The invention relates to a determination appliance and to a method for determining a viscosity of a fluid. The invention also relates to a computer program and to a machine-readable storage medium on which the computer program is stored.
PT (prothrombin time) and INR (international normalized ratio) are the standard measure for blood coagulation. Usually, the INR in blood samples is determined by adding thromboplastin and subsequently measuring the time to coagulation. The determination can take place in the laboratory; today, test strip devices are also available for self-measurement by the patient, comparable to the procedure of a blood sugar measurement. For patients with heart support systems, so-called coagulation management is essential for minimizing pump thromboses. Monitoring of blood viscosity as an INR replacement parameter may be sufficient for coagulation management.
EP 2 175 770 B1 describes an explicit blood viscosity sensor on the basis of surface acoustic waves, SAW for short, for determining viscosity.
U.S. Pat. No. 7,591,777 B2 describes a viscosity determination in heart support systems by means of the mechanical effect of the blood viscosity on the drive of the heart support system.
The object of the invention is to specify an improved method for determining a viscosity of a fluid and an improved determination appliance for this purpose. It is in particular an object of the invention to specify a method and an appliance that allows the continuous determination of the viscosity of a fluid on a short time scale.
This object is achieved by the determination appliance and systems and methods disclosed herein. Advantageous embodiments of the invention are also disclosed herein.
In the following, a determination appliance for determining a viscosity of a fluid and a method according to the invention for determining a viscosity of a fluid and, lastly, a corresponding computer program are presented. Advantageous developments and improvements of the objects specified in the independent claims are possible by means of the measures listed in the dependent claims.
The advantages achievable with the presented approach are that a determination appliance presented here is designed to quickly and easily determine and provide or send the viscosity of a fluid by using current flow parameters of the fluid.
A determination appliance for determining a viscosity of a fluid is presented. The determination appliance has at least one determination device and a provisioning device. The determination device is designed to determine the viscosity of the fluid by using at least one detected volume flow of the fluid and a detected pressure difference of the fluid and/or a rotational speed of a blade wheel for conveying the fluid. The provisioning device is designed to provide or send a viscosity signal that represents the viscosity determined by the determination device.
The determination device can be designed to determine the viscosity by using a functional relationship between the volume flow and the pressure difference to the viscosity and/or by using a lookup table, wherein a relationship between the volume flow and the pressure difference to the viscosity can in particular be stored in the lookup table. Thus, by using the detected volume flow and the detected pressure difference, a viscosity assigned to these values can be read quickly and easily from the lookup table. Or, by using the detected volume flow and the detected pressure difference, the viscosity can be determined quickly and easily by solving the functional relationship. In order to create the lookup table, a calibration of a measurement can, for example, be carried out or may have been carried out in advance such that both the viscosity varies in the relevant range and a rotational speed of, for example, a pump device for conveying the fluid varies in the relevant range, and the resulting pump flows are or were measured. Alternatively or additionally, on the basis of the calibration values, an empirical function, for example, can be determined or may have been determined, with the help of which the viscosity can subsequently be calculated. The lookup table and/or the functional relationship can be stored in the determination device or can be read by the determination device for use.
The determination device can, for example, also be arranged outside the body of a patient in order to determine the viscosity of the fluid data such as the aforementioned detected volume flow of the fluid and a detected pressure difference of the fluid and/or a rotational speed of a pump. For this purpose, the determination device can then, for example, obtain the values or parameters that are required for the determination of the viscosity wirelessly or via a signal line so that it can also determine the viscosity of the fluid outside the body of the patient.
The determination appliance can have a cannula with a receiving interface for receiving the fluid and a discharge interface opposite the receiving interface for discharging the fluid, wherein the pressure difference can in particular represent a difference between a pressure of the fluid in the region of the receiving interface and a further pressure of the fluid in the region of the discharge interface and/or the volume flow can represent a volume flow of the fluid through the cannula. Such a cannula can be formed for use on or in a heart support system. For example, the cannula can be formed or designed to receive blood as the fluid. The current viscosity of the blood in the cannula can thus be advantageously determined by using the determination appliance.
It is furthermore advantageous when the determination appliance has, according to one embodiment, a blade wheel for conveying the fluid from the receiving interface to the discharge interface of the cannula, wherein the blade wheel is arranged or can be arranged in particular on or in the region of the discharge interface. The blade wheel can be arranged, for example, in a discharge section adjacent to the discharge interface. The volume flow of the fluid and the pressure difference can thus be effected during operation of the blade wheel.
In this case, it is advantageous for the determination appliance to have a volume flow sensor, which is designed to detect a volume flow of the fluid through the cannula and to provide or send it to the determination device, wherein the volume flow sensor is in particular arranged in the region of the receiving interface. A current volume flow can thus be taken into account to determine the viscosity.
This volume flow sensor can have at least one Doppler sensor for detecting Doppler ultrasound and/or a thermofilament anemometry sensor and/or an optical sensor. The thermofilament anemometry sensor can have a sensor element, e.g. a wire, wherein the sensor element can be electrically heated and its electrical resistance is a function of the temperature. A heat transfer into the fluid can take place as a result of the flow pattern, said heat transfer changing with the flow velocity. By measuring the electrical variables, the flow velocity can thus be deduced.
The determination appliance can also have a pressure sensor device with at least one differential pressure sensor and/or two barometric pressure sensors, wherein the pressure sensor device can in particular be designed to detect a pressure difference between two sensor points on two opposite sides of the blade wheel and to provide or send it to the determination device. A current pressure difference can thus be taken into account to determine the viscosity.
It is furthermore advantageous for the determination appliance to have a drive device, coupled or couplable to the blade wheel, for driving the blade wheel, wherein the determination device can in particular be designed to determine the viscosity by using a drive parameter of the drive device and/or of the blade wheel. In this case, the determination device can be designed to determine the viscosity by using a drive parameter of the drive device and/or of the blade wheel during operation of the drive device and/or of the blade wheel. The drive parameter can be understood to be an electrical power consumption of the drive device and/or a rotational speed and/or an angular speed of the blade wheel. Such a determination appliance can be formed or usable as a heart support system. This heart support system can advantageously determine a current blood viscosity and, for example, provide or send it for a diagnostic method.
Furthermore, a method for determining a viscosity of a fluid is presented. The method has a step of determining and a step of providing. In the step of determining, the viscosity of the fluid is determined by using at least one detected volume flow of the fluid and a detected pressure difference of the fluid. In the step of providing, a viscosity signal representing the viscosity determined in the step of determining is provided or sent.
This method can be carried out by using the previously presented determination appliance. The method can, for example, be implemented in software or hardware or in a mixed form of software and hardware in a control device, for example.
Advantageous is also a computer program product or computer program with program code which can be stored in a machine-readable carrier or storage medium, such as a semiconductor memory, a hard drive memory, or an optical memory, and is used to carry out, implement, and/or control the steps of the method, in particular when the program product or program is executed on a computer or an appliance.
Exemplary embodiments of the approach presented here are shown in the drawings and explained in more detail in the following description. The figures show:
In the following description of favorable exemplary embodiments of the present approach, the same or similar reference signs are used for the elements that are shown in the various figures and have a similar effect, wherein a repeated description of these elements is omitted.
If an exemplary embodiment includes an “and/or” conjunction between a first feature and a second feature, this should be read to mean that the exemplary embodiment according to one embodiment comprises both the first feature and the second feature and according to another embodiment comprises either only the first feature or only the second feature.
The determination appliance 100 has a determination device 110 and a provisioning device 15. The determination device 110 is designed to determine the viscosity η of the fluid by using at least one detected volume flow Q of the fluid and a detected pressure difference Δp of the fluid. The provisioning device 115 is designed to provide or send a viscosity signal 130 representing the viscosity η determined by the determination device 110. According to this exemplary embodiment, the determination device 110 is designed to read the detected volume flow Q and the detected pressure difference Δp in the form of sensor signals.
