The invention relates to a method for determining a flow velocity of a fluid flowing through an implanted vascular support system, an implantable vascular support system, and a use of an operating parameter of a flow machine of an implanted vascular support system. The invention is in particular used in (fully) implanted left-heart support systems (LVAD).
It is known to integrate ultrasonic volume flow sensors into heart support systems in order to therewith detect the so-called pump volume flow, which quantifies the fluid volume flow through the support system itself. The ultrasonic volume flow sensors can carry out pulsed Doppler measurements or use the pulsed Doppler (pulsed wave Doppler; in short: PWD) method. This method requires only one ultrasound transducer element and allows precise selection of the distance of the observation window from the ultrasound element.
The task of a cardiac support system is to convey blood. In this case, the so-called heart-time volume (HTV, usually indicated in liters per minute) is highly clinically relevant. In other words, the heart-time volume in this case relates to the total volume flow of blood from a ventricle, in particular from the left ventricle, to the aorta. Correspondingly clear is the attempt to collect this parameter as a measured value during operation of a cardiac support system.
Depending on the level of support, which describes the proportion of volume flow conveyed by a conveying means, such as a pump of the support system, to the total volume flow of blood from the ventricle to the aorta, a certain volume flow reaches the aorta via the physiological path through the aortic valve. The heart-time volume or the total volume flow (QHTV) from the ventricle to the aorta is therefore usually the sum of the pump volume flow (Qp) and the aortic valve volume flow (Qa).
An established method for the determination of the heart-time volume (QHTV) in the clinical setting is the use of dilution methods, which, however, all rely on a catheter inserted transcutaneously and therefore can only provide heart-time volume measurement data during cardiac surgery and during the subsequent stay in intensive care. For high levels of support, Qa approaches zero so that approximately Qp≈QHZV applies. Accordingly, at least in these cases, the heart-time volume can be determined at least approximately via the pump volume flow. An established method for measuring the pump volume flow (Qp) is the correlation of the operating parameters of the support system, predominantly the electrical power consumption, possibly supplemented by further physiological parameters, such as the blood pressure. Since these methods are based on statistical assumptions and the underlying pump characteristic map of the support system used, the correlated Qp are error-prone. In order to increase the measurement quality of the parameter Qp, the inclusion of a flow sensor is therefore desirable.
A particularly suitable sensor method for determining flow velocities and thus also volume flows is ultrasound, in particular the pulsed wave Doppler method (PWD) since it requires only one bidirectional ultrasound transducer element and allows precise selection of the distance of the observation window in which the measured values are collected. It is thus possible to carry out the flow velocity measurement in the range in which suitable flow conditions prevail.
In a PWD system, ultrasonic pulses are sent out at a defined pulse repetition rate (PRF). If the flow velocity and flow direction are unknown, the PRF must exceed at least twice the maximum occurring Doppler frequency shift in order to not violate the Nyquist theorem. If this condition is not met, aliasing occurs, i.e., ambiguities in the determined frequency spectrum. When detecting a frequency in the frequency spectrum, it can no longer be unambiguously assigned to one but several flow velocities.
Due to the geometric design of the measurement setup in heart support systems (VAD), the measurement range or the observation window may be so far away from the ultrasound transducer that the signal transit time of the ultrasonic pulse from the transducer to the measurement range and back to the transducer is not negligible. Since a new ultrasonic pulse may only be sent out if the preceding one no longer delivers significant echoes, the signal transit time limits the maximum possible PRF. In the case of the high flow velocities prevailing in heart support systems and the geometric boundary conditions for the distance of the observation window from the ultrasound element, there is inevitably a violation of the Nyquist sampling theorem, which results in ambiguities being produced in the spectrum.
Heart support systems with ultrasonic sensors that do not use the PWD method are usually equipped with two ultrasound transducers so that the described transit time problem can occur but can be solved otherwise with appropriate implementation. However, heart support systems with ultrasonic sensors that use the PWD method are susceptible to the described effect, in particular in the case of moderate to high flow velocities. The current state of the art is the measure to select the defined pulse repetition rate such that aliasing does not occur or to suitably adjust, if possible, both the geometric conditions and the ultrasound frequency.
The object of the invention is to specify an improved method for determining a flow velocity of a fluid flowing through an implanted vascular support system and to create an improved implantable vascular support system in which the flow velocity of a fluid flowing through it can be determined.
In particular, it is an object of the invention to create a method for determining a flow velocity of a fluid and an improved implantable vascular support system, in which the determination of the flow velocity of a fluid flowing through it is provided, in which the determination of the flow velocity at the flow velocities prevailing in a heart support system is possible with only one ultrasound transducer, even in the case of a long signal transit time of an ultrasonic pulse from the ultrasound transducer to the measurement range and back.
This object is achieved by the systems and methods disclosed herein.
Advantageous embodiments of the invention are specified herein.
In some embodiments, a method for determining at least a flow velocity or a fluid volume flow of a fluid flowing through an implanted vascular support system is proposed here, comprising the following steps:
The vascular support system is preferably a cardiac support system, particularly preferably a ventricular support system. The support system is regularly used to support the conveyance of blood in the blood circulation of a person, if appropriate patients. The support system can be arranged at least partially in a blood vessel. The blood vessel is, for example, the aorta, in particular in the case of a left-heart support system, or the common trunk (Truncus pulmonalis) into the two pulmonary arteries, in particular in the case of a right-heart support system. The support system is preferably arranged at the exit of the left ventricle of the heart or the left heart chamber. The support system is particularly preferably arranged in the aortic valve position.
The solution proposed here contributes in particular to providing an aliasing compensation method for an ultrasonic volume flow sensor in a heart support system. The method can contribute to determining a fluid flow velocity and/or a fluid volume flow from a ventricle of a heart, in particular from a (left) ventricle of a heart, to the aorta in the region of a (fully) implanted (left) ventricular (heart) support system. The fluid is regularly blood. The flow velocity is determined in a fluid flow or fluid volume flow, which flows through the support system, in particular through an (inlet) tube or an (inlet) cannula of the support system. The method advantageously allows the flow velocity and/or the fluid volume flow of the blood flow to be determined with high quality even outside the surgical scenario, in particular by the implanted support system itself.
The solution proposed here can particularly advantageously use the fact that based on the motor characteristic map, a rough estimation of the pump flow is possible (only) from the rotation rate of the drive or on the basis of the differential pressure across the flow machine and the rotation rate. The in particular rough estimate of the flow rate from the operating parameters of the flow machine is used in particular to resolve the ambiguities in the spectrum and to enable highly precise flow measurement by the ultrasonic sensor.
In step a), a pulsed Doppler measurement is carried out by means of an ultrasonic sensor of the support system. In order to carry out the pulsed Doppler measurement, the pulsed Doppler (pulsed wave Doppler; in short: PWD) method is in particular used. In particular, a PWD measurement cycle is run through in step a).
In step b), a measurement result from step a) which has a possible ambiguity is evaluated. “Possible ambiguity” means in other words in particular that the measurement result or all measurement results do not necessarily always have to have an ambiguity. In particular, in the case of a comparatively high flow velocity, as commonly occurring in the support systems in question here, the measurement result generally has an ambiguity. However, at a comparatively low flow velocity, it can also happen that the measurement result is unambiguous.
The measurement result can furthermore be provided in particular after step b). In this case, the measurement result can, for example, be provided as raw data (e.g., frequency spectrum) or as raw measurement result or as already at least partially preprocessed measurement result (e.g., as a (measured) flow velocity and/or as a (measured) fluid volume flow). The measurement result can be provided to a processing unit of the support system, for example.
In step c), at least one operating parameter of a flow machine of the support system is provided. The operating parameter can be provided to a processing unit of the support system, for example. The measurement result provided in step b) and the operating parameter provided in step c) are generally detected with respect to the same fluid flow, e.g., in the same (temporal and/or spatial) observation window. In other words, this means in particular that the measurement result provided in step b) and the operating parameter provided in step c) relate to substantially the same measurement time or have substantially the same time stamp and/or relate to the same measuring point. In this case, “substantially” in particular describes a deviation of less than one second. A time difference (generally of less than one second) can be taken into account until the operating parameter (or a change thereof) affects the measuring point. This can also be described in such a way that the measurement result provided in step b) and the operating parameter provided in step c) are associated with each other. At least one operating parameter associated with the measurement result provided in step b) is preferably provided in step c).
In step d), the (actual) flow velocity is determined using the measurement result evaluated in step b). If a raw measurement result is evaluated in step b) and then provided, it is particularly advantageous if a (measured) flow velocity is determined therefrom (e.g., in step d). If a pre-processed measurement result for a (measured) flow velocity is provided in step b), it can advantageously be used directly in step d). The (measured) flow velocity is generally not unambiguous. Furthermore, it is advantageous if an estimated flow velocity is determined on the basis of the operating parameter provided in step c). The (actual) flow velocity can now be determined, for example, by selecting the measured flow velocity that is closest to the estimated flow velocity.
