In a robotic or robot-assisted surgical procedure, a surgical robotic arm may guide or control one or more surgical instruments, such as a drill, screw, etc. Robot-assisted surgery may provide increased precision and accuracy with regard to the placement of surgical instruments during a procedure and the ability to precisely follow a predetermined surgical plan (e.g., a planned trajectory). For example, spinal surgeries often require precision drilling and placement of screws or other implants in bone or hard tissue. Improper drilling or maneuvering of the spinal body during spinal surgery may be undesirable due to the proximity of the spinal cord and arteries. Further, accurate placement of screws and other implants may be important for a successful outcome.
Robotic surgical systems are capable of very accurate tracking of a position of the surgical instruments used in the system, often achieved using a variety of surgical navigation tracking systems. However, such navigation tracking systems have a limit to their resolution or ability to track movements, especially those movements that are very line or small in magnitude.
One such undesirable movement that may be very difficult to track is skiving of an instrument tip during operation. For example, skiving may occur during the initiation of a drilling operation when a drill tip is set at an entry point in an angled fashion, such that the tip may deflect, “walk,” or otherwise move itself away from the intended entry point before drilling into the hard tissue. Risk of skiving may be increased when, as in many surgical procedures, drilling is performed at predetermined desired trajectories on curved anatomical surfaces, such as certain features of bone.
Accordingly, there is a need for improved surgical devices, systems, and methods that may address these and other shortcomings of prior solutions for drilling into bone or other hard tissue with precision.
Systems, methods, and devices are disclosed for surgical instruments, systems, and methods for detecting skiving of a surgical instrument, such as an instrument used during a robotic or robot-assisted surgery. The embodiments disclosed herein may include one or more sensors adjacent to, coupled to, disposed on, or embedded into an instrument in order to measure deflection thereof during use that may indicate skiving of the instrument. A variety of sensors may be utilized, including strain gauges, resistance-based sensors, fiber optic cables, laser distance measurement units, ultrasonic distance measurement units, optical cable measurement units, etc. In some embodiments, multiple such sensors may be included in an instrument in order to measure magnitude and/or direction of deflection.
In some embodiments, a robotic surgical system is provided, comprising a robotic arm, a surgical instrument operably attached to the robotic arm, wherein the surgical instrument comprises: an elongate body extending between a proximal end and a distal end, the distal end being configured to retain an implement to penetratingly contact hard tissue; a channel formed in at least a portion of the elongate body along a longitudinal axis of the elongate body, and a sensor at least partially disposed in the channel, and a controller configured to receive data from the sensor and use the data to determine whether deflection of the elongate body is occurring during use of the surgical instrument.
In some embodiments, a robotic surgical system is provided, comprising a robotic arm extending between a base and an end effector, an instrument mount attached to the end effector and retaining a guide, a surgical instrument rotatably disposed in the guide, the surgical instrument comprising an elongate body extending between a proximal end and a distal end, the distal end being configured to retain an implement to penetratingly contact hard tissue, a sensor, associated with either the guide or the surgical instrument, and a controller configured to receive data from the sensor and use the data to determine whether deflection of the elongate body is occurring during use of the surgical instrument.
In some embodiments, a surgical method is provided, comprising surgical method, comprising providing a controller for a robotic arm extending between a base and an end effector, an instrument mount attached to the end effector and retaining a guide, and an elongate surgical instrument rotatably disposed in the guide, driving the elongate instrument into the hard tissue, and determining deflection of the elongate instrument using a sensor coupled to the elongate instrument or coupled to the guide, wherein the controller is configured to use the determined deflection to determine if a level of skiving that exceeds a predetermined threshold is occurring. In some examples, when the level of skiving exceeds the predetermined threshold, the method further comprises at least one of displaying an alert or ceasing actuation of the elongate instrument.
Further details of these various embodiments are described in more detail below.
The present disclosure provides surgical instruments, systems, and methods for detecting skiving of a surgical instrument, such as during a robotic or robot-assisted surgery. The embodiments disclosed herein may detect, and, in some cases, measure, deflection of an elongate instrument, for example, elongate instruments that are used to penetrate into hard tissues. Furthermore, in some cases, the embodiments may be configured to determine a direction of the deflection. Examples of such instruments include a drill, tap, screw, driver, or other surgical instruments that exert pressure with respect to tissue, such as hard tissue like bone, etc., for example, by being drilled or otherwise driven into tissue.