The determination appliance or a determination device 110 can be integrated into the pump or arranged outside the body of a patient when no or only little installation space is available for microelectronic elements for measuring parameters that are required to determine the viscosity. In this case, for example, the electronics or corresponding components of the determination device 110 can be accommodated in a remote (implanted) control device so that predominantly a pressure sensor and/or a transducer element of the volume flow sensor can then be accommodated in the pump itself or implanted in the patient. The sensor values of the corresponding sensor(s) implanted in the patient can then be transmitted out of the patient wirelessly or by means of a signal line and processed in the determination device 110, for example, in a bag or on a belt of the patient, in order to determine the viscosity of the fluid (in this case, blood). Such an exemplary embodiment is not explicitly shown in the figures appended here.
Additionally or alternatively, the viscosity of the fluid can of course also be determined by means of a determination device 110 in the form of a cloud server, so that in this case, the sensor values required for the determination are to be transmitted via the internet or a corresponding signal line. An appropriate protection or encryption of this data against unauthorized tapping or reading of this data by unauthorized persons should advantageously be ensured in this case.
An arrangement of the determination device 110 in three options is thus conceivable:
The cannula 200 has a receiving interface 225 formed to receive the fluid and a discharge interface 230 opposite the receiving interface 225 formed to discharge the fluid.
The blade wheel 205 is designed to convey the fluid from the receiving interface 225 to the discharge interface 230 of the cannula 200. According to this exemplary embodiment, the blade wheel 205 is arranged in the region of the discharge interface 230 and/or in the cannula 200.
The volume flow sensor 215 is designed to detect a volume flow of the fluid through the cannula 200 and to provide or send it to the determination device 110. Accordingly, the volume flow represents a volume flow of the fluid through the cannula 200. According to this embodiment example, the volume flow sensor 215 is arranged in the region of the receiving interface 225 for this purpose. According to this exemplary embodiment, the volume flow sensor 215 has a Doppler sensor. According to an alternative exemplary embodiment, the volume flow sensor 215 additionally or alternatively has a thermofilament anemometry sensor and/or an optical sensor.
According to this exemplary embodiment, the pressure sensor device 220 has two barometric pressure sensors 235, which are designed to detect a pressure difference between two sensor points on two opposite sides of the blade wheel 205 and to provide or send it to the determination device 110. According to an alternative exemplary embodiment, the pressure sensor device 220 additionally or alternatively has at least one differential pressure sensor. According to this exemplary embodiment, the pressure sensors 235 are arranged in the region of the receiving interface 225 and in the region of the discharge interface 230. Accordingly, the pressure difference according to this exemplary embodiment represents a difference between a pressure of the fluid in the region of the receiving interface 225 and a further pressure of the fluid in the region of the discharge interface 230.
The drive device 210 is coupled to the blade wheel 205 and designed to drive the blade wheel 205. According to this exemplary embodiment, the determination device 110 is designed to determine the viscosity by using a drive parameter of the drive device 210 and/or of the blade wheel 205 during operation of the drive device 210 and/or of the blade wheel 205.
In this case, the determination device 110 can, for example, be arranged outside the patient or a pump, e.g. in a portable control device. Sensor values of sensors implanted in the patient can then, for example, be supplied wirelessly or by means of a signal line to the determination device 110.
In the following, details of the determination appliance 100 are described again in more detail and in other words:
According to this exemplary embodiment, the determination appliance 100 presented here can be used as a heart support system. For patients with a heart support system, also called VAD patients (VAD stands for “Ventricular Assist Device”), coagulation management is essential for minimizing pump thromboses. For this purpose, patients are, for example, treated with medications to inhibit plasmatic blood coagulation, and the INR is adjusted in the range of 2 to 2.5, for example.
A mechanical load on the drive device 210 of a VAD system, i.e. of a heart support system, is a function of the volume flow, the pressure difference, and the viscosity. With a known volume flow and known pressure difference, which are measured in the determination appliance 100 presented here via sensors 215, 220, the viscosity of the fluid, in this case blood, can be deduced from the electrical power consumption of the drive device 210. For this purpose, the determination device 110 according to this exemplary embodiment is designed to read as the drive parameter a parameter which represents or makes it possible to determine the mechanical load on the drive device 210 and/or on the blade wheel 205. In this case, the determination device 110 is advantageously designed to divide the power consumption of the pump, consisting of the drive device 210 and the blade wheel 205, into a volume flow contribution and a viscosity contribution. The flow measurement is realized on the basis of ultrasound according to this exemplary embodiment or anemometrically according to an alternative exemplary embodiment. A direct determination of the viscosity during the operation of the determination appliance 100 is advantageously possible in this case by means of an explicit Doppler ultrasonic volume flow measurement. Advantageously, a pumping performance of the pump does not have to be interrupted for this purpose.
The blood viscosity is determined during operation of the determination appliance 100 by the determination device 110 continuously according to this exemplary embodiment or in fixed time intervals according to an alternative exemplary embodiment. The provisioning device 115 is designed to provide the determined viscosity to a physician and/or patient as a parameter for carrying out the treatment. For this purpose, the viscosity signal is designed to display the viscosity on a display and/or transmit it by radio transmission to a web service. As already stated above, the determination device 110 can also be arranged outside the patient, e.g. in a bag that the patient carries along. Signal values of sensors implanted in the patient can then, for example, be transmitted to the determination appliance wirelessly and/or by means of a signal line.
A determination appliance 100 presented here contains a system consisting of a pump drive in the form of the drive device 210, the blade wheel 205, and the cannula 200 also called the inlet cannula, the volume flow sensor 215 for measuring the pump volume flow actually conveyed by the drive and the blade wheel 205, in this case, by means of Doppler ultrasound, optionally or additionally by means of thermofilament anemometry and/or optical methods. An integration of the volume flow sensor 215 in the form of a Doppler ultrasonic sensor in a tip of the inlet cannula is shown here. In addition, the determination appliance 100 comprises two barometric pressure sensors 235 for forming the pressure difference in the determination device 110, which, according to this exemplary embodiment, has a data processing device in the form of a microcontroller. According to an alternative exemplary embodiment, the determination appliance 100 has at least one differential pressure sensor for determining a pressure gradient across the blade wheel 205 in the form of an impeller.
Calculation examples follow for illustrating possible methods of the determination device 110 when determining the viscosity, see also
The hydraulic power of the pump Phydraulic is a function of an angular speed ω, a hydraulic efficiency ηhydraulic, and a load torque M, wherein the load torque M is a function of the viscosity. This relationship can be represented in the following equation:
Phydraulic=ω·M·ηhydraulic
The hydraulic performance Phydraulic is also a function of the pressure difference Δp and the volume flow Q or volumetric flow. This relationship can be represented in the following equation:
Phydraulic=Δp·Q
If the pump is now operated at a defined angular speed ω1 and the actual volume flow Qω1 is measured, the viscosity η can be determined, as illustrated in
η=ƒ(Δp,Q,ω)
As an alternative to the use of the angular speed ω, the electrical power consumption is used for the calculation by the determination device 110 according to an alternative exemplary embodiment, because:
Pel=Phyd/(ηel·ηmech·ηhyd)
This was determined in preliminary tests by measuring the torque and the rotational speed as well as the voltage U and current I by using the determination appliance 100. Under the premise that the further mechanical losses are only a function of the rotational speed and pressure, which is true in a very good approximation in the case of one of the determination appliances 100 presented here, it can be assumed that ηmech is constant and therefore does not play a role in the viscosity determination.
The volume flow sensor 215 can be proven optically or by fluoroscopy. The calculation of the viscosity from the pressure difference, volume flow, and/or angular speed can be proven in a purposeful experiment by manipulating the volume flow or the pressure difference.
For Δpmeas=c, it follows that
Q=ƒ(η) where Qη2>Qη1 for η1>η2.