Alternatively or cumulatively, an (actual) fluid volume flow (instead of the flow velocity) can be determined in step d). If a raw measurement result is provided in step b), it is particularly advantageous if a (measured) fluid volume flow is determined therefrom. If a pre-processed measurement result for a (measured) fluid volume flow is provided in step b), it can advantageously be used directly in step d). The (measured) fluid volume flow is generally not unambiguous. Furthermore, it is advantageous if an estimated fluid volume flow is determined on the basis of the operating parameter provided in step c). The (actual) flow volume flow can now be determined, for example, by selecting the measured fluid volume flow that is closest to the estimated fluid volume flow.
In the sense of the solution proposed here, the possible ambiguity of the measurement result is corrected or resolved using the operating parameter. The measurement result is generally ambiguous. This ambiguity can be explained in particular by the generally present violation of the Nyquist sampling theorem in this case. This violation of the Nyquist sampling theorem is caused in particular by comparatively long signal transit times existing in the support system between the ultrasonic sensor and the observation window or measurement range and a new ultrasonic pulse in the pulsed Doppler measurements generally being sent out only if the echo of an ultrasonic pulse sent out immediately beforehand was received or has died away.
The possible ambiguity can, for example, be corrected or resolved in step d). In this context, the flow velocity can be determined in step d) using the (possibly ambiguous) measurement result evaluated and/or provided in step b) and the operating parameter provided in step c), wherein the possible ambiguity of the measurement result is corrected using the operating parameter. A possibility to carry out such a correction or to resolve a possible ambiguity has already been described above. By way of example, the measured flow velocity or the measured fluid volume flow that is closest to the estimated flow velocity or the estimated fluid volume flow is selected in this case.
Alternatively, the possible ambiguity can (already) be corrected or resolved in step b), for example. This alternative can also be referred to as a priori estimation or as a priori selection or pre-selection. In other words, this means in particular that the possible ambiguity is already corrected or resolved during the evaluation of the measurement result. This can be particularly advantageous take place such that (only) the range or section of the (raw) measurement result in which a plausible result is to be expected is evaluated. The evaluated (no longer ambiguous) measurement result can in this case be provided in step b). The evaluated (no longer ambiguous) measurement result can in this case be used in step d).
“A priori” here means in particular that the operating parameter is provided and/or the estimated flow velocity or the estimated fluid volume flow is determined before the (possibly ambiguous) measurement result is evaluated (and, if applicable, provided). For example, the operating parameter, the a priori estimated flow velocity and/or the a priori estimated fluid volume flow (possibly in the form of a window function or windowing) can contribute to a pre-selection in order to evaluate and/or provide only a plausible measurement result or only the plausible part of the measurement result. For this purpose, a (reflected and then) received ultrasonic pulse can, for example, only be evaluated in the (frequency) section in which a plausible result is to be expected.
According to an advantageous embodiment, it is proposed that a new ultrasonic pulse is only sent out in step a) if an echo of an ultrasonic pulse sent out immediately beforehand has (sufficiently) died away and/or was received. A new ultrasonic pulse is preferably sent out only if all (significant) echoes of an ultrasonic pulse sent out immediately beforehand have (sufficiently) died away and/or were received. A new ultrasonic pulse is furthermore preferably sent out only if the (significant) echoes of an ultrasonic pulse sent out immediately beforehand from a (predefined) measurement window or measurement range have (sufficiently) died away and/or were received.
According to an advantageous embodiment, it is proposed that a maximum pulse repetition rate of the pulsed Doppler measurement is less than two times a maximum occurring Doppler shift. The maximum pulse repetition rate of the pulsed Doppler measurements is preferably less than the maximum occurring or expected Doppler shift. If the maximum pulse repetition rate is less than twice the maximum occurring Doppler shift, the Nyquist sampling theorem is in principle violated. However, this violation may be necessary to perform a PWD method in a vascular support system.
According to an advantageous embodiment, it is proposed that the operating parameter is at least one rotational speed, one current, one power, or one pressure. The operating parameter is preferably a rotational speed (or rotation rate) of the flow machine, e.g., of a drive (e.g., of an electric motor) and/or of a paddle wheel of the flow machine. The at least one operating parameter furthermore preferably comprises a rotational speed of the flow machine and a differential pressure across the flow machine.
According to an advantageous embodiment, it is proposed that a plausible range in which plausible measurement results can be located is (a priori) determined using the operating parameter. In this context, a window function or windowing can be used in the frequency analysis (e.g., by means of discrete Fourier transformation) of the (reflected and then) received ultrasonic pulse. A so-called Hamming window is preferably used. The windowing, in particular the Hamming window, can advantageously be formed as a function of the operating parameter and/or the expected and/or estimated flow velocity (on the basis of the operating parameter) and/or the expected and/or estimated fluid volume flow (on the basis of the operating parameter).
According to an advantageous embodiment, it is proposed that a fluid volume flow through the support system is determined using the flow velocity. In other words, this relates in particular to a fluid volume flow which flows (only) through the support system itself, e.g., through an (inlet) tube or an (inlet) cannula of the support system. The fluid volume flow is usually the so-called pump volume flow (Qp), which only quantifies the flow through the support system itself. If this value is known in addition to the total volume flow or heart-time volume (QHZV), the so-called level of support can be calculated from the ratio of Qp to QHZV (i.e., Qp/QHZV). In order to determine the fluid volume flow, the determined flow velocity can be multiplied, for example, with a flow cross section of the support system, in particular a tube or cannula flow cross section.
According to a further aspect, an implantable, vascular support system is, comprising:
The support system is preferably a left ventricular heart support system (LVAD) or a percutaneous, minimally invasive left-heart support system. Furthermore, the support system is preferably fully implantable. In other words, this means in particular that the means required for the detection, in particular the ultrasonic sensor, are completely located in the body of the patient and remain there. The support system can also be designed in multiple parts or with several components that can be arranged at a distance from one another, so that, for example, the ultrasonic sensor and the processing unit (measuring unit) can be separated from one another by a cable. In the multi-part design, the processing unit arranged separately from the ultrasonic sensor can also be implanted or arranged outside the body of the patient. In any case, it is not absolutely necessary for the processing unit to also be arranged in the body of the patient. For example, the support system can be implanted such that the processing unit is arranged on the skin of the patient or outside the body of the patient and a connection is established to the ultrasonic sensor arranged in the body. The support system is particularly preferably configured and/or suitable for being arranged at least partially in a ventricle, preferably in the left ventricle of a heart, and/or in an aorta, in particular in the aortic valve position.
The support system furthermore preferably comprises a tube (or a cannula), in particular an inlet tube or inlet cannula, a flow machine, such as a pump and/or an electric motor. The electric motor is regularly a component of the flow machine. The (inlet) tube or the (inlet) cannula is preferably configured such that in the implanted state, it can guide fluid from a (left) ventricle of a heart to the flow machine. The support system is preferably elongated and/or tubular. The tube (or the cannula) and the flow machine are preferably arranged in the region of opposite ends of the support system.
In particular, precisely or only one ultrasonic sensor is provided. The ultrasonic sensor preferably comprises precisely or only one ultrasound transducer element. This is in particular sufficient for a Doppler measurement if the PWD method is used.
The flow machine is preferably designed at least in the manner of a pump or an (axial or radial) compressor. The flow machine can provide at least one of its (current) operating parameters of the processing unit. In addition, a control unit for controlling or regulating the flow machine can be provided, which, for example, controls or regulates at least one rotational speed or one power of the flow machine as a function of (among other things) a flow velocity determined by way of example by the processing unit.
The support system is preferably configured to carry out a method proposed here.
According to a further aspect, a use of an operating parameter of a flow machine of an implanted vascular support system for correcting a possible ambiguity of a measurement result of an ultrasonic sensor of the support system is proposed. Preferably, at least one method proposed here or a support system proposed here is used for correcting a possible ambiguity of a measurement result of an ultrasonic sensor.
The details, features, and advantageous embodiments discussed in connection with the method can also arise accordingly in the support system presented here and/or in the use and vice versa. In this respect, reference is made in full to the explanations there regarding the detailed characterization of the features.
The solution presented here as well as its technical environment are explained in more detail below with reference to the figures. It should be pointed out that the invention is not to be limited by the exemplary embodiments shown. In particular, unless explicitly stated otherwise, it is also possible to extract partial aspects of the facts explained in the figures and to combine them with other components and/or insights from other figures and/or the present description. The following are shown schematically:
The vascular support system is preferably a ventricular and/or cardiac support system or a heart support system. Two particularly advantageous forms of heart support systems are systems positioned in the aorta according to
In this case, the support system 1 according to
The inlet openings 7 are located in the implanted state, for example, in the region of the ventricle 12, while the outlet openings are located in the implanted state in the region of the aorta 13. This orientation of the support system 1 is merely exemplary here and not mandatory; rather, the support system can be oriented in the reverse direction, for example. In this case, the system is furthermore implanted by way of example in such a way that it passes through the aortic valve 14. Such an arrangement can also be referred to as a so-called aortic valve position.
The measurement window, also referred to as the observation window and/or measurement range, for the ultrasound measurement is marked in
The ultrasonic sensor 2 is configured to carry out a pulsed Doppler measurement. The pulsed Doppler (pulsed wave Doppler; in short: PWD) method is basically used for ultrasound measurement in this case. The ultrasonic sensor 2 and the processing unit 6 can therefore also be referred to below as a so-called PWD system.