Detection of deflection in an elongate instrument as it is driven into tissue may indicate the presence of skiving. Skiving is undesirable and may result in a deviation from a target trajectory (e.g., deviation from a planned axis and/or a deviation from an intended (e.g., planned) entry point) of the instrument into the tissue. Measurement of deflection may be beneficial to quantify an amount of skiving. In the event a sufficient level of deflection is detected, the systems and methods disclosed herein may alert a user and/or cease operation of the instrument (e.g., automatically) to prevent further deviation from the target trajectory. Measurement of direction of deflection may be beneficial to quantify the implications of skiving. For example, skiving in one direction may be clinically acceptable, whereas skiving in the opposite direction may have an undesirable effect on the outcome of the procedure.
The embodiments disclosed herein may make use of a number of different sensors adjacent to, coupled to, disposed on, or embedded into an elongate instrument. Examples may include various strain gauges, resistance-based sensors, fiber optic cables, laser distance measurement units, ultrasonic distance measurement units, optical cable measurement units, and others. In certain embodiments, such sensors may be configured to detect magnitude and/or direction of deflection using, in some embodiments, multiple sensors to provide directional sensitivity.
The controller 110 may be used to actuate the robotic arm 104 (e.g., control the actuation of each joint) to control movement and thus position the end effector 108, which effects a trajectory of the elongate instrument 102. The controller 110 typically includes power supply, AC/DC converters, motion controllers to power the motors of the actuation units in each joint, fuses, real-time control system interface circuits, and other components conventionally included in surgical robot devices. The controller 110 is configured to receive sensor data from one or more sensors adjacent to, coupled to, disposed on, or embedded into the elongate instrument 102 and to determine deflection of the instrument during use thereof (e.g., that may indicate skiving of the instrument). The controller 110 may also be configured to send an alert (such as of detected skiving). The controller 110 may also be configured to stop (e.g., stop rotation of) the elongate instrument 102. The controller 110 may also be configured to send a notification that instrument use has been ceased due to detected skiving (e.g., via a closed loop command from the controller).
The end effector 108 may comprise an instrument mount or guide 112 configured to receive the instrument 102. Examples of instruments include, for example: a drill bit, saw blade, burr, reamer, mill, knife, or any other implement that could cut or deform bone or other tissue (e.g., penetrate) and is appropriate for use in a given operation (e.g., a drill may be more appropriate in one operation while a rotary burr may be more appropriate in another operation, etc.), and is associated with a sensor as will be described. In some embodiments, the instrument 102 is a sensor-equipped instrument (such as in
While the illustrated embodiments and accompanying description may refer to a specific surgery, the systems and methods described herein may be utilized in various applications involving robotic, robot-assisted, and non-robotic operations where computer-assisted instrument location are desired and precise adjustment of instrument position may be appropriate. Example applications include knee surgery, such as total knee arthroplasty (TKA), spinal fusion surgery, and other orthopedic surgeries. The teachings of the present disclosure may be applied to such procedures, however, the systems and methods described herein are not limited to these applications.
The robot-assisted surgical system 100 may have a plurality of navigational features to determine a position and orientation in absolute space (with respect to all degrees of freedom of a three-dimension coordinate system), thereby determining a trajectory of the instrument 102. For example, the robotic device as a whole can be said to have a global coordinate system 114, which may be defined in different ways, but generally uses the location of the base 106. A position of various components may be determined, for example, calculated by receiving a position signal from an encoder in each joint of the robotic arm 104. For example, the end effector 108 may be constrained to move about such that the summation of the positions of the joints defines the location of an end effector coordinate system 116 in the global coordinate system 114.
Position may (e.g., may also) be directly measured. A navigation array 118 may be mounted to a distal portion of the robotic arm 104. The navigation array 118 may include one or more markers. In some instances, a measured coordinate system 120 of the array 118 may be used as the global coordinate system 114. A navigation array 122 (additionally or alternatively to the array 118) may be mounted to the end effector 108. The navigation array 118 may include one or more markers. The end effector coordinate system 116 may be defined in different ways, but may refer to the position and orientation of the end effector 108 with respect to the operation of the instrument 102. The array 122 may identify a positioning of the instrument 102 (e.g., received within the guide). In this manner, the array 122 may help provide complete positioning information (e.g., of the instrument 102) to a user (e.g., a surgical robot system, surgeons, etc.).
