The invention relates generally to needles, and more particularly, to a system and method for detecting tissue contact and needle penetration depth.
Drug delivery systems currently exist that supply therapeutic substances through a needle to regions of a patient's body. Such regions may include a diseased blood vessel, body cavity or organ. In the case of a diseased blood vessel, for example, the therapeutic agent may be used to treat an arterial lesion and/or to promote an angiogenic response
In some applications, a needle may be connected to a catheter assembly to deliver the therapeutic agent deep into the body. In this application, it is difficult to determine when the needle contacts the organ, cavity wall, or vessel wall. Further, it is difficult to determine the penetration depth of the needle. In many of the applications for which a needle catheter assembly is used to deliver therapeutic agents to regions within the body, the agent must be delivered to a precise location. Accordingly, it is desirable to provide feedback that indicates when the needle contacts the cavity or vessel wall and when the needle has been inserted to a predetermined depth.
Systems and methods for determining tissue contact and penetration depth are provided. In one aspect, the system comprises a needle sheath having a needle sheath inner diameter and a needle sheath outer diameter. A first conductive region, such as a first conductive tube, is disposed on the needle sheath inner diameter. A needle having a second conductive region, such as a second conductive tube, is disposed on the needle outer diameter wherein the needle is disposed coaxially within the first conductive region. A dielectric layer is disposed between the first conductive region and the second conductive region. The first and second conductive region, separated by a dielectric, operates as a capacitor. A capacitance sensor is coupled to the first conductive region and the second conductive region.
The first conductive region, the second conductive region, and the dielectric layer form a coaxial capacitive displacement transducer that can detect small changes in capacitance of the coaxial capacitor as the area of the conductive region overlap changes as the needle is advanced or retracted within the needle sheath. The capacitance change is proportional to the distance traveled (e.g., advanced or retracted) by the needle. The present invention can be used to determine the penetration depth of the needle or when the needle contacts a particular target site, e.g., a blood vessel wall.
The present invention is illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:
Systems and methods for detecting tissue contact and needle penetration depth are described. In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention. Several exemplary embodiments are described herein, and it will be appreciated that alternative embodiments exist within the scope of this invention.
In
It is difficult to determine when the needle tip 132 contacts the organ, cavity wall, or vessel wall of a patient's body and difficult to determine the penetration depth of the needle 130. In the exemplary embodiments of the present invention, a capacitor is incorporated into the delivery catheter 100. A capacitor is created using two conductive regions, (e.g., two conductive plates, two conductive rings, or two conductive tubes, two conductive cylinders, etc.), separated by an insulation or a dielectric region (e.g., a dielectric layer, a dielectric ring, or a dielectric tube). A capacitor is a device that temporarily stores an electric charge and is used to oppose a change in voltage. Capacitance is determined by the material used as the dielectric region, the area of overlap between the two conductive regions and the distance between the two conductive regions. Capacitance C is measured in farads (F) and is given by the expression
C=(Aε0εr)/d
where A is the area of overlap between the two conductive regions or tubes (m2); ε0 is the permittivity of free space (8.854×10−12 F.m−1); εr is the relative permittivity of the dielectric between the two conductive regions (no unit); and d is the distance between the two conductive regions.
The capacitance can be changed by varying either the area of overlap A, the relative permittivity of the dielectric εr, or the distance d between the two capacitor plates. In one embodiment, the capacitance is changed by varying the area of capacitor plate overlap A. Varying the area where the two capacitor plates overlap leads to a change in capacitance that can be measured. The change in capacitance is proportional to the change in the areas where the two capacitor plates overlap. For example, as the area of overlap A increases, the capacitance C increases; and, as the area of overlap A decreases, the capacitance C decreases. In one embodiment, the capacitance change is used to provide feedback as to the penetration depth of or the distance traveled by the needle 130 as described below.
In one embodiment, a capacitor 101 is incorporated into a portion 131 of the delivery catheter 100 shown in
The first conductive tube 140 and the second conductive tube 142 are made of conductive materials such as aluminum, gold, silver, copper, stainless steel, nitinol, or conductive polymer, to name a few. The first conductive tube 140 and the second conductive tube 142 are oppositely charged. For example, the first conductive tube 140 may be positively charged (+) and the second conductive tube 142 may be negatively charged (−). In order to minimize the profile of the catheter, the first conductive tube 140 and the second conductive tube 142 should be as thin as possible. In one embodiment, each of the first conductive tube 140 and the second conductive tube 142 has a thickness between about 0.001 inches to about 0.25 inches.