The measurement window 16 can typically be selected electronically in the PWD system so that a statement about the flow conditions in different regions of the flow guidance can also advantageously be made by means of measurement windows 16 of different depths.
In the (apical) embodiment according to
The relatively high flow velocities in the range of the measurement window 16 in relation to the distance of the ultrasound (transducer) element 19 from the measurement window 16 have a great influence on the PWD application in both (heart) support system variants, predominantly in the (aortic) variant according to
For an exemplary illustration of the method, a system according to
An ultrasonic pulse is sent out at the ultrasound element 19 and propagates in the direction of the measurement window 16. After sending out the pulse, the PWD system switches to the receiving direction and receives the portions that are continuously scattered back by scattering bodies in the blood, for example. The transit time of the pulse from the ultrasound element to the measurement window and from the measurement window back to the ultrasound element is taken into account in the process. In the case shown, the total relevant propagation path is thus 55.13 mm long (ultrasound element 19 to start of measurement window 16 plus burst length×2). The PWD system is switched back to transmission mode and the next pulse is sent out at the earliest when the last echo from the range of the measurement window 16 has arrived. In the specifically considered case, the pulse transit time limits the maximum pulse repetition rate to 27.93 kHz.
On the other hand, the maximum Doppler shift occurring in the case shown is 59.53 kHz. In a complex-value evaluation (10 demodulation), this leads to a minimum pulse repetition rate of 59.53 kHz, in which the present Doppler shift can be interpreted without ambiguity. However, since the measurement is carried out with a maximum of 27.93 kHz (maximum pulse repetition rate; see above), the Nyquist sampling theorem is violated in this case and ambiguities generally occur in the resulting Doppler spectrum. In this case, these ambiguities are resolved using an operating parameter of the flow machine of the support system in order to be able to make a clear statement about the main flow velocity in the observation window.
It can be seen that at the third flow velocity 22, there is already a violation of the Nyquist theorem, i.e., the Doppler frequency is in the range of the pulse repetition rate (PRF; here 27 kHz by way of example). With further increasing flow velocity of the blood, the spectrum moves from the negative frequency range to the coordinate origin. Here, there is already ambiguity about the direction of flow, i.e., either a fast flow toward the ultrasound element or a slower flow away from the ultrasound element. With further increasing flow velocity, the spectrum of the fifth flow velocity 24 appears in the ambiguity range of high or low flow velocity.
The solution presented here advantageously allows a resolution of such ambiguities. In principle, a comparatively rough range estimation can contribute to this purpose since the ultrasound method still works with high precision (resolution to 1-2 decimal places of the flow velocity in meters/second or of the volume flow in liters/minute), but ambiguity about the range of several meters/second or liters/minute is present.
In this context, a negative velocity means blood flowing toward the ultrasound element and appears in a frequency shift with a positive sign.
This example shows that the measured frequency peaks are very close to one another at flow velocities of 1 m/s and 4.5 m/s. This ambiguity can be resolved by the (a priori) knowledge of the approximate velocity on the basis of the operating parameter of the flow machine.
This approximate velocity interval vint (plausible range of the flow velocity) can be resolved with the aid of the following formula to a corresponding Doppler shift or a Doppler shift interval fd.int.
In the example, the corresponding Doppler shift interval is 31.95 kHz to 35.84 kHz. In order to shift the corresponding frequency interval into the frequency range that can be represented with the PRF used, the determined non-representable frequencies can be converted into the representable frequency range using the following formula (for positive flow velocities).
For the values shown in the example, the frequency interval that can be predicted by means of the operating parameter thus includes all frequencies between −9.95 kHz and −6.05 kHz. All frequencies measured in this interval correspond to velocities in the range of 4.1 m/s to 4.6 m/s.
The exact velocity (actual flow velocity) can be determined by a calculation from the number of spectral “wraps” with the aid of the operating parameter interval (frequency interval that can be predicted by means of the operating parameter) and successive back calculation from the measured frequency using the formulas already shown. A “wrap” here refers to the jump of a signal from the greatest positive representable frequency (fpRF/2) to the representable negative frequency of highest magnitude (−fpRF/2). The true frequency is determined according to the formula
fd=nfPRF=fmeas
The PWD volume flow measurement 26 can comprise the following steps:
The generated data can be stored temporarily in a memory for later evaluation or (e.g., with parallel implementation in programmable logic) can be further processed directly. While the ultrasonic pulse from the desired measurement window arrives (time limitation), the received echo sequence with the known ultrasonic pulse frequency is generally demodulated (“downmixing into the baseband”). Subsequently, the obtained baseband signal is generally transformed into the frequency range (transformation from time to frequency range for calculating the Doppler spectrum).
The motor characteristic map-based volume flow measurement 27 (rough volume flow measurement) can comprise the following steps:
The volume flow calculation unit 31, for example, carries out the following: multiplication of the known cross section in the range of the observation window 16 (formula symbol: A) with the flow velocity 30 (formula symbol: v), and a flow velocity-dependent flow profile correction parameter (formula symbol f(v)). In this case, the (actual) fluid volume flow (formula symbol Qp) can result according to the following formula:
Qp=f(v)×v×A
The anti-aliasing unit 29 and the volume flow calculation unit 31 can also be combined into one unit. In addition, the Doppler spectrum can be mapped directly to the volume flow Qp, for example.
The solution presented here allows in particular one or more of the following advantages:
