The disclosed embodiments generally relate to systems and methods for using financial transaction data and, more particularly, to determining consumer shopping corridors based on financial transaction data.
Current technology provides financial service providers with an abundance of information associated with transactions made by their customers. Each time a customer conducts a transaction, such as a purchase at a retail merchant, their financial service provider typically receives transaction data that describes the transaction. This information is generally compiled and provided to the customer through bank statements and transaction histories.
While storing and providing access to transaction data may allow the customer and/or the financial service provider to review financial activity, it remains tedious and inefficient. Therefore, a need exists for transaction data to be processed in a way that allows customers and financial service providers to view and use transaction data in a more convenient manner.
Consistent with disclosed embodiments, systems and methods are provided for determining consumer shopping corridors.
Consistent with a disclosed embodiment, a system for generating a consumer shopping corridor is provided. The system may include one or more processors, and one or more memory devices storing instructions that, when executed by the one or more processors, performs operations that may include receiving geo-coded financial transaction data associated with a plurality transactions that were performed using a financial service account associated with a customer and grouping the financial transactions into a plurality of clusters based on the geo-coded financial transaction data. The operations may also include generating a shopping corridor associated with the customer based on at least the plurality of clusters, and providing a financial service using the generated shopping corridor.
Consistent with another disclosed embodiment, a computer-implemented method for generating a shopping corridor is provided. The computer-implemented method may include receiving geo-coded financial transaction data associated with a plurality of financial transactions that were performed using a financial service account associated with a customer, and grouping the financial transactions, by one or more processors, into a plurality of clusters based on the geo-coded financial transaction data. Grouping the financial transactions may include identifying a geo-coded transaction data parameter associated with the received geo-coded transaction data, and grouping the financial transactions into the plurality of clusters based on the geo-coded transaction data parameter. The computer-implemented method may further include generating, by the one or more processors, a shopping corridor associated with the customer based on at least the plurality of clusters, and using the generated shopping corridor to provide a financial service.
Consistent with another disclosed embodiment, a tangible computer-readable medium storing instructions for representing consumer behavior is provided. The instructions may be operable to cause one or more processors to perform operations consistent with the method described above.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosed embodiments, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate disclosed embodiments and, together with the description, serve to explain the disclosed embodiments. In the drawings:
Reference will now be made in detail to the disclosed embodiments, examples of which are illustrated in the accompanying drawings. Wherever convenient, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The disclosed embodiments include systems and methods for determining a customer shopping corridor. For example, systems and methods consistent with disclosed embodiments may determine where and when a customer makes regular purchases from one or more merchants or otherwise performs financial transactions using one or more financial service accounts provided by a financial service provider. Disclosed embodiments further provide for targeted advertising, cross-sale of products, and/or fraud monitoring based on a consumer's customer shopping corridor information.
Client 110 may be one or more computing devices that is configured to perform one or more processes consistent with the disclosed embodiments. In one aspect, client 110 may be associated with a user. In one embodiment, the user may be an individual or entity that performs one or more financial transactions using one or more financial service accounts, such as a credit card account, a checking account, a debit account, a line of credit account, and the like. The user associated with client 110 may have a relationship with financial service provider 120. For example, the user associated with client 110 may be a customer of financial service provider 120. The user or customer associated with client 110 may use a financial service product, such as a debit card or credit card associated with a financial service account provided by financial service provider 120, to purchase items or services. In one embodiment, client 110 may be configured to perform processes that enables the customer to perform electronic purchase transactions, such as online or e-commerce type transactions. The customer associated with client 110 may perform purchase transactions involving the purchase of goods or services from a merchant, such as merchant 130. The transactions may include transactions that take place at a merchant location (e.g., brick and mortar) or electronic purchases, such as online or e-commerce based transactions. The transactions may also include customer transactions at an ATM or at a branch location of financial service provider 120 (e.g., a deposit to an account, a withdrawal from an account, etc.).
In one aspect, client 110 may be one or more computing devices including one or more processing components that perform client device functions, such as a smart phone, a tablet, a laptop, a personal digital assistant, or another form of client device. In one embodiment, client 110 may contain one or more processors, one or more I/O devices, one or more memory devices, and other components. Client 110's memory device(s) may be configured to store information used by the client's processor to perform certain functions related to disclosed embodiments. The memory devices may be volatile or non-volatile, and may be removable. In one embodiment, client 110 may be associated with a user. In certain examples, the user may be a consumer or a potential consumer of financial service provider 120 that provides financial services, such as a bank, credit card company, lender, etc.
