020 | B2 |
10645548 | Reynolds et al. | May 2020 | B2 |
10649630 | Vora et al. | May 2020 | B1 |
10650408 | Andersen et al. | May 2020 | B1 |
10657469 | Bade et al. | May 2020 | B2 |
10657504 | Zimmerman et al. | May 2020 | B1 |
10659566 | Luah et al. | May 2020 | B1 |
10671749 | Felice-Steele et al. | Jun 2020 | B2 |
10671760 | Esmailzadeh et al. | Jun 2020 | B2 |
10678945 | Barday et al. | Jun 2020 | B2 |
10685140 | Barday et al. | Jun 2020 | B2 |
10706176 | Brannon et al. | Jul 2020 | B2 |
10706226 | Byun et al. | Jul 2020 | B2 |
10708305 | Barday et al. | Jul 2020 | B2 |
10713387 | Brannon et al. | Jul 2020 | B2 |
10726145 | Duminy et al. | Jul 2020 | B2 |
10726153 | Nerurkar et al. | Jul 2020 | B2 |
10726158 | Brannon et al. | Jul 2020 | B2 |
10732865 | Jain et al. | Aug 2020 | B2 |
10735388 | Rose et al. | Aug 2020 | B2 |
10740487 | Barday et al. | Aug 2020 | B2 |
10747893 | Kiriyama et al. | Aug 2020 | B2 |
10747897 | Cook | Aug 2020 | B2 |
10749870 | Brouillette et al. | Aug 2020 | B2 |
10762213 | Rudek et al. | Sep 2020 | B2 |
10762230 | Ancin et al. | Sep 2020 | B2 |
10762236 | Brannon et al. | Sep 2020 | B2 |
10769302 | Barday et al. | Sep 2020 | B2 |
10769303 | Brannon et al. | Sep 2020 | B2 |
10776510 | Antonelli et al. | Sep 2020 | B2 |
10776518 | Barday et al. | Sep 2020 | B2 |
10778792 | Handy Bosma et al. | Sep 2020 | B1 |
10783256 | Brannon et al. | Sep 2020 | B2 |
10785173 | Willett et al. | Sep 2020 | B2 |
10785299 | Gupta et al. | Sep 2020 | B2 |
10791150 | Barday et al. | Sep 2020 | B2 |
10795527 | Legge et al. | Oct 2020 | B1 |
10796020 | Barday et al. | Oct 2020 | B2 |
10796260 | Brannon et al. | Oct 2020 | B2 |
10798133 | Barday et al. | Oct 2020 | B2 |
10803196 | Bodegas Martinez et al. | Oct 2020 | B2 |
10805331 | Boyer et al. | Oct 2020 | B2 |
10831831 | Greene | Nov 2020 | B2 |
10834590 | Turgeman et al. | Nov 2020 | B2 |
10846433 | Brannon et al. | Nov 2020 | B2 |
10853356 | McPherson et al. | Dec 2020 | B1 |
10853501 | Brannon | Dec 2020 | B2 |
10860721 | Gentile | Dec 2020 | B1 |
10860742 | Joseph et al. | Dec 2020 | B2 |
10860979 | Geffen et al. | Dec 2020 | B2 |
10878127 | Brannon et al. | Dec 2020 | B2 |
10885485 | Brannon et al. | Jan 2021 | B2 |
10891393 | Currier et al. | Jan 2021 | B2 |
10893074 | Sartor | Jan 2021 | B2 |
10896394 | Brannon et al. | Jan 2021 | B2 |
10902490 | He et al. | Jan 2021 | B2 |
10909488 | Hecht et al. | Feb 2021 | B2 |
10924514 | Altman et al. | Feb 2021 | B1 |
10929557 | Chavez | Feb 2021 | B2 |
10949555 | Rattan et al. | Mar 2021 | B2 |
10949565 | Barday et al. | Mar 2021 | B2 |
10957326 | Bhaya et al. | Mar 2021 | B2 |
10963571 | Bar Joseph et al. | Mar 2021 | B2 |
10963572 | Belfiore, Jr. et al. | Mar 2021 | B2 |
10965547 | Esposito et al. | Mar 2021 | B1 |
10970418 | Durvasula et al. | Apr 2021 | B2 |
10972509 | Barday et al. | Apr 2021 | B2 |
10976950 | Trezzo et al. | Apr 2021 | B1 |
10983963 | Venkatasubramanian et al. | Apr 2021 | B1 |
10984458 | Gutierrez | Apr 2021 | B1 |
10997318 | Barday et al. | May 2021 | B2 |
11003748 | Oliker et al. | May 2021 | B2 |
11012475 | Patnala et al. | May 2021 | B2 |
11023528 | Lee et al. | Jun 2021 | B1 |
11037168 | Lee et al. | Jun 2021 | B1 |
11057356 | Malhotra et al. | Jul 2021 | B2 |
11057427 | Wright et al. | Jul 2021 | B2 |
11062051 | Barday et al. | Jul 2021 | B2 |
11068318 | Kuesel et al. | Jul 2021 | B2 |
11068584 | Burriesci et al. | Jul 2021 | B2 |
11068618 | Brannon et al. | Jul 2021 | B2 |
11068847 | Boutros et al. | Jul 2021 | B2 |
11093950 | Hersh et al. | Aug 2021 | B2 |
11138299 | Brannon et al. | Oct 2021 | B2 |
11144622 | Brannon et al. | Oct 2021 | B2 |
11144678 | Dondini et al. | Oct 2021 | B2 |
11144862 | Jackson et al. | Oct 2021 | B1 |
11195134 | Brannon et al. | Dec 2021 | B2 |
11201929 | Dudmesh et al. | Dec 2021 | B2 |
11210420 | Brannon et al. | Dec 2021 | B2 |
11238390 | Brannon et al. | Feb 2022 | B2 |
11240273 | Barday et al. | Feb 2022 | B2 |
11252159 | Kannan et al. | Feb 2022 | B2 |
11256777 | Brannon et al. | Feb 2022 | B2 |
11263262 | Chen | Mar 2022 | B2 |
11327996 | Reynolds et al. | May 2022 | B2 |
11443062 | Latka | Sep 2022 | B2 |
20020004736 | Roundtree et al. | Jan 2002 | A1 |
20020049907 | Woods et al. | Apr 2002 | A1 |
20020055932 | Wheeler et al. | May 2002 | A1 |
20020077941 | Halligan et al. | Jun 2002 | A1 |
20020103854 | Okita | Aug 2002 | A1 |
20020129216 | Collins | Sep 2002 | A1 |
20020161594 | Bryan et al. | Oct 2002 | A1 |
20020161733 | Grainger | Oct 2002 | A1 |
20030041250 | Proudler | Feb 2003 | A1 |
20030065641 | Chaloux | Apr 2003 | A1 |
20030093680 | Astley et al. | May 2003 | A1 |
20030097451 | Bjorksten et al. | May 2003 | A1 |
20030097661 | Li et al. | May 2003 | A1 |
20030115142 | Brickell et al. | Jun 2003 | A1 |
20030130893 | Farmer | Jul 2003 | A1 |
20030131001 | Matsuo | Jul 2003 | A1 |
20030131093 | Aschen et al. | Jul 2003 | A1 |
20030140150 | Kemp et al. | Jul 2003 | A1 |
20030167216 | Brown et al. | Sep 2003 | A1 |
20030212604 | Cullen | Nov 2003 | A1 |
20040002818 | Kulp et al. | Jan 2004 | A1 |
20040025053 | Hayward | Feb 2004 | A1 |
20040088235 | Ziekle et al. | May 2004 | A1 |
20040098366 | Sinclair et al. | May 2004 | A1 |
20040098493 | Rees | May 2004 | A1 |
20040111359 | Hudock | Jun 2004 | A1 |
20040128508 | Wheeler et al. | Jul 2004 | A1 |
20040186912 | Harlow et al. | Sep 2004 | A1 |
20040193907 | Patanella | Sep 2004 | A1 |
20050022198 | Olapurath et al. | Jan 2005 | A1 |
20050033616 | Vavul et al. | Feb 2005 | A1 |
20050076294 | Dehamer et al. | Apr 2005 | A1 |
20050114343 | Wesinger, Jr. et al. | May 2005 | A1 |
20050144066 | Cope et al. | Jun 2005 | A1 |
20050197884 | Mullen, Jr. | Sep 2005 | A1 |
20050198177 | Black | Sep 2005 | A1 |
20050198646 | Kortela | Sep 2005 | A1 |
20050246292 | Sarcanin | Nov 2005 | A1 |
20050278538 | Fowler | Dec 2005 | A1 |
20060031078 | Pizzinger et al. | Feb 2006 | A1 |
20060035204 | LaMarche et al. | Feb 2006 | A1 |
20060041507 | Novack et al. | Feb 2006 | A1 |
20060075122 | Lindskog et al. | Apr 2006 | A1 |
20060149730 | Curtis | Jul 2006 | A1 |
20060156052 | Bodnar et al. | Jul 2006 | A1 |
20060190280 | Hoebel et al. | Aug 2006 | A1 |
20060206375 | Scott et al. | Sep 2006 | A1 |
20060224422 | Cohen | Oct 2006 | A1 |
20060253597 | Mujica | Nov 2006 | A1 |
20060259416 | Johnson | Nov 2006 | A1 |
20070011058 | Dev | Jan 2007 | A1 |
20070027715 | Gropper et al. | Feb 2007 | A1 |
20070061125 | Bhatt et al. | Mar 2007 | A1 |
20070061393 | Moore | Mar 2007 | A1 |
20070130101 | Anderson et al. | Jun 2007 | A1 |
20070130323 | Landsman et al. | Jun 2007 | A1 |
20070157311 | Meier et al. | Jul 2007 | A1 |
20070173355 | Klein | Jul 2007 | A1 |
20070179793 | Bagchi et al. | Aug 2007 | A1 |
20070180490 | Renzi et al. | Aug 2007 | A1 |
20070192438 | Goei | Aug 2007 | A1 |
20070266420 | Hawkins et al. | Nov 2007 | A1 |
20070283171 | Breslin et al. | Dec 2007 | A1 |
20080005194 | Smolen et al. | Jan 2008 | A1 |
20080015927 | Ramirez | Jan 2008 | A1 |
20080028065 | Caso et al. | Jan 2008 | A1 |
20080028435 | Strickland et al. | Jan 2008 | A1 |
20080046982 | Parkinson | Feb 2008 | A1 |
20080047016 | Spoonamore | Feb 2008 | A1 |
20080077512 | Grewal | Mar 2008 | A1 |
20080120699 | Spear | May 2008 | A1 |
20080140696 | Mathuria | Jun 2008 | A1 |
20080189306 | Hewett et al. | Aug 2008 | A1 |
20080195436 | Whyte | Aug 2008 | A1 |
20080222271 | Spires | Sep 2008 | A1 |
20080235177 | Kim et al. | Sep 2008 | A1 |
20080270203 | Holmes et al. | Oct 2008 | A1 |
20080270351 | Thomsen | Oct 2008 | A1 |
20080270381 | Thomsen | Oct 2008 | A1 |
20080270382 | Thomsen et al. | Oct 2008 | A1 |
20080270451 | Thomsen et al. | Oct 2008 | A1 |
20080270462 | Thomsen | Oct 2008 | A1 |
20080281649 | Morris | Nov 2008 | A1 |
20080282320 | Denovo et al. | Nov 2008 | A1 |
20080288271 | Faust | Nov 2008 | A1 |
20080288299 | Schultz | Nov 2008 | A1 |
20090012896 | Arnold | Jan 2009 | A1 |
20090022301 | Mudaliar | Jan 2009 | A1 |
20090037975 | Ishikawa et al. | Feb 2009 | A1 |
20090119500 | Roth et al. | May 2009 | A1 |
20090132419 | Grammer et al. | May 2009 | A1 |
20090138276 | Hayashida et al. | May 2009 | A1 |
20090140035 | Miller | Jun 2009 | A1 |
20090144702 | Atkin et al. | Jun 2009 | A1 |
20090158249 | Tomkins et al. | Jun 2009 | A1 |
20090172705 | Cheong | Jul 2009 | A1 |
20090182818 | Krywaniuk | Jul 2009 | A1 |
20090187764 | Astakhov et al. | Jul 2009 | A1 |
20090204452 | Iskandar et al. | Aug 2009 | A1 |
20090204820 | Brandenburg et al. | Aug 2009 | A1 |
20090210347 | Sarcanin | Aug 2009 | A1 |
20090216610 | Chorny | Aug 2009 | A1 |
20090249076 | Reed et al. | Oct 2009 | A1 |
20090303237 | Liu et al. | Dec 2009 | A1 |
20100010912 | Jones et al. | Jan 2010 | A1 |
20100010968 | Redlich et al. | Jan 2010 | A1 |
20100077484 | Paretti et al. | Mar 2010 | A1 |
20100082533 | Nakamura et al. | Apr 2010 | A1 |
20100094650 | Tran et al. | Apr 2010 | A1 |
20100100398 | Auker et al. | Apr 2010 | A1 |
20100121773 | Currier et al. | May 2010 | A1 |
20100161973 | Chin et al. | Jun 2010 | A1 |
20100192201 | Shimoni et al. | Jul 2010 | A1 |
20100205057 | Hook et al. | Aug 2010 | A1 |
20100223349 | Thorson | Sep 2010 | A1 |
20100228786 | Török | Sep 2010 | A1 |
20100234987 | Benschop et al. | Sep 2010 | A1 |
20100235297 | Mamorsky | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100262624 | Pullikottil | Oct 2010 | A1 |
20100268628 | Pitkow et al. | Oct 2010 | A1 |
20100268932 | Bhattacharjee | Oct 2010 | A1 |
20100281313 | White et al. | Nov 2010 | A1 |
20100287114 | Bartko et al. | Nov 2010 | A1 |
20100333012 | Adachi et al. | Dec 2010 | A1 |
20110006996 | Smith et al. | Jan 2011 | A1 |
20110010202 | Neale | Jan 2011 | A1 |
20110082794 | Blechman | Apr 2011 | A1 |
20110137696 | Meyer et al. | Jun 2011 | A1 |
20110145154 | Rivers et al. | Jun 2011 | A1 |
20110153396 | Marcuvitz et al. | Jun 2011 | A1 |
20110191664 | Sheleheda et al. | Aug 2011 | A1 |
20110208850 | Sheleheda et al. | Aug 2011 | A1 |
20110209067 | Bogess et al. | Aug 2011 | A1 |
20110231896 | Tovar | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110252456 | Hatakeyama | Oct 2011 | A1 |
20110302643 | Pichna et al. | Dec 2011 | A1 |
20120019379 | Ayed | Jan 2012 | A1 |
20120041939 | Amsterdamski | Feb 2012 | A1 |
20120084151 | Kozak et al. | Apr 2012 | A1 |
20120084349 | Lee et al. | Apr 2012 | A1 |
20120102411 | Sathish | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120110674 | Belani et al. | May 2012 | A1 |
20120116923 | Irving et al. | May 2012 | A1 |
20120131438 | Li et al. | May 2012 | A1 |
20120143650 | Crowley et al. | Jun 2012 | A1 |
20120144499 | Tan et al. | Jun 2012 | A1 |
20120191596 | Kremen et al. | Jul 2012 | A1 |
20120226621 | Petran et al. | Sep 2012 | A1 |
20120239557 | Weinflash et al. | Sep 2012 | A1 |
20120254320 | Dove et al. | Oct 2012 | A1 |
20120259752 | Agee | Oct 2012 | A1 |
20120323700 | Aleksandrovich et al. | Dec 2012 | A1 |
20120324113 | Prince et al. | Dec 2012 | A1 |
20120330769 | Arceo | Dec 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20130004933 | Bhaskaran | Jan 2013 | A1 |
20130018954 | Cheng | Jan 2013 | A1 |
20130085801 | Sharpe et al. | Apr 2013 | A1 |
20130091156 | Raiche et al. | Apr 2013 | A1 |
20130103485 | Postrel | Apr 2013 | A1 |
20130111323 | Taghaddos et al. | May 2013 | A1 |
20130124257 | Schubert | May 2013 | A1 |
20130159351 | Hamann et al. | Jun 2013 | A1 |
20130166573 | Vaitheeswaran et al. | Jun 2013 | A1 |
20130171968 | Wang | Jul 2013 | A1 |
20130179982 | Bridges et al. | Jul 2013 | A1 |
20130179988 | Bekker et al. | Jul 2013 | A1 |
20130185806 | Hatakeyama | Jul 2013 | A1 |
20130211872 | Cherry et al. | Aug 2013 | A1 |
20130218829 | Martinez | Aug 2013 | A1 |
20130219459 | Bradley | Aug 2013 | A1 |
20130254139 | Lei | Sep 2013 | A1 |
20130254649 | ONeill | Sep 2013 | A1 |
20130254699 | Bashir et al. | Sep 2013 | A1 |
20130262328 | Federgreen | Oct 2013 | A1 |
20130282438 | Hunter et al. | Oct 2013 | A1 |
20130282466 | Hampton | Oct 2013 | A1 |
20130290169 | Bathula et al. | Oct 2013 | A1 |
20130298071 | Wine | Nov 2013 | A1 |
20130311224 | Heroux et al. | Nov 2013 | A1 |
20130318207 | Dotter | Nov 2013 | A1 |
20130326112 | Park et al. | Dec 2013 | A1 |
20130332362 | Ciurea | Dec 2013 | A1 |
20130340086 | Blom | Dec 2013 | A1 |
20140006355 | Kirihata | Jan 2014 | A1 |
20140006616 | Aad et al. | Jan 2014 | A1 |
20140012833 | Humprecht | Jan 2014 | A1 |
20140019561 | Belity et al. | Jan 2014 | A1 |
20140032259 | Lafever et al. | Jan 2014 | A1 |
20140032265 | Paprocki | Jan 2014 | A1 |
20140040134 | Ciurea | Feb 2014 | A1 |
20140040161 | Berlin | Feb 2014 | A1 |
20140040979 | Barton et al. | Feb 2014 | A1 |
20140041048 | Goodwin et al. | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052463 | Cashman et al. | Feb 2014 | A1 |
20140067973 | Eden | Mar 2014 | A1 |
20140074550 | Chourey | Mar 2014 | A1 |
20140074645 | Ingram | Mar 2014 | A1 |
20140075493 | Krishnan et al. | Mar 2014 | A1 |
20140089027 | Brown | Mar 2014 | A1 |
20140089039 | McClellan | Mar 2014 | A1 |
20140108173 | Cooper et al. | Apr 2014 | A1 |
20140108968 | Vishria | Apr 2014 | A1 |
20140137257 | Martinez et al. | May 2014 | A1 |
20140142988 | Grosso et al. | May 2014 | A1 |
20140143011 | Mudugu et al. | May 2014 | A1 |
20140143844 | Goertzen | May 2014 | A1 |
20140164476 | Thomson | Jun 2014 | A1 |
20140188956 | Subba et al. | Jul 2014 | A1 |
20140196143 | Fliderman et al. | Jul 2014 | A1 |
20140208418 | Libin | Jul 2014 | A1 |
20140222468 | Araya et al. | Aug 2014 | A1 |
20140244309 | Francois | Aug 2014 | A1 |
20140244325 | Cartwright | Aug 2014 | A1 |
20140244375 | Kim | Aug 2014 | A1 |
20140244399 | Orduna et al. | Aug 2014 | A1 |
20140257917 | Spencer et al. | Sep 2014 | A1 |
20140258093 | Gardiner et al. | Sep 2014 | A1 |
20140278539 | Edwards | Sep 2014 | A1 |