Number | Date | Country | Kind |
---|---|---|---|
102018208933.7 | Jun 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/064807 | 6/6/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/234166 | 12/12/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3088323 | Welkowitz et al. | May 1963 | A |
4023562 | Hynecek et al. | May 1977 | A |
4559952 | Angelsen et al. | Dec 1985 | A |
4680730 | Omoda | Jul 1987 | A |
4781525 | Hubbard et al. | Nov 1988 | A |
4888011 | Kung et al. | Dec 1989 | A |
4889131 | Salem et al. | Dec 1989 | A |
4902272 | Milder et al. | Feb 1990 | A |
5045051 | Milder et al. | Sep 1991 | A |
5269811 | Hayes | Dec 1993 | A |
5289821 | Swartz | Mar 1994 | A |
5456715 | Liotta | Oct 1995 | A |
5527159 | Bozeman, Jr. et al. | Jun 1996 | A |
5581038 | Lampropoulos | Dec 1996 | A |
5613935 | Jarvik | Mar 1997 | A |
5662115 | Torp | Sep 1997 | A |
5676651 | Larson, Jr. et al. | Oct 1997 | A |
5720771 | Snell | Feb 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5766207 | Potter et al. | Jun 1998 | A |
5827203 | Nita | Oct 1998 | A |
5865759 | Koblanski | Feb 1999 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5904708 | Goedeke | May 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
5980465 | Elgas | Nov 1999 | A |
6007478 | Siess et al. | Dec 1999 | A |
6024704 | Meador et al. | Feb 2000 | A |
6053873 | Govari et al. | Apr 2000 | A |
6167765 | Weitzel | Jan 2001 | B1 |
6176822 | Nix et al. | Jan 2001 | B1 |
6183412 | Benkowsi et al. | Feb 2001 | B1 |
6185460 | Thompson | Feb 2001 | B1 |
6190324 | Kieval et al. | Feb 2001 | B1 |
6210318 | Lederman | Apr 2001 | B1 |
6231498 | Pfeiffer et al. | May 2001 | B1 |
6245007 | Bedingham et al. | Jun 2001 | B1 |
6314322 | Rosenberg | Nov 2001 | B1 |
6351048 | Schob et al. | Feb 2002 | B1 |
6398734 | Cimochowski et al. | Jun 2002 | B1 |
6432136 | Weiss et al. | Aug 2002 | B1 |
6438409 | Malik et al. | Aug 2002 | B1 |
6512949 | Combs et al. | Jan 2003 | B1 |
6530876 | Spence | Mar 2003 | B1 |
6540658 | Fasciano et al. | Apr 2003 | B1 |
6540659 | Milbocker | Apr 2003 | B1 |
6561975 | Pool et al. | May 2003 | B1 |
6579257 | Elgas et al. | Jun 2003 | B1 |
6602182 | Milbocker | Aug 2003 | B1 |
6605032 | Benkowsi et al. | Aug 2003 | B2 |
6652447 | Benkowsi et al. | Nov 2003 | B2 |
6731976 | Penn et al. | May 2004 | B2 |
6879126 | Paden et al. | Apr 2005 | B2 |
6912423 | Ley et al. | Jun 2005 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6984201 | Khaghani et al. | Jan 2006 | B2 |
7010954 | Siess | Mar 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7024244 | Muhlenberg et al. | Apr 2006 | B2 |
7070555 | Siess | Jul 2006 | B2 |
7083588 | Shmulewitz et al. | Aug 2006 | B1 |
7138776 | Gauthier et al. | Nov 2006 | B1 |
7160243 | Medvedev | Jan 2007 | B2 |
7175588 | Morello | Feb 2007 | B2 |
7177681 | Xhu | Feb 2007 | B2 |
7238151 | Frazier | Jul 2007 | B2 |
7396327 | Morello | Jul 2008 | B2 |
7513864 | Kantrowitz et al. | Apr 2009 | B2 |
7520850 | Brockway | Apr 2009 | B2 |
7527599 | Hickey | May 2009 | B2 |
7591777 | LaRose | Sep 2009 | B2 |
7744560 | Struble | Jun 2010 | B2 |
7794384 | Sugiura et al. | Sep 2010 | B2 |
7819916 | Yaegashi | Oct 2010 | B2 |
7850593 | Vincent et al. | Dec 2010 | B2 |
7850594 | Sutton et al. | Dec 2010 | B2 |
7856335 | Morello et al. | Dec 2010 | B2 |
7862501 | Woodward et al. | Jan 2011 | B2 |
7951062 | Morello | May 2011 | B2 |
7951129 | Chinchoy | May 2011 | B2 |
7963905 | Salmonsen et al. | Jun 2011 | B2 |
7988728 | Ayre | Aug 2011 | B2 |
8075472 | Zilbershlag et al. | Dec 2011 | B2 |
8190390 | Morello et al. | May 2012 | B2 |
8211028 | Karamanoglu et al. | Jul 2012 | B2 |
8303482 | Schima et al. | Nov 2012 | B2 |
8323173 | Benkowsi et al. | Dec 2012 | B2 |
8435182 | Tamura | May 2013 | B1 |
8449444 | Poirier | May 2013 | B2 |
8545380 | Farnan et al. | Oct 2013 | B2 |
8585572 | Mehmanesh | Nov 2013 | B2 |
8591393 | Walters et al. | Nov 2013 | B2 |
8594790 | Kjellstrom et al. | Nov 2013 | B2 |
8622949 | Zafirelis et al. | Jan 2014 | B2 |
8657733 | Ayre et al. | Feb 2014 | B2 |
8657875 | Kung et al. | Feb 2014 | B2 |
8715151 | Poirier | May 2014 | B2 |
8747293 | Arndt et al. | Jun 2014 | B2 |
8849398 | Evans | Sep 2014 | B2 |
8864643 | Reichenbach et al. | Oct 2014 | B2 |
8864644 | Yomtov | Oct 2014 | B2 |
8876685 | Crosby et al. | Nov 2014 | B2 |
8882477 | Fritz, IV et al. | Nov 2014 | B2 |
8888728 | Aboul-Hosn et al. | Nov 2014 | B2 |
8897873 | Schima et al. | Nov 2014 | B2 |
8903492 | Soykan et al. | Dec 2014 | B2 |
9091271 | Bourque | Jul 2015 | B2 |
9297735 | Graichen et al. | Mar 2016 | B2 |
9308305 | Chen et al. | Apr 2016 | B2 |
9345824 | Mohl et al. | May 2016 | B2 |
9371826 | Yanai et al. | Jun 2016 | B2 |
9427508 | Reyes et al. | Aug 2016 | B2 |
9474840 | Siess | Oct 2016 | B2 |
9492601 | Casas et al. | Nov 2016 | B2 |
9511179 | Casas et al. | Dec 2016 | B2 |
9555173 | Spanier | Jan 2017 | B2 |
9555175 | Bulent et al. | Jan 2017 | B2 |
9556873 | Yanai et al. | Jan 2017 | B2 |
9566374 | Spence et al. | Feb 2017 | B2 |
9636442 | Karmon et al. | May 2017 | B2 |
9656010 | Burke | May 2017 | B2 |
9669142 | Spanier et al. | Jun 2017 | B2 |
9669144 | Spanier et al. | Jun 2017 | B2 |
9694123 | Bourque et al. | Jul 2017 | B2 |
9713701 | Sarkar et al. | Jul 2017 | B2 |
9744282 | Rosenberg et al. | Aug 2017 | B2 |
9789236 | Bonde | Oct 2017 | B2 |
9833550 | Siess | Dec 2017 | B2 |
9848899 | Sliwa et al. | Dec 2017 | B2 |
9849224 | Angwin et al. | Dec 2017 | B2 |
9878087 | Richardson et al. | Jan 2018 | B2 |
9943236 | Bennett et al. | Apr 2018 | B2 |
9950102 | Spence et al. | Apr 2018 | B2 |
9974894 | Morello | May 2018 | B2 |
9999714 | Spanier et al. | Jun 2018 | B2 |
10010662 | Wiesener et al. | Jul 2018 | B2 |
10022480 | Greatrex et al. | Jul 2018 | B2 |
10029037 | Muller et al. | Jul 2018 | B2 |
10052420 | Medvedev et al. | Aug 2018 | B2 |
10279093 | Reichenbach et al. | May 2019 | B2 |
10322217 | Spence | Jun 2019 | B2 |
10342906 | D'Ambrosio et al. | Jul 2019 | B2 |
10350342 | Thomas et al. | Jul 2019 | B2 |
10357598 | Aboul-Hosn et al. | Jul 2019 | B2 |
10376162 | Edelman et al. | Aug 2019 | B2 |
10413651 | Yomtov et al. | Sep 2019 | B2 |
10426879 | Farnan | Oct 2019 | B2 |
10449275 | Corbett | Oct 2019 | B2 |
10500322 | Karch | Dec 2019 | B2 |
10525178 | Zeng | Jan 2020 | B2 |
10549020 | Spence et al. | Feb 2020 | B2 |
10561771 | Heilman et al. | Feb 2020 | B2 |
10561772 | Schumacher | Feb 2020 | B2 |
10561773 | Ferrari et al. | Feb 2020 | B2 |
10632241 | Schenck et al. | Apr 2020 | B2 |
10660998 | Hodges | May 2020 | B2 |
10668195 | Flores | Jun 2020 | B2 |
10732583 | Rudser | Aug 2020 | B2 |
10857275 | Granegger | Dec 2020 | B2 |
10864308 | Muller et al. | Dec 2020 | B2 |
11027114 | D'Ambrosio et al. | Jun 2021 | B2 |
RE48649 | Siess | Jul 2021 | E |