In one embodiment, the first conductive tube 140, the second conductive tube 142 and the dielectric tube 141 form a coaxial capacitive displacement transducer that can detect small changes in capacitance of the coaxial capacitor as the area of conductive tube overlap changes as the needle 130 is moved within the needle sheath 110. The coaxial capacitor enables the determination of a capacitance change that is dependent upon the movement of the needle 130 within the needle sheath 110. In one embodiment, the capacitance between the first conductive tube 140, the second conductive tube 142 changes as the needle 130 is advanced toward a target site, for example, the blood vessel wall 150 shown in
In one embodiment, the first conductive tube 140 is a thin conductive film (e.g., of a thickness of about 0.001 to 0.005 inches) disposed along the inner diameter of the needle sheath 110. The first conductive tube 140 can be a thin conductive tube that is formed separately from the needle sheath 110 and is inserted into and attached to the needle sheath 110. In one embodiment, the second conductive tube 142 is a thin conductive film (e.g., of a thickness of about 0.001 to 0.005 inches) disposed along the outer diameter of the needle 130. The second conductive tube 142 can be a thin conductive tube that is formed separately from the needle 130 wherein the needle 130 is inserted into the second conductive tube 142.
Typically, the needle 130 is made of a conductive material such as stainless steel or nitinol. When the needle 130 is conductive, the needle 130 is first coated with an insulation film 138 before the second conductive tube 142 is disposed on the needle 130. The needle insulation film 138 may be a tube that is attached to the outer diameter of the needle (needle insulation tube 138). The needle insulation film 138 can be made of a polymeric material or other non-conductive materials.
In one embodiment, the first conductive tube 140 has a length 139 that is about equal to a length 137 of the second conductive tube 142. In one embodiment, the length 139 only extends along a portion of the needle sheath 110 and the length 137 only extends along a portion of the needle 130 and not the entire lengths of these elements (see
In one embodiment, the dielectric tube 141 is made out of polymeric material. In another embodiment, the dielectric tube 141 is made out of other non-conductive materials. In one embodiment, the dielectric tube 141 has a length that is equal to the length 137 or the length 139 (e.g., between 0.5–10 mm). In one embodiment the dielectric tube 141 may be the same length as the needle 130. The dielectric tube 141 has a length that is sufficient to insulate the first conductive tube 140 from the second conductive tube 142.
In one embodiment, the delivery catheter 100 includes a ring 134 as illustrated in
In another embodiment, another ring, ring 136 is included and is inserted at a distal end 162 of the needle sheath 110 as illustrated in
In one embodiment, when the needle 130 is advanced or retracted within the needle sheath 110, the area of overlap between the first conductive tube 140 and the second conductive tube 142 changes. Changing the overlapping area changes the capacitance. The capacitance change is proportional to the distance that the needle 130 is advanced or retracted within the needle sheath 110. Based on the capacitance change, the distance traveled or penetrated by the needle 130 can be determined. Thus, the capacitor 101 enables an operator (e.g., a clinician, a nurse, or a physician) to accurately determine when the needle tip 132 contacts, reaches, or penetrates, an organ, a cavity wall, a vessel wall, or any other bodily tissue of a patient.
In one embodiment, when the entire length of the first conductive tube 140 and the entire length of the second conductive tube 142 overlap, the capacitance is at maximum. When the needle 130 is advanced or retracted, the second conductive tube 142 slides away from the first conductive tube 140 reducing the area of overlap. The capacitance is proportionally decreased. When the needle 130 is advanced toward a target site, the capacitance change indicates how far the needle 130 has protruded outside the needle sheath 110. The distance traveled by the needle 130 or the distance of protrusion by the needle 130 may indicate a penetration depth that the needle 130 has reached. In one embodiment, the penetration depth of the needle 130 is between 0.5–10 millimeters (mm).