A tracking unit 130, such that the relative pose or three-dimensional position and orientation of the array 118 and/or 122, as well as any other navigation arrays present in an operating theater, e.g., such as an array coupled to patient anatomy (not shown), a surgical table, etc. (not shown), may be tracked in real time and shared to the controller 110 and any additional planning system. In some embodiments, the tracking unit 130 may include one or more navigation system cameras 132 that may capture a location of the one or more markers in the arrays 118 and/or 122. The tracking unit 130 may measure the relative motions between any and all coordinate systems in real time. Real time can, in some embodiments, mean high frequencies greater than twenty Hertz, in some embodiments in the range of one hundred to five hundred Hertz, with low latency, in some embodiments less than five milliseconds. The location information captured from the markers of an array may thus identify a location of the component to which it is coupled in three-dimensional space given the known and precise relationship between the array and the component. For example, the array 122 may be configured to identify the depth position of the instrument 102, such as a tip, without being permanently connected or fastened to the instrument.
In a manner similar to the arrays discussed above, a further array (not shown) may be coupled with a patient or other structure in the operating environment (e.g., a surgical table, etc.), to assist, with keeping tracking of an anatomy of interest, for example, a pedicle of the spine. A patient coordinate system may be defined in different ways (e.g., using an array coupled to the patient), but may refer to the position and orientation of the patient with respect to the end effector 108 or instrument 102. The tracking system 130 may track these objects for purposes of displaying their relative positions and orientations to the surgeon and, in some cases, for purposes of controlling and/or constraining manual manipulation of the instrument relative to virtual boundaries associated with the patient's anatomy.
In summary, the trajectory of an instrument, such as in a static state or only moving along a single axis, may be determined with great precision. However, there are cases where movements off a planned trajectory are too fine or small in magnitude (e.g., at least initially) for a surgical navigation tracking system to detect, but that are nonetheless undesirable because they may result in, for example, pedicle breach or compromised screw purchase in the context of spine surgery. For example, spinal fusion is often augmented by stabilizing the vertebrae with fixation devices, such as metallic screws, rods, and plates, to facilitate bone fusion. In spinal fusion, as well as other surgeries, the accuracy with which the screws and other implants are placed in the bone may have a direct effect on the outcome of the procedure. Moreover, risk of skiving may be increased when, as in many surgical procedures, drilling is performed at predetermined desired trajectories on curved anatomical surfaces, such as certain features of bone.
For the reasons described above, it may be important that penetrating (e.g., awling, drilling, tapping, driving into, and/or other cutting) of hard tissue (e.g., bone) be planned carefully. Such surgical pre-planning may include a target trajectory for drilling a hole into bone, said trajectory including target entry point, orientation, diameter, and depth. Spinal geometry is variable, however, and often not flat at the optimal entry point (e.g., pedicle surface) for the drill on the target trajectory. When a pointed cylindrical drill contacts a curved surface (or a flat surface at such an angle that relative curvature is created between the components), the drill may have a tendency to move off target trajectory or a predetermined entry point as drilling is initiated (e.g., skiving). Skiving results in a screw trajectory through the bone that is different than the planned target trajectory, and may produce undesirable results, such as pedicle breach or compromised screw purchase.
A navigation or tracking array (such as array 118, array 122, array 140, etc.) may conceptually detect misalignment of an elongate instrument during awing, drilling, tapping, driving, or other cutting operations, however, such arrays may have resolutions or minimum trackable movement sizes that are too large to detect initial movements associated with skiving. In some cases, detection by an array of a surgical instrument being off track may not be possible until significant deviation has occurred, making correction more difficult.