11067085 | Granegger et al. | Jul 2021 | B2 |
11120908 | Agnello et al. | Sep 2021 | B2 |
11131968 | Rudser | Sep 2021 | B2 |
11147960 | Spanier et al. | Oct 2021 | B2 |
11154701 | Reyes et al. | Oct 2021 | B2 |
11154702 | Kadrolkar et al. | Oct 2021 | B2 |
11185682 | Farnan | Nov 2021 | B2 |
11191945 | Siess et al. | Dec 2021 | B2 |
11197618 | Edelman et al. | Dec 2021 | B2 |
11217344 | Agnello | Jan 2022 | B2 |
11235139 | Kudlik | Feb 2022 | B2 |
11241572 | Dague et al. | Feb 2022 | B2 |
11273299 | Wolman et al. | Mar 2022 | B2 |
11285310 | Curran et al. | Mar 2022 | B2 |
11285311 | Siess et al. | Mar 2022 | B2 |
11298524 | El Katerji et al. | Apr 2022 | B2 |
11311711 | Casas et al. | Apr 2022 | B2 |
11316679 | Agnello | Apr 2022 | B2 |
11320382 | Aikawa | May 2022 | B2 |
11324395 | Banik et al. | May 2022 | B2 |
11331082 | Itoh et al. | May 2022 | B2 |
11337724 | Masubuchi et al. | May 2022 | B2 |
11338125 | Liu et al. | May 2022 | B2 |
11351356 | Mohl | Jun 2022 | B2 |
11351357 | Mohl | Jun 2022 | B2 |
11351358 | Nix et al. | Jun 2022 | B2 |
11357438 | Stewart et al. | Jun 2022 | B2 |
11357968 | El Katerji et al. | Jun 2022 | B2 |
11376415 | Mohl | Jul 2022 | B2 |
11376419 | Reyes et al. | Jul 2022 | B2 |
11389639 | Casas | Jul 2022 | B2 |
11389641 | Nguyen et al. | Jul 2022 | B2 |
11413444 | Nix et al. | Aug 2022 | B2 |
11413445 | Brown et al. | Aug 2022 | B2 |
11420041 | Karch | Aug 2022 | B2 |
11439806 | Kimball et al. | Sep 2022 | B2 |
11446481 | Wolman et al. | Sep 2022 | B2 |
11478629 | Harjes et al. | Oct 2022 | B2 |
11517740 | Agarwa et al. | Dec 2022 | B2 |
11521723 | Liu et al. | Dec 2022 | B2 |
11524165 | Tan et al. | Dec 2022 | B2 |
11527322 | Agnello et al. | Dec 2022 | B2 |
11529062 | Moyer et al. | Dec 2022 | B2 |
11554260 | Reyes et al. | Jan 2023 | B2 |
11572879 | Mohl | Feb 2023 | B2 |
11574741 | Tan et al. | Feb 2023 | B2 |
11577068 | Spence et al. | Feb 2023 | B2 |
11581083 | El Katerji et al. | Feb 2023 | B2 |
11583659 | Pfeffer et al. | Feb 2023 | B2 |
11587337 | Lemay et al. | Feb 2023 | B2 |
11590337 | Granegger et al. | Feb 2023 | B2 |
11622695 | Adriola et al. | Apr 2023 | B1 |
11628293 | Gandhi et al. | Apr 2023 | B2 |
11639722 | Medvedev et al. | May 2023 | B2 |
11648386 | Poirer | May 2023 | B2 |
11653841 | Reyes et al. | May 2023 | B2 |
11666746 | Ferrari et al. | Jun 2023 | B2 |
11668321 | Richert et al. | Jun 2023 | B2 |
11674517 | Mohl | Jun 2023 | B2 |
11676718 | Agnello et al. | Jun 2023 | B2 |
11684276 | Cros et al. | Jun 2023 | B2 |
11684769 | Harjes et al. | Jun 2023 | B2 |
11694539 | Kudlik et al. | Jul 2023 | B2 |
11694813 | El Katerji et al. | Jul 2023 | B2 |
11696782 | Carlson et al. | Jul 2023 | B2 |
11707617 | Reyes et al. | Jul 2023 | B2 |
11712167 | Medvedev et al. | Aug 2023 | B2 |
11754077 | Mohl | Sep 2023 | B1 |
D1001145 | Lussier et al. | Oct 2023 | S |
D1001146 | Lussier et al. | Oct 2023 | S |
11771885 | Liu et al. | Oct 2023 | B2 |
11779234 | Harjes et al. | Oct 2023 | B2 |
11781551 | Yanai et al. | Oct 2023 | B2 |
11790487 | Barbato et al. | Oct 2023 | B2 |
11793994 | Josephy et al. | Oct 2023 | B2 |
11806116 | Tuval et al. | Nov 2023 | B2 |
11806517 | Petersen | Nov 2023 | B2 |
11806518 | Michelena et al. | Nov 2023 | B2 |
11813079 | Lau et al. | Nov 2023 | B2 |
11818782 | Doudian et al. | Nov 2023 | B2 |
11824381 | Conyers et al. | Nov 2023 | B2 |
11826127 | Casas | Nov 2023 | B2 |
11832793 | McWeeney et al. | Dec 2023 | B2 |
11832868 | Smail et al. | Dec 2023 | B2 |
11837364 | Lee et al. | Dec 2023 | B2 |
11844592 | Tuval et al. | Dec 2023 | B2 |
11844940 | D'Ambrosio et al. | Dec 2023 | B2 |
11850073 | Wright et al. | Dec 2023 | B2 |
11850414 | Schenck et al. | Dec 2023 | B2 |
11850415 | Schwammenthal et al. | Dec 2023 | B2 |
D1012284 | Glaser et al. | Jan 2024 | S |
11857345 | Hanson et al. | Jan 2024 | B2 |
11864878 | Duval et al. | Jan 2024 | B2 |
11872384 | Cotter | Jan 2024 | B2 |
11883207 | El Katerji et al. | Jan 2024 | B2 |
D1014552 | Lussier et al. | Feb 2024 | S |
11890082 | Cros et al. | Feb 2024 | B2 |
11896199 | Lent et al. | Feb 2024 | B2 |
11900660 | Saito et al. | Feb 2024 | B2 |
11903657 | Geric et al. | Feb 2024 | B2 |
11906411 | Graichen et al. | Feb 2024 | B2 |
11911550 | Itamochi et al. | Feb 2024 | B2 |
D1017634 | Lussier et al. | Mar 2024 | S |
D1017699 | Moore et al. | Mar 2024 | S |
11923078 | Fallen et al. | Mar 2024 | B2 |
11923093 | Moffitt et al. | Mar 2024 | B2 |
11925794 | Malkin et al. | Mar 2024 | B2 |
11931073 | Walsh et al. | Mar 2024 | B2 |
11931528 | Rohl et al. | Mar 2024 | B2 |
11931588 | Aghassian | Mar 2024 | B2 |
11986274 | Edelman | May 2024 | B2 |
12017076 | Tan et al. | Jun 2024 | B2 |
12023476 | Tuval et al. | Jul 2024 | B2 |
12029891 | Siess et al. | Jul 2024 | B2 |
12059559 | Muller et al. | Aug 2024 | B2 |
D1043730 | Lussier et al. | Sep 2024 | S |
D1043731 | Lussier et al. | Sep 2024 | S |
12076544 | Siess et al. | Sep 2024 | B2 |
12097016 | Goldvasser | Sep 2024 | B2 |
12102815 | Dhaliwal et al. | Oct 2024 | B2 |
12144650 | Spanier et al. | Nov 2024 | B2 |
12144976 | Baumbach et al. | Nov 2024 | B2 |
20010016686 | Okada et al. | Aug 2001 | A1 |
20010037093 | Benkowski et al. | Nov 2001 | A1 |
20010039828 | Shin et al. | Nov 2001 | A1 |
20020022785 | Romano | Feb 2002 | A1 |
20020082585 | Carroll et al. | Jun 2002 | A1 |
20020147495 | Petroff | Oct 2002 | A1 |
20020151761 | Viole et al. | Oct 2002 | A1 |
20030069465 | Benkowski et al. | Apr 2003 | A1 |
20030130581 | Salo et al. | Jul 2003 | A1 |
20030139643 | Smith et al. | Jul 2003 | A1 |
20030167002 | Nagar et al. | Sep 2003 | A1 |
20030191357 | Frazier | Oct 2003 | A1 |
20030199727 | Burke | Oct 2003 | A1 |
20040022640 | Siess et al. | Feb 2004 | A1 |
20040044266 | Siess et al. | Mar 2004 | A1 |
20040065143 | Husher | Apr 2004 | A1 |
20040130009 | Tangpuz | Jul 2004 | A1 |
20040167376 | Peters et al. | Aug 2004 | A1 |
20040167410 | Hettrick | Aug 2004 | A1 |
20040225177 | Coleman et al. | Nov 2004 | A1 |
20040241019 | Goldowsky | Dec 2004 | A1 |
20040260346 | Overall et al. | Dec 2004 | A1 |
20050001324 | Dunn | Jan 2005 | A1 |
20050019167 | Nusser et al. | Jan 2005 | A1 |
20050107658 | Brockway | May 2005 | A1 |
20050126268 | Ouriev et al. | Jun 2005 | A1 |
20050267322 | LaRose | Dec 2005 | A1 |
20060030809 | Barzilay et al. | Feb 2006 | A1 |
20060108697 | Wang | May 2006 | A1 |
20060108901 | Mao-Chin | May 2006 | A1 |
20060122583 | Pesach et al. | Jun 2006 | A1 |
20060196277 | Allen et al. | Sep 2006 | A1 |
20060229488 | Ayre et al. | Oct 2006 | A1 |
20060287600 | McEowen | Dec 2006 | A1 |
20060287604 | Hickey | Dec 2006 | A1 |
20070060787 | Peters et al. | Mar 2007 | A1 |
20070069354 | Dangelmaier | Mar 2007 | A1 |
20070073352 | Euler et al. | Mar 2007 | A1 |
20070088214 | Shuros et al. | Apr 2007 | A1 |