In one embodiment, the capacitor 101 uses air as the dielectric layer 141. In another embodiment, the capacitor 101 uses a fluid as the dielectric layer 141. The capacitor 101 would comprise a first conductive tube 140, a second conductive tube 142, and an air gap 141 (or a fluid path 141) as the dielectric layer 141 as illustrated in
In another embodiment, the components of the capacitor 101 are dimensioned closely to each other. In this embodiment, the first conductive tube 140 is a thin conductive film or tube that is disposed along the inner diameter of the needle sheath 110. The first conductive tube 140 outer diameter is in immediate contact with the inner diameter of the needle sheath 110. The dielectric tube 141 is disposed within the first conductive tube 140. The outer diameter of the dielectric tube 141 is similar to the inner diameter of the first conductive tube 140 such that the dielectric tube 141 is in immediate contact with the inner diameter of the first conductive tube 140.
The needle insulation tube 138 is disposed on the outer diameter of the needle 130. The inner diameter of the needle insulation tube 138 is similar to the outer diameter of the needle 130 such that the needle insulation tube 138 is in immediate contact with the outer diameter of the needle 130. The second conductive tube 142 is disposed immediately on the outer diameter of the needle insulation tube 138. The needle 130 with the needle insulation tube 138 and the second conductive tube 142 is disposed within the inner diameter of the dielectric tube 141. The outer diameter of the second conductive tube 142 is similar to the inner diameter of the dielectric tube 141 such that the outer diameter of the second conductive tube 142 is in immediate contact with the inner diameter of the dielectric tube 141.
In one embodiment the dielectric tube 141 is attached to the first conductive tube 140. In one embodiment the dielectric tube 141 is attached to the second conductive tube 142. In one embodiment the dielectric tube 141 is not attached to either conductive tube 140 or 142. The dielectric tube 141 cannot be attached to both conductive tubes 140 and 142 simultaneously.
In one embodiment, the dielectric tube 141 also supports the needle 130 such that no ring (e.g., the ring 136) is needed to stabilize or support the needle 130 at the center of the needle sheath 110. The needle 130 is stabilized and supported within the needle sheath 110 because of the close fitting of the first conductive tube 140, the dielectric tube 141, the second conductive tube 142, the needle insulation tube 138, and the needle 130.
In one embodiment, a capacitor 111 is incorporated into the delivery catheter 100 as illustrated in
In one embodiment, the first conductive tube 140 is a thin film (that is conductive) disposed along the inner diameter of the needle sheath 110. The needle 130 includes a needle insulation layer 131 disposed along the outer diameter of the needle 130 at portions 135 and not portion 133, which is used to form the second conductive region of the capacitor 111. As illustrated in
In one embodiment, the first conductive tube 140 has a length 139. The uninsulated portion of the needle 133 has a length 137 shown. The lengths 137 and 139 may be approximately equal to or slightly larger than the penetration depth that the needle 130 needs to travel or penetrate to reach the target site (e.g., 0.5–10 mm). When the first conductive tube 140 and the needle uninsulated portion of the needle 133 overlap at these two lengths (139 and 137), the capacitance is at a maximum value. In one embodiment, as the needle 130 is advanced or retracted within the needle sheath 110, the capacitance between the first conductive tube 140 and the portion 133 of the needle tube 130 changes. In one embodiment, the change in capacitance is proportional to the distance advanced by the needle 130. The distance traveled by the needle 130 may be the penetration depth that the needle 130 needs to penetrate to reach the target site. In one embodiment, the penetration depth of the needle 130 is between about 0.5 and about 10 mm.
Continuing with
In another embodiment, another ring (not shown) such as the ring 136 described above in
In an alternative embodiment, the needle 130 is made of non-conductive material such as polymer and silicon.
In one embodiment, as the needle 130 is advanced or retracted (e.g., as the operator advances or retracts the needle 130 with the balloon 112 inflated) within the needle sheath 110, the capacitance between the first conductive tube 140 and the second conductive tube 142 changes. In another embodiment, as the needle 130 is advanced or retracted within the needle sheath 110, the capacitance between the first conductive tube 140 and the exposed portion of the conductive needle 130 changes. The capacitance is obtained and displayed on the device 154. In one embodiment, the capacitance is proportional to the distance advanced by the needle 130. In one embodiment, this distance indicates the penetration depth of the needle 130.