20140278663 | Samuel et al. | Sep 2014 | A1 |
20140278730 | Muhart et al. | Sep 2014 | A1 |
20140278802 | MacPherson | Sep 2014 | A1 |
20140283027 | Orona et al. | Sep 2014 | A1 |
20140283106 | Stahura et al. | Sep 2014 | A1 |
20140288971 | Whibbs, III | Sep 2014 | A1 |
20140289681 | Wielgosz | Sep 2014 | A1 |
20140289862 | Gorfein et al. | Sep 2014 | A1 |
20140317171 | Fox et al. | Oct 2014 | A1 |
20140324480 | Dufel et al. | Oct 2014 | A1 |
20140337041 | Madden et al. | Nov 2014 | A1 |
20140337466 | Li et al. | Nov 2014 | A1 |
20140344015 | Puértolas-Montañés et al. | Nov 2014 | A1 |
20150006514 | Hung | Jan 2015 | A1 |
20150012363 | Grant et al. | Jan 2015 | A1 |
20150019530 | Felch | Jan 2015 | A1 |
20150026056 | Calman et al. | Jan 2015 | A1 |
20150026260 | Worthley | Jan 2015 | A1 |
20150033112 | Norwood et al. | Jan 2015 | A1 |
20150066577 | Christiansen et al. | Mar 2015 | A1 |
20150066865 | Yara et al. | Mar 2015 | A1 |
20150088598 | Acharyya et al. | Mar 2015 | A1 |
20150089585 | Novack | Mar 2015 | A1 |
20150106264 | Johnson | Apr 2015 | A1 |
20150106867 | Liang | Apr 2015 | A1 |
20150106948 | Holman et al. | Apr 2015 | A1 |
20150106949 | Holman et al. | Apr 2015 | A1 |
20150121462 | Courage et al. | Apr 2015 | A1 |
20150143258 | Carolan et al. | May 2015 | A1 |
20150149362 | Baum et al. | May 2015 | A1 |
20150154520 | Federgreen et al. | Jun 2015 | A1 |
20150163121 | Mahaffey et al. | Jun 2015 | A1 |
20150169318 | Nash | Jun 2015 | A1 |
20150172296 | Fujioka | Jun 2015 | A1 |
20150178740 | Borawski et al. | Jun 2015 | A1 |
20150199534 | Francis et al. | Jul 2015 | A1 |
20150199541 | Koch et al. | Jul 2015 | A1 |
20150199702 | Singh | Jul 2015 | A1 |
20150205955 | Turgeman | Jul 2015 | A1 |
20150229664 | Hawthorn et al. | Aug 2015 | A1 |
20150235049 | Cohen et al. | Aug 2015 | A1 |
20150235050 | Wouhaybi et al. | Aug 2015 | A1 |
20150235283 | Nishikawa | Aug 2015 | A1 |
20150242778 | Wilcox et al. | Aug 2015 | A1 |
20150242858 | Smith et al. | Aug 2015 | A1 |
20150248391 | Watanabe | Sep 2015 | A1 |
20150254597 | Jahagirdar | Sep 2015 | A1 |
20150261887 | Joukov | Sep 2015 | A1 |
20150262189 | Vergeer | Sep 2015 | A1 |
20150264417 | Spitz et al. | Sep 2015 | A1 |
20150269384 | Holman et al. | Sep 2015 | A1 |
20150271167 | Kalai | Sep 2015 | A1 |
20150288715 | Hotchkiss | Oct 2015 | A1 |
20150309813 | Patel | Oct 2015 | A1 |
20150310227 | Ishida et al. | Oct 2015 | A1 |
20150310575 | Shelton | Oct 2015 | A1 |
20150348200 | Fair et al. | Dec 2015 | A1 |
20150356362 | Demos | Dec 2015 | A1 |
20150379430 | Dirac et al. | Dec 2015 | A1 |
20160006760 | Lala et al. | Jan 2016 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160026394 | Goto | Jan 2016 | A1 |
20160034918 | Bjelajac et al. | Feb 2016 | A1 |
20160048700 | Stransky-Heilkron | Feb 2016 | A1 |
20160050213 | Storr | Feb 2016 | A1 |
20160063523 | Nistor et al. | Mar 2016 | A1 |
20160063567 | Srivastava | Mar 2016 | A1 |
20160071020 | Sathish et al. | Mar 2016 | A1 |
20160071112 | Unser | Mar 2016 | A1 |
20160080405 | Schler et al. | Mar 2016 | A1 |
20160087957 | Shah et al. | Mar 2016 | A1 |
20160094566 | Parekh | Mar 2016 | A1 |
20160099963 | Mahaffey et al. | Apr 2016 | A1 |
20160103963 | Mishra | Apr 2016 | A1 |
20160125550 | Joao et al. | May 2016 | A1 |
20160125749 | Delacroix et al. | May 2016 | A1 |
20160125751 | Barker et al. | May 2016 | A1 |
20160140466 | Sidebottom et al. | May 2016 | A1 |
20160143570 | Valacich et al. | May 2016 | A1 |
20160148143 | Anderson et al. | May 2016 | A1 |
20160162269 | Pogorelik et al. | Jun 2016 | A1 |
20160164915 | Cook | Jun 2016 | A1 |
20160180386 | Konig | Jun 2016 | A1 |
20160188450 | Appusamy et al. | Jun 2016 | A1 |
20160189156 | Kim et al. | Jun 2016 | A1 |
20160196189 | Miyagi et al. | Jul 2016 | A1 |
20160203331 | Khan et al. | Jul 2016 | A1 |
20160225000 | Glasgow | Aug 2016 | A1 |
20160232465 | Kurtz et al. | Aug 2016 | A1 |
20160232534 | Lacey et al. | Aug 2016 | A1 |
20160234319 | Griffin | Aug 2016 | A1 |
20160253497 | Christodorescu et al. | Sep 2016 | A1 |
20160255139 | Rathod | Sep 2016 | A1 |
20160261631 | Vissamsetty et al. | Sep 2016 | A1 |
20160262163 | Gonzalez Garrido et al. | Sep 2016 | A1 |
20160292453 | Patterson et al. | Oct 2016 | A1 |
20160292621 | Ciccone et al. | Oct 2016 | A1 |
20160321582 | Broudou et al. | Nov 2016 | A1 |
20160321748 | Mahatma et al. | Nov 2016 | A1 |
20160330237 | Edlabadkar | Nov 2016 | A1 |
20160335531 | Mullen et al. | Nov 2016 | A1 |
20160342811 | Whitcomb et al. | Nov 2016 | A1 |
20160350836 | Burns et al. | Dec 2016 | A1 |
20160359861 | Manov et al. | Dec 2016 | A1 |
20160364736 | Maugans, III | Dec 2016 | A1 |
20160370954 | Burningham et al. | Dec 2016 | A1 |
20160378762 | Rohter | Dec 2016 | A1 |
20160381064 | Chan et al. | Dec 2016 | A1 |
20160381560 | Margaliot | Dec 2016 | A1 |
20170004055 | Horan et al. | Jan 2017 | A1 |
20170032395 | Kaufman et al. | Feb 2017 | A1 |
20170032408 | Kumar et al. | Feb 2017 | A1 |
20170034101 | Kumar et al. | Feb 2017 | A1 |
20170041324 | Ionutescu et al. | Feb 2017 | A1 |
20170046399 | Sankaranarasimhan et al. | Feb 2017 | A1 |
20170046753 | Deupree, IV | Feb 2017 | A1 |
20170061501 | Horwich | Mar 2017 | A1 |
20170063881 | Doganata et al. | Mar 2017 | A1 |
20170068785 | Experton et al. | Mar 2017 | A1 |
20170070495 | Cherry et al. | Mar 2017 | A1 |
20170075513 | Watson et al. | Mar 2017 | A1 |
20170093917 | Chandra et al. | Mar 2017 | A1 |
20170115864 | Thomas et al. | Apr 2017 | A1 |
20170124570 | Nidamanuri et al. | May 2017 | A1 |
20170140174 | Lacey et al. | May 2017 | A1 |
20170140467 | Neag et al. | May 2017 | A1 |
20170142158 | Laoutaris et al. | May 2017 | A1 |
20170142177 | Hu | May 2017 | A1 |
20170154188 | Meier et al. | Jun 2017 | A1 |
20170161520 | Lockhart, III et al. | Jun 2017 | A1 |
20170171235 | Mulchandani et al. | Jun 2017 | A1 |
20170171325 | Perez | Jun 2017 | A1 |
20170177324 | Frank et al. | Jun 2017 | A1 |
20170177681 | Potiagalov | Jun 2017 | A1 |
20170180378 | Tyler et al. | Jun 2017 | A1 |
20170180505 | Shaw et al. | Jun 2017 | A1 |
20170193017 | Migliori | Jul 2017 | A1 |
20170193624 | Tsai | Jul 2017 | A1 |
20170201518 | Holmqvist et al. | Jul 2017 | A1 |
20170206707 | Guay et al. | Jul 2017 | A1 |
20170208084 | Steelman et al. | Jul 2017 | A1 |
20170213206 | Shearer | Jul 2017 | A1 |
20170220685 | Yan et al. | Aug 2017 | A1 |
20170220964 | Datta Ray | Aug 2017 | A1 |
20170249710 | Guillama et al. | Aug 2017 | A1 |
20170269791 | Meyerzon et al. | Sep 2017 | A1 |
20170270318 | Ritchie | Sep 2017 | A1 |
20170278004 | McElhinney et al. | Sep 2017 | A1 |
20170278117 | Wallace et al. | Sep 2017 | A1 |
20170286719 | Krishnamurthy et al. | Oct 2017 | A1 |
20170287030 | Barday | Oct 2017 | A1 |
20170287031 | Barday | Oct 2017 | A1 |
20170289168 | Bar et al. | Oct 2017 | A1 |
20170289199 | Barday | Oct 2017 | A1 |
20170308875 | O'Regan et al. | Oct 2017 | A1 |
20170316400 | Venkatakrishnan et al. | Nov 2017 | A1 |
20170330197 | DiMaggio et al. | Nov 2017 | A1 |
20170353404 | Hodge | Dec 2017 | A1 |
20180032757 | Michael | Feb 2018 | A1 |
20180039975 | Hefetz | Feb 2018 | A1 |
20180041498 | Kikuchi | Feb 2018 | A1 |
20180046753 | Shelton | Feb 2018 | A1 |
20180046939 | Meron et al. | Feb 2018 | A1 |
20180063174 | Grill et al. | Mar 2018 | A1 |
20180063190 | Wright et al. | Mar 2018 | A1 |
20180082368 | Weinflash et al. | Mar 2018 | A1 |
20180083843 | Sambandam | Mar 2018 | A1 |
20180091476 | Jakobsson et al. | Mar 2018 | A1 |
20180131574 | Jacobs et al. | May 2018 | A1 |
20180131658 | Bhagwan et al. | May 2018 | A1 |
20180165637 | Romero et al. | Jun 2018 | A1 |
20180182009 | Barday et al. | Jun 2018 | A1 |
20180198614 | Neumann | Jul 2018 | A1 |
20180204281 | Painter et al. | Jul 2018 | A1 |
20180219917 | Chiang | Aug 2018 | A1 |
20180239500 | Allen et al. | Aug 2018 | A1 |
20180248914 | Sartor | Aug 2018 | A1 |
20180285887 | Maung | Oct 2018 | A1 |
20180301222 | Dew, Sr. et al. | Oct 2018 | A1 |
20180307859 | Lafever et al. | Oct 2018 | A1 |
20180336509 | Guttmann | Nov 2018 | A1 |
20180343215 | Ganapathi et al. | Nov 2018 | A1 |
20180349583 | Turgeman et al. | Dec 2018 | A1 |
20180351888 | Howard | Dec 2018 | A1 |
20180352003 | Winn et al. | Dec 2018 | A1 |
20180357243 | Yoon | Dec 2018 | A1 |
20180365720 | Goldman et al. | Dec 2018 | A1 |
20180374030 | Barday et al. | Dec 2018 | A1 |
20180375814 | Hart | Dec 2018 | A1 |
20190005210 | Wiederspohn et al. | Jan 2019 | A1 |
20190012211 | Selvaraj | Jan 2019 | A1 |
20190012672 | Francesco | Jan 2019 | A1 |
20190019184 | Lacey et al. | Jan 2019 | A1 |
20190050547 | Welsh et al. | Feb 2019 | A1 |
20190087570 | Sloane | Mar 2019 | A1 |
20190096020 | Barday et al. | Mar 2019 | A1 |
20190108353 | Sadeh et al. | Apr 2019 | A1 |
20190130132 | Barbas et al. | May 2019 | A1 |
20190138496 | Yamaguchi | May 2019 | A1 |
20190139087 | Dabbs et al. | May 2019 | A1 |
20190148003 | Van Hoe | May 2019 | A1 |
20190156053 | Vogel et al. | May 2019 | A1 |
20190156058 | Van Dyne et al. | May 2019 | A1 |
20190171801 | Barday et al. | Jun 2019 | A1 |
20190179652 | Hesener et al. | Jun 2019 | A1 |
20190180051 | Barday et al. | Jun 2019 | A1 |
20190182294 | Rieke et al. | Jun 2019 | A1 |
20190188402 | Wang et al. | Jun 2019 | A1 |
20190266200 | Francolla | Aug 2019 | A1 |
20190266201 | Barday et al. | Aug 2019 | A1 |
20190266350 | Barday et al. | Aug 2019 | A1 |
20190268343 | Barday et al. | Aug 2019 | A1 |
20190268344 | Barday et al. | Aug 2019 | A1 |
20190272492 | Elledge et al. | Sep 2019 | A1 |
20190279111 | Merrill | Sep 2019 | A1 |
20190294818 | Barday et al. | Sep 2019 | A1 |
20190303509 | Greene | Oct 2019 | A1 |
20190332802 | Barday et al. | Oct 2019 | A1 |
20190332807 | Lafever et al. | Oct 2019 | A1 |
20190333118 | Crimmins et al. | Oct 2019 | A1 |
20190354709 | Brinskelle | Nov 2019 | A1 |
20190356684 | Sinha et al. | Nov 2019 | A1 |
20190362169 | Lin et al. | Nov 2019 | A1 |
20190362268 | Fogarty et al. | Nov 2019 | A1 |
20190377901 | Balzer et al. | Dec 2019 | A1 |
20190378073 | Lopez et al. | Dec 2019 | A1 |
20190384934 | Kim | Dec 2019 | A1 |
20190392162 | Stern et al. | Dec 2019 | A1 |
20190392170 | Barday et al. | Dec 2019 | A1 |
20190392171 | Barday et al. | Dec 2019 | A1 |
20200004938 | Brannon et al. | Jan 2020 | A1 |
20200020454 | McGarvey et al. | Jan 2020 | A1 |
20200050966 | Enuka et al. | Feb 2020 | A1 |
20200051117 | Mitchell | Feb 2020 | A1 |
20200057781 | McCormick | Feb 2020 | A1 |
20200074471 | Adjaoute | Mar 2020 | A1 |
20200081865 | Farrar | Mar 2020 | A1 |
20200082270 | Gu et al. | Mar 2020 | A1 |
20200090197 | Rodriguez et al. | Mar 2020 | A1 |
20200092179 | Chieu et al. | Mar 2020 | A1 |
20200110589 | Bequet et al. | Apr 2020 | A1 |
20200110904 | Shinde et al. | Apr 2020 | A1 |
20200117737 | Gopalakrishnan et al. | Apr 2020 | A1 |
20200134493 | Bhide | Apr 2020 | A1 |
20200137097 | Zimmermann et al. | Apr 2020 | A1 |
20200143301 | Bowers | May 2020 | A1 |
20200143797 | Manoharan et al. | May 2020 | A1 |
20200159952 | Dain et al. | May 2020 | A1 |
20200159955 | Barlik et al. | May 2020 | A1 |
20200167653 | Manjunath et al. | May 2020 | A1 |
20200175424 | Kursun | Jun 2020 | A1 |
20200183655 | Barday et al. | Jun 2020 | A1 |
20200186355 | Davies | Jun 2020 | A1 |
20200193018 | Van Dyke | Jun 2020 | A1 |
20200193022 | Lunsford et al. | Jun 2020 | A1 |
20200210558 | Barday et al. | Jul 2020 | A1 |
20200210620 | Haletky | Jul 2020 | A1 |
20200211002 | Steinberg | Jul 2020 | A1 |
20200220901 | Barday et al. | Jul 2020 | A1 |
20200226156 | Borra et al. | Jul 2020 | A1 |
20200226196 | Brannon et al. | Jul 2020 | A1 |
20200242259 | Chirravuri et al. | Jul 2020 | A1 |
20200242719 | Lee | Jul 2020 | A1 |
20200250342 | Miller et al. | Aug 2020 | A1 |
20200252413 | Buzbee et al. | Aug 2020 | A1 |
20200252817 | Brouillette et al. | Aug 2020 | A1 |
20200272764 | Brannon et al. | Aug 2020 | A1 |
20200285755 | Kassoumeh et al. | Sep 2020 | A1 |
20200293679 | Handy Bosma et al. | Sep 2020 | A1 |
20200296171 | Mocanu et al. | Sep 2020 | A1 |
20200302089 | Barday et al. | Sep 2020 | A1 |
20200310917 | Tkachev et al. | Oct 2020 | A1 |
20200311310 | Barday et al. | Oct 2020 | A1 |
20200344243 | Brannon et al. | Oct 2020 | A1 |
20200356695 | Brannon et al. | Nov 2020 | A1 |
20200364369 | Brannon et al. | Nov 2020 | A1 |
20200372178 | Barday et al. | Nov 2020 | A1 |
20200372304 | Kenthapadi | Nov 2020 | A1 |
20200394327 | Childress et al. | Dec 2020 | A1 |
20200401380 | Jacobs et al. | Dec 2020 | A1 |
20200401962 | Gottemukkala et al. | Dec 2020 | A1 |
20200410117 | Barday et al. | Dec 2020 | A1 |
20200410131 | Barday et al. | Dec 2020 | A1 |
20200410132 | Brannon et al. | Dec 2020 | A1 |
20210012341 | Garg et al. | Jan 2021 | A1 |
20210042581 | Kursun | Feb 2021 | A1 |
20210056569 | Silberman | Feb 2021 | A1 |
20210075775 | Cheng et al. | Mar 2021 | A1 |
20210081567 | Park et al. | Mar 2021 | A1 |
20210099449 | Frederick et al. | Apr 2021 | A1 |
20210110047 | Chunsheng | Apr 2021 | A1 |
20210125089 | Nickl et al. | Apr 2021 | A1 |
20210136065 | Liokumovich et al. | May 2021 | A1 |
20210152496 | Kim et al. | May 2021 | A1 |
20210182940 | Gupta et al. | Jun 2021 | A1 |
20210224402 | Sher-Jan et al. | Jul 2021 | A1 |
20210233157 | Crutchfield, Jr. | Jul 2021 | A1 |
20210243595 | Buck et al. | Aug 2021 | A1 |
20210248247 | Poothokaran et al. | Aug 2021 | A1 |
20210256163 | Fleming et al. | Aug 2021 | A1 |
20210279360 | Gimenez Palop et al. | Sep 2021 | A1 |
20210288995 | Attar et al. | Sep 2021 | A1 |
20210297441 | Olalere | Sep 2021 | A1 |
20210303828 | Lafreniere et al. | Sep 2021 | A1 |
20210312061 | Schroeder et al. | Oct 2021 | A1 |
20210326786 | Sun et al. | Oct 2021 | A1 |
20210328969 | Gaddam et al. | Oct 2021 | A1 |
20210382949 | Yastrebenetsky et al. | Dec 2021 | A1 |
20210383268 | Miroshnikov | Dec 2021 | A1 |