The method 400 has a step 405 of determining and a step 410 of providing. In step 405 of determining, the viscosity of the fluid is determined by using at least one detected volume flow 10 of the fluid and a detected pressure difference of the fluid and/or a rotational speed of a blade wheel for conveying the fluid. In the step 410 of providing, a viscosity signal representing the viscosity determined in the step 405 of determining is provided or sent.
The method steps presented here can be repeated as well as carried out in a sequence other than the one described.
Number | Date | Country | Kind |
---|---|---|---|
102018208936.1 | Jun 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/064808 | 6/6/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/234167 | 12/12/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3088323 | Welkowitz et al. | May 1963 | A |
4023562 | Hynecek et al. | May 1977 | A |
4559952 | Angelsen et al. | Dec 1985 | A |
4781525 | Hubbard | Nov 1988 | A |
4888011 | Kung et al. | Dec 1989 | A |
4889131 | Salem et al. | Dec 1989 | A |
4902272 | Milder et al. | Feb 1990 | A |
5045051 | Milder et al. | Sep 1991 | A |
5269811 | Hayes | Dec 1993 | A |
5289821 | Swartz | Mar 1994 | A |
5456715 | Liotta | Oct 1995 | A |
5527159 | Bozeman, Jr. et al. | Jun 1996 | A |
5581038 | Lampropoulos | Dec 1996 | A |
5613935 | Jarvik | Mar 1997 | A |
5662115 | Torp | Sep 1997 | A |
5676651 | Larson, Jr. et al. | Oct 1997 | A |
5720771 | Snell | Feb 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5766207 | Potter et al. | Jun 1998 | A |
5827203 | Nita | Oct 1998 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5904708 | Goedeke | May 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
5980465 | Elgas | Nov 1999 | A |
6007478 | Siess et al. | Dec 1999 | A |
6024704 | Meador et al. | Feb 2000 | A |
6053873 | Govari et al. | Apr 2000 | A |
6176822 | Nix et al. | Jan 2001 | B1 |
6183412 | Benkowsi et al. | Feb 2001 | B1 |
6185460 | Thompson | Feb 2001 | B1 |
6190324 | Kieval et al. | Feb 2001 | B1 |
6210318 | Lederman | Apr 2001 | B1 |
6231498 | Pfeiffer et al. | May 2001 | B1 |
6245007 | Bedingham et al. | Jun 2001 | B1 |
6314322 | Rosenberg | Nov 2001 | B1 |
6351048 | Schob et al. | Feb 2002 | B1 |
6398734 | Cimochowski et al. | Jun 2002 | B1 |
6432136 | Weiss et al. | Aug 2002 | B1 |
6438409 | Malik et al. | Aug 2002 | B1 |
6512949 | Combs et al. | Jan 2003 | B1 |
6530876 | Spence | Mar 2003 | B1 |
6540658 | Fasciano et al. | Apr 2003 | B1 |
6540659 | Milbocker | Apr 2003 | B1 |
6561975 | Pool et al. | May 2003 | B1 |
6579257 | Elgas et al. | Jun 2003 | B1 |
6602182 | Milbocker | Aug 2003 | B1 |
6605032 | Benkowsi et al. | Aug 2003 | B2 |
6652447 | Benkowsi et al. | Nov 2003 | B2 |
6731976 | Penn et al. | May 2004 | B2 |
6879126 | Paden et al. | Apr 2005 | B2 |
6912423 | Ley et al. | Jun 2005 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6984201 | Khaghani et al. | Jan 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7024244 | Muhlenberg et al. | Apr 2006 | B2 |
7070555 | Siess | Jul 2006 | B2 |
7083588 | Shmulewitz et al. | Aug 2006 | B1 |
7138776 | Gauthier et al. | Nov 2006 | B1 |
7160243 | Medvedev | Jan 2007 | B2 |
7175588 | Morello | Feb 2007 | B2 |
7177681 | Xhu | Feb 2007 | B2 |
7238151 | Frazier | Jul 2007 | B2 |
7396327 | Morello | Jul 2008 | B2 |
7513864 | Kantrowitz et al. | Apr 2009 | B2 |
7520850 | Brockway | Apr 2009 | B2 |
7591777 | LaRose | Sep 2009 | B2 |
7744560 | Struble | Jun 2010 | B2 |
7794384 | Sugiura et al. | Sep 2010 | B2 |
7819916 | Yaegashi | Oct 2010 | B2 |
7850593 | Vincent et al. | Dec 2010 | B2 |
7850594 | Sutton et al. | Dec 2010 | B2 |
7856335 | Morello et al. | Dec 2010 | B2 |
7862501 | Woodward et al. | Jan 2011 | B2 |
7951062 | Morello | May 2011 | B2 |
7951129 | Chinchoy | May 2011 | B2 |
7963905 | Salmonsen et al. | Jun 2011 | B2 |
7988728 | Ayre | Aug 2011 | B2 |
8075472 | Zilbershlag et al. | Dec 2011 | B2 |
8190390 | Morello et al. | May 2012 | B2 |
8211028 | Karamanoglu et al. | Jul 2012 | B2 |
8303482 | Schima et al. | Nov 2012 | B2 |
8323173 | Benkowsi et al. | Dec 2012 | B2 |
8435182 | Tamura | May 2013 | B1 |
8449444 | Poirier | May 2013 | B2 |
8545380 | Farnan et al. | Oct 2013 | B2 |
8585572 | Mehmanesh | Nov 2013 | B2 |
8591393 | Walters et al. | Nov 2013 | B2 |
8594790 | Kjellstrom et al. | Nov 2013 | B2 |
8622949 | Zafirelis et al. | Jan 2014 | B2 |
8657733 | Ayre et al. | Feb 2014 | B2 |
8657875 | Kung et al. | Feb 2014 | B2 |
8715151 | Poirier | May 2014 | B2 |
8747293 | Arndt et al. | Jun 2014 | B2 |
8849398 | Evans | Sep 2014 | B2 |
8864643 | Reichenbach et al. | Oct 2014 | B2 |
8864644 | Yomtov | Oct 2014 | B2 |
8876685 | Crosby et al. | Nov 2014 | B2 |
8882477 | Fritz, IV et al. | Nov 2014 | B2 |
8888728 | Aboul-Hosn et al. | Nov 2014 | B2 |
8897873 | Schima et al. | Nov 2014 | B2 |
8903492 | Soykan et al. | Dec 2014 | B2 |
9091271 | Bourque | Jul 2015 | B2 |
9297735 | Graichen et al. | Mar 2016 | B2 |
9308305 | Chen et al. | Apr 2016 | B2 |
9345824 | Mohl et al. | May 2016 | B2 |
9371826 | Yanai et al. | Jun 2016 | B2 |
9427508 | Reyes et al. | Aug 2016 | B2 |
9474840 | Siess | Oct 2016 | B2 |
9492601 | Casas et al. | Nov 2016 | B2 |
9511179 | Casas et al. | Dec 2016 | B2 |
9555173 | Spanier | Jan 2017 | B2 |
9555175 | Bulent et al. | Jan 2017 | B2 |
9556873 | Yanai et al. | Jan 2017 | B2 |
9566374 | Spence et al. | Feb 2017 | B2 |
9636442 | Karmon et al. | May 2017 | B2 |
9656010 | Burke | May 2017 | B2 |