In one embodiment, the first conductive tube 140 and the second conductive tube 142 have similar length and when they overlap, the entire length of tube 140 overlaps with the entire length of tube 142. An initial capacitance (Ci) is measured when the first conductive tube 140 and the second conductive tube 142 overlap by the area “A.” As the needle 130 is advanced or retracted within the inner lumen of the needle sheath 110, the capacitance Ci changes as the second conductive tube 142 slides apart from the first conductive tube 140
For instance, as shown in
In one embodiment, the needle 130 is inserted to a predetermined penetration depth into the vessel wall 150 (e.g., 0.5–10 mm). The predetermined penetration depth may be equated to the distance “D” illustrated in
In one embodiment, needle advancement values are calculated based on changes in capacitance. The capacitance values are measured based on the initial capacitance Ci and capacitance values C1 to C1+n that are obtained as the needle 130 is being advanced. The capacitance values are continuously measured to determine the distance advanced by the needle 130. As previously discussed, the capacitance is proportional to the change in the area of overlap of the first conductive tube 140 and the second conductive tube 142. In one embodiment, the change in the area of overlap of the first conductive tube and the second conductive tube indicates the distance advanced by the needle 130. The distance advanced by the needle 130 is continuously compared to a desired needle penetration depth. The advancement of the needle 130 is stopped when the capacitance value indicates that the distance advanced by the needle 130 is equal to the desired needle penetration depth. This indicates that the needle 130 has reached the desired depth at the target site.
Optionally, rings (e.g., a polymeric ring or the ring 134) are disposed within the needle sheath at the distal and proximal ends of the needle sheath as illustrated at processing block 1506. In one embodiment, the proximal ring has an opening with a grooved or threaded surface through which a needle with a threaded portion is disposed.
At processing block 1508, a needle having a section covered or coated with a needle insulation region (e.g., the needle insulation tube 138) and a second conductive region (e.g., the second conductive tube 142) is disposed through the rings and into the needle sheath. In one embodiment, the needle is disposed into and attached to a preformed second conductive tube, which is then disposed through the ring, and into the needle sheath. In another embodiment, a conductive film is deposited on the outer diameter of the needle. In one embodiment, the needle has a threaded portion wherein the needle is threaded through the proximal ring when the needle is being disposed through the ring.
In the method 1500, an air or fluid gap separates the second conductive region from the first conductive region. The air gap acts as a dielectric region to separate the second conductive region from the first conductive region.
At processing block 1510, a capacitance sensor is coupled to the capacitor assembly to measure capacitance created by the first conductive tube and the second conductive tube. In one embodiment, a first lead is coupled to the first conductive tube and a second lead is coupled to the second conductive tube through the ring. The first lead and the second lead are further connected to a device that can measure the capacitance.
Referring back to
Systems and methods for detecting tissue contact and needle penetration depth have been described. Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This application is a divisional application of U.S. patent application Ser. No. 10/262,203, filed Sep. 30, 2002 now U.S. Pat. No. 6,951,549.
Number | Name | Date | Kind |
---|---|---|---|
2763935 | Whaley et al. | Sep 1956 | A |
4819661 | Heil et al. | Apr 1989 | A |
5389069 | Weaver | Feb 1995 | A |
5484416 | Gittings | Jan 1996 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6298256 | Meyer | Oct 2001 | B1 |
6309370 | Haim et al. | Oct 2001 | B1 |
6391005 | Lum et al. | May 2002 | B1 |
6692492 | Simpson et al. | Feb 2004 | B1 |
6706016 | Cory et al. | Mar 2004 | B1 |
6709380 | Green et al. | Mar 2004 | B1 |
6965791 | Hitchcock et al. | Nov 2005 | B1 |
20020008526 | Martin et al. | Jan 2002 | A1 |
20030028094 | Kumar et al. | Feb 2003 | A1 |
20030120297 | Beyerlein | Jun 2003 | A1 |
20040260240 | Beyerlein | Dec 2004 | A1 |
20050004513 | Beyerlein | Jan 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050283117 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10262203 | Sep 2002 | US |
Child | 11211107 | US |