20210397735 | Samatov et al. | Dec 2021 | A1 |
20210400018 | Vettaikaran et al. | Dec 2021 | A1 |
20210406712 | Bhide | Dec 2021 | A1 |
20220137850 | Boddu et al. | May 2022 | A1 |
20220171759 | Jindal et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
111496802 | Aug 2020 | CN |
112115859 | Dec 2020 | CN |
1394698 | Mar 2004 | EP |
2031540 | Mar 2009 | EP |
20130062500 | Jun 2013 | KR |
2001033430 | May 2001 | WO |
20020067158 | Aug 2002 | WO |
20030050773 | Jun 2003 | WO |
2005008411 | Jan 2005 | WO |
2007002412 | Jan 2007 | WO |
2008134203 | Nov 2008 | WO |
2012174659 | Dec 2012 | WO |
2015116905 | Aug 2015 | WO |
WO-2020146028 | Jul 2020 | WO |
2022006421 | Jan 2022 | WO |
Entry |
---|
Wu, Qingyao, et al. “ML-Forest: A multi-label tree ensemble method for multi-label classification.” IEEE transactions on knowledge and data engineering 28.10 (Year: 2016). |
Lu “How Machine Learning Mitigates Racial Bias in the US Housing Market.” Available at SSRN 3489519 (Year: 2019). |
Zemel, Rich, et al. “Learning fair representations.” International conference on machine learning. PMLR, pp. 4-5 (Year: 2013). |
Kamiran, Faisal, and Toon Calders. “Classifying without discriminating.” 2009 2nd international conference on computer, control and communication. IEEE, Abstract, (Year: 2009). |
Bras et al., Adversarial Filters of Dataset Biases. arXiv preprint arXiv:2002.04108v3. (Year: 2020). |
Amini et al. “Uncovering and mitigating algorithmic bias through learned latent structure.” Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. (Year: 2019). |
Hardt M et al., Equality of opportunity in supervised learning. Advances in neural information processing systems (Year: 2016). |
Final Office Action, dated Apr. 23, 2020, from corresponding U.S. Appl. No. 16/572,347. |
Final Office Action, dated Apr. 27, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Final Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Final Office Action, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Final Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Aug. 28, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Aug. 5, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Final Office Action, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Final Office Action, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Final Office Action, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Feb. 19, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Final Office Action, dated Feb. 3, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Final Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Final Office Action, dated Jan. 17, 2018, from corresponding U.S. Appl. No. 15/619,278. |
Final Office Action, dated Jan. 21, 2020, from corresponding U.S. Appl. No. 16/410,762. |
Final Office Action, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Final Office Action, dated Jan. 23, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Final Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Final Office Action, dated Jul. 7, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Final Office Action, dated Mar. 26, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Mar. 5, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Final Office Action, dated Mar. 6, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Final Office Action, dated May 14, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Final Office Action, dated Nov. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Final Office Action, dated Sep. 17, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Final Office Action, dated Sep. 22, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Final Office Action, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Final Office Action, dated Sep. 24, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Final Office Action, dated Sep. 25, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Final Office Action, dated Sep. 28, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Final Office Action, dated Sep. 8, 2020, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Apr. 1, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Apr. 15, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Apr. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Office Action, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Office Action, dated Apr. 20, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Office Action, dated Apr. 22, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Office Action, dated Apr. 22, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Office Action, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Office Action, dated Apr. 5, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/505,430. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Office Action, dated Aug. 15, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Aman et al., “Detecting Data Tampering Attacks in Synchrophasor Networks using Time Hopping,” IEEE, pp. 1-6 (Year: 2016). |
Bertino et al., “Towards Mechanisms for Detection and Prevention of Data Exfiltration by Insiders,” Mar. 22, 2011, ACM, pp. 10-19 (Year: 2011). |
Bujlow et al., “Web Tracking: Mechanisms, Implications, and Defenses,” Proceedings of the IEEE, Aug. 1, 2017, vol. 5, No. 8, pp. 1476-1510 (Year: 2017). |
Fan et al., “Intrusion Investigations with Data-hiding for Computer Log-file Forensics,” IEEE, pp. 1-6 (Year: 2010). |
Final Office Action, dated Oct. 26, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Final Office Action, dated Oct. 28, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Final Office Action, dated Oct. 29, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Gonçalves et al., “The XML Log Standard for Digital Libraries: Analysis, Evolution, and Deployment,” IEEE, pp. 312-314 (Year: 2003). |
International Search Report, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481. |
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893. |
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910. |
Iordanou et al., “Tracing Cross Border Web Tracking,” Oct. 31, 2018, pp. 329-342, ACM (Year: 2018). |
Notice of Allowance, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/491,871. |
Notice of Allowance, dated Nov. 22, 2021, from corresponding U.S. Appl. No. 17/383,889. |
Notice of Allowance, dated Oct. 22, 2021, from corresponding U.S. Appl. No. 17/346,847. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/380,485. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/373,444. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/486,350. |
Office Action, dated Nov. 23, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Nov. 26, 2021, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Nov. 4, 2021, from corresponding U.S. Appl. No. 17/491,906. |
Office Action, dated Nov. 8, 2021, from corresponding U.S. Appl. No. 16/872,130. |
Office Action, dated Oct. 15, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Restriction Requirement, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/366,754. |
Roesner et al, “Detecting and Defending Against Third-Party Tracking on the Web,” 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 11, 2013, pp. 1-14, ACM (Year: 2013). |
Van Eijk et al, “The Impact of User Location on Cookie Notices (Inside and Outside of the European Union,” IEEE Security & Privacy Workshop on Technology and Consumer Protection (CONPRO '19), Jan. 1, 2019 (Year: 2019). |
Written Opinion of the International Searching Authority, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910. |
Golab, et al, “Issues in Data Stream Management,” ACM, SIGMOD Record, vol. 32, No. 2, Jun. 2003, pp. 5-14 (Year: 2003). |
Golfarelli et al, “Beyond Data Warehousing: What's Next in Business Intelligence?,” ACM, pp. 1-6 (Year: 2004). |
Goni, Kyriaki, “Deletion Process_Only you can see my history: Investigating Digital Privacy, Digital Oblivion, and Control on Personal Data Through an Interactive Art Installation,” ACM, 2016, retrieved online on Oct. 3, 2019, pp. 324-333. Retrieved from the Internet URL: http://delivery.acm.org/10.1145/2920000/291. |
Gowadia et al, “RDF Metadata for XML Access Control,” ACM, pp. 31-48 (Year: 2003). |
Grolinger, et al, “Data Management in Cloud Environments: NoSQL and NewSQL Data Stores,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1-24 (Year: 2013). |
Guo, et al., “Opal: A Passe-partout for Web Forms,” ACM, pp. 353-356 (Year: 2012). |
Gustarini, et al, “Evaluation of Challenges in Human Subject Studies “In-the-Wild” Using Subjects' Personal Smartphones,” ACM, pp. 1447-1456 (Year: 2013). |
Hacigümüs, Hakan, et al, Executing SQL over Encrypted Data in the Database-Service-Provider Model, ACM, Jun. 4, 2002, pp. 216-227. |
Halevy, et al, “Schema Mediation in Peer Data Management Systems,” IEEE, Proceedings of the 19th International Conference on Data Engineering, 2003, pp. 505-516 (Year: 2003). |
Hauch, et al, “Information Intelligence: Metadata for Information Discovery, Access, and Integration,” ACM, pp. 793-798 (Year: 2005). |
Hernandez, et al, “Data Exchange with Data-Metadata Translations,” ACM, pp. 260-273 (Year: 2008). |
Hinde, “A Model to Assess Organisational Information Privacy Maturity Against the Protection of Personal Information Act” Dissertation University of Cape Town 2014, pp. 1-121 (Year: 2014). |
Hodge, et al, “Managing Virtual Data Marts with Metapointer Tables,” pp. 1-7 (Year: 2002). |
Horrall et al, “Evaluating Risk: IBM's Country Financial Risk and Treasury Risk Scorecards,” Jul. 21, 2014, IBM, vol. 58, issue 4, pp. 2:1-2:9 (Year: 2014). |
Hu, et al, “Attribute Considerations for Access Control Systems,” NIST Special Publication 800-205, Jun. 2019, pp. 1-42 (Year: 2019). |
Hu, et al, “Guide to Attribute Based Access Control (ABAC) Definition and Considerations (Draft),” NIST Special Publication 800-162, pp. 1-54 (Year: 2013). |
Huang, et al, “A Study on Information Security Management with Personal Data Protection,” IEEE, Dec. 9, 2011, pp. 624-630 (Year: 2011). |
Huner et al, “Towards a Maturity Model for Corporate Data Quality Management”, ACM, pp. 231-238, 2009 (Year: 2009). |
Hunton & Williams LLP, The Role of Risk Management in Data Protection, Privacy Risk Framework and the Risk-based Approach to Privacy, Centre for Information Policy Leadership, Workshop II, Nov. 23, 2014. |
Huo et al, “A Cloud Storage Architecture Model for Data-Intensive Applications,” IEEE, pp. 1-4 (Year: 2011). |
IAPP, Daily Dashboard, PIA Tool Stocked With New Templates for DPI, Infosec, International Association of Privacy Professionals, Apr. 22, 2014. |
IAPP, ISO/IEC 27001 Information Security Management Template, Resource Center, International Association of Privacy Professionals. |
Imran et al, “Searching in Cloud Object Storage by Using a Metadata Model”, IEEE, 2014, retrieved online on Apr. 1, 2020, pp. 121-128. Retrieved from the Internet: URL: https://ieeeexplore.ieee.org/stamp/stamp.jsp? (Year: 2014). |
Islam, et al, “Mixture Model Based Label Association Techniques for Web Accessibility,” ACM, pp. 67-76 (Year: 2010). |
Jensen, et al, “Temporal Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, No. 1, Jan./Feb. 1999, pp. 36-44 (Year: 1999). |
Joel Reardon et al., Secure Data Deletion from Persistent Media, ACM, Nov. 4, 2013, retrieved online on Jun. 13, 2019, pp. 271-283. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/2520000/2516699/p271-reardon.pdf? (Year: 2013). |
Joonbakhsh et al, “Mining and Extraction of Personal Software Process measures through IDE Interaction logs,” ACM/IEEE, 2018, retrieved online on Dec. 2, 2019, pp. 78-81. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/3200000/3196462/p78-joonbakhsh.pdf? (Year. 2018). |
Jun et al, “Scalable Multi-Access Flash Store for Big Data Analytics,” ACM, pp. 55-64 (Year: 2014). |
Kirkham, et al, “A Personal Data Store for an Internet of Subjects,” IEEE, pp. 92-97 (Year: 2011). |
Korba, Larry et al.; “Private Data Discovery for Privacy Compliance in Collaborative Environments”; Cooperative Design, Visualization, and Engineering; Springer Berlin Heidelberg; Sep. 21, 2008; pp. 142-150. |
Krol, Kat, et al, Control versus Effort in Privacy Warnings for Webforms, ACM, Oct. 24, 2016, pp. 13-23. |
Lamb et al, “Role-Based Access Control for Data Service Integration”, ACM, pp. 3-11 (Year: 2006). |
Leadbetter, et al, “Where Big Data Meets Linked Data: Applying Standard Data Models to Environmental Data Streams,” IEEE, pp. 2929-2937 (Year: 2016). |
Lebeau, Franck, et al., “Model-Based Vulnerability Testing for Web Applications,” 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, pp. 445-452, IEEE, 2013 (Year: 2013). |
Li, Ninghui, et al, t-Closeness: Privacy Beyond k-Anonymity and I-Diversity, IEEE, 2014, p. 106-115. |
Liu et al, “Cross-Geography Scientific Data Transferring Trends and Behavior,” ACM, pp. 267-278 (Year: 2018). |
Liu, Kun, et al, A Framework for Computing the Privacy Scores of Users in Online Social Networks, ACM Transactions on Knowledge Discovery from Data, vol. 5, No. 1, Article 6, Dec. 2010, 30 pages. |
Liu, Yandong, et al., “Finding the Right Consumer: Optimizing for Conversion in Display Advertising Campaigns,” Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Feb. 2, 2012, pp. 473-428 (Year: 2012). |
Lizar et al, “Usable Consents: Tracking and Managing Use of Personal Data with a Consent Transaction Receipt,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 647-652 (Year: 2014). |
Luu, et al, “Combined Local and Holistic Facial Features for Age-Determination,” 2010 11th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Dec. 7, 2010, IEEE, pp. 900-904 (Year: 2010). |
Ma Ziang, et al, “LibRadar: Fast and Accurate Detection of Third-Party Libraries in Android Apps,” 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion (ICSE-C), ACM, May 14, 2016, pp. 653-656, DOI: http://dx.doi.org/10.1145/2889160.2889178, p. 653, r.col, par. 1-3; figure 3 (Year: 2016). |