9669142 | Spanier et al. | Jun 2017 | B2 |
9669144 | Spanier et al. | Jun 2017 | B2 |
9694123 | Bourque et al. | Jul 2017 | B2 |
9713701 | Sarkar et al. | Jul 2017 | B2 |
9744282 | Rosenberg et al. | Aug 2017 | B2 |
9833550 | Siess | Dec 2017 | B2 |
9848899 | Sliwa et al. | Dec 2017 | B2 |
9849224 | Angwin et al. | Dec 2017 | B2 |
9878087 | Richardson et al. | Jan 2018 | B2 |
9943236 | Bennett et al. | Apr 2018 | B2 |
9950102 | Spence et al. | Apr 2018 | B2 |
9974894 | Morello | May 2018 | B2 |
9999714 | Spanier et al. | Jun 2018 | B2 |
10010662 | Wiesener et al. | Jul 2018 | B2 |
10022480 | Greatrex et al. | Jul 2018 | B2 |
10029037 | Muller et al. | Jul 2018 | B2 |
10052420 | Medvedev et al. | Aug 2018 | B2 |
10279093 | Reichenbach et al. | May 2019 | B2 |
10322217 | Spence | Jun 2019 | B2 |
10342906 | D'Ambrosio et al. | Jul 2019 | B2 |
10350342 | Thomas et al. | Jul 2019 | B2 |
10357598 | Aboul-Hosn et al. | Jul 2019 | B2 |
10376162 | Edelman et al. | Aug 2019 | B2 |
10413651 | Yomtov et al. | Sep 2019 | B2 |
10426879 | Farnan | Oct 2019 | B2 |
10449275 | Corbett | Oct 2019 | B2 |
10500322 | Karch | Dec 2019 | B2 |
10525178 | Zeng | Jan 2020 | B2 |
10549020 | Spence et al. | Feb 2020 | B2 |
10561771 | Heilman et al. | Feb 2020 | B2 |
10561772 | Schumacher | Feb 2020 | B2 |
10561773 | Ferrari et al. | Feb 2020 | B2 |
10632241 | Schenck et al. | Apr 2020 | B2 |
10660998 | Hodges | May 2020 | B2 |
10668195 | Flores | Jun 2020 | B2 |
10732583 | Rudser | Aug 2020 | B2 |
10857275 | Granegger | Dec 2020 | B2 |
11027114 | D'Ambrosio et al. | Jun 2021 | B2 |
RE48649 | Siess | Jul 2021 | E |
11067085 | Granegger et al. | Jul 2021 | B2 |
11120908 | Agnello et al. | Sep 2021 | B2 |
11131968 | Rudser | Sep 2021 | B2 |
11147960 | Spanier et al. | Oct 2021 | B2 |
11154701 | Reyes et al. | Oct 2021 | B2 |
11154702 | Kadrolkar et al. | Oct 2021 | B2 |
11185682 | Farnan | Nov 2021 | B2 |
11191945 | Siess et al. | Dec 2021 | B2 |
11197618 | Edelman et al. | Dec 2021 | B2 |
11217344 | Agnello | Jan 2022 | B2 |
11235139 | Kudlik | Feb 2022 | B2 |
11241572 | Dague et al. | Feb 2022 | B2 |
11273299 | Wolman et al. | Mar 2022 | B2 |
11285310 | Curran et al. | Mar 2022 | B2 |
11285311 | Siess et al. | Mar 2022 | B2 |
11298524 | El Katerji et al. | Apr 2022 | B2 |
11311711 | Casas et al. | Apr 2022 | B2 |
11316679 | Agnello | Apr 2022 | B2 |
11320382 | Aikawa | May 2022 | B2 |
11324395 | Banik et al. | May 2022 | B2 |
11331082 | Itoh et al. | May 2022 | B2 |
11337724 | Masubuchi et al. | May 2022 | B2 |
11338125 | Liu et al. | May 2022 | B2 |
11351356 | Mohl | Jun 2022 | B2 |
11351357 | Mohl | Jun 2022 | B2 |
11351358 | Nix et al. | Jun 2022 | B2 |
11357438 | Stewart et al. | Jun 2022 | B2 |
11357968 | El Katerji et al. | Jun 2022 | B2 |
11376415 | Mohl | Jul 2022 | B2 |
11376419 | Reyes et al. | Jul 2022 | B2 |
11389639 | Casas | Jul 2022 | B2 |
11389641 | Nguyen et al. | Jul 2022 | B2 |
11413444 | Nix et al. | Aug 2022 | B2 |
11413445 | Brown et al. | Aug 2022 | B2 |
11420041 | Karch | Aug 2022 | B2 |
11439806 | Kimball et al. | Sep 2022 | B2 |
11446481 | Wolman et al. | Sep 2022 | B2 |
11478629 | Harjes et al. | Oct 2022 | B2 |
11517740 | Agarwa et al. | Dec 2022 | B2 |
11521723 | Liu et al. | Dec 2022 | B2 |
11524165 | Tan et al. | Dec 2022 | B2 |
11527322 | Agnello et al. | Dec 2022 | B2 |
11529062 | Moyer et al. | Dec 2022 | B2 |
11554260 | Reyes et al. | Jan 2023 | B2 |
11572879 | Mohl | Feb 2023 | B2 |
11574741 | Tan et al. | Feb 2023 | B2 |
11577068 | Spence et al. | Feb 2023 | B2 |
11581083 | El Katerji et al. | Feb 2023 | B2 |
11583659 | Pfeffer et al. | Feb 2023 | B2 |
11587337 | Lemay et al. | Feb 2023 | B2 |
11590337 | Granegger et al. | Feb 2023 | B2 |
11622695 | Adriola et al. | Apr 2023 | B1 |
11628293 | Gandhi et al. | Apr 2023 | B2 |
11639722 | Medvedev et al. | May 2023 | B2 |
11648386 | Poirer | May 2023 | B2 |
11653841 | Reyes et al. | May 2023 | B2 |
11666746 | Ferrari et al. | Jun 2023 | B2 |
11668321 | Richert et al. | Jun 2023 | B2 |
11674517 | Mohl | Jun 2023 | B2 |
11676718 | Agnello et al. | Jun 2023 | B2 |
11684276 | Cros et al. | Jun 2023 | B2 |
11684769 | Harjes et al. | Jun 2023 | B2 |
11694539 | Kudlik et al. | Jul 2023 | B2 |
11694813 | El Katerji et al. | Jul 2023 | B2 |
11696782 | Carlson et al. | Jul 2023 | B2 |
11707617 | Reyes et al. | Jul 2023 | B2 |
11712167 | Medvedev et al. | Aug 2023 | B2 |
11754077 | Mohl | Sep 2023 | B1 |
D1001145 | Lussier et al. | Oct 2023 | S |
D1001146 | Lussier et al. | Oct 2023 | S |
11771885 | Liu et al. | Oct 2023 | B2 |
11779234 | Harjes et al. | Oct 2023 | B2 |
11781551 | Yanai et al. | Oct 2023 | B2 |
11790487 | Barbato et al. | Oct 2023 | B2 |
11793994 | Josephy et al. | Oct 2023 | B2 |
11806116 | Tuval et al. | Nov 2023 | B2 |
11806517 | Petersen | Nov 2023 | B2 |
11806518 | Michelena et al. | Nov 2023 | B2 |
11813079 | Lau et al. | Nov 2023 | B2 |
11818782 | Doudian et al. | Nov 2023 | B2 |
11824381 | Conyers et al. | Nov 2023 | B2 |
11826127 | Casas | Nov 2023 | B2 |
11832793 | McWeeney et al. | Dec 2023 | B2 |
11832868 | Smail et al. | Dec 2023 | B2 |
11837364 | Lee et al. | Dec 2023 | B2 |
11844592 | Tuval et al. | Dec 2023 | B2 |
11844940 | D'Ambrosio et al. | Dec 2023 | B2 |
11850073 | Wright et al. | Dec 2023 | B2 |
11850414 | Schenck et al. | Dec 2023 | B2 |
11850415 | Schwammenthal et al. | Dec 2023 | B2 |
D1012284 | Glaser et al. | Jan 2024 | S |
11857345 | Hanson et al. | Jan 2024 | B2 |