Client 110 or a client device may connect to network 140 or other elements of system 100 through the Internet or other communication network(s) and may use one or more protocols, e.g., Universal Serial Bus (USB), Bluetooth, hardware plug-ins, WiFi and other wireless local area network (WLAN) protocols, 3G/4G/LTE and/or other wide area network (WAN) protocols.
Financial service provider 120 may be an entity that provides financial services and financial service accounts, such as a bank, credit card company, etc. In one aspect, financial service provider 120 may include a financial service provider system 122 that is configured to perform financial service type operations and computer-based operations. In certain aspects, financial service provider 120 is referenced in connection with a financial service provider system 122 that is associated with a financial service provider. Thus, in certain aspects, financial service provider 120 may receive and store data related to client 110 transactions. In one embodiment, financial service provider 120 may include one or more computing systems that are located at a central location or may include computing devices that are distributed (locally or remotely). In one example, financial service provider 120 may include a server that is configured to execute software instructions stored in one or more memory devices to perform one or more operations consistent with the disclosed embodiments.
Merchant 130 may be one or more providers of goods and/or services, such as a retailer, etc. Merchant 130 may include one or more computing systems that are configured to perform computer-implemented processes, such as a server, desktop, laptop, mobile device, etc. In one aspect, merchant 130 is described in connection with a merchant system 132. Merchant 130 may provide Internet-based computing devices to market and sell goods and/or services over the Internet (e.g., Web servers, etc.). Merchant 130 may include computing devices to process and handle purchase transactions at a physical location of merchant 130, such as POS terminals, local servers, etc. at a retailer location. Merchant 130 may be configured to perform financial transaction processes, such as receiving, processing, and handling purchase transactions, payment processes, etc. associated with the sale of goods and/or services provided by merchant 130. In certain aspects, the customer associated with client 110 may purchase goods and/or services from merchant 130 using a financial service account provided by financial service provider 120. Payment processes associated with transactions involving merchant 130 and client 110 (or the customer associated with client 110) may involve communications over network 140.
Network 140 may comprise any type of computer networking arrangement used to exchange data. For example, network 140 may be the Internet, a private data network, or a virtual private network using a public network such as the Internet. Network 140 may also include a public switched telephone network (“PSTN”) and/or a wireless network.
Processor 221 may include one or more known processing devices, such as a microprocessor from the Pentium™ or Xeon™ family manufactured by Intel™, the Turion™ family manufactured by AMD™, or any of various processors manufactured by Sun Microsystems. Processor 221 may be configured to execute software instructions stored in memory, such as memory 223. The disclosed embodiments are not limited to the type and configuration of processor 221.
Memory 223 may include one or more storage devices configured to store instructions used by processor 221 to perform functions related to disclosed embodiments. For example, memory 223 may be configured with program 224 that performs one or more operations relating to the disclosed embodiments when executed by processor 221. The disclosed embodiments are not limited to implementing separate programs or computers configured to perform one or more operations, tasks, etc. For example, program 224 may represent a single software program that performs one or more functions when executed by processor 221. Alternatively, program 224 may comprise multiple programs that work independently or collectively to perform one or more operations consistent with the disclosed embodiments. Additionally, processor 221 may execute one or more software programs located remotely from server 220. For example, financial service provider system 122 may access one or more remote software programs that, when executed, perform one or more operations consistent with disclosed embodiments. The disclosed embodiments are not limited to any configuration, number, and/or format of program 224, or any software instructions executed by processor 221.
In one embodiment, memory 223 may also be configured with operating system software 225 that performs, when executed by one or more processors (e.g., processor 221) well known operating system operations. By way of example, the operating system may be Microsoft Windows™, Unix™, Linux™, Solaris™, or some other operating system. The choice of operating system, and even the use of an operating system, is not critical to any disclosed embodiment.
I/O devices 222 may be one or more devices that are configured to allow data to be received and/or transmitted by server 220. I/O devices 222 may include one or more digital and/or analog communication devices that allow server 220 to communicate with other machines and devices, such as customers associated with client 110.