Mandal, et al, “Automated Age Prediction Using Wrinkles Features of Facial Images and Neural Network,” International Journal of Emerging Engineering Research and Technology, vol. 5, Issue 2, Feb. 2017, pp. 12-20 (Year: 2017). |
Maret et al, “Multimedia Information Interchange: Web Forms Meet Data Servers”, IEEE, pp. 499-505 (Year: 1999). |
Martin, et al, “Hidden Surveillance by Web Sites: Web Bugs in Contemporary Use,” Communications of the ACM, vol. 46, No. 12, Dec. 2003, pp. 258-264. Internet source https://doi.org/10.1145/953460.953509. (Year: 2003). |
McGarth et al, “Digital Library Technology for Locating and Accessing Scientific Data”, ACM, pp. 188-194 (Year: 1999). |
Mesbah et al, “Crawling Ajax-Based Web Applications Through Dynamic Analysis of User Interface State Changes,” ACM Transactions on the Web (TWEB) vol. 6, No. 1, Article 3, Mar. 2012, pp. 1-30 (Year: 2012). |
Moiso et al, “Towards a User-Centric Personal Data Ecosystem The Role of the Bank of Individual's Data,” 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, 2012, pp. 202-209 (Year: 2012). |
Moscoso-Zea et al, “Datawarehouse Design for Educational Data Mining,” IEEE, pp. 1-6 (Year: 2016). |
Mudepalli et al, “An efficient data retrieval approach using blowfish encryption on cloud CipherText Retrieval in Cloud Computing” IEEE, pp. 267-271 (Year: 2017). |
Mundada et al, “Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web,” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 675-685 (Year: 2016). |
Restriction Requirement, dated Jan. 18, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Restriction Requirement, dated Jul. 28, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Restriction Requirement, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Restriction Requirement, dated May 5, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Restriction Requirement, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/586,202. |
Restriction Requirement, dated Nov. 21, 2016, from corresponding U.S. Appl. No. 15/254,901. |
Restriction Requirement, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/563,744. |
Restriction Requirement, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/055,984. |
Restriction Requirement, dated Oct. 6, 2021, from corresponding U.S. Appl. No. 17/340,699. |
Restriction Requirement, dated Sep. 15, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Restriction Requirement, dated Sep. 9, 2019, from corresponding U.S. Appl. No. 16/505,426. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Advisory Action, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Advisory Action, dated Jun. 19, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Advisory Action, dated Jun. 2, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Advisory Action, dated May 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
Written Opinion of the International Searching Authority, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
Written Opinion of the International Searching Authority, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
Written Opinion of the International Searching Authority, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
Written Opinion of the International Searching Authority, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
Written Opinion of the International Searching Authority, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
Written Opinion of the International Searching Authority, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
Written Opinion of the International Searching Authority, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
Written Opinion of the International Searching Authority, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
Written Opinion of the International Searching Authority, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
Written Opinion of the International Searching Authority, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
Written Opinion of the International Searching Authority, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
Written Opinion of the International Searching Authority, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
Yang et al, “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems,” IEEE, pp. 1790-1801 (Year: 2013). |
Yang et al, “Mining Web Access Sequence with Improved Apriori Algorithm,” IEEE, 2017, pp. 780-784 (Year: 2017). |
Ye et al, “An Evolution-Based Cache Scheme for Scalable Mobile Data Access,” ACM, pp. 1-7 (Year: 2007). |
Yin et al, “Multibank Memory Optimization for Parallel Data Access in Multiple Data Arrays”, ACM, pp. 1-8 (Year: 2016). |
Yu et al, “Outsourced Similarity Search on Metric Data Assets”, IEEE, pp. 338-352 (Year: 2012). |
Yu, “Using Data from Social Media Websites to Inspire the Design of Assistive Technology”, ACM, pp. 1-2 (Year: 2016). |
Yu, et al, “Performance and Fairness Issues in Big Data Transfers,” ACM, pp. 9-11 (Year: 2014). |
Zannone, et al, “Maintaining Privacy on Derived Objects,” ACM, pp. 10-19 (Year: 2005). |
Zeldovich, Nickolai, et al, Making Information Flow Explicit in HiStar, OSDI '06: 7th USENIX Symposium on Operating Systems Design and Implementation, USENIX Association, p. 263-278. |
Zhang et al, “Data Transfer Performance Issues for a Web Services Interface to Synchrotron Experiments”, ACM, pp. 59-65 (Year: 2007). |
Zhang et al, “Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data”, ACM, pp. 1425-1434 (Year: 2015). |
Zheng, et al, “Methodologies for Cross-Domain Data Fusion: An Overview,” IEEE, pp. 16-34 (Year: 2015). |
Zheng, et al, “Toward Assured Data Deletion in Cloud Storage,” IEEE, vol. 34, No. 3, pp. 101-107 May/Jun. 2020 (Year: 2020). |
Zhu, et al, “Dynamic Data Integration Using Web Services,” IEEE, pp. 1-8 (Year: 2004). |
Office Action, dated Aug. 18, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Office Action, dated Aug. 19, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Office Action, dated Aug. 20, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Office Action, dated Aug. 23, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Office Action, dated Aug. 24, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Aug. 27, 2019, from corresponding U.S. Appl. No. 16/410,296. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/334,948. |
Office Action, dated Aug. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Office Action, dated Aug. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Office Action, dated Aug. 6, 2019, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Aug. 6, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Office Action, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/578,712. |
Office Action, dated Dec. 14, 2018, from corresponding U.S. Appl. No. 16/104,393. |
Office Action, dated Dec. 15, 2016, from corresponding U.S. Appl. No. 15/256,419. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/563,754. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/565,265. |
Office Action, dated Dec. 16, 2020, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Dec. 18, 2020, from corresponding U.S. Appl. No. 17/030,714. |
Office Action, dated Dec. 19, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Dec. 2, 2019, from corresponding U.S. Appl. No. 16/560,963. |
Office Action, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/593,639. |
Office Action, dated Dec. 24, 2020, from corresponding U.S. Appl. No. 17/068,454. |
Office Action, dated Dec. 3, 2018, from corresponding U.S. Appl. No. 16/055,998. |
Office Action, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/160,577. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/013,758. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/068,198. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Office Action, dated Feb. 15, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Office Action, dated Feb. 17, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated Feb. 18, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Feb. 2, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Office Action, dated Feb. 26, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Office Action, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Office Action, dated Feb. 5, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Office Action, dated Feb. 6, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Office Action, dated Feb. 9, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated Jan. 18, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Office Action, dated Jan. 22, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Office Action, dated Jan. 27, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Office Action, dated Jan. 28, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Office Action, dated Jan. 29, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Ahmad, et al, “Performance of Resource Management Algorithms for Processable Bulk Data Transfer Tasks in Grid Environments,” ACM, pp. 177-188 (Year: 2008). |
Alaa et al, “Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes,” Apr. 27, 2017, IEEE, vol. 65, issue 1, pp. 207-217 (Year: 2017). |
Antunes et al, “Preserving Digital Data in Heterogeneous Environments”, ACM, pp. 345-348, 2009 (Year: 2009). |
Ardagna, et al, “A Privacy-Aware Access Control System,” Journal of Computer Security, 16:4, pp. 369-397 (Year: 2008). |
AvePoint, Automating Privacy Impact Assessments, AvePoint, Inc. |
AvePoint, AvePoint Privacy Impact Assessment 1: User Guide, Cumulative Update 2, Revision E, Feb. 2015, AvePoint, Inc. |
AvePoint, Installing and Configuring the APIA System, International Association of Privacy Professionals, AvePoint, Inc. |
Ball, et al., “Aspects of the Computer-Based Patient Record,” Computers in Healthcare, Springer-Verlag New York Inc., pp. 1-23 (Year: 1992). |
Bang et al, “Building an Effective and Efficient Continuous Web Application Security Program,” 2016 International Conference on Cyber Security Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2016, pp. 1-4 (Year: 2016). |
Barker, “Personalizing Access Control by Generalizing Access Control,” ACM, pp. 149-158 (Year: 2010). |
Barr, “Amazon Rekognition Update—Estimated Age Range for Faces,” AWS News Blog, Feb. 10, 2017, pp. 1-5 (Year: 2017). |
Bayardo et al, “Technological Solutions for Protecting Privacy,” Computer 36.9 (2003), pp. 115-118, (Year: 2003). |
Berezovskiy et al, “A framework for dynamic data source identification and orchestration on the Web”, ACM, pp. 1-8 (Year: 2010). |
Bertino et al, “On Specifying Security Policies for Web Documents with an XML-based Language,” ACM, pp. 57-65 (Year: 2001). |
Bhargav-Spantzel et al., Receipt Management-Transaction History based Trust Establishment, 2007, ACM, p. 82-91. |
Bhuvaneswaran et al, “Redundant Parallel Data Transfer Schemes for the Grid Environment”, ACM, pp. 18 (Year: 2006). |
Bieker, et al, “Privacy-Preserving Authentication Solutions—Best Practices for Implementation and EU Regulatory Perspectives,” Oct. 29, 2014, IEEE, pp. 1-10 (Year: 2014). |
Bin, et al, “Research on Data Mining Models for the Internet of Things,” IEEE, pp. 1-6 (Year: 2010). |
Binns, et al, “Data Havens, or Privacy Sans Frontières? A Study of International Personal Data Transfers,” ACM, pp. 273-274 (Year: 2002). |
Borgida, “Description Logics in Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, No. 5, Oct. 1995, pp. 671-682 (Year: 1995). |
Brandt et al, “Efficient Metadata Management in Large Distributed Storage Systems,” IEEE, pp. 1-9 (Year: 2003). |
Byun, Ji-Won, Elisa Bertino, and Ninghui Li. “Purpose based access control of complex data for privacy protection.” Proceedings of the tenth ACM symposium on Access control models and technologies. ACM, 2005. (Year: 2005). |
Carminati et al, “Enforcing Access Control Over Data Streams,” ACM, pp. 21-30 (Year: 2007). |
Carpineto et al, “Automatic Assessment of Website Compliance to the European Cookie Law with CooLCheck,” Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 135-138 (Year: 2016). |
Cerpzone, “How to Access Data on Data Archival Storage and Recovery System”, https://www.saj.usace.army.mil/Portals/44/docs/Environmental/Lake%20O%20Watershed/15February2017/How%20To%20Access%20Model%20Data%20on%20DASR.pdf?ver=2017-02-16-095535-633, Feb. 16, 2017. |
Cha et al, “A Data-Driven Security Risk Assessment Scheme for Personal Data Protection,” IEEE, pp. 50510-50517 (Year: 2018). |
Cha, et al, “Process-Oriented Approach for Validating Asset Value for Evaluating Information Security Risk,” IEEE, Aug. 31, 2009, pp. 379-385 (Year: 2009). |
Chapados et al, “Scoring Models for Insurance Risk Sharing Pool Optimization,” 2008, IEEE, pp. 97-105 (Year: 2008). |
Cheng, Raymond, et al, “Radiatus: A Shared-Nothing Server-Side Web Architecture,” Proceedings of the Seventh ACM Symposium on Cloud Computing, Oct. 5, 2016, pp. 237-250 (Year: 2016). |
Choi et al, “Retrieval Effectiveness of Table of Contents and Subject Headings,” ACM, pp. 103-104 (Year: 2007). |
Chowdhury et al, “A System Architecture for Subject-Centric Data Sharing”, ACM, pp. 1-10 (Year: 2018). |
Chowdhury et al, “Managing Data Transfers in Computer Clusters with Orchestra,” ACM, pp. 98-109 (Year: 2011). |
Decision Regarding Institution of Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 11, 2018. |
Dimou et al, “Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval”, ACM, pp. 145-152 (Year: 2015). |
Dokholyan et al, “Regulatory and Ethical Considerations for Linking Clinical and Administrative Databases,” American Heart Journal 157.6 (2009), pp. 971-982 (Year: 2009). |
Dunkel et al, “Data Organization and Access for Efficient Data Mining”, IEEE, pp. 522-529 (Year: 1999). |