11864878 | Duval et al. | Jan 2024 | B2 |
11872384 | Cotter | Jan 2024 | B2 |
11883207 | El Katerji et al. | Jan 2024 | B2 |
D1014552 | Lussier et al. | Feb 2024 | S |
11890082 | Cros et al. | Feb 2024 | B2 |
11896199 | Lent et al. | Feb 2024 | B2 |
11900660 | Saito et al. | Feb 2024 | B2 |
11903657 | Geric et al. | Feb 2024 | B2 |
11906411 | Graichen et al. | Feb 2024 | B2 |
11911550 | Itamochi et al. | Feb 2024 | B2 |
D1017634 | Lussier et al. | Mar 2024 | S |
D1017699 | Moore et al. | Mar 2024 | S |
11923078 | Fallen et al. | Mar 2024 | B2 |
11923093 | Moffitt et al. | Mar 2024 | B2 |
11925794 | Malkin et al. | Mar 2024 | B2 |
11931073 | Walsh et al. | Mar 2024 | B2 |
11931528 | Rohl et al. | Mar 2024 | B2 |
11931588 | Aghassian | Mar 2024 | B2 |
11986274 | Edelman | May 2024 | B2 |
12017076 | Tan et al. | Jun 2024 | B2 |
12023476 | Tuval et al. | Jul 2024 | B2 |
12029891 | Siess et al. | Jul 2024 | B2 |
20010016686 | Okada et al. | Aug 2001 | A1 |
20010037093 | Benkowski et al. | Nov 2001 | A1 |
20010039828 | Shin et al. | Nov 2001 | A1 |
20020147495 | Petroff | Oct 2002 | A1 |
20020151761 | Viole et al. | Oct 2002 | A1 |
20030069465 | Benkowski et al. | Apr 2003 | A1 |
20030130581 | Salo et al. | Jul 2003 | A1 |
20030139643 | Smith et al. | Jul 2003 | A1 |
20030167002 | Nagar et al. | Sep 2003 | A1 |
20030191357 | Frazier | Oct 2003 | A1 |
20040022640 | Siess et al. | Feb 2004 | A1 |
20040044266 | Siess et al. | Mar 2004 | A1 |
20040065143 | Husher | Apr 2004 | A1 |
20040130009 | Tangpuz | Jul 2004 | A1 |
20040167376 | Peters et al. | Aug 2004 | A1 |
20040167410 | Hettrick | Aug 2004 | A1 |
20040225177 | Coleman et al. | Nov 2004 | A1 |
20040241019 | Goldowsky | Dec 2004 | A1 |
20040260346 | Overall et al. | Dec 2004 | A1 |
20050001324 | Dunn | Jan 2005 | A1 |
20050019167 | Nusser et al. | Jan 2005 | A1 |
20050107658 | Brockway | May 2005 | A1 |
20050126268 | Ouriev et al. | Jun 2005 | A1 |
20050267322 | LaRose | Dec 2005 | A1 |
20060030809 | Barzilay et al. | Feb 2006 | A1 |
20060108697 | Wang | May 2006 | A1 |
20060108901 | Mao-Chin et al. | May 2006 | A1 |
20060122583 | Pesach et al. | Jun 2006 | A1 |
20060196277 | Allen et al. | Sep 2006 | A1 |
20060229488 | Ayre et al. | Oct 2006 | A1 |
20060287600 | McEowen | Dec 2006 | A1 |
20060287604 | Hickey | Dec 2006 | A1 |
20070060787 | Peters et al. | Mar 2007 | A1 |
20070073352 | Euler et al. | Mar 2007 | A1 |
20070088214 | Shuros et al. | Apr 2007 | A1 |
20070156006 | Smith et al. | Jul 2007 | A1 |
20070255352 | Roline et al. | Nov 2007 | A1 |
20070266778 | Corey et al. | Nov 2007 | A1 |
20070282209 | Lui et al. | Dec 2007 | A1 |
20070299325 | Farrell et al. | Dec 2007 | A1 |
20080015517 | Geistert et al. | Jan 2008 | A1 |
20080082005 | Stern et al. | Apr 2008 | A1 |
20080091239 | Johansson et al. | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080102096 | Molin et al. | May 2008 | A1 |
20080108901 | Baba et al. | May 2008 | A1 |
20080108930 | Weitzel | May 2008 | A1 |
20080133006 | Crosby et al. | Jun 2008 | A1 |
20080146996 | Smisson | Jun 2008 | A1 |
20080210016 | Zwirn et al. | Sep 2008 | A1 |
20080262289 | Goldowsky | Oct 2008 | A1 |
20080262361 | Gutfinger et al. | Oct 2008 | A1 |
20080269822 | Ljungstrom et al. | Oct 2008 | A1 |
20080275339 | Thiemann et al. | Nov 2008 | A1 |
20080306328 | Ercolani | Dec 2008 | A1 |
20090024042 | Nunez et al. | Jan 2009 | A1 |
20090025459 | Zhang et al. | Jan 2009 | A1 |
20090064755 | Fleischli et al. | Mar 2009 | A1 |
20090105799 | Hekmat | Apr 2009 | A1 |
20090131765 | Roschak et al. | May 2009 | A1 |
20090204163 | Shuros et al. | Aug 2009 | A1 |
20090226328 | Morello | Sep 2009 | A1 |
20090312650 | Maile et al. | Dec 2009 | A1 |
20100010354 | Skerl et al. | Jan 2010 | A1 |
20100082099 | Vodermayer et al. | Apr 2010 | A1 |
20100087742 | Bishop et al. | Apr 2010 | A1 |
20100160801 | Takatani et al. | Jun 2010 | A1 |
20100219967 | Kaufmann | Sep 2010 | A1 |
20100222632 | Poirier | Sep 2010 | A1 |
20100222633 | Poirier | Sep 2010 | A1 |
20100222635 | Poirier | Sep 2010 | A1 |
20100222878 | Poirier | Sep 2010 | A1 |
20100268017 | Siess | Oct 2010 | A1 |
20100298625 | Reichenbach et al. | Nov 2010 | A1 |
20100324378 | Tran et al. | Dec 2010 | A1 |
20110004075 | Stahmann et al. | Jan 2011 | A1 |
20110022057 | Eigler et al. | Jan 2011 | A1 |
20110071336 | Yomtov | Mar 2011 | A1 |
20110144744 | Wampler | Jun 2011 | A1 |
20110184301 | Holmstrom | Jul 2011 | A1 |
20110218435 | Srinivasan et al. | Sep 2011 | A1 |
20110230068 | Pahl | Sep 2011 | A1 |
20120022645 | Burke | Jan 2012 | A1 |
20120084024 | Norcross, Jr. | Apr 2012 | A1 |
20120150089 | Penka et al. | Jun 2012 | A1 |
20120203476 | Dam | Aug 2012 | A1 |
20120247200 | Ahonen et al. | Oct 2012 | A1 |
20120310037 | Choi et al. | Dec 2012 | A1 |
20120330214 | Peters | Dec 2012 | A1 |
20130041204 | Heilman et al. | Feb 2013 | A1 |
20130046129 | Medvedev et al. | Feb 2013 | A1 |
20130066141 | Doerr et al. | Mar 2013 | A1 |
20130072846 | Heide | Mar 2013 | A1 |
20130116575 | Mickle et al. | May 2013 | A1 |
20130144379 | Najafi et al. | Jun 2013 | A1 |
20130289376 | Lang | Oct 2013 | A1 |
20130303831 | Evans | Nov 2013 | A1 |
20140005467 | Farnan et al. | Jan 2014 | A1 |
20140013852 | Brown et al. | Jan 2014 | A1 |
20140100414 | Tamez et al. | Apr 2014 | A1 |
20140114202 | Hein et al. | Apr 2014 | A1 |
20140128659 | Heuring et al. | May 2014 | A1 |
20140200389 | Yanai et al. | Jul 2014 | A1 |
20140243688 | Caron et al. | Aug 2014 | A1 |
20140275720 | Ferrari | Sep 2014 | A1 |