Accordingly, sensor-equipped instruments, systems, and methods, as will be described in more detail may detect skiving more quickly and precisely by using sensors that measure lateral forces indicative of deflection of the elongate instrument. This may be accomplished using a variety of sensors that may be adjacent to, coupled to, disposed on, or embedded into the elongate instrument (e.g., a drill, tap, screw, driver, or other tool) and in communication with a surgical system, such as the controller 110 (
The sensor 602 may have a variety of different forms. For example, the sensor 602 may be a strain gauge, a fiber optic cable, a resistance-based sensor such as a conductive wire, conductive rubber, conductive fiber, conductive fabric, or liquid metal microchannel, etc. The sensor 602 may be embedded inside the body 504 of the instrument, as shown in the figure, or may run along an outer surface of the instrument in some embodiments. The sensor 602 may detect a change in the channel 604, such as, for example, a change in conductivity, which may indicate deflection of the channel. A deflection of the channel 604 indicates deflection of the instrument 500. A deflection of the instrument 500 indicates that skiving is occurring. For example, the controller 110 (
Certain examples of sensors 602 may provide information on magnitude of deflection, but no information regarding directionality of the deflection, which may be useful if, for example, to compensate by correcting the trajectory of the elongate instrument 500 (for example, by a controller determining to correct the trajectory). Accordingly, it may be desirable in some embodiments to include a sensor or sensors capable of providing information on both magnitude and direction of deflection. One such option that may be utilized in a single-sensor embodiment is a fiber optic cable as the sensor 602. In particular, the data provided by light traveling through a fiber optic cable and reflecting back may be more robust than strain gauge output, for example, and may be utilized to determine not only magnitude of deflection but also direction of the deflection. One or more fiber Bragg gratings (FBG) may be utilized to reflect or transmit particular wavelengths of light, and placement of one or more gratings in the channel 604 may be utilized to determine a direction of deflection in addition to magnitude.
Alternatively, multiple sensors may be adjacent to, coupled to, disposed on, or embedded into an elongate instrument to provide information on direction of deflection in addition to magnitude. For example, inclusion of two sensors may provide directional information in one plane, and inclusion of three sensors may give multi-axis direction information.
The instrument 800 has a proximal portion or end 804 and a distal portion or end 806. The proximal end 804 may be configured to interface with an actuator that drives a drill bit 808 disposed at the distal end 806 to drill into hard tissue, such as bone, e.g., in a rotary motion (e.g., the proximal end 804 may include features to allow torque transmission during driving). The instrument 800 may have varying lengths according to the configuration of the surgical system in which the instrument 500 is utilized.
The channel 1006 is aligned with a longitudinal axis defined by the body 1004. In an embodiment, the channel 1006 is concentric to the longitudinal axis of the body 1004. In an alternative embodiment, the channel 1006 is off-axis relative to the longitudinal axis of the body 1004. The channel 1006 may extend for all of, or only a portion of, the entire longitudinal length of the body 1004, such as 60% or greater, 70% or greater, 80% or greater, 100%, less than 100%, less than 90%, etc.
Sensors of the present disclosure (e.g., sensors 602, 802, 1002a-c) may be configured such that signals received by a controller from the sensors may be decoupled, which may lead to a determination of deflection magnitude and direction of the elongate instrument, as well as determination of movement mode in more complicated cases (e.g., where a particular surgical instrument encounters a torsion in addition to lateral deflection, etc.). Decoupling sensor signals may be beneficial as the surgical instrument may move relative to the cannula or guide in different modes. By decoupling the signal(s) received from the sensors coupled to, disposed on, or embedded in the surgical instrument, a controller of the present disclosure may identify each movement of the instrument and provide information on the magnitude and direction of deflection of the instrument from a target trajectory.
In some embodiments, a statistical model may be programmed into the controller to read and decouple the signals received from the sensor(s). In other embodiments, analytical decoupling may be performed. By way of example, an analytical decoupling of data from sensors may be analytically akin to a strain gauge rosette. In an embodiment, each of the four sensors 802 may be a resistance-based sensor or strain sensor. The signal transmissions from each sensor may be read and analyzed to identify the instrument movement by magnitude and direction of strain and shear. For example, the controller may identify a magnitude and direction of deflection by analyzing components of the data transmitted by each sensor.
In instances or applications in which a signal from one or more sensors cannot be easily decoupled, higher techniques of signal processing may be deployed to capture and identify precise movement of the instrument. For example, multimodal machine learning techniques may be applied to enhance movement detection and measurement. For example, the controller may include a machine learning module that may build a framework through which data from the sensors may be interpreted such that movement mode(s) and respective magnitude(s) and direction(s) may be determined. The machine learning module may receive as input pre-programed information pertaining to instrument movement, such as calibration test results on the instrument or a similar instrument. The machine learning module may receive as further inputs data from various other sources, such as data related to the procedure being performed, data from other sensors coupled to the robot, etc. The machine learning module may take these inputs and construct models of instrument movement. The controller may then apply the machine learning framework to signals received from the sensors to understand and capture precise movement based on the sensor data.