Server 220 may also be communicatively connected to one or more data repositories 226 as shown in
In one aspect, a shopping corridor may include a representation of geographic locations in which a customer may be likely to make future transactions. The shopping corridor may be derived from a database of past transactions associated with the customer. The database may be organized by one or more parameters related to the transactions. For example, financial service provider system 122 may generate a virtual “map” that organizes the customer transactions based on location information associated with each transaction. The database may also include further organization based on time information associated with each transaction. (These parameters will be described in more detail below.) Financial service provider 120 may utilize the organized database to identify geographic locations in which the customer commonly makes transactions, as well as pathways through the identified locations (i.e., connecting roads). These locations and pathways may represent one or more shopping corridors associated with client 110.
In accordance with disclosed embodiments, a customer may perform a financial transaction (step 310). The transaction may involve client 110 and a merchant 130. In certain embodiments, the financial transaction may include, for example, one or more purchase transactions that take place at a physical location of merchant 130, one or more purchase transactions via an online merchant 130 (e.g., online transactions involving a Web site provided by one or more servers associated with merchant 130), one or more Automated Teller Machine (ATM) transactions (e.g., fund withdrawal, account status check, bill payment, deposit transaction, etc.), one or more financial service transactions that takes place at a physical location of financial service provider 120, such as, for example, a branch of financial service provider 120 (e.g., fund withdrawal, bill payment, deposit transaction, account status check, etc. at a branch location of a bank), one or more financial service transactions (e.g., fund withdrawal, bill payment, deposit transaction, account status check, etc.) involving an online banking system associated with financial service provider 120 (e.g., a Web site that provides financial services for customers of financial service provider 120), one or more transactions involving the use of a mobile application, such as for example, where client 110 is a mobile device (e.g., smart phone, tablet, etc.) that executes a mobile application that allows the customer to perform one or more transactions (e.g., online banking transactions, purchases, etc.), and the like.
The disclosed embodiments include transactions that may occur in-person or over the internet. A purchase transaction may include a credit card, check card, or debit card type transaction. In certain aspects, the customer may use client 110 to perform a transaction involving a financial service account (e.g., credit card account, checking account, etc.). For example, client 110 may execute software processes that provide information relating to the financial service account to a POS terminal or to an online e-commerce server over the Internet. The financial service account information may be inputted to client 110 by the customer. Alternatively, client 110 may be configured to store the financial service account information for use by client 110 during purchase transactions (e.g., direct (e.g., POS based) or remote (e.g., online type transactions)).
In certain embodiments, financial service provider 120 may be configured to generate, collect, determine, and/or receive geo-coded transaction data associated with client 110 transactions (e.g., debit or credit card purchases at a merchant 130). The geo-coded transaction data may be sent directly from client 110 or merchant 130, or through a third-party source, such as a credit card processor (e.g. Visa, MasterCard, etc.). Geo-coded transaction data may include information related to a financial transaction, such as the transaction the customer performed in step 310. In one aspect, geo-coded transaction data may include, for example, time information relating to a time when the financial transaction was performed (e.g., when a purchase transaction was initiated, completed, or processed for payment, etc.), date information relating to a date when the financial transaction was performed (e.g., information reflecting the day, month, year, and/or day of week, etc.), fund amount information relating to a monetary amount involved in the financial transaction (such as, for example, the purchase amount for a purchase transaction, the deposit amount for a deposit transaction, a withdrawal amount for a withdrawal transaction, etc.), location information relating to the location of where the financial transaction occurred, such as for example, geographic location information (e.g., city, state, country, zip code, etc.) of a merchant 130 where the customer performed a purchase transaction, of financial service provider 130 location (e.g., bank branch), of the customer's location when performing an online financial transaction (e.g., online banking, online purchase, etc.), and the like.
In other aspects, geo-coded transaction data may include a web address of the web site that was involved in an electronic online transaction, such as an online banking transaction (e.g., financial service provider web site transaction), an e-commerce purchase (e.g., merchant web site purchase), etc. It is also contemplated that financial service provider 120 may receive location information from client 110 for some transactions, instead of through merchant 130. For instance, client 110 may be configured to perform software processes that generate the geo-coded transaction data based on information relating to the financial transaction and/or client 110. For example, client 110 may receive transaction data relating to the financial transaction, such as amount of transaction (e.g., purchase amount), item or service line item identification data, time of transaction, location. GPS data relating to the location of client 110 at the time of the transaction, etc.). Client 110 may receive the transaction data from merchant 130 involved with the financial transaction. Client 110 may also execute software processes that collect profile information relating to client 110 or the customer. For instance, client 110 may collect GPS information relating to the current location of client 110 at the time of the transaction. Client 110 may use the transaction data and/or client profile information to generate the geo-coded transaction data, which may be sent to financial service provider 120 to be stored with any description information received from merchant 130 or a third party source (e.g., credit card processer) known to be associated with the same transaction.