20140296677 | McEowen | Oct 2014 | A1 |
20140303426 | Kerkhoffs et al. | Oct 2014 | A1 |
20140342203 | Elian | Nov 2014 | A1 |
20150032007 | Ottevanger et al. | Jan 2015 | A1 |
20150141832 | Yu et al. | May 2015 | A1 |
20150141842 | Spanier et al. | May 2015 | A1 |
20150157216 | Stigall et al. | Jun 2015 | A1 |
20150174307 | Eckman et al. | Jun 2015 | A1 |
20150190092 | Mori | Jul 2015 | A1 |
20150250935 | Anderson et al. | Sep 2015 | A1 |
20150273184 | Scott et al. | Oct 2015 | A1 |
20150290372 | Muller | Oct 2015 | A1 |
20150306290 | Rosenberg et al. | Oct 2015 | A1 |
20150306291 | Bonde et al. | Oct 2015 | A1 |
20150307344 | Ernst | Oct 2015 | A1 |
20150327921 | Govari | Nov 2015 | A1 |
20150335804 | Marseille et al. | Nov 2015 | A1 |
20150365738 | Purvis et al. | Dec 2015 | A1 |
20160000983 | Mohl | Jan 2016 | A1 |
20160008531 | Wang et al. | Jan 2016 | A1 |
20160022889 | Bluvshtein et al. | Jan 2016 | A1 |
20160022890 | Schwammenthal et al. | Jan 2016 | A1 |
20160045165 | Braido et al. | Feb 2016 | A1 |
20160095968 | Rudser | Apr 2016 | A1 |
20160101230 | Ochsner et al. | Apr 2016 | A1 |
20160144166 | Decré et al. | May 2016 | A1 |
20160166747 | Frazier et al. | Jun 2016 | A1 |
20160213828 | Sievers | Jul 2016 | A1 |
20160250399 | Tiller et al. | Sep 2016 | A1 |
20160278856 | Panescu | Sep 2016 | A1 |
20160338629 | Doerr | Nov 2016 | A1 |
20170010144 | Lenner et al. | Jan 2017 | A1 |
20170021070 | Petersen | Jan 2017 | A1 |
20170049945 | Halvorsen et al. | Feb 2017 | A1 |
20170086780 | Sokulin et al. | Mar 2017 | A1 |
20170098491 | Ziaie et al. | Apr 2017 | A1 |
20170112985 | Yomtov | Apr 2017 | A1 |
20170128646 | Karch | May 2017 | A1 |
20170136164 | Yeatts | May 2017 | A1 |
20170202575 | Stanfield et al. | Jul 2017 | A1 |
20170224279 | Cahan et al. | Aug 2017 | A1 |
20170239407 | Hayward | Aug 2017 | A1 |
20170258980 | Katsuki | Sep 2017 | A1 |
20170348470 | D'Ambrosio et al. | Dec 2017 | A1 |
20170354812 | Callaghan et al. | Dec 2017 | A1 |
20180064860 | Nunez et al. | Mar 2018 | A1 |
20180078159 | Edelman et al. | Mar 2018 | A1 |
20180093070 | Cottone | Apr 2018 | A1 |
20180110910 | Rodemerk | Apr 2018 | A1 |
20180199635 | Longinotti-Buitoni et al. | Jul 2018 | A1 |
20180250457 | Morello et al. | Sep 2018 | A1 |
20180256796 | Hansen | Sep 2018 | A1 |
20180256800 | Conyers et al. | Sep 2018 | A1 |
20180264182 | Spanier et al. | Sep 2018 | A1 |
20180280598 | Curran | Oct 2018 | A1 |
20180316209 | Gliner | Nov 2018 | A1 |
20180326131 | Muller et al. | Nov 2018 | A1 |
20180353667 | Moyer et al. | Dec 2018 | A1 |
20180369469 | Le Duc De Lillers et al. | Dec 2018 | A1 |
20190001038 | Yomtov et al. | Jan 2019 | A1 |
20190054223 | Frazier et al. | Feb 2019 | A1 |
20190083690 | Siess et al. | Mar 2019 | A1 |
20190192752 | Tiller et al. | Jun 2019 | A1 |
20190192753 | Liu et al. | Jun 2019 | A1 |
20190209755 | Nix et al. | Jul 2019 | A1 |
20190209758 | Tuval et al. | Jul 2019 | A1 |
20190216995 | Kapur et al. | Jul 2019 | A1 |
20190217002 | Urakabe | Jul 2019 | A1 |
20190223877 | Nitzen et al. | Jul 2019 | A1 |
20190240680 | Hayakawa | Aug 2019 | A1 |
20190254543 | Hartholt et al. | Aug 2019 | A1 |
20190282741 | Franano | Sep 2019 | A1 |
20190282744 | D'Ambrosio et al. | Sep 2019 | A1 |
20190351117 | Cambronne et al. | Nov 2019 | A1 |
20190351118 | Graichen et al. | Nov 2019 | A1 |
20200016309 | Kallenbach et al. | Jan 2020 | A1 |
20200038567 | Siess et al. | Feb 2020 | A1 |
20200060559 | Edelman et al. | Feb 2020 | A1 |
20200069857 | Schwammenthal et al. | Mar 2020 | A1 |
20200147283 | Tanner et al. | May 2020 | A1 |
20200164125 | Muller et al. | May 2020 | A1 |
20200164126 | Muller | May 2020 | A1 |
20200253583 | Brisken et al. | Aug 2020 | A1 |
20200312450 | Agnello et al. | Oct 2020 | A1 |
20210268264 | Stotz | Sep 2021 | A1 |
20210290087 | Schlebusch | Sep 2021 | A1 |
20210290930 | Kassel | Sep 2021 | A1 |
20210290933 | Stotz | Sep 2021 | A1 |
20210339002 | Schlebusch et al. | Nov 2021 | A1 |
20210339004 | Schlebusch et al. | Nov 2021 | A1 |
20210346674 | Baumbach et al. | Nov 2021 | A1 |
20210346675 | Schlebusch et al. | Nov 2021 | A1 |
20210346676 | Schlebusch et al. | Nov 2021 | A1 |
20210346677 | Baumbach et al. | Nov 2021 | A1 |
20210346678 | Baumbach et al. | Nov 2021 | A1 |
20210378523 | Budde | Dec 2021 | A1 |
20210379359 | Schellenberg | Dec 2021 | A1 |
20210379360 | Schellenberg | Dec 2021 | A1 |
20210393944 | Wenning | Dec 2021 | A1 |
20220016411 | Winterwerber | Jan 2022 | A1 |
20220032032 | Schlebusch et al. | Feb 2022 | A1 |
20220032036 | Baumbach et al. | Feb 2022 | A1 |
20220039669 | Schlebusch et al. | Feb 2022 | A1 |
20220050037 | Stotz | Feb 2022 | A1 |
20220072298 | Spanier et al. | Mar 2022 | A1 |
20220076807 | Agnello | Mar 2022 | A1 |
20220079457 | Tuval et al. | Mar 2022 | A1 |
20220105339 | Nix et al. | Apr 2022 | A1 |
20220126085 | Farnan | Apr 2022 | A1 |
20220126086 | Schlebusch et al. | Apr 2022 | A1 |
20220142462 | Douk | May 2022 | A1 |
20220161019 | Mitze et al. | May 2022 | A1 |
20230173250 | Stigloher | Jun 2023 | A1 |
20230191141 | Wenning et al. | Jun 2023 | A1 |
20240011808 | Winzer et al. | Jan 2024 | A1 |
20240074828 | Wenning | Mar 2024 | A1 |
20240245902 | Schlebusch et al. | Jul 2024 | A1 |
Number | Date | Country |
---|---|---|
3122415 | Jul 2020 | CA |
1192351 | Sep 1998 | CN |
1222862 | Jul 1999 | CN |
1202871 | May 2005 | CN |
1661338 | Aug 2005 | CN |
101128168 | Feb 2008 | CN |
101208045 | Jun 2008 | CN |