Dwork, Cynthia, Differential Privacy, Microsoft Research, p. 1-12. |
Emerson, et al, “A Data Mining Driven Risk Profiling Method for Road Asset Management,” ACM, pp. 1267-1275 (Year: 2013). |
Enck, William, et al, TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, ACM Transactions on Computer Systems, vol. 32, No. 2, Article 5, Jun. 2014, p. 5:1-5:29. |
Everypixel Team, “A New Age Recognition API Detects the Age of People on Photos,” May 20, 2019, pp. 1-5 (Year: 2019). |
Falahrastegar, Marjan, et al, Tracking Personal Identifiers Across the Web, Medical Image Computing and Computer-Assisted Intervention—Miccai 2015, 18th International Conference, Oct. 5, 2015, Munich, Germany. |
Final Written Decision Regarding Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 10, 2019. |
Francis, Andre, Business Mathematics and Statistics, South-Western Cengage Learning, 2008, Sixth Edition. |
Friedman et al, “Data Mining with Differential Privacy,” ACM, Jul. 2010, pp. 493-502 (Year: 2010). |
Friedman et al, “Informed Consent in the Mozilla Browser: Implementing Value-Sensitive Design,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, IEEE, pp. 1-10 (Year: 2002). |
Frikken, Keith B., et al, Yet Another Privacy Metric for Publishing Micro-data, Miami University, Oct. 27, 2008, p. 117-121. |
Fung et al, “Discover Information and Knowledge from Websites using an Integrated Summarization and Visualization Framework”, IEEE, pp. 232-235 (Year: 2010). |
Gajare et al, “Improved Automatic Feature Selection Approach for Health Risk Prediction,” Feb. 16, 2018, IEEE, pp. 816-819 (Year: 2018). |
Ghiglieri, Marco et al.; Personal DLP for Facebook, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops); IEEE; Mar. 24, 2014; pp. 629-634. |
Gilda, et al, “Blockchain for Student Data Privacy and Consent,” 2018 International Conference on Computer Communication and Informatics, Jan. 4-6, 2018, IEEE, pp. 1-5 (Year: 2018). |
Office Action, dated Nov. 15, 2018, from corresponding U.S. Appl. No. 16/059,911. |
Office Action, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/552,758. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,885. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,889. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/572,347. |
Office Action, dated Nov. 19, 2019, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Nov. 20, 2019, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Nov. 23, 2018, from corresponding U.S. Appl. No. 16/042,673. |
Office Action, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/041,563. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,083. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,944. |
Office Action, dated Oct. 12, 2021, from corresponding U.S. Appl. No. 17/346,509. |
Office Action, dated Oct. 14, 2020, from corresponding U.S. Appl. No. 16/927,658. |
Office Action, dated Oct. 15, 2018, from corresponding U.S. Appl. No. 16/054,780. |
Office Action, dated Oct. 16, 2019, from corresponding U.S. Appl. No. 16/557,392. |
Office Action, dated Oct. 16, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Office Action, dated Oct. 23, 2018, from corresponding U.S. Appl. No. 16/055,961. |
Office Action, dated Oct. 26, 2018, from corresponding U.S. Appl. No. 16/041,468. |
Office Action, dated Oct. 8, 2019, from corresponding U.S. Appl. No. 16/552,765. |
Office Action, dated Sep. 1, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,375. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,478. |
Office Action, dated Sep. 15, 2021, from corresponding U.S. Appl. No. 16/623,157. |
Office Action, dated Sep. 16, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Office Action, dated Sep. 19, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Office Action, dated Sep. 22, 2017, from corresponding U.S. Appl. No. 15/619,278. |
Office Action, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/342,153. |
Office Action, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Office Action, dated Sep. 5, 2017, from corresponding U.S. Appl. No. 15/619,469. |
Office Action, dated Sep. 6, 2017, from corresponding U.S. Appl. No. 15/619,479. |
Office Action, dated Sep. 7, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Office Action, dated Sep. 8, 2017, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Apr. 12, 2017, from corresponding U.S. Appl. No. 15/256,419. |
Notice of Allowance, dated Apr. 17, 2020, from corresponding U.S. Appl. No. 16/593,639. |
Notice of Allowance, dated Apr. 19, 2021, from corresponding U.S. Appl. No. 17/164,029. |
Notice of Allowance, dated Apr. 2, 2019, from corresponding U.S. Appl. No. 16/160,577. |
Notice of Allowance, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/162,006. |
Notice of Allowance, dated Apr. 22, 2021, from corresponding U.S. Appl. No. 17/163,701. |
Notice of Allowance, dated Apr. 25, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/135,445. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/181,828. |
Notice of Allowance, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/565,265. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/820,346. |
Notice of Allowance, dated Apr. 30, 2021, from corresponding U.S. Appl. No. 16/410,762. |
Notice of Allowance, dated Apr. 8, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Notice of Allowance, dated Apr. 8, 2020, from corresponding U.S. Appl. No. 16/791,348. |
Notice of Allowance, dated Apr. 9, 2020, from corresponding U.S. Appl. No. 16/791,075. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Notice of Allowance, dated Feb. 25, 2020, from corresponding U.S. Appl. No. 16/714,355. |
Notice of Allowance, dated Feb. 25, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Notice of Allowance, dated Feb. 26, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/041,468. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/226,290. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 16/827,039. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/068,558. |
Notice of Allowance, dated Jan. 1, 2021, from corresponding U.S. Appl. No. 17/026,727. |
Notice of Allowance, dated Jan. 14, 2020, from corresponding U.S. Appl. No. 16/277,715. |
Notice of Allowance, dated Jan. 15, 2021, from corresponding U.S. Appl. No. 17/030,714. |
Notice of Allowance, dated Jan. 18, 2018, from corresponding U.S. Appl. No. 15/619,478. |
Notice of Allowance, dated Jan. 18, 2019 from corresponding U.S. Appl. No. 16/159,635. |
Notice of Allowance, dated Jan. 2, 2020, from corresponding U.S. Appl. No. 16/410,296. |
Notice of Allowance, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Jan. 25, 2021, from corresponding U.S. Appl. No. 16/410,336. |
Notice of Allowance, dated Jan. 26, 2018, from corresponding U.S. Appl. No. 15/619,469. |
Notice of Allowance, dated Jan. 29, 2020, from corresponding U.S. Appl. No. 16/278,119. |
Notice of Allowance, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/595,327. |
Notice of Allowance, dated Jan. 8, 2020, from corresponding U.S. Appl. No. 16/600,879. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/403,358. |
Notice of Allowance, dated Jul. 12, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Notice of Allowance, dated Jul. 14, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Notice of Allowance, dated Jul. 15, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Notice of Allowance, dated Jul. 16, 2020, from corresponding U.S. Appl. No. 16/901,979. |
Notice of Allowance, dated Jul. 17, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Notice of Allowance, dated Jul. 17, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Notice of Allowance, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/306,252. |
Notice of Allowance, dated Jul. 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Notice of Allowance, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Notice of Allowance, dated Jul. 26, 2019, from corresponding U.S. Appl. No. 16/409,673. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/207,316. |
Notice of Allowance, dated Jul. 31, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Notice of Allowance, dated Jul. 8, 2021, from corresponding U.S. Appl. No. 17/201,040. |
Notice of Allowance, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/813,321. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 17/216,436. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/278,123. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/363,454. |
Notice of Allowance, dated Jun. 16, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Notice of Allowance, dated Jun. 17, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Notice of Allowance, dated Jun. 18, 2019, from corresponding U.S. Appl. No. 16/410,566. |
Notice of Allowance, dated Jun. 19, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/042,673. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Notice of Allowance, dated Jun. 2, 2021, from corresponding U.S. Appl. No. 17/198,581. |
Notice of Allowance, dated Jun. 21, 2019, from corresponding U.S. Appl. No. 16/404,439. |
Notice of Allowance, dated Jun. 22, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Bjorn Greif, “Cookie Pop-up Blocker: Cliqz Automatically Denies Consent Requests,” Cliqz.com, pp. 1-9, Aug. 11, 2019 (Year: 2019). |
Final Office Action, dated Dec. 10, 2021, from corresponding U.S. Appl. No. 17/187,329. |
He et al, “A Crowdsourcing Framework for Detecting of Cross-Browser Issues in Web Application,” ACM, pp. 1-4, Nov. 6, 2015 (Year: 2015). |
International Search Report, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
Jones et al, “AI and the Ethics of Automating Consent,” IEEE, pp. 64-72, May 2018 (Year: 2018). |
Liu et al, “A Novel Approach for Detecting Browser-based Silent Miner,” IEEE, pp. 490-497 (Year: 2018). |
Lu et al, “An HTTP Flooding Detection Method Based on Browser Behavior,” IEEE, pp. 1151-1154 (Year: 2006). |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/347,853. |
Notice of Allowance, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Notice of Allowance, dated Dec. 8, 2021, from corresponding U.S. Appl. No. 17/397,472. |
Nouwens et al, “Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence,” ACM, pp. 1-13, Apr. 25, 2020 (Year: 2020). |
Office Action, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/476,209. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/395,759. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/499,582. |
Office Action, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 17/504,102. |
Office Action, dated Dec. 27, 2021, from corresponding U.S. Appl. No. 17/493,332. |
Office Action, dated Dec. 29, 2021, from corresponding U.S. Appl. No. 17/479,807. |
Office Action, dated Dec. 7, 2021, from corresponding U.S. Appl. No. 17/499,609. |
Paes, “Student Research Abstract: Automatic Detection of Cross-Browser Incompatibilities using Machine Learning and Screenshot Similarity,” ACM, pp. 697-698, Apr. 3, 2017 (Year: 2017). |
Restriction Requirement, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/475,244. |
Shahriar et al, “A Model-Based Detection of Vulnerable and Malicious Browser Extensions,” IEEE, pp. 198-207 (Year: 2013). |
Sjosten et al, “Discovering Browser Extensions via Web Accessible Resources,” ACM, pp. 329-336, Mar. 22, 2017 (Year: 2017). |
Written Opinion of the International Searching Authority, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Notice of Allowance, dated Aug. 12, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Notice of Allowance, dated Aug. 12, 2021, from corresponding U.S. Appl. No. 16/881,832. |
Notice of Allowance, dated Aug. 14, 2018, from corresponding U.S. Appl. No. 15/989,416. |
Notice of Allowance, dated Aug. 18, 2017, from corresponding U.S. Appl. No. 15/619,455. |
Notice of Allowance, dated Aug. 20, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Notice of Allowance, dated Aug. 24, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Notice of Allowance, dated Aug. 26, 2019, from corresponding U.S. Appl. No. 16/443,374. |
Notice of Allowance, dated Aug. 26, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Notice of Allowance, dated Aug. 28, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Notice of Allowance, dated Aug. 30, 2018, from corresponding U.S. Appl. No. 15/996,208. |
Notice of Allowance, dated Aug. 31, 2021, from corresponding U.S. Appl. No. 17/326,901. |
Notice of Allowance, dated Aug. 4, 2021, from corresponding U.S. Appl. No. 16/895,278. |
Notice of Allowance, dated Aug. 7, 2020, from corresponding U.S. Appl. No. 16/901,973. |
Notice of Allowance, dated Aug. 9, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 16/881,699. |
Notice of Allowance, dated Dec. 10, 2018, from corresponding U.S. Appl. No. 16/105,602. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/593,634. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Notice of Allowance, dated Dec. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Notice of Allowance, dated Dec. 15, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Notice of Allowance, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Notice of Allowance, dated Dec. 17, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Notice of Allowance, dated Dec. 18, 2019, from corresponding U.S. Appl. No. 16/659,437. |
Notice of Allowance, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/656,835. |
Notice of Allowance, dated Dec. 23, 2020, from corresponding U.S. Appl. No. 17/068,557. |
Notice of Allowance, dated Dec. 3, 2019, from corresponding U.S. Appl. No. 16/563,749. |
Notice of Allowance, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/159,634. |
Notice of Allowance, dated Dec. 31, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Notice of Allowance, dated Dec. 4, 2019, from corresponding U.S. Appl. No. 16/594,670. |