20070156006 | Smith et al. | Jul 2007 | A1 |
20070255352 | Roline et al. | Nov 2007 | A1 |
20070266778 | Corey et al. | Nov 2007 | A1 |
20070282209 | Lui et al. | Dec 2007 | A1 |
20070299325 | Farrell et al. | Dec 2007 | A1 |
20080015517 | Geistert et al. | Jan 2008 | A1 |
20080082005 | Stern et al. | Apr 2008 | A1 |
20080091239 | Johansson et al. | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080102096 | Molin et al. | May 2008 | A1 |
20080108901 | Baba et al. | May 2008 | A1 |
20080108930 | Weitzel et al. | May 2008 | A1 |
20080133006 | Crosby et al. | Jun 2008 | A1 |
20080146996 | Smisson | Jun 2008 | A1 |
20080210016 | Zwirn et al. | Sep 2008 | A1 |
20080262289 | Goldowsky | Oct 2008 | A1 |
20080262361 | Gutfinger et al. | Oct 2008 | A1 |
20080269822 | Ljungstrom et al. | Oct 2008 | A1 |
20080275339 | Thiemann et al. | Nov 2008 | A1 |
20080306328 | Ercolani | Dec 2008 | A1 |
20090024042 | Nunez et al. | Jan 2009 | A1 |
20090025459 | Zhang et al. | Jan 2009 | A1 |
20090064755 | Fleischli et al. | Mar 2009 | A1 |
20090105799 | Hekmat et al. | Apr 2009 | A1 |
20090131765 | Roschak et al. | May 2009 | A1 |
20090204163 | Shuros et al. | Aug 2009 | A1 |
20090226328 | Morello | Sep 2009 | A1 |
20090312650 | Maile et al. | Dec 2009 | A1 |
20100010354 | Skerl et al. | Jan 2010 | A1 |
20100082099 | Vodermayer et al. | Apr 2010 | A1 |
20100087742 | Bishop et al. | Apr 2010 | A1 |
20100160801 | Takatani et al. | Jun 2010 | A1 |
20100219967 | Kaufmann | Sep 2010 | A1 |
20100222632 | Poirier | Sep 2010 | A1 |
20100222633 | Poirier | Sep 2010 | A1 |
20100222635 | Poirier | Sep 2010 | A1 |
20100222878 | Poirier | Sep 2010 | A1 |
20100268017 | Siess | Oct 2010 | A1 |
20100298625 | Reichenbach et al. | Nov 2010 | A1 |
20100324378 | Tran et al. | Dec 2010 | A1 |
20110004075 | Stahmann et al. | Jan 2011 | A1 |
20110022057 | Eigler et al. | Jan 2011 | A1 |
20110071336 | Yomtov | Mar 2011 | A1 |
20110144744 | Wampler | Jun 2011 | A1 |
20110172505 | Kim | Jul 2011 | A1 |
20110184301 | Holmstrom | Jul 2011 | A1 |
20110218435 | Srinivasan et al. | Sep 2011 | A1 |
20110230068 | Pahl | Sep 2011 | A1 |
20120022645 | Burke | Jan 2012 | A1 |
20120084024 | Norcross, Jr. | Apr 2012 | A1 |
20120150089 | Penka et al. | Jun 2012 | A1 |
20120203476 | Dam | Aug 2012 | A1 |
20120245404 | Smith | Sep 2012 | A1 |
20120247200 | Ahonen et al. | Oct 2012 | A1 |
20120310037 | Choi et al. | Dec 2012 | A1 |
20120330214 | Peters et al. | Dec 2012 | A1 |
20130041204 | Heilman et al. | Feb 2013 | A1 |
20130046129 | Medvedev et al. | Feb 2013 | A1 |
20130066141 | Doerr et al. | Mar 2013 | A1 |
20130072846 | Heide et al. | Mar 2013 | A1 |
20130116575 | Mickle et al. | May 2013 | A1 |
20130144379 | Najafi et al. | Jun 2013 | A1 |
20130289334 | Badstibner | Oct 2013 | A1 |
20130289376 | Lang | Oct 2013 | A1 |
20130303831 | Evans | Nov 2013 | A1 |
20130304404 | Dam | Nov 2013 | A1 |
20140005467 | Farnan et al. | Jan 2014 | A1 |
20140013852 | Brown et al. | Jan 2014 | A1 |
20140030122 | Ozaki | Jan 2014 | A1 |
20140100414 | Tamez et al. | Apr 2014 | A1 |
20140114202 | Hein et al. | Apr 2014 | A1 |
20140128659 | Heuring et al. | May 2014 | A1 |
20140200389 | Yanai et al. | Jul 2014 | A1 |
20140243688 | Caron et al. | Aug 2014 | A1 |
20140275720 | Ferrari | Sep 2014 | A1 |
20140275727 | Bonde | Sep 2014 | A1 |
20140296677 | McEowen | Oct 2014 | A1 |
20140303426 | Kerkhoffs et al. | Oct 2014 | A1 |
20140342203 | Elian | Nov 2014 | A1 |
20150032007 | Ottevanger et al. | Jan 2015 | A1 |
20150141832 | Yu et al. | May 2015 | A1 |
20150141842 | Spanier et al. | May 2015 | A1 |
20150157216 | Stigall et al. | Jun 2015 | A1 |
20150174307 | Eckman et al. | Jun 2015 | A1 |
20150190092 | Mori | Jul 2015 | A1 |
20150250935 | Anderson et al. | Sep 2015 | A1 |
20150273184 | Scott et al. | Oct 2015 | A1 |
20150290372 | Muller et al. | Oct 2015 | A1 |
20150306290 | Rosenberg et al. | Oct 2015 | A1 |
20150306291 | Bonde et al. | Oct 2015 | A1 |
20150307344 | Ernst | Oct 2015 | A1 |
20150327921 | Govari | Nov 2015 | A1 |
20150335804 | Marseille et al. | Nov 2015 | A1 |
20150365738 | Purvis et al. | Dec 2015 | A1 |
20160000983 | Mohl et al. | Jan 2016 | A1 |
20160008531 | Wang et al. | Jan 2016 | A1 |
20160022889 | Bluvshtein et al. | Jan 2016 | A1 |
20160022890 | Schwammenthal et al. | Jan 2016 | A1 |
20160045165 | Braido et al. | Feb 2016 | A1 |
20160095968 | Rudser | Apr 2016 | A1 |
20160101230 | Ochsner et al. | Apr 2016 | A1 |
20160144166 | Decré et al. | May 2016 | A1 |
20160151553 | Bonde | Jun 2016 | A1 |
20160166747 | Frazier et al. | Jun 2016 | A1 |
20160213828 | Sievers | Jul 2016 | A1 |
20160250399 | Tiller et al. | Sep 2016 | A1 |
20160278856 | Panescu | Sep 2016 | A1 |
20160302672 | Kuri | Oct 2016 | A1 |
20160317043 | Campo | Nov 2016 | A1 |
20160338629 | Doerr | Nov 2016 | A1 |
20170010144 | Lenner et al. | Jan 2017 | A1 |
20170021070 | Petersen | Jan 2017 | A1 |
20170049945 | Halvorsen et al. | Feb 2017 | A1 |
20170086780 | Sokulin et al. | Mar 2017 | A1 |
20170098491 | Ziaie et al. | Apr 2017 | A1 |
20170112985 | Yomtov | Apr 2017 | A1 |
20170128646 | Karch | May 2017 | A1 |
20170136164 | Yeatts | May 2017 | A1 |
20170202575 | Stanfield et al. | Jul 2017 | A1 |
20170224279 | Cahan et al. | Aug 2017 | A1 |
20170239407 | Hayward | Aug 2017 | A1 |
20170258980 | Katsuki et al. | Sep 2017 | A1 |
20170348470 | D'Ambrosio et al. | Dec 2017 | A1 |
20170354812 | Callaghan et al. | Dec 2017 | A1 |
20180064860 | Nunez et al. | Mar 2018 | A1 |
20180078159 | Edelman et al. | Mar 2018 | A1 |
20180093070 | Cottone | Apr 2018 | A1 |
20180110910 | Rodemerk et al. | Apr 2018 | A1 |
20180199635 | Longinotti-Buitoni et al. | Jul 2018 | A1 |
20180250457 | Morello et al. | Sep 2018 | A1 |
20180256796 | Hansen | Sep 2018 | A1 |
20180256800 | Conyers et al. | Sep 2018 | A1 |
20180264182 | Spanier et al. | Sep 2018 | A1 |
20180280598 | Curran et al. | Oct 2018 | A1 |
20180316209 | Gliner | Nov 2018 | A1 |
20180326131 | Muller et al. | Nov 2018 | A1 |
20180333059 | Casas | Nov 2018 | A1 |
20180353667 | Moyer et al. | Dec 2018 | A1 |
20180369469 | Le Duc De Lillers et al. | Dec 2018 | A1 |
20190001038 | Yomtov et al. | Jan 2019 | A1 |
20190054223 | Frazier et al. | Feb 2019 | A1 |
20190083690 | Siess et al. | Mar 2019 | A1 |
20190192752 | Tiller et al. | Jun 2019 | A1 |
20190192753 | Liu et al. | Jun 2019 | A1 |
20190209755 | Nix et al. | Jul 2019 | A1 |
20190209758 | Tuval et al. | Jul 2019 | A1 |
20190216995 | Kapur et al. | Jul 2019 | A1 |
20190217002 | Urakabe | Jul 2019 | A1 |
20190223877 | Nitzen et al. | Jul 2019 | A1 |
20190240680 | Hayakawa | Aug 2019 | A1 |
20190254543 | Hartholt et al. | Aug 2019 | A1 |
20190282741 | Franano et al. | Sep 2019 | A1 |
20190282744 | D'Ambrosio et al. | Sep 2019 | A1 |