101214158 | Jul 2008 | CN |
101351237 | Jan 2009 | CN |
101448535 | Jun 2009 | CN |
101460094 | Jun 2009 | CN |
101579233 | Nov 2009 | CN |
201437016 | Apr 2010 | CN |
101711683 | May 2010 | CN |
201658687 | Dec 2010 | CN |
102421372 | Apr 2012 | CN |
102803923 | Nov 2012 | CN |
103328018 | Sep 2013 | CN |
103857326 | Jun 2014 | CN |
103957957 | Jul 2014 | CN |
104105449 | Oct 2014 | CN |
104188687 | Dec 2014 | CN |
106104229 | Nov 2016 | CN |
106333707 | Jan 2017 | CN |
206007680 | Mar 2017 | CN |
107530479 | Jan 2018 | CN |
107632167 | Jan 2018 | CN |
109939282 | Jun 2019 | CN |
209790495 | Dec 2019 | CN |
210020563 | Feb 2020 | CN |
195 20 920 | Dec 1995 | DE |
198 21 307 | Oct 1999 | DE |
100 59 714 | May 2002 | DE |
100 60 275 | Jun 2002 | DE |
101 44 269 | Mar 2003 | DE |
102 26 305 | Oct 2003 | DE |
10 2006 001 180 | Sep 2007 | DE |
10 2009 007 216 | Aug 2010 | DE |
10 2009 011 726 | Sep 2010 | DE |
10 2009 025 464 | Jan 2011 | DE |
10 2009 047 845 | Mar 2011 | DE |
10 2011 106 142 | Dec 2012 | DE |
20 2011 110 389 | Sep 2013 | DE |
10 2015 004 177 | Oct 2015 | DE |
10 2015 219 263 | Apr 2017 | DE |
10 2015 222 199 | May 2017 | DE |
20 2015 009 422 | Jul 2017 | DE |
10 2012 207 042 | Sep 2017 | DE |
10 2016 013 334 | Apr 2018 | DE |
10 2018 208 536 | Dec 2019 | DE |
10 2018 208 862 | Dec 2019 | DE |
10 2018 208 916 | Dec 2019 | DE |
10 2018 208 927 | Dec 2019 | DE |
10 2018 208 945 | Dec 2019 | DE |
10 2018 210 076 | Dec 2019 | DE |
10 2018 212 153 | Jan 2020 | DE |
10 2018 213 151 | Feb 2020 | DE |
10 2018 213 350 | Feb 2020 | DE |
10 2018 220 658 | Jun 2020 | DE |
10 2018 222 505 | Jun 2020 | DE |
10 2020 102 473 | Aug 2021 | DE |
11 2020 003 151 | Mar 2022 | DE |
0 794 411 | Sep 1997 | EP |
0 916 359 | May 1999 | EP |
1 062 959 | Dec 2000 | EP |
1 339 443 | Nov 2001 | EP |
1 011 803 | Sep 2004 | EP |
1 354 606 | Jun 2006 | EP |
2 143 385 | Jan 2010 | EP |
2 175 770 | Apr 2010 | EP |
2 187 807 | Jun 2012 | EP |
2 570 143 | Mar 2013 | EP |
2 401 003 | Oct 2013 | EP |
1 871 441 | Nov 2014 | EP |
2 859 911 | Apr 2015 | EP |
2 213 227 | Aug 2016 | EP |
2 835 141 | Aug 2016 | EP |
3 088 016 | Nov 2016 | EP |
2 585 129 | Mar 2017 | EP |
2 945 661 | Nov 2017 | EP |
2 136 861 | Dec 2017 | EP |
3 020 426 | Dec 2017 | EP |
3 287 154 | Feb 2018 | EP |
3 205 359 | Aug 2018 | EP |
3 205 360 | Aug 2018 | EP |
3 389 738 | Aug 2019 | EP |
2 505 090 | Dec 2019 | EP |
3 668 560 | Jun 2020 | EP |
3 720 520 | Oct 2020 | EP |
3 753 594 | Dec 2020 | EP |
3 357 523 | Jan 2021 | EP |
3 490 628 | Feb 2021 | EP |
3 487 548 | Mar 2021 | EP |
3 509 661 | Mar 2021 | EP |
3 515 523 | Mar 2021 | EP |
3 528 863 | Mar 2021 | EP |
3 615 103 | Mar 2021 | EP |
4 271 461 | Mar 2021 | EP |
3 131 600 | Jun 2021 | EP |
3 131 615 | Jun 2021 | EP |
3 463 505 | Sep 2021 | EP |
3 884 970 | Sep 2021 | EP |
2 599 510 | Oct 2021 | EP |
3 003 421 | Oct 2021 | EP |
3 027 241 | Oct 2021 | EP |
3 668 561 | Oct 2021 | EP |
3 164 168 | Dec 2021 | EP |
3 344 129 | Dec 2021 | EP |
3 624 867 | Mar 2022 | EP |
3 651 822 | Mar 2022 | EP |
3 689 389 | Mar 2022 | EP |
3 737 436 | Mar 2022 | EP |
3 984 589 | Apr 2022 | EP |
3 654 006 | May 2022 | EP |
3 737 310 | Jul 2022 | EP |
2 999 400 | Aug 2022 | EP |
3 711 788 | Aug 2022 | EP |
3 694 573 | Sep 2022 | EP |
3 600 477 | Oct 2022 | EP |
3 897 768 | Oct 2022 | EP |
2 892 583 | Jan 2023 | EP |
3 370 797 | Jan 2023 | EP |
3 597 231 | Jan 2023 | EP |
3 668 562 | Jan 2023 | EP |
3 856 275 | Jan 2023 | EP |
3 003 420 | Feb 2023 | EP |
3 397 299 | Feb 2023 | EP |
3 046 594 | Mar 2023 | EP |
3 938 005 | Apr 2023 | EP |
3 685 562 | May 2023 | EP |
3 397 298 | Jul 2023 | EP |
3 809 959 | Jul 2023 | EP |
2 072 150 | Sep 2023 | EP |
2 961 984 | Sep 2023 | EP |
3 352 808 | Sep 2023 | EP |
3 768 156 | Sep 2023 | EP |
4 052 754 | Oct 2023 | EP |
3 157 596 | Nov 2023 | EP |
3 766 428 | Nov 2023 | EP |
3 781 027 | Nov 2023 | EP |
4 061 470 | Nov 2023 | EP |
4 070 720 | Nov 2023 | EP |
3 449 958 | Dec 2023 | EP |
3 687 596 | Dec 2023 | EP |
3 768 340 | Dec 2023 | EP |
3 801 675 | Jan 2024 | EP |
3 566 636 | Feb 2024 | EP |
3 634 526 | Feb 2024 | EP |
3 768 347 | Feb 2024 | EP |
3 790 606 | Feb 2024 | EP |
3 930 780 | Feb 2024 | EP |
3 397 147 | Mar 2024 | EP |
3 782 695 | Mar 2024 | EP |
3 854 448 | Mar 2024 | EP |
4 140 532 | May 2024 | EP |
3 970 765 | Jul 2024 | EP |
2913485 | Jun 2022 | ES |
S59-080229 | May 1984 | JP |
S61-125329 | Jun 1986 | JP |
S62-113555 | Jul 1987 | JP |
S62-204733 | Sep 1987 | JP |
S62-282284 | Dec 1987 | JP |
S64-68236 | Mar 1989 | JP |
H02-055886 | Feb 1990 | JP |
H02-234750 | Sep 1990 | JP |
H05-079875 | Mar 1993 | JP |
H06-218044 | Aug 1994 | JP |
H07-047025 | May 1995 | JP |
H08-057042 | Mar 1996 | JP |
H08-066398 | Mar 1996 | JP |
H08-327527 | Dec 1996 | JP |
H10-052489 | Feb 1998 | JP |
H10-505766 | Jun 1998 | JP |
H11-239617 | Sep 1999 | JP |
2000-512191 | Sep 2000 | JP |
2001-037728 | Feb 2001 | JP |
2001-506140 | May 2001 | JP |
2001-276213 | Oct 2001 | JP |
2002-525175 | Aug 2002 | JP |
2003-019197 | Jan 2003 | JP |
2003-047656 | Feb 2003 | JP |
2003-062065 | Mar 2003 | JP |
2004-515278 | May 2004 | JP |
2005-028137 | Feb 2005 | JP |
2005-192687 | Jul 2005 | JP |
2006-528006 | Dec 2006 | JP |
2007-222644 | Sep 2007 | JP |
2008-511414 | Apr 2008 | JP |
2006-518249 | Aug 2008 | JP |
2008-178690 | Aug 2008 | JP |
2009-504290 | Feb 2009 | JP |
2009-240348 | Oct 2009 | JP |
2010-518907 | Jun 2010 | JP |
2012-520157 | Sep 2012 | JP |
2013-128792 | Jul 2013 | JP |