Notice of Allowance, dated Dec. 5, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Notice of Allowance, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Notice of Allowance, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,261. |
Notice of Allowance, dated Dec. 9, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Notice of Allowance, dated Feb. 10, 2020, from corresponding U.S. Appl. No. 16/552,765. |
Notice of Allowance, dated Feb. 11, 2021, from corresponding U.S. Appl. No. 17/086,732. |
Notice of Allowance, dated Feb. 12, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Notice of Allowance, dated Feb. 13, 2019, from corresponding U.S. Appl. No. 16/041,563. |
Notice of Allowance, dated Feb. 14, 2019, from corresponding U.S. Appl. No. 16/226,272. |
Notice of Allowance, dated Feb. 19, 2019, from corresponding U.S. Appl. No. 16/159,632. |
Notice of Allowance, dated Feb. 19, 2021, from corresponding U.S. Appl. No. 16/832,451. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/034,355. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/068,198. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,253. |
Notice of Allowance, dated Nov. 2, 2018, from corresponding U.S. Appl. No. 16/054,762. |
Notice of Allowance, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Notice of Allowance, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 17/027,019. |
Notice of Allowance, dated Nov. 25, 2020, from corresponding U.S. Appl. No. 17/019,771. |
Notice of Allowance, dated Nov. 26, 2019, from corresponding U.S. Appl. No. 16/563,735. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/570,712. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/577,634. |
Notice of Allowance, dated Nov. 3, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Notice of Allowance, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/560,965. |
Notice of Allowance, dated Nov. 7, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Notice of Allowance, dated Nov. 8, 2018, from corresponding U.S. Appl. No. 16/042,642. |
Notice of Allowance, dated Nov. 9, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Notice of Allowance, dated Oct. 1, 2021, from corresponding U.S. Appl. No. 17/340,395. |
Notice of Allowance, dated Oct. 10, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/054,672. |
Notice of Allowance, dated Oct. 17, 2019, from corresponding U.S. Appl. No. 16/563,741. |
Notice of Allowance, dated Oct. 21, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Notice of Allowance, dated Oct. 21, 2020, from corresponding U.S. Appl. No. 16/834,812. |
Notice of Allowance, dated Oct. 3, 2019, from corresponding U.S. Appl. No. 16/511,700. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Notice of Allowance, dated Sep. 12, 2019, from corresponding U.S. Appl. No. 16/512,011. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Sep. 14, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Notice of Allowance, dated Sep. 16, 2020, from corresponding U.S. Appl. No. 16/915,097. |
Notice of Allowance, dated Sep. 17, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 16/041,545. |
Notice of Allowance, dated Sep. 18, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Notice of Allowance, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Notice of Allowance, dated Sep. 23, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Notice of Allowance, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/334,939. |
Notice of Allowance, dated Sep. 25, 2020, from corresponding U.S. Appl. No. 16/983,536. |
Notice of Allowance, dated Sep. 27, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Notice of Allowance, dated Sep. 27, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Notice of Allowance, dated Sep. 28, 2018, from corresponding U.S. Appl. No. 16/041,520. |
Notice of Allowance, dated Sep. 29, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Notice of Allowance, dated Sep. 4, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/901,662. |
Notice of Allowance, dated Sep. 9, 2021, from corresponding U.S. Appl. No. 17/334,909. |
Restriction Requirement, dated Apr. 10, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Restriction Requirement, dated Apr. 13, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Restriction Requirement, dated Apr. 24, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Restriction Requirement, dated Aug. 7, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Restriction Requirement, dated Aug. 9, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Restriction Requirement, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 15/169,668. |
Restriction Requirement, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,395. |
Written Opinion of the International Searching Authority, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
Written Opinion of the International Searching Authority, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
Written Opinion of the International Searching Authority, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
Written Opinion of the International Searching Authority, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631. |
International Search Report, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
International Search Report, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
International Search Report, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
International Search Report, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
International Search Report, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
International Search Report, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
International Search Report, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
International Search Report, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
International Search Report, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
International Search Report, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
International Search Report, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
International Search Report, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
International Search Report, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
International Search Report, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
International Search Report, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
International Search Report, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
International Search Report, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
International Search Report, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036912. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036917. |
Invitation to Pay Additional Search Fees, dated Aug. 24, 2017, from corresponding International Application No. PCT/US2017/036888. |
Invitation to Pay Additional Search Fees, dated Jan. 18, 2019, from corresponding International Application No. PCT/US2018/055736. |
Invitation to Pay Additional Search Fees, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055773. |
Invitation to Pay Additional Search Fees, dated Jan. 8, 2019, from corresponding International Application No. PCT/US2018/055774. |
Invitation to Pay Additional Search Fees, dated Oct. 23, 2018, from corresponding International Application No. PCT/US2018/045296. |
Abdullah et al, “The Mapping Process of Unstructured Data to the Structured Data”, ACM, pp. 151-155 (Year: 2013). |
Acar, Gunes, et al, The Web Never Forgets, Computer and Communications Security, ACM, Nov. 3, 2014, pp. 674-689. |
Aghasian, Erfan, et al, Scoring Users' Privacy Disclosure Across Multiple Online Social Networks,IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Jul. 31, 2017, vol. 5, 2017. |
Agosti et al, “Access and Exchange of Hierarchically Structured Resources on the Web with the NESTOR Framework”, IEEE, pp. 659-662 (Year: 2009). |
Agrawal et al, “Securing Electronic Health Records Without Impeding the Flow of Information,” International Journal of Medical Informatics 76, 2007, pp. 471-479 (Year: 2007). |
Ahmad et al, “Task-Oriented Access Model for Secure Data Sharing Over Cloud,” ACM, pp. 1-7 (Year: 2015). |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Office Action, dated Jan. 4, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Jan. 7, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Office Action, dated Jul. 13, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jul. 15, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Jul. 18, 2019, from corresponding U.S. Appl. No. 16/410,762. |
Office Action, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Office Action, dated Jul. 21, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Office Action, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Office Action, dated Jul. 24, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Jul. 27, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Jun. 24, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Jun. 24, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Office Action, dated Jun. 27, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Office Action, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Office Action, dated Mar. 11, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Office Action, dated Mar. 12, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Office Action, dated Mar. 15, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Office Action, dated Mar. 20, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Office Action, dated Mar. 23, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Office Action, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Office Action, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Office Action, dated Mar. 30, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Office Action, dated Mar. 4, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Office Action, dated May 15, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated May 16, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Office Action, dated May 17, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Office Action, dated May 18, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Office Action, dated May 2, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Office Action, dated May 2, 2019, from corresponding U.S. Appl. No. 16/104,628. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Office Action, dated May 5, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Nov. 1, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,355. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Notice of Allowance, dated Jun. 27, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Jun. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/357,260. |
Notice of Allowance, dated Jun. 6, 2018, from corresponding U.S. Appl. No. 15/875,570. |
Notice of Allowance, dated Jun. 6, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Notice of Allowance, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Notice of Allowance, dated Jun. 8, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Notice of Allowance, dated Mar. 1, 2018, from corresponding U.S. Appl. No. 15/853,674. |
Notice of Allowance, dated Mar. 1, 2019, from corresponding U.S. Appl. No. 16/059,911. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 16/925,628. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 17/128,666. |
Notice of Allowance, dated Mar. 13, 2019, from corresponding U.S. Appl. No. 16/055,083. |
Notice of Allowance, dated Mar. 14, 2019, from corresponding U.S. Appl. No. 16/055,944. |
Notice of Allowance, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/778,704. |
Notice of Allowance, dated Mar. 16, 2021, from corresponding U.S. Appl. No. 17/149,380. |
Notice of Allowance, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/560,885. |
Notice of Allowance, dated Mar. 18, 2020, from corresponding U.S. Appl. No. 16/560,963. |
Notice of Allowance, dated Mar. 19, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Notice of Allowance, dated Mar. 2, 2018, from corresponding U.S. Appl. No. 15/858,802. |
Notice of Allowance, dated Mar. 24, 2020, from corresponding U.S. Appl. No. 16/552,758. |
Notice of Allowance, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/054,780. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/560,889. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/578,712. |
Notice of Allowance, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/226,280. |
Notice of Allowance, dated Mar. 29, 2019, from corresponding U.S. Appl. No. 16/055,998. |
Notice of Allowance, dated Mar. 31, 2020, from corresponding U.S. Appl. No. 16/563,744. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/013,758. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/162,205. |
Notice of Allowance, dated May 1, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Notice of Allowance, dated May 11, 2020, from corresponding U.S. Appl. No. 16/786,196. |
Notice of Allowance, dated May 13, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/808,496. |
Notice of Allowance, dated May 20, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Notice of Allowance, dated May 21, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/865,874. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 17/199,514. |
Notice of Allowance, dated May 27, 2020, from corresponding U.S. Appl. No. 16/820,208. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 17/198,757. |
Notice of Allowance, dated May 28, 2019, from corresponding U.S. Appl. No. 16/277,568. |
Notice of Allowance, dated May 28, 2020, from corresponding U.S. Appl. No. 16/799,279. |
Notice of Allowance, dated May 28, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Notice of Allowance, dated May 5, 2017, from corresponding U.S. Appl. No. 15/254,901. |