Still another embodiment for determining both magnitude and direction of deflection in an elongate instrument may include a hybrid approach utilizing software. For example, in an embodiment an elongate instrument with a single embedded sensor may be utilized, such as the instrument 500 described above. Data from this sensor 602 that provides information about magnitude of deflection only, may be combined with knowledge of the procedure being performed via software in a controller to determine the direction of deflection that is likely to be experienced. More particularly, if the controller has positioned the instrument relative to bone or other tissue in a manner that provides a distinct angle. e.g., due to the trajectory of the instrument entering bone, the curvature of the bone at the point of insertion, etc., it may be possible to determine with a reasonably high degree of accuracy that, should skiving occur, it would occur in a particular direction dictated by the relative arrangement of the instrument and anatomy being drilled into, tapped, driven into, or otherwise cut, etc.
In still other embodiments, sensors may be incorporated into other components of a surgical system (e.g., such as the guide) to provide information on the bending, deflection, or skiving of an elongate instrument.
In some embodiments, only one sensor 1102 is used and therefore only a variation in the distance 1106 is determined (e.g., by an associated controller (such as the controller 110 of
In certain embodiments, the instrument 1104 may be provided with a flat portion 1110 on an outer surface thereof that may be configured to reflect light, sound, etc., back to the sensor 1102 during each rotation of the elongate instrument. In addition, in some embodiments more than one sensor, such as sensor 1102 and sensor 1102′ may be utilized to increase data refresh rates and accuracy. In such embodiments, the sensors 1102, 1102′ may be arranged around the circumference of the guide 1120 in a variety of manners. For example, two sensors may be arranged on opposite sides of the guide 1120's inner surface, or may be offset ninety degrees from one another to capture possible deflection in two planes. In still other embodiments, larger numbers of sensors like sensor 1102 (e.g., three, four, or more) may be arranged around the circumference of the inner surface of the guide sleeve 1120 in a variety of manners (e.g., both even and uneven spacing, etc.).
In a first embodiment, a robotic surgical system is provided, comprising a robotic arm, a surgical instrument operably attached to the robotic arm, wherein the surgical instrument comprises, an elongate body extending between a proximal end and a distal end, the distal end being configured to retain an implement to penetratingly contact hard tissue; a channel formed in at least a portion of the elongate body along a longitudinal axis of the elongate body, and a sensor at least partially disposed in the channel, and a controller configured to receive data from the sensor and use the data to determine whether deflection of the elongate body is occurring during use of the surgical instrument. In some examples, the controller is further configured to use the data to determine a magnitude of deflection of the elongate body. In some examples, the controller is further configured to use the data to determine a direction of deflection of the elongate body. In some examples, the controller is further configured to use the data to determine a magnitude and direction of deflection of the elongate body.
In some examples, the sensor is at least one of a strain gauge, a fiber optic cable, or a resistance-based element that changes electrical resistance with bending. In some examples, the sensor is a fiber optic cable and further includes a plurality of gratings configured to communicate any of magnitude or direction of deflection of the elongate body. In some examples, the sensor is a resistance-based element. In some examples, the resistance-based element is at least one of a conductive wire, a conductive rubber, a conductive fiber, a conductive fabric, or a liquid metal microchannel. In some examples, the channel includes at least three sensors to communicate a direction of deflection of the elongate body. In some examples, the surgical instrument further comprises a plurality of channels, each channel having an associated sensor to communicate a direction of deflection of the elongate body. In some examples, the controller is further configured to use the deflection data to determine if a level of skiving that exceeds a predetermined threshold is occurring. In some examples, if the controller determines a level of skiving that exceeds a predetermined threshold is occurring, the controller is further configured to display an alert and/or the controller is further configured to cease actuation of the surgical instrument.
In a second embodiment, a robotic surgical system is provided, comprising a robotic arm extending between a base and an end effector, an instrument mount attached to the end effector and retaining a guide, a surgical instrument rotatably disposed in the guide, the surgical instrument comprising an elongate body extending between a proximal end and a distal end, the distal end being configured to retain an implement to penetratingly contact hard tissue, a sensor, associated with either the guide or the surgical instrument, and a controller configured to receive data from the sensor and use the data to determine whether deflection of the elongate body is occurring during use of the surgical instrument. In some examples, the sensor is disposed in the guide, for example, the sensor is one or more laser distance measuring units, ultrasonic distance measuring units, or optical cable measuring units, or the sensor is configured to measure a radial distance between the elongate instrument and an inner wall of the guide. In some examples, the controller is further configured to use the data to determine at least one of a magnitude of deflection of the elongate body or a direction of deflection of the elongate body. In some examples, the sensor is disposed in a channel in the elongate instrument, and the sensor is at least one of a strain gauge, a fiber optic cable, or a resistance-based element that changes electrical resistance with bending.