2014-524274 | Sep 2014 | JP |
2015-514529 | May 2015 | JP |
2015-514531 | May 2015 | JP |
2015-515429 | May 2015 | JP |
2015-122448 | Jul 2015 | JP |
2015-527172 | Sep 2015 | JP |
2015-181800 | Oct 2015 | JP |
2016-002466 | Jan 2016 | JP |
2016-509950 | Apr 2016 | JP |
2017-500932 | Jan 2017 | JP |
2017-176719 | Oct 2017 | JP |
2017-532084 | Nov 2017 | JP |
2019-523110 | Aug 2019 | JP |
2020-072985 | May 2020 | JP |
WO 92015239 | Sep 1992 | WO |
WO 98043688 | Oct 1998 | WO |
WO 00033047 | Jun 2000 | WO |
WO 2006122001 | Nov 2006 | WO |
WO 2010142286 | Dec 2010 | WO |
WO 2010143272 | Dec 2010 | WO |
WO 2012018917 | Feb 2012 | WO |
WO 2012112378 | Aug 2012 | WO |
WO 2013160443 | Oct 2013 | WO |
WO 2014042925 | Mar 2014 | WO |
WO 2014141284 | Sep 2014 | WO |
WO 2014165635 | Oct 2014 | WO |
WO 2015085220 | Jun 2015 | WO |
WO 2016001284 | Jan 2016 | WO |
WO 2016066180 | May 2016 | WO |
WO 2016137743 | Sep 2016 | WO |
WO 2017032751 | Mar 2017 | WO |
WO 2017066257 | Apr 2017 | WO |
WO 2017106190 | Jun 2017 | WO |
WO 2017147291 | Aug 2017 | WO |
WO 2017214118 | Dec 2017 | WO |
WO 2018048800 | Mar 2018 | WO |
WO 2018109038 | Jun 2018 | WO |
WO 2018213089 | Nov 2018 | WO |
WO 2019013794 | Jan 2019 | WO |
WO 2019034670 | Feb 2019 | WO |
WO 2019034775 | Feb 2019 | WO |
WO 2019078723 | Apr 2019 | WO |
WO 2019126721 | Jun 2019 | WO |
WO 2019137911 | Jul 2019 | WO |
WO 2019193604 | Oct 2019 | WO |
WO 2019219883 | Nov 2019 | WO |
WO 2019229210 | Dec 2019 | WO |
WO 2019229220 | Dec 2019 | WO |
WO 2019234145 | Dec 2019 | WO |
WO 2019234146 | Dec 2019 | WO |
WO 2019234148 | Dec 2019 | WO |
WO 2019234149 | Dec 2019 | WO |
WO 2019234151 | Dec 2019 | WO |
WO 2019234152 | Dec 2019 | WO |
WO 2019234153 | Dec 2019 | WO |
WO 2019234161 | Dec 2019 | WO |
WO 2019234162 | Dec 2019 | WO |
WO 2019234163 | Dec 2019 | WO |
WO 2019234164 | Dec 2019 | WO |
WO 2019234166 | Dec 2019 | WO |
WO 2019234167 | Dec 2019 | WO |
WO 2019234169 | Dec 2019 | WO |
WO 2019243582 | Dec 2019 | WO |
WO 2020030686 | Feb 2020 | WO |
WO 2020030706 | Feb 2020 | WO |
WO 2020064707 | Apr 2020 | WO |
WO 2020089429 | May 2020 | WO |
WO 2020198280 | Oct 2020 | WO |
WO 2020243756 | Dec 2020 | WO |
WO 2022074136 | Apr 2022 | WO |
WO 2022109590 | May 2022 | WO |
WO 2022173970 | Aug 2022 | WO |
WO 2023049813 | Mar 2023 | WO |
Entry |
---|
Simon et al.; “Identification of Fluidic Element Models to Simulate the Short-Term Baroreflex§”; Proceedings of the 45th IEEE Conference on Decision & Control (2006) pp. 6738-6743. |
R. Lombardi et al.; “Flow Rate Profiler: an instrument to measure blood velocity profiles”; Ultrasonics 39 (2001) pp. 143-150. |
Hertz Ph.D. et al, “Ultrasonic Engineering in Heart Diagnosis”, The American Journal of Cardiology, Jan. 1967, vol. 19, No. 1, pp. 6-17. |
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/EP2019/064808, dated Sep. 29, 2020 in 34 pages. |
International Search Report and Written Opinion received in PCT Application No. PCT/EP2019/064808, dated Aug. 28, 2019 in 17 pages. |
Kong et al., “A Stein Equation Approach for Solutions to the Diophantine Equations,” 2010 Chinese Control and Decision Conference, Xuzhou, May 26, 2010, pp. 3024-3028. |
Koseli et al., “Online Viscosity Measurement of Complex Solutions Using Ultrasound Doppler Velocimetry”, Turk J Chem, Jan. 2006, vol. 30, pp. 297-305. |
McCormick et al., “Resolution of a 2/spl pi/ Ambiguity Problem in Multiple Frequency Spectral Estimation,” in IEEE Transactions on Aerospace and Electronic Systems, Jan. 1995, vol. 31, No. 1, pp. 2-8. |
Syrmos et al., “A Generalized Bezout Equation in Output Feedback Design,” Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, Dec. 1992, vol. 4, pp. 3590-3594. |
Udesen et al., “A Simple Method to Reduce Aliasing Artifacts in Color Flow Mode Imaging”, IEEE Ultrasonics Symposium, 2005, Rotterdam, The Netherlands, Sep. 18-21, 2005, pp. 1352-1355. |
Vollkron et al., “Advanced Suction Detection for an Axial Flow Pump”, Artificial Organs, 2006, vol. 30, No. 9, pp. 665-670. |
Vollkron et al., “Development of a Suction Detection System for Axial Blood Pumps”, Artificial Organs, 2004, vol. 28, No. 8, pp. 709-716. |
“Understanding Hot-Wire Anemometry”, Advanced Thermal Solutions, Inc., 2007, pp. 13-17. |
Yuanyuan et al., “Characteristics Analysis for Doppler Ultrasound Blood Flow Signals”, China Medical Device Information, 5(1), Feb. 28, 1999, pp. 36-42. |
Atkinson et al., “Pulse-Doppler Ultrasound and Its Clinical Application”, The Yale Journal of Biology and Medicine, 1977, vol. 50, pp. 367-373. |
Leguy et al., “Assessment of Blood Volume Flow in Slightly Curved Arteries from a Single Velocity Profile”, Journal of Biomechanics, 2009, pp. 1664-1672. |
Sinha et al., “Effect of Mechanical Assistance of the Systemic Ventricle in Single Ventricle Circulation with Cavopulmonary Connection”, The Journal of Thoracic and Cardiovascular Surgery, Apr. 2014, vol. 147, No. 4, pp. 1271-1275. |
Vieli, A., “Doppler Flow Determination”, BJA: British Journal of Anaesthesia, 1988, vol. 60, pp. 107S-112S. |
Zhang, Dabiao et al., “Design of Microwave Velocity and Distance Monitor System”, Instrument Technique and Sensor, Hebei Normal University, Apr. 25, 2004, pp. 3. |
Murali, Akila, “Design of Inductive Coils for Wireless Power Transfer to Pediatric Implants”, A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering, California State University, Northridge, May 2018, pp. 37. |
Number | Date | Country | |
---|---|---|---|
20220047173 A1 | Feb 2022 | US |