Notice of Allowance, dated May 5, 2020, from corresponding U.S. Appl. No. 16/563,754. |
Notice of Allowance, dated May 7, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Notice of Allowance, dated May 7, 2021, from corresponding U.S. Appl. No. 17/194,662. |
Notice of Allowance, dated Nov. 14, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Newman et al, “High Speed Scientific Data Transfers using Software Defined Networking,” ACM, pp. 1-9 (Year: 2015). |
Newman, “Email Archive Overviews using Subject Indexes”, ACM, pp. 652-653, 2002 (Year: 2002). |
Nishikawa, Taiji, English Translation of JP 2019154505, Aug. 27, 2019 (Year: 2019). |
Notice of Filing Date for Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Apr. 12, 2018. |
O'Keefe et al, “Privacy-Preserving Data Linkage Protocols,” Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004, pp. 94-102 (Year: 2004). |
Olenski, Steve, For Consumers, Data Is A Matter Of Trust, CMO Network, Apr. 18, 2016, https://www.forbes.com/sites/steveolenski/2016/04/18/for-consumers-data-is-a-matter-of-trust/#2e48496278b3. |
Pearson, et al, “A Model-Based Privacy Compliance Checker,” IJEBR, vol. 5, No. 2, pp. 63-83, 2009, Nov. 21, 2008. [Online]. Available: http://dx.doi.org/10.4018/jebr.2009040104 (Year: 2008). |
Pechenizkiy et al, “Process Mining Online Assessment Data,” Educational Data Mining, pp. 279-288 (Year: 2009). |
Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Mar. 27, 2018. |
Petrie et al, “The Relationship between Accessibility and Usability of Websites”, ACM, pp. 397-406 (Year: 2007). |
Pfeifle, Sam, The Privacy Advisor, IAPP and AvePoint Launch New Free PIA Tool, International Association of Privacy Professionals, Mar. 5, 2014. |
Pfeifle, Sam, The Privacy Advisor, IAPP Heads to Singapore with APIA Template in Tow, International Association of Privacy Professionals, https://iapp.org/news/a/iapp-heads-to-singapore-with-apia-template_in_tow/, Mar. 28, 2014, p. 1-3. |
Ping et al, “Wide Area Placement of Data Replicas for Fast and Highly Available Data Access,” ACM, pp. 1-8 (Year: 2011). |
Popescu-Zeletin, “The Data Access and Transfer Support in a Local Heterogeneous Network (HMINET)”, IEEE, pp. 147-152 (Year: 1979). |
Porter, “De-Identified Data and Third Party Data Mining: The Risk of Re-Identification of Personal Information,” Shidler JL Com. & Tech. 5, 2008, pp. 1-9 (Year: 2008). |
Pretorius, et al, “Attributing Users Based on Web Browser History,” 2017 IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 69-74 (Year: 2017). |
Qing-Jiang et al, “The (P, a, K) Anonymity Model for Privacy Protection of Personal Information in the Social Networks,” 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2 IEEE, 2011, pp. 420-423 (Year: 2011). |
Qiu, et al, “Design and Application of Data Integration Platform Based on Web Services and XML,” IEEE, pp. 253-256 (Year: 2016). |
Radu, et al, “Analyzing Risk Evaluation Frameworks and Risk Assessment Methods,” IEEE, Dec. 12, 2020, pp. 1-6 (Year. 2020). |
Reardon et al., User-Level Secure Deletion on Log-Structured File Systems, ACM, 2012, retrieved online on Apr. 22, 2021, pp. 1-11. Retrieved from the Internet: URL: http://citeseerx.ist.psu.edu/viewdoc/download; sessionid=450713515DC7F19F8ED09AE961D4B60E. (Year: 2012). |
Regulation (EU) 2016/679, “On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation),” Official Journal of the European Union, May 4, 2016, pp. L 119/1-L 119/88 (Year: 2016). |
Rozepz, “What is Google Privacy Checkup? Everything You Need to Know,” Tom's Guide web post, Apr. 26, 2018, pp. 1-11 (Year: 2018). |
Salim et al, “Data Retrieval and Security using Lightweight Directory Access Protocol”, IEEE, pp. 685-688 (Year: 2009). |
Santhisree, et al, “Web Usage Data Clustering Using Dbscan Algorithm and Set Similarities,” IEEE, pp. 220-224 (Year: 2010). |
Sanzo et al, “Analytical Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data Access Patterns,” ACM, pp. 69-78 (Year: 2010). |
Schwartz, Edward J., et al, 2010 IEEE Symposium on Security and Privacy: All You Ever Wanted to Know About Dynamic Analysis and forward Symbolic Execution (but might have been afraid to ask), Carnegie Mellon University, IEEE Computer Society, 2010, p. 317-331. |
Sedinic et al, “Security Risk Management in Complex Organization,” May 29, 2015, IEEE, pp. 1331-1337 (Year: 2015). |
Singh, et al, “A Metadata Catalog Service for Data Intensive Applications,” ACM, pp. 1-17 (Year: 2003). |
Slezak, et al, “Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries,” ACM, pp. 1337-1345 (Year: 2008). |
Soceanu, et al, “Managing the Privacy and Security of eHealth Data,” May 29, 2015, IEEE, pp. 1-8 (Year: 2015). |
Srinivasan et al, “Descriptive Data Analysis of File Transfer Data,” ACM, pp. 1-8 (Year: 2014). |
Srivastava, Agrima, et al, Measuring Privacy Leaks in Online Social Networks, International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013. |
Stack Overflow, “Is there a way to force a user to scroll to the bottom of a div?,” Stack Overflow, pp. 1-11, Nov. 2013. [Online]. Available: https://stackoverflow.com/questions/2745935/is-there-a-way-to-force-a-user-to-scroll-to-the-bottom-of-a-div (Year: 2013). |
Stern, Joanna, “iPhone Privacy Is Broken . . . and Apps Are to Blame”, The Wall Street Journal, wsj.com, May 31, 2019. |
Strodl, et al, “Personal & SOHO Archiving,” Vienna University of Technology, Vienna, Austria, JCDL '08, Jun. 16-20, 2008, Pittsburgh, Pennsylvania, USA, pp. 115-123 (Year: 2008). |
Sukumar et al, “Review on Modern Data Preprocessing Techniques in Web Usage Mining (WUM),” IEEE, 2016, pp. 64-69 (Year: 2016). |
Symantec, Symantex Data Loss Prevention—Discover, monitor, and protect confidential data; 2008; Symantec Corporation; http://www.mssuk.com/images/Symantec%2014552315_IRC_BR_DLP_03.09_sngl.pdf. |
Tanasa et al, “Advanced Data Preprocessing for Intersites Web Usage Mining,” IEEE, Mar. 2004, pp. 59-65 (Year: 2004). |
Tanwar, et al, “Live Forensics Analysis: Violations of Business Security Policy,” 2014 International Conference on Contemporary Computing and Informatics (IC31), 2014, pp. 971-976 (Year: 2014). |
The Cookie Collective, Optanon Cookie Policy Generator, The Cookie Collective, Year 2016, http://web.archive.org/web/20160324062743/https:/optanon.com/. |
Thuraisingham, “Security Issues for the Semantic Web,” Proceedings 27th Annual International Computer Software and Applications Conference, Compsac 2003, Dallas, TX, USA, 2003, pp. 633-638 (Year: 2003). |
TRUSTe Announces General Availability of Assessment Manager for Enterprises to Streamline Data Privacy Management with Automation, PRNewswire, Mar. 4, 2015. |
Tsai et al, “Determinants of Intangible Assets Value: The Data Mining Approach,” Knowledge Based System, pp. 67-77 http://www.elsevier.com/locate/knosys (Year: 2012). |
Tuomas Aura et al., Scanning Electronic Documents for Personally Identifiable Information, ACM, Oct. 30, 2006, retrieved online on Jun. 13, 2019, pp. 41-49. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/1180000/1179608/p41-aura.pdf? (Year: 2006). |
Wang et al, “Revealing Key Non-Financial Factors for Online Credit-Scoring in E-Financing,” 2013, IEEE, pp. 1-6 (Year: 2013). |
Wang et al, “Secure and Efficient Access to Outsourced Data,” ACM, pp. 55-65 (Year: 2009). |
Weaver et al, “Understanding Information Preview in Mobile Email Processing”, ACM, pp. 303-312, 2011 (Year: 2011). |
Wu et al, “Data Mining with Big Data,” IEEE, Jan. 2014, pp. 97-107, vol. 26, No. 1, (Year: 2014). |
www.truste.com (1), 200150207, Internet Archive Wayback Machine, www.archive.org,2_7_2015. |
Xu, et al, “GatorShare: A File System Framework for High-Throughput Data Management,” ACM, pp. 776-786 (Year: 2010). |
Final Office Action, dated Apr. 1, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Final Office Action, dated Apr. 5, 2022, from corresponding U.S. Appl. No. 17/013,756. |
International Search Report, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
International Search Report, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274. |
International Search Report, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Lewis, James et al, “Microservices,” Mar. 25, 2014 (Mar. 25, 2014),XP055907494, Retrieved from the Internet: https://martinfowler.com/articles/micr oservices.html. [retrieved on Mar. 31, 2022]. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/493,332. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/572,298. |
Notice of Allowance, dated Mar. 31, 2022, from corresponding U.S. Appl. No. 17/476,209. |
Office Action, dated Apr. 8, 2022, from corresponding U.S. Appl. No. 16/938,509. |
Restriction Requirement, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/584,187. |
Written Opinion of the International Searching Authority, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
Written Opinion of the International Searching Authority, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274. |
Written Opinion of the International Searching Authority, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Ali et al, “Age Estimation from Facial Images Using Biometric Ratios and Wrinkle Analysis,” IEEE, 2015, pp. 1-5 (Year: 2015). |
Chang et al, “A Ranking Approach for Human Age Estimation Based on Face Images,” IEEE, 2010, pp. 3396-3399 (Year: 2010). |
Edinger et al, “Age and Gender Estimation of Unfiltered Faces,” IEEE, 2014, pp. 2170-2179 (Year: 2014). |
Final Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/149,421. |
Han et al, “Demographic Estimation from Face Images: Human vs. Machine Performance,” IEEE, 2015, pp. 1148-1161 (Year: 2015). |
Huettner, “Digital Risk Management: Protecting Your Privacy, Improving Security, and Preparing for Emergencies,” IEEE, pp. 136-138 (Year: 2006). |
Jayasinghe et al, “Matching Facial Images Using Age Related Morphing Changes,” ISSRI, 2009, pp. 2901-2907 (Year: 2009). |
Khan et al, “Wrinkles Energy Based Age Estimation Using Discrete Cosine Transform,” IEEE, 2015, pp. 1-4 (Year: 2015). |
Kristian et al, “Human Facial Age Classification Using Active Shape Module, Geometrical Feature, and Support Vendor Machine on Early Growth Stage,” ISICO, 2015, pp. 1-8 (Year: 2015). |
Liu et al, “Overview on Ontology Mapping and Approach,” IEEE, pp. 592-595 (Year: 2011). |
Milic et al, “Comparative Analysis of Metadata Models on e-Government Open Data Platforms,” IEEE, pp. 119-130 (Year: 2021). |
Notice of Allowance, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/479,807. |
Notice of Allowance, dated Apr. 14, 2022, from corresponding U.S. Appl. No. 17/572,276. |
Notice of Allowance, dated Apr. 20, 2022, from corresponding U.S. Appl. No. 17/573,808. |
Notice of Allowance, dated Apr. 27, 2022, from corresponding U.S. Appl. No. 17/573,999. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/670,352. |
Office Action, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Office Action, dated Apr. 18, 2022, from corresponding U.S. Appl. No. 17/670,349. |
Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Office Action, dated Apr. 26, 2022, from corresponding U.S. Appl. No. 17/151,334. |
Qu et al, “Metadata Type System: Integrate Presentation, Data Models and Extraction to Enable Exploratory Browsing Interfaces,” ACM, pp. 107-116 (Year: 2014). |
Shulz et al, “Generative Data Models for Validation and Evaluation of Visualization Techniques,” ACM, pp. 1-13 (Year: 2016). |
Final Office Action, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/592,922. |
Notice of Allowance, dated Apr. 29, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Amar et al, “Privacy-Aware Infrastructure for Managing Personal Data,” ACM, pp. 571-572, Aug. 22-26, 2016 (Year: 2016). |
Banerjee et al, “Link Before You Share: Managing Privacy Policies through Blockchain,” IEEE, pp. 4438-4447 (Year: 2017). |
Civili et al, “Mastro Studio: Managing Ontology-Based Data Access Applications,” ACM, pp. 1314-1317, Aug. 26-30, 2013 (Year: 2013). |
Degeling et al, “We Value Your Privacy . . . Now Take Some Cookies: Measuring the GDPRs Impact on Web Privacy,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Aug. 15, 2018, pp. 1-15 (Year: 2019). |
Geko et al, “An Ontology Capturing the Interdependence of the General Data Protection Regulation (GDPR) and Information Security,” ACM, pp. 1-6, Nov. 15-16, 2018 (Year: 2018). |
International Search Report, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Notice of Allowance, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Notice of Allowance, dated Jan. 11, 2022, from corresponding U.S. Appl. No. 17/371,350. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/334,948. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/463,775. |
Notice of Allowance, dated Jan. 24, 2022, from corresponding U.S. Appl. No. 17/340,699. |
Notice of Allowance, dated Jan. 26, 2022, from corresponding U.S. Appl. No. 17/491,906. |
Notice of Allowance, dated Jan. 5, 2022, from corresponding U.S. Appl. No. 17/475,241. |
Notice of Allowance, dated Jan. 6, 2022, from corresponding U.S. Appl. No. 17/407,765. |
Notice of Allowance, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/222,725. |
Office Action, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Jan. 14, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Office Action, dated Jan. 21, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Office Action, dated Jan. 4, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Office Action, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Rakers, “Managing Professional and Personal Sensitive Information,” ACM, pp. 9-13, Oct. 24-27, 2010 (Year: 2010). |
Sachinopoulou et al, “Ontology-Based Approach for Managing Personal Health and Wellness Information,” IEEE, pp. 1802-1805 (Year: 2007). |