In one aspect, client 110 may store the geo-coded transaction data in a memory included in client 110. Further, client 110 or merchant 130 may be configured to execute software processes that send the geo-coded transaction data to financial service provider 120 (step 320). In one embodiment, client 110 may send the geo-coded transaction data to server 220 of financial service provider 120. Client 110 may send the data via network 140 or another communication mechanism.
Client 110 may be configured to send the geo-coded transaction data to server 220 based on one or more conditions or in response to one or more events. For example, client 110 may send geo-coded transaction data for a given transaction to server 220 at the time that the transaction was performed (e.g., in response to client 110 determining that the transaction was performed). In one aspect, client 110 may be configured to execute software that determines when a financial service account associated with the customer is used to perform the financial transaction. In response to the determination, client 110 may generate and send the geo-coded transaction data to server 220.
In another embodiment, client 110 may send the geo-coded transaction data to server 220 at a time after the financial transaction has occurred. For example, the disclosed embodiments may enable the customer associated with client 110 to upload data relating to the financial transaction to server 220 using software executed on client 110. Alternatively, client 110 may execute software processes that automatically send the geo-coded transaction data to server 220 based on a condition. For example, client 110 may be configured to send geo-coded transaction data to server 220 after a certain period of time after a financial transaction. In another example, client 110 may automatically send the transaction data periodically. Client 110 may collect, store, and send batches of geo-coded transaction data relating to multiple financial transactions.
In certain embodiments, client 110 may generate transaction data that does not include geographic location information. Instead, client 110 may determine and send geographic location (e.g., GPS location of client 110 or merchant 130) to server 220 separate from the transaction data. Client 110 may send the geographic location information at a separate time as when the transaction data is sent, or as a separate packet of information along with the transaction data. The geographic location information may be supplied by another source, such as a GPS device associated with client 110 at the time of the transaction or information supplied by a social media site (e.g. Facebook, Twitter, etc.).
After transaction description information has been received (via one or more of the exemplary processes described above, or other process), financial service provider 120 may execute a software process to derive latitude and longitude coordinates from the location information received from each client 110 transaction. For example, the software process may match description information of a given transaction, such as merchant name, city, zip code, or street address, against a database of merchants with known geographic locations to make a prediction on the physical location in which the transaction took place. Financial service provider system 122 may store the latitude and longitude coordinates associated with each transaction for use in creating the customer shopping corridor.
In certain embodiments involving online financial transactions (e.g., a Web site related purchase transaction), geographic location information may be unnecessary. In other embodiments, client 110 may determine and send transaction type information reflecting the type of the financial transaction (e.g. website purchase, mobile application transaction, etc.). Client 110 may include transaction type information in the geo-coded transaction data.
In step 330, financial service provider 120 may store the geo-coded transaction data, including derived latitude and longitude coordinates, on server 220. In step 340, financial service provider 120 may analyze geo-coded transaction data stored on server 220 to determine a shopping corridor for a customer (e.g., the customer associated with client 110). The shopping corridor may be a representation or database of geographic locations in which the customer has made transactions in the past and is likely to make future transactions, and pathways that connect the geographic locations where additional transactions may be made. In step 350, financial service provider 120 may use the determined shopping corridor associated with the customer. For example, financial service provider 120 may use the shopping corridor to generate targeted advertisement suggestions or as part of fraud prevention services.
In step 420, server 220 may group the geo-coded transactions associated with the customer into clusters using a preferred clustering algorithm. In one embodiment, each cluster may represent a particular geographic location or geographic area where the customer (and/or client 110) has made a significant number of purchases (e.g., above a certain threshold number). A cluster may represent, for example, an area around the customer's home (e.g., 1 mile radius around the customer's home address), an area around a customer's place of work (e.g., a ½ mile radius around the customer's place of work address), a retailer location (e.g., a shopping mall, shopping plaza, merchant location, etc.), and the like.
In step 430, server 220 may calculate a central location for each cluster. In one aspect, server 220 may calculate the central location by calculating a central latitude and longitude associated with each cluster.