20190351117 | Cambronne et al. | Nov 2019 | A1 |
20190351118 | Graichen et al. | Nov 2019 | A1 |
20200016309 | Kallenbach et al. | Jan 2020 | A1 |
20200038567 | Siess et al. | Feb 2020 | A1 |
20200060559 | Edelman et al. | Feb 2020 | A1 |
20200069857 | Schwammenthal et al. | Mar 2020 | A1 |
20200147283 | Tanner et al. | May 2020 | A1 |
20200164125 | Muller et al. | May 2020 | A1 |
20200164126 | Muller | May 2020 | A1 |
20200253583 | Brisken et al. | Aug 2020 | A1 |
20200312450 | Agnello et al. | Oct 2020 | A1 |
20210268264 | Stotz | Sep 2021 | A1 |
20210290087 | Schlebusch | Sep 2021 | A1 |
20210290930 | Kasel | Sep 2021 | A1 |
20210290933 | Stotz | Sep 2021 | A1 |
20210339002 | Schlebusch et al. | Nov 2021 | A1 |
20210339004 | Schlebusch et al. | Nov 2021 | A1 |
20210346674 | Baumbach et al. | Nov 2021 | A1 |
20210346675 | Schlebusch et al. | Nov 2021 | A1 |
20210346676 | Schlebusch et al. | Nov 2021 | A1 |
20210346677 | Baumbach et al. | Nov 2021 | A1 |
20210346678 | Baumbach et al. | Nov 2021 | A1 |
20210378523 | Budde | Dec 2021 | A1 |
20210379359 | Schellenberg | Dec 2021 | A1 |
20210379360 | Schellenberg | Dec 2021 | A1 |
20210393944 | Wenning | Dec 2021 | A1 |
20220016411 | Winterwerber | Jan 2022 | A1 |
20220032032 | Schlebusch et al. | Feb 2022 | A1 |
20220032036 | Baumbach et al. | Feb 2022 | A1 |
20220047173 | Stotz et al. | Feb 2022 | A1 |
20220050037 | Stotz et al. | Feb 2022 | A1 |
20220072298 | Spanier et al. | Mar 2022 | A1 |
20220076807 | Agnello | Mar 2022 | A1 |
20220079457 | Tuval et al. | Mar 2022 | A1 |
20220105339 | Nix et al. | Apr 2022 | A1 |
20220126085 | Farnan | Apr 2022 | A1 |
20220126086 | Schlebusch et al. | Apr 2022 | A1 |
20220142462 | Douk et al. | May 2022 | A1 |
20220161019 | Mitze et al. | May 2022 | A1 |
20220361762 | Lalancette | Nov 2022 | A1 |
20230173250 | Stigloher | Jun 2023 | A1 |
20230191141 | Wenning et al. | Jun 2023 | A1 |
20240011808 | Winzer et al. | Jan 2024 | A1 |
20240074828 | Wenning | Mar 2024 | A1 |
20240245902 | Schlebusch et al. | Jul 2024 | A1 |
Number | Date | Country |
---|---|---|
3 122 415 | Jul 2020 | CA |
1192351 | Sep 1998 | CN |
1222862 | Jul 1999 | CN |
1202871 | May 2005 | CN |
1661338 | Aug 2005 | CN |
101128168 | Feb 2008 | CN |
101208045 | Jun 2008 | CN |
101214158 | Jul 2008 | CN |
101351237 | Jan 2009 | CN |
101448535 | Jun 2009 | CN |
101460094 | Jun 2009 | CN |
101579233 | Nov 2009 | CN |
201437016 | Apr 2010 | CN |
101711683 | May 2010 | CN |
201658687 | Dec 2010 | CN |
102421372 | Apr 2012 | CN |
102803923 | Nov 2012 | CN |
103328018 | Sep 2013 | CN |
103857326 | Jun 2014 | CN |
103957957 | Jul 2014 | CN |
104105449 | Oct 2014 | CN |
104188687 | Dec 2014 | CN |
106104229 | Nov 2016 | CN |
106333707 | Jan 2017 | CN |
206007680 | Mar 2017 | CN |
107530479 | Jan 2018 | CN |
107632167 | Jan 2018 | CN |
109939282 | Jun 2019 | CN |
209790495 | Dec 2019 | CN |
210020563 | Feb 2020 | CN |
195 20 920 | Dec 1995 | DE |
198 21 307 | Oct 1999 | DE |
100 59 714 | May 2002 | DE |
100 60 275 | Jun 2002 | DE |
101 44 269 | Mar 2003 | DE |
102 26 305 | Oct 2003 | DE |
10 2006 001 180 | Sep 2007 | DE |
10 2009 007 216 | Aug 2010 | DE |
10 2009 011 726 | Sep 2010 | DE |
10 2009 025 464 | Jan 2011 | DE |
10 2009 047 845 | Mar 2011 | DE |
10 2011 106 142 | Dec 2012 | DE |
20 2011 110 389 | Sep 2013 | DE |
10 2015 004 177 | Oct 2015 | DE |
10 2015 219 263 | Apr 2017 | DE |
10 2015 222 199 | May 2017 | DE |
20 2015 009 422 | Jul 2017 | DE |
10 2012 207 042 | Sep 2017 | DE |
10 2016 013 334 | Apr 2018 | DE |
10 2018 208 536 | Dec 2019 | DE |
10 2018 208 862 | Dec 2019 | DE |
10 2018 208 916 | Dec 2019 | DE |
10 2018 208 927 | Dec 2019 | DE |
10 2018 208 945 | Dec 2019 | DE |
10 2018 210 076 | Dec 2019 | DE |
10 2018 212 153 | Jan 2020 | DE |
10 2018 213 151 | Feb 2020 | DE |
10 2018 213 350 | Feb 2020 | DE |
10 2018 220 658 | Jun 2020 | DE |
10 2018 222 505 | Jun 2020 | DE |
10 2020 102 473 | Aug 2021 | DE |
11 2020 003 151 | Mar 2022 | DE |
0 794 411 | Sep 1997 | EP |
0 916 359 | May 1999 | EP |
1 062 959 | Dec 2000 | EP |
1 339 443 | Nov 2001 | EP |
1 011 803 | Sep 2004 | EP |
1 354 606 | Jun 2006 | EP |
2 143 385 | Jan 2010 | EP |
2 175 770 | Apr 2010 | EP |
2 187 807 | Jun 2012 | EP |
2 570 143 | Mar 2013 | EP |
2 401 003 | Oct 2013 | EP |
1 871 441 | Nov 2014 | EP |
2 859 911 | Apr 2015 | EP |
2 213 227 | Aug 2016 | EP |
2 835 141 | Aug 2016 | EP |
3 088 016 | Nov 2016 | EP |
2 585 129 | Mar 2017 | EP |
2 945 661 | Nov 2017 | EP |
2 136 861 | Dec 2017 | EP |
3 020 426 | Dec 2017 | EP |
3 287 154 | Feb 2018 | EP |
3 205 359 | Aug 2018 | EP |
3 205 360 | Aug 2018 | EP |
3 389 738 | Aug 2019 | EP |
2 505 090 | Dec 2019 | EP |
3 668 560 | Jun 2020 | EP |
3 720 520 | Oct 2020 | EP |
3 753 594 | Dec 2020 | EP |
3 357 523 | Jan 2021 | EP |
3 490 628 | Feb 2021 | EP |
3 487 548 | Mar 2021 | EP |
3 509 661 | Mar 2021 | EP |
3 515 523 | Mar 2021 | EP |
3 528 863 | Mar 2021 | EP |
3 615 103 | Mar 2021 | EP |
4 271 461 | Mar 2021 | EP |
3 131 600 | Jun 2021 | EP |
3 131 615 | Jun 2021 | EP |
3 463 505 | Sep 2021 | EP |
3 884 970 | Sep 2021 | EP |
2 599 510 | Oct 2021 | EP |
3 003 421 | Oct 2021 | EP |
3 027 241 | Oct 2021 | EP |
3 668 561 | Oct 2021 | EP |
3 164 168 | Dec 2021 | EP |
3 344 129 | Dec 2021 | EP |
3 624 867 | Mar 2022 | EP |
3 651 822 | Mar 2022 | EP |
3 689 389 | Mar 2022 | EP |
3 737 436 | Mar 2022 | EP |
3 972 661 | Mar 2022 | EP |
3 984 589 | Apr 2022 | EP |
3 654 006 | May 2022 | EP |
3 737 310 | Jul 2022 | EP |
2 999 400 | Aug 2022 | EP |
3 711 788 | Aug 2022 | EP |
3 694 573 | Sep 2022 | EP |
3 600 477 | Oct 2022 | EP |
3 897 768 | Oct 2022 | EP |
2 892 583 | Jan 2023 | EP |
3 370 797 | Jan 2023 | EP |
3 597 231 | Jan 2023 | EP |
3 668 562 | Jan 2023 | EP |
3 856 275 | Jan 2023 | EP |
3 003 420 | Feb 2023 | EP |
3 397 299 | Feb 2023 | EP |
3 046 594 | Mar 2023 | EP |
3 938 005 | Apr 2023 | EP |
3 685 562 | May 2023 | EP |
3 397 298 | Jul 2023 | EP |
3 809 959 | Jul 2023 | EP |
2 072 150 | Sep 2023 | EP |
2 961 984 | Sep 2023 | EP |
3 352 808 | Sep 2023 | EP |
3 768 156 | Sep 2023 | EP |
4 052 754 | Oct 2023 | EP |
3 157 596 | Nov 2023 | EP |
3 766 428 | Nov 2023 | EP |
3 781 027 | Nov 2023 | EP |
4 061 470 | Nov 2023 | EP |
4 070 720 | Nov 2023 | EP |
3 449 958 | Dec 2023 | EP |
3 687 596 | Dec 2023 | EP |
3 768 340 | Dec 2023 | EP |
3 801 675 | Jan 2024 | EP |
3 566 636 | Feb 2024 | EP |
3 634 526 | Feb 2024 | EP |
3 768 347 | Feb 2024 | EP |
3 790 606 | Feb 2024 | EP |
3 930 780 | Feb 2024 | EP |
3 397 147 | Mar 2024 | EP |
3 782 695 | Mar 2024 | EP |
3 854 448 | Mar 2024 | EP |
4 140 532 | May 2024 | EP |
3 693 038 | Jun 2024 | EP |
3 970 765 | Jul 2024 | EP |
3 854 444 | Sep 2024 | EP |
3 793 674 | Oct 2024 | EP |
3 618 885 | Nov 2024 | EP |
4 034 221 | Nov 2024 | EP |
3 809 960 | Dec 2024 | EP |
2 913 485 | Jun 2022 | ES |