Shankar et al, “Doppleganger: Better Browser Privacy Without the Bother,” Proceedings of the 13th ACM Conference on Computer and Communications Security; [ACM Conference on Computer and Communications Security], New York, NY : ACM, US, Oct. 30, 2006, pp. 154-167 (Year: 2006). |
Written Opinion of the International Searching Authority, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Yue et al, “An Automatic HTTP Cookie Management System,” Computer Networks, Elsevier, Amsterdam, NL, vol. 54, No. 13, Sep. 15, 2010, pp. 2182-2198 (Year: 2010). |
International Search Report, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
Jiahao Chen et al. “Fairness Under Unawareness: Assessing Disparity when Protected Class is Unobserved,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Nov. 27, 2018 (Nov. 27, 2018), Section 2, Figure 2. (Year 2018). |
Notice of Allowance, dated Feb. 1, 2022, from corresponding U.S. Appl. No. 17/346,509. |
Notice of Allowance, dated Feb. 14, 2022, from corresponding U.S. Appl. No. 16/623,157. |
Notice of Allowance, dated Feb. 22, 2022, from corresponding U.S. Appl. No. 17/535,065. |
Notice of Allowance, dated Feb. 4, 2022, from corresponding U.S. Appl. No. 17/520,272. |
Notice of Allowance, dated Feb. 8, 2022, from corresponding U.S. Appl. No. 17/342,153. |
Notice of Allowance, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/472,948. |
Office Action, dated Feb. 16, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Office Action, dated Feb. 9, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Office Action, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Sarkar et al, “Towards Enforcement of the EU GDPR: Enabling Data Erasure,” 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, 2018, pp. 222-229, IEEE (Year: 2018). |
Written Opinion of the International Searching Authority, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
Bansal et al, “Integrating Big Data: A Semantic Extract-Transform-Load Framework,” IEEE, pp. 42-50 (Year: 2015). |
Bao et al, “Performance Modeling and Workflow Scheduling of Microservice-Based Applications in Clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, No. 9, Sep. 2019, pp. 2101-2116 (Year: 2019). |
Bindschaedler et al, “Privacy Through Fake Yet Semantically Real Traces,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, May 27, 2015 (Year: 2015). |
Castro et al, “Creating Lightweight Ontologies for Dataset Description,” IEEE, pp. 1-4 (Year: 2014). |
Ex Parte Quayle Action, dated May 10, 2022, from corresponding U.S. Appl. No. 17/668,714. |
Final Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Final Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Final Office Action, dated May 2, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Final Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/499,582. |
International Search Report, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
International Search Report, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
International Search Report, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
Lasierra et al, “Data Management in Home Scenarios Using an Autonomic Ontology-Based Approach,” IEEE, pp. 94-99 (Year: 2012). |
Lenzerini et al, “Ontology-based Data Management,” ACM, pp. 5-6 (Year: 2011). |
Niu, et al, “Achieving Data Truthfulness and Privacy Preservation in Data Markets”, IEEE Transactions on Knowledge and Data Engineering, IEEE Service Centre, Los Alamitos, CA, US, vol. 31, No. 1, Jan. 1, 2019, pp. 105-119 (Year 2019). |
Notice of Allowance, dated May 11, 2022, from corresponding U.S. Appl. No. 17/395,759. |
Notice of Allowance, dated May 18, 2022, from corresponding U.S. Appl. No. 17/670,354. |
Notice of Allowance, dated May 25, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Notice of Allowance, dated May 6, 2022, from corresponding U.S. Appl. No. 17/666,886. |
Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/509,974. |
Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/679,750. |
Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/674,187. |
Office Action, dated May 9, 2022, from corresponding U.S. Appl. No. 16/840,943. |
Preuveneers et al, “Access Control with Delegated Authorization Policy Evaluation for Data-Driven Microservice Workflows,” Future Internet 2017, MDPI, pp. 1-21 (Year: 2017). |
Thomas et al, “MooM—A Prototype Framework for Management of Ontology Mappings,” IEEE, pp. 548-555 (Year: 2011). |
Written Opinion of the International Searching Authority, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
Written Opinion of the International Searching Authority, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
Written Opinion of the International Searching Authority, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
Czeskis et al, “Lightweight Server Support for Browser-based CSRF Protection,” Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 273-284 (Year: 2013). |
Final Office Action, dated Feb. 25, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Final Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/373,444. |
Final Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Matte et al, “Do Cookie Banners Respect my Choice?: Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework,” 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 791-809 (Year: 2020). |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/234,205. |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/549,170. |
Notice of Allowance, dated Mar. 16, 2022, from corresponding U.S. Appl. No. 17/486,350. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 16/872,130. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/535,098. |
Notice of Allowance, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/366,754. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/475,244. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/504,102. |
Notice of Allowance, dated Mar. 28, 2022, from corresponding U.S. Appl. No. 17/499,609. |
Notice of Allowance, dated Mar. 4, 2022, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Mar. 1, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/571,871. |
Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/187,329. |
Sanchez-Rola et al, “Can I Opt Out Yet?: GDPR and the Global Illusion of Cookie Control,” Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, 2019, pp. 340-351 (Year: 2019). |
Final Office Action, dated Oct. 27, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Notice of Allowance, dated Sep. 28, 2022, from corresponding U.S. Appl. No. 17/509,974. |
Notice of Allowance, dated Sep. 28, 2022, from corresponding U.S. Appl. No. 17/689,683. |
Office Action, dated Sep. 16, 2022, from corresponding U.S. Appl. No. 17/306,438. |
Notice of Allowance, dated Nov. 22, 2022, from corresponding U.S. Appl. No. 17/828,953. |
Office Action, dated Dec. 21, 2022, from corresponding U.S. Appl. No. 17/013,756. |
ESWC 2008 Ph.D. Symposium, Tenerife, Spain retrieved from https://ceur-ws.org/Vol-358/ on Jun. 7, 2023. |
Neil et al, “Downsizing and Rightsizing”, archived May 23, 2013, retrieved from https://web.archive.org/web/20130523153311/https://www.referenceforbusiness.com/management/De-Ele/Downsizing-and-Rightsizing.html Jun. 7, 2023. |
Final Office Action, dated Apr. 13, 2023, from corresponding U.S. Appl. No. 16/925,550. |
Final Office Action, dated Mar. 3, 2023, from corresponding U.S. Appl. No. 17/306,438. |
Office Action, dated Mar. 9, 2023, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Apr. 4, 2023, from corresponding U.S. Appl. No. 17/346,586. |
Notice of Allowance, dated Jun. 12, 2023, from corresponding U.S. Appl. No. 17/370,650. |
Final Office Action, dated Feb. 23, 2023, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Feb. 15, 2023, from corresponding U.S. Appl. No. 17/499,582. |
Notice of Allowance, dated Jan. 31, 2023, from corresponding U.S. Appl. No. 17/499,624. |
Notice of Allowance, dated Mar. 8, 2023, from corresponding U.S. Appl. No. 17/530,201. |
Office Action, dated Nov. 11, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Final Office Action, dated Mar. 16, 2023, from corresponding U.S. Appl. No. 17/670,341. |
Final Office Action, dated Mar. 3, 2023, from corresponding U.S. Appl. No. 17/670,354. |
Final Office Action, dated Mar. 9, 2023, from corresponding U.S. Appl. No. 17/679,734. |
Notice of Allowance, dated Feb. 8, 2023, from corresponding U.S. Appl. No. 17/831,700. |
Notice of Allowance, dated Sep. 1, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Notice of Allowance, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Office Action, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Office Action, dated Sep. 8, 2022, from corresponding U.S. Appl. No. 17/850,244. |
Choi et al, “A Survey on Ontology Mapping,” ACM, pp. 34-41 (Year: 2006). |
Cui et al, “Domain Ontology Management Environment,” IEEE, pp. 1-9 (Year: 2000). |
Falbo et al, “An Ontological Approach to Domain Engineering,” ACM, pp. 351-358 (Year: 2002). |
Final Office Action, dated Jun. 10, 2022, from corresponding U.S. Appl. No. 17/161,159. |
International Search Report, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930. |
Intemational Search Report, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
International Search Report, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Nemec et al, “Assessment of Query Execution Performance Using Selected Business Intelligence Tools and Experimental Agile Oriented Data Modeling Approach,” Sep. 16, 2015, IEEE, pp. 1327-1333. (Year: 2015). |
Notice of Allowance, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/679,734. |
Notice of Allowance, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Notice of Allowance, dated Jun. 2, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Notice of Allowance, dated Jun. 23, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Notice of Allowance, dated Jun. 8, 2022, from corresponding U.S. Appl. No. 17/722,551. |
Notice of Allowance, dated May 27, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Notice of Allowance, dated May 31, 2022, from corresponding U.S. Appl. No. 17/679,715. |
Office Action, dated Jun. 1, 2022, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/689,683. |
Ozdikis et al, “Tool Support for Transformation from an OWL Ontology to an HLA Object Model,” ACM, pp. 1-6 (Year: 2010). |
Vukovic et al, “Managing Enterprise IT Systems Using Online Communities,” Jul. 9, 2011, IEEE, pp. 552-559. (Year: 2011). |
Wong et al, “Ontology Mapping for the Interoperability Problem in Network Management,” IEEE, pp. 2058-2068 (Year: 2005). |
Written Opinion of the International Searching Authority, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930. |
Written Opinion of the International Searching Authority, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
Written Opinion of the International Searching Authority, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Alkalha et al, “Investigating the Effects of Human Resource Policies on Organizational Performance: An Empirical Study on Commercial Banks Operating in Jordan,” European Journal of Economics, Finance and Administrative Science, pp. 1-22 (Year: 2012). |
Cruz et al, “Interactive User Feedback in Ontology Matching Using Signature Vectors,” IEEE, pp. 1321-1324 (Year: 2012). |
Cudre-Mauroux, “ESWC 2008 Ph.D. Symposium,” The ESWC 2008 Ph.D. Symposium is sponsored by the Okkam project (http://fp7.okkam.org/), MIT, pp. 1-92 (Year: 2008). |
Dowling, “Auditing Global HR Compliance,” published May 23, 2014, retrieved from https://www.shrm.org/resourcesandtools/hr-topics/ global-hr/pages/auditing-global-hr-compliance.aspx Jul. 2, 2022 (Year: 2014). |
Final Office Action, dated Jul. 1, 2022, from corresponding U.S. Appl. No. 17/187,329. |
Final Office Action, dated Jul. 6, 2022, from corresponding U.S. Appl. No. 17/200,698. |
Final Office Action, dated Jun. 29, 2022, from corresponding U.S. Appl. No. 17/020,275. |
Heil et al, “Downsizing and Rightsizing,” https://web.archive.org/web/20130523153311/https://www.referenceforbusiness.com/management/De-Ele/Downsizing-and-Rightsizing.html (Year: 2013). |
Notice of Allowance, dated Aug. 22, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Notice of Allowance, dated Aug. 3, 2022, from corresponding U.S. Appl. No. 17/668,714. |
Notice of Allowance, dated Aug. 4, 2022, from corresponding U.S. Appl. No. 17/670,349. |
Notice of Allowance, dated Aug. 9, 2022, from corresponding U.S. Appl. No. 17/832,313. |
Notice of Allowance, dated Jul. 20, 2022, from corresponding U.S. Appl. No. 16/938,509. |
Notice of Allowance, dated Jul. 27, 2022, from corresponding U.S. Appl. No. 17/679,750. |
Notice of Allowance, dated Jul. 29, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Notice of Allowance, dated Jul. 7, 2022, from corresponding U.S. Appl. No. 17/571,871. |
Notice of Allowance, dated Jun. 29, 2022, from corresponding U.S. Appl. No. 17/675,118. |
Office Action, dated Aug. 12, 2022, from corresponding U.S. Appl. No. 17/679,734. |
Office Action, dated Aug. 17, 2022, from corresponding U.S. Appl. No. 17/373,444. |
Office Action, dated Aug. 17, 2022, from corresponding U.S. Appl. No. 17/836,430. |
Office Action, dated Aug. 19, 2022, from corresponding U.S. Appl. No. 17/584,187. |
Office Action, dated Aug. 2, 2022, from corresponding U.S. Appl. No. 17/670,354. |
Office Action, dated Aug. 4, 2022, from corresponding U.S. Appl. No. 17/828,953. |
Office Action, dated Jul. 27, 2022, from corresponding U.S. Appl. No. 17/831,713. |
Office Action, dated Jul. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Jul. 7, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Number | Date | Country | |
---|---|---|---|
20220108222 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
63087443 | Oct 2020 | US |