In step 440, server 220 may map one or more pathways between each cluster. Server 220 may use the geo-coded transaction data to determine the one or more pathways. For example, server 22 may use time and date information of each transaction to identify movement between one or more clusters. Server 220 may also use outlier transactions to find transaction locations a certain distance from one or more of the clusters.
Server 220 may be configured to execute software that identifies a flow through each cluster by client 110 based on the pathways. For example, a first cluster may represent a geographic location near the customer's home and a second cluster may represent a location near the customer's place of work. Based on time and date information relating to the transactions in the first and second clusters, server 220 may determine that, during a weekday, client 110 made purchases near home in the mornings (e.g., coffee or breakfast) and purchases near work in the afternoons (e.g., lunch). Server 220 may further identify an outlier purchase that may exist somewhere between the customer's work and home. The outlier may further specify a pathway that identifies the customer's movement between the clusters of home and work.
In step 510, server 220 may calculate the distance of each transaction to the central location (e.g., determined in step 430) of the nearest cluster. In step 520, server 220 may calculate an average distance of each transaction to their nearest cluster. In step 530, server 220 may normalize the transactions. In step 540, server 220 may use the normalized transactions to determine outliers. Outlier purchases may include one-off purchases that are not part of established purchase patterns for the customer. These may include, for example, out-of-town purchases (e.g., purchases in locations a certain distance away (e.g., far away) from established clusters), a purchase on a day or at a time when the customer does not usually make purchases (based on, for example, historical transaction history information that server 220 may analyze), a purchase from a merchant that the customer had not purchased from previously (based on information that server 220 may analyze), and the like.
It is further contemplated that shopping corridor 600 may be utilized as part of a fraud prevention service 620. New transactions may be matched against known shopping corridors for a given customer to make a prediction of the likelihood that the new transaction is fraudulent. Financial service provider 120 may utilize server 220 to execute software instructions that compares the new transaction to customer shopping corridor 600 to determine whether the transaction is likely valid or likely fraudulent. For example, if server 220 determines that the transaction is an outlier transaction, server 220 may analyze the characteristics associated with the transaction to determine whether it is fraudulent. For example, server 220 may determine that the characteristics of the transactions reflect characteristics of likely fraudulent transactions for the customer (e.g., the transaction was performed within a certain time period of one or more other transaction, the location of the transaction (e.g., new, far away, etc.). In one aspect, server 220 may store in a memory a data structure including fraudulent characteristic information reflecting possible fraudulent activities or parameters that server 220 may use in predicting transaction validity.
Another exemplary use (630) of customer shopping corridor 600 includes improving analysis of transaction descriptions for other customer transactions. Information from a customer shopping corridor 600, such as clusters around a customer's home or work, may be utilized as a predictive tool for new transactions. If a transaction description associated with a new transaction is unclear (e.g., lacking sufficient location information, incomplete merchant description, etc.) it may be difficult to accurately predict the actual merchant 130 with which the transaction was made, when multiple possible merchants meet description criteria. It is contemplated that financial service provider 120 may utilize server 220 to execute software that determines which, if any, of possible merchants are located within a customer shopping corridor. The additional information may allow server 220 to more accurately predict the correct merchant and merchant location of a transaction (i.e., if a possible merchant is in a customer shopping corridor, it is more likely to be the correct merchant over another possible merchant that is not in the shopping corridor.).
The methods and systems consistent with the disclosed embodiments are not limited to the examples described herein. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed embodiments. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims. For example, the disclosed embodiments may execute software processes that can generate or determine shopping corridors that have varying characteristics. For instance, the disclosed embodiments may generate a shopping corridor for a customer based on various criteria. In one embodiment, the disclosed embodiments may generate a shopping corridor associated with in-person transactions (e.g., transactions that are performed at a physical location, such as at a bank, at a merchant location, etc.). The disclosed embodiments may also generate a shopping corridor for the customer that is related to “online” transactions, such as Internet purchases, or online banking transactions. An online shopping corridor may utilize time and date information in combination with a customer's online “movement” (e.g., visited websites, internet searches). In another aspect, the disclosed embodiments may generate shopping corridors representing different types of transactions. For example, the disclosed embodiments may generate shopping corridors that are associated with, for example restaurants, retail stores, service providers (e.g., financial service providers, utility providers, etc.), recreational activities, ATM locations, and any other type of activity or merchant.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application No. 61/755,556, filed on Jan. 23, 2013, which is expressly incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61755556 | Jan 2013 | US |