In a third embodiment, a surgical method is provided, comprising surgical method, comprising providing a controller for a robotic arm extending between a base and an end effector, an instrument mount attached to the end effector and retaining a guide, and an elongate surgical instrument rotatably disposed in the guide, driving the elongate instrument into the hard tissue, and determining deflection of the elongate instrument using a sensor coupled to the elongate instrument or coupled to the guide, wherein the controller is configured to use the determined deflection to determine if a level of skiving that exceeds a predetermined threshold is occurring. In some examples, when the level of skiving exceeds the predetermined threshold, the method further comprises at least one of displaying an alert or ceasing actuation of the elongate instrument.
In a fourth embodiment, a surgical instrument is provided, comprising an elongate body extending between a proximal end and a distal end, the distal end being configured to retain an implement to penetratingly contact hard tissue, a channel formed in the elongate body along a longitudinal axis of the elongate body, and a sensor disposed in the channel, wherein the sensor is configured to output data that may be used to detect deflection of the elongate body during use. The sensor may be at least one of a strain gauge, a fiber optic cable, or a resistance-based element that changes electrical resistance with bending. When the sensor includes a fiber optic cable, the fiber optic cable may further include a plurality of gratings configured to communicate any of magnitude or direction of deflection of the elongate body. When the sensor includes the resistance-based element, the resistance-based element may be a conductive wire, a conductive rubber, a conductive fiber, a conductive fabric, or a liquid metal microchannel. The sensor may be embedded within the elongate body. The instrument may include a plurality of sensors. The instrument may include at least three sensors configured to communicate any of magnitude or direction of deflection of the elongate body. The instrument may include at least four sensors configured to communicate any of magnitude or direction of deflection of the elongate body. A proximal portion of the elongate body may have a diameter greater than that of the distal end to house the sensor.
In a fifth embodiment, a surgical system is provided, comprising a surgical instrument according to any of the foregoing examples and a guide surrounding the instrument. The surgical system may further comprise a controller for receiving signals from the sensor and determining if deflection of the surgical instrument has occurred. The instrument may be configured to rotate relative to the guide. The surgical system may further comprise a slip ring in contact with the sensor. The surgical system may further comprise an end effector for holding the guide. The surgical system may further comprise a robotic arm for holding the end effector.
In a sixth embodiment, a surgical system is provided, comprising a surgical system, comprising an elongate instrument having a longitudinal axis extending from a proximal end to a distal end thereof, a distal end portion of the elongate body being configured to interface with hard tissue, a guide surrounding the elongate instrument and attached to a robotic arm, and a sensor attached to the guide and configured to detect deflection of the elongate body instrument during use. The sensor may be disposed in the guide and configured to measure a position of the elongate instrument relative to the guide. The sensor may measure a radial distance between the elongate instrument and an inner wall of the guide from a plurality of positions arranged around an inner circumference of the guide. The sensor may include a laser distance measurement unit, an ultrasonic distance measurement unit, or an optical cable measurement unit. The instrument may be configured to rotate relative to the guide. The surgical system may further comprise a controller for receiving signals from the sensor and determining if deflection of the surgical instrument has occurred.
In a seventh embodiment, a surgical method is provided, comprising inserting an elongate instrument through a guide to access hard tissue, driving the elongate instrument into the hard tissue, and measuring deflection of the elongate instrument using a sensor coupled to the elongate instrument or coupled to a guide concentric to the elongate instrument. The surgical method may further comprise alerting a user upon detection of deflection of the elongate instrument above a threshold level. The surgical method may further comprise ceasing to drive the elongate instrument into the hard tissue upon detection of deflection of the elongate instrument above a threshold level. The surgical method may further comprise alerting a user that actuation of the elongate instrument has been ceased.
This application claims priority to US Provisional Ser. No. 63/215,115, filed Jun. 25, 2021, the disclosure of which is incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63215115 | Jun 2021 | US |