S59-080229 | May 1984 | JP |
S61-125329 | Jun 1986 | JP |
S62-113555 | Jul 1987 | JP |
S62-204733 | Sep 1987 | JP |
S62-282284 | Dec 1987 | JP |
S64-68236 | Mar 1989 | JP |
H02-055886 | Feb 1990 | JP |
H02-234750 | Sep 1990 | JP |
H05-079875 | Mar 1993 | JP |
H06-218044 | Aug 1994 | JP |
H07-047025 | May 1995 | JP |
H08-057042 | Mar 1996 | JP |
H08-066398 | Mar 1996 | JP |
H08-327527 | Dec 1996 | JP |
H10-052489 | Feb 1998 | JP |
H10-505766 | Jun 1998 | JP |
H11-239617 | Sep 1999 | JP |
2000-512191 | Sep 2000 | JP |
2001-037728 | Feb 2001 | JP |
2001-506140 | May 2001 | JP |
2001-276213 | Oct 2001 | JP |
2002-525175 | Aug 2002 | JP |
2003-019197 | Jan 2003 | JP |
2003-047656 | Feb 2003 | JP |
2003-062065 | Mar 2003 | JP |
2004-515278 | May 2004 | JP |
2005-028137 | Feb 2005 | JP |
2005-192687 | Jul 2005 | JP |
2006-528006 | Dec 2006 | JP |
2007-222644 | Sep 2007 | JP |
2008-511414 | Apr 2008 | JP |
2006-518249 | Aug 2008 | JP |
2008-178690 | Aug 2008 | JP |
2009-504290 | Feb 2009 | JP |
2009-240348 | Oct 2009 | JP |
2010-518907 | Jun 2010 | JP |
2012-520157 | Sep 2012 | JP |
2013-128792 | Jul 2013 | JP |
2014-524274 | Sep 2014 | JP |
2015-514529 | May 2015 | JP |
2015-514531 | May 2015 | JP |
2015-515429 | May 2015 | JP |
2015-122448 | Jul 2015 | JP |
2015-527172 | Sep 2015 | JP |
2015-181800 | Oct 2015 | JP |
2016-002466 | Jan 2016 | JP |
2016-509950 | Apr 2016 | JP |
2017-500932 | Jan 2017 | JP |
2017-176719 | Oct 2017 | JP |
2017-532084 | Nov 2017 | JP |
2019-523110 | Aug 2019 | JP |
2020-072985 | May 2020 | JP |
WO 92015239 | Sep 1992 | WO |
WO 98043688 | Oct 1998 | WO |
WO 00033047 | Jun 2000 | WO |
WO 2006122001 | Nov 2006 | WO |
WO 2010142286 | Dec 2010 | WO |
WO 2010143272 | Dec 2010 | WO |
WO 2012018917 | Feb 2012 | WO |
WO 2012112378 | Aug 2012 | WO |
WO 2013160443 | Oct 2013 | WO |
WO 2014042925 | Mar 2014 | WO |
WO 2014141284 | Sep 2014 | WO |
WO 2014165635 | Oct 2014 | WO |
WO 2015085220 | Jun 2015 | WO |
WO 2016001284 | Jan 2016 | WO |
WO 2016066180 | May 2016 | WO |
WO 2016137743 | Sep 2016 | WO |
WO 2017032751 | Mar 2017 | WO |
WO 2017066257 | Apr 2017 | WO |
WO 2017106190 | Jun 2017 | WO |
WO 2017147291 | Aug 2017 | WO |
WO 2017214118 | Dec 2017 | WO |
WO 2018005228 | Jan 2018 | WO |
WO 2018048800 | Mar 2018 | WO |
WO 2018109038 | Jun 2018 | WO |
WO 2018213089 | Nov 2018 | WO |
WO 2019013794 | Jan 2019 | WO |
WO 2019034670 | Feb 2019 | WO |
WO 2019034775 | Feb 2019 | WO |
WO 2019078723 | Apr 2019 | WO |
WO 2019126721 | Jun 2019 | WO |
WO 2019137911 | Jul 2019 | WO |
WO 2019193604 | Oct 2019 | WO |
WO 2019219883 | Nov 2019 | WO |
WO 2019229210 | Dec 2019 | WO |
WO 2019229220 | Dec 2019 | WO |
WO 2019234145 | Dec 2019 | WO |
WO 2019234146 | Dec 2019 | WO |
WO 2019234148 | Dec 2019 | WO |
WO 2019234149 | Dec 2019 | WO |
WO 2019234151 | Dec 2019 | WO |
WO 2019234152 | Dec 2019 | WO |
WO 2019234153 | Dec 2019 | WO |
WO 2019234161 | Dec 2019 | WO |
WO 2019234162 | Dec 2019 | WO |
WO 2019234163 | Dec 2019 | WO |
WO 2019234164 | Dec 2019 | WO |
WO 2019234166 | Dec 2019 | WO |
WO 2019234167 | Dec 2019 | WO |
WO 2019234169 | Dec 2019 | WO |
WO 2019243582 | Dec 2019 | WO |
WO 2020030686 | Feb 2020 | WO |
WO 2020030706 | Feb 2020 | WO |
WO 2020064707 | Apr 2020 | WO |
WO 2020089429 | May 2020 | WO |
WO 2020198280 | Oct 2020 | WO |
WO 2020243756 | Dec 2020 | WO |
WO 2022074136 | Apr 2022 | WO |
WO 2022109590 | May 2022 | WO |
WO 2022173970 | Aug 2022 | WO |
WO 2023049813 | Mar 2023 | WO |
Entry |
---|
Vollkron et al., “Advanced Suction Detection for an Axial Flow Pump”, Artificial Organs, 2006, vol. 30, No. 9, pp. 665-670. |
Vollkron et al., “Development of a Suction Detection System for Axial Blood Pumps”, Artificial Organs, 2004, vol. 28, No. 8, pp. 709-716. |
Atkinson et al., “Pulse-Doppler Ultrasound and Its Clinical Application”, The Yale Journal of Biology and Medicine, 1977, vol. 50, pp. 367-373. |
Leguy et al., “Assessment of Blood Volume Flow in Slightly Curved Arteries from a Single Velocity Profile”, Journal of Biomechanics, 2009, pp. 1664-1672. |
Lombardi et al., “Flow Rate Profiler: an instrument to measure blood velocity profiles”, Ultrasonics, 2001, vol. 39, pp. 143-150. |
Mushi et al., “Identification of Fluidic Element Models to Simulate the Short-Term Baroreflex”, Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, Dec. 13-15, 2006, pp. 6. |
Sinha et al., “Effect of Mechanical Assistance of the Systemic Ventricle in Single Ventricle Circulation with Cavopulmonary Connection”, The Journal of Thoracic and Cardiovascular Surgery, Apr. 2014, vol. 147, No. 4, pp. 1271-1275. |
“Understanding Hot-Wire Anemometry”, Advanced Thermal Solutions, Inc., 2007, pp. 13-17. |
Vieli, A., “Doppler Flow Determination”, BJA: British Journal of Anaesthesia, 1988, vol. 60, pp. 107S-112S. |
Yuanyuan et al., “Characteristics Analysis for Doppler Ultrasound Blood Flow Signals”, China Medical Device Information, 5(1), Feb. 28, 1999, pp. 36-42. |
Zhang, Dabiao et al., “Design of Microwave Velocity and Distance Monitor System”, Instrument Technique and Sensor, Hebei Normal University, Apr. 25, 2004, pp. 3. |
Hertz Ph.D. et al, “Ultrasonic Engineering in Heart Diagnosis”, The American Journal of Cardiology, Jan. 1967, vol. 19, No. 1, pp. 6-17. |
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/EP2019/064807, dated Dec. 17, 2020 in 16 pages. |
International Search Report and Written Opinion received in PCT Application No. PCT/EP2019/064807, dated Oct. 17, 2019 in 21 pages. |
Kong et al., “A Stein Equation Approach for Solutions to the Diophantine Equations,” 2010 Chinese Control and Decision Conference, Xuzhou, May 26, 2010, pp. 3024-3028. |
Koseli et al., “Online Viscosity Measurement of Complex Solutions Using Ultrasound Doppler Velocimetry”, Turk J Chem, Jan. 2006, vol. 30, pp. 297-305. |
McCormick et al., “Resolution of a 2/spl pi/ Ambiguity Problem in Multiple Frequency Spectral Estimation,” in IEEE Transactions on Aerospace and Electronic Systems, Jan. 1995, vol. 31, No. 1, pp. 2-8. |
Syrmos et al., “A Generalized Bezout Equation in Output Feedback Design,” Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, Dec. 1992, vol. 4, pp. 3590-3594. |
Udesen et al., “A Simple Method to Reduce Aliasing Artifacts in Color Flow Mode Imaging”, IEEE Ultrasonics Symposium, 2005, Rotterdam, The Netherlands, Sep. 18-21, 2005, pp. 1352-1355. |
Murali, Akila, “Design of Inductive Coils for Wireless Power Transfer to Pediatric Implants”, A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering, California State University, Northridge, May 2018, pp. 37. |
HeartMate 3™ Left Ventricular Assist System, Instructions for Use, Thoratec Corporation, Aug. 2017, pp. 536. [Uploaded in 3 parts]. |
Number | Date | Country | |
---|---|---|---|
20220039669 A1 | Feb 2022 | US |