The field of the invention relates to medical imaging systems, and more particularly to systems and methods for detecting and alerting an operating of the presence of abnormalities within a medical image.
Intraluminal, intracavity, intravascular, and intracardiac treatments and diagnosis of medical conditions utilizing minimally invasive procedures are effective tools in many areas of medical practice. These procedures are typically performed using imaging and treatment catheters that are inserted percutaneously into the body and into an accessible vessel of the vascular system at a site remote from the vessel or organ to be diagnosed and/or treated, such as the femoral artery. The catheter is then advanced through the vessels of the vascular system to the region of the body to be treated. The catheter may be equipped with an imaging device, typically an ultrasound imaging device, which is used to locate and diagnose a diseased portion of the body, such as a stenosed region of an artery. For example, U.S. Pat. No. 5,368,035, issued to Hamm et al., the disclosure of which is incorporated herein by reference, describes a catheter having an intravascular ultrasound imaging transducer.
a shows an example of an imaging transducer assembly 1 known in the art. The imaging transducer 1 is typically within the lumen 10 of a guidewire (partially shown), having an outer tubular wall member 5. To obtain an image of a blood vessel, the imaging transducer assembly 1 may be inserted into the vessel. The transducer assembly 1 may then rotate while simultaneously emitting energy pulses, e.g., ultrasound waves, at portions of the vessel from within the vessel and receiving echo or reflected signals.
Turning to
An example of an image 70 having a large range of magnitudes and a number of texturally distinct regions 80 is shown in
Accordingly, an improved system and method for detecting and presenting such textural information would be desirable.
The invention is directed to systems and methods for detecting and presenting textural information from medical images. In one example embodiment, a medical imaging system includes an imaging transducer assembly configured to emit one or more energy pulses and receive one or more echo signals, and a console, coupled to the imaging transducer assembly, configured to receive the one or more echo signals, detect one or more signals that correspond with an abnormality, and invoke an alert in response to the detection of the one or more signals that correspond with an abnormality.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
In order to better appreciate how the above-recited and other advantages and objects of the inventions are obtained, a more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. It should be noted that the components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views. However, like parts do not always have like reference numerals. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
a is a cross-sectional side view of an imaging transducer assembly known in the art.
b is a block diagram of a medical imaging system known in the art.
c is an example of an image showing different magnitudes and textures.
a is a diagram of the operation of a preferred example embodiment of the invention.
b is a diagram of the operation of a preferred example embodiment of the invention.
Turning to
An IVUS image may provide textural information about the area being imaged, such as the appearance of blood speckle. Further, such images can provide tissue characterization and information about the existence of a variety of abnormalities within the area being imaged. One example abnormality that can be detected from an IVUS image is vulnerable plaque, which refers to a subgroup of often modestly stenoic plaques that are prone to rupture or erosion. An accumulation of such plaque within an artery can result in acute coronary syndromes and sudden cardiac death.
One approach to alleviate and simplify the burden of operating a medical imaging system 30 is shown in
In an alternative approach 350, instead of, or in addition to, analyzing the medical imaging signals, analysis can be performed on a processed image, as illustrated in
These approaches can be applied to imaging catheter coupled to automatic pull-back systems (not shown) or manual pullback systems (not shown). An imaging system having an imaging catheter coupled to an automatic pull-back system is disclosed in U.S. Pat. No. 5,799,655, to Jang, et al., which is hereby incorporated by reference in its entirety.
As will be appreciated by one of ordinary skill in the art, laboratories that conduct IVUS imaging often require high workflow efficiency. Because a vascular system is a complicated structure and because an innumerable amount of abnormalities may exist, the alert systems described above may facilitate the desirable workflow efficiency by allowing physicians to quickly determine which portions of the vascular system require a more detailed examination based on alerts, which function as trigger points. Thus, it is desirable that the detection algorithms described above function with a higher sensitivity rather than specificity.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. For example, the reader is to understand that the specific ordering and combination of process actions described herein is merely illustrative, and the invention can be performed using different or additional process actions, or a different combination or ordering of process actions. For example, this invention is particularly suited for applications involving medical imaging devices, but can be used on any design involving imaging devices in general. As a further example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.