The present specification relates to systems and methods for determining and generating fluid saturation values, and more particularly, to systems and methods of determining fluid saturation values and generating saturation graphical representations including the determined fluid saturation values, which correspond to different depth levels of one or more reservoirs.
Some of the biggest challenges the oil and gas industry faces today are accurately measuring fluid flow values at various depth levels, determining fluid saturation values associated the depth levels of reservoirs, and measuring variations in determined fluid saturation values at different depth levels and across different time frames. Conventional techniques also do not have the functionality to correct inconsistencies related to fluid saturation measurements and accurately predict fluid saturation measurements for future time periods.
Accordingly, a need exists in the industry for determining fluid saturation associated with reservoir depths.
The present disclosure provides systems and methods for determining saturation values associated with the intervals corresponding to the depth levels of the reservoir is provided. The method includes accessing, by a computing device, data describing a plurality of fluid volume values associated with a reservoir, the plurality of fluid volume values include a plurality of cumulative water volume values and a plurality of cumulative hydrocarbon values, utilizing, by the computing device, the data describing the plurality of fluid volume values to generate ratio values associated with intervals corresponding to depth levels of the reservoir, generating, by the computing device, a fractional flow graphical representation including the ratio values associated with the intervals corresponding to the depth levels of the reservoir, utilizing, by the computing device, the fractional flow graphical representation including the ratio values to determine saturation values associated with the intervals corresponding to the depth levels of the reservoir, and generating a saturation graphical representation including the saturation values.
In another embodiment, a system that is configured to determine saturation values associated with the intervals corresponding to the depth levels of the reservoir is provided. The system includes a processor and a memory component that stores logic that, when executed by the processor, causes the system to perform the steps of accessing data describing a plurality of fluid volume values associated with a reservoir, generating, using the data describing the plurality of fluid volume values, ratio values associated with intervals corresponding to depth levels of the reservoir, generating a fractional flow graphical representation including the ratio values associated with the intervals corresponding to the depth levels of the reservoir, determining, using the fractional flow graphical representation including the ratio values, saturation values associated with the intervals corresponding to the depth levels of the reservoir, the determining of the saturation values is based on an interpolation algorithm, and generating a saturation graphical representation including the saturation values.
In yet another embodiment, a non-transitory computer-readable medium that stores logic that, when executed by a computing device, causes the computing device to: access data describing a plurality of fluid volume values associated with a reservoir, generate, using the data describing the plurality of fluid volume values, ratio values associated with intervals corresponding to depth levels of the reservoir, generate a fractional flow graphical representation including the ratio values associated with the intervals corresponding to the depth levels of the reservoir, the fractional flow graphical representation including a water ratio metric associated with a first depth level and a different water ratio metric associated with a second depth level, determine, using the fractional flow graphical representation including the ratio values, saturation values associated with the intervals corresponding to the depth levels of the reservoir, the determining of the saturation values is based on an interpolation algorithm, and generate a saturation graphical representation including the saturation values.
These and additional features provided by the embodiments described herein will be more fully understood in view of the following detailed description, in conjunction with the drawings.
The embodiments set forth in the drawings are illustrative and exemplary in nature and not intended to limit the disclosure. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Embodiments of the present disclosure are directed to systems and methods for determining fluid saturation values associated with various depth levels of a reservoir. Embodiments provided herein are configured for determining fluid saturation values and generating saturation graphical representations based on these saturation values. Some embodiments are configured to access a plurality of fluid volume values (e.g., a plurality of cumulative water volume values, a plurality of cumulative hydrocarbon volume values, etc.) associated with a reservoir, generate ratio values that describe relationships (e.g., slope values) between the differences in the interval water volume values at the depth levels and the total fluid values at different depth levels in the reservoir. Additionally, some embodiments are configured to analyze the ratio values that are included as part of fractional flow graphical representation (e.g., fractional flow curve) to determine saturation values associated with various depth levels in the reservoir. These embodiments may generate a saturation graphical representation that includes saturation values that are predicted for various depth levels in the reservoir across one or more time periods (e.g., months, years, etc.).
In particular, the saturation graphical representations include dry interval levels and wet interval levels, which may be generated using various supervised machine learning techniques. For example, dry interval levels may be determined using back propagation techniques and wet interval levels may be determined using forward propagation techniques. Other supervised machine learning techniques having the characteristics and output results comparable to back propagation and forward propagation may also be utilized. The determination of dry interval levels and wet interval levels enables for a better understanding of the relationships between fluid volume values and fluid flow rates at various depth levels of one or more reservoirs over various time periods. As such, data that improves overall production from reservoirs, e.g., portions of the reservoir that are suitable for the installation of one or more wells, the intervals of existing wells that are capable of producing high levels of hydrocarbons, and variations in fluid flows over different time periods (e.g., future time frames) may be more effectively identified. Consequently, the likelihood of installing high producing future wells and increasing the production from existing wells may be improved. The methods and systems of the present disclosure are depicted, in part in
The remote computing device 104 may include a memory component 140 that stores calculation logic 144a and recommendation logic 144b. As described in more detail below, the calculation logic 144a may be configured for causing a computing device (such as the user computing device 102 and/or the remote computing device 104) to analyze fluid volume data at various depth levels of a reservoir, perform various calculations in order to generate ratio values, determine saturation values, etc. The recommendation logic 144b may cause a computing device (such as the user computing device 102 and/or the remote computing device 104) to recommend a specific action, initiate generation of graphical representations, etc. It is noted that, the methods and systems for determining saturation values and generating a saturation graphical representation may be implemented using a combination of the user computing device 102 and the remote computing device 104.
In some embodiments, a method for generating saturation graphical representations is described. The graphical representation may be a two-dimensional or three dimensional representation that is generated using data describing a plurality fluid volume values associated with one or more reservoirs. In order to generate saturation graphical representations, data describing a plurality of fluid volume values associated with a reservoir are accessed. For example, data is obtained from flow meters that may be positioned at various depth levels and in association with one or more perforated intervals of a well. These flow meters measure the flow rates of fluids (e.g., oil, water, etc.) at these intervals. Such fluid flow data may be gathered for a plurality of depth levels of wells installed across a plurality of reservoirs having different properties. In some embodiments, in addition to data gathered from flow meters, data describing fluid flow may be obtained from open hole logs, cased hole logs, pulsed neutron logs (“PNL logs”), Carbon-Oxygen logs, and flow meter logs.
A reservoir, as described in this disclosure, may include a subsurface body of rock or a combination of subsurface rocks such that porosity and permeability values may vary at each of these depth levels. The plurality of fluid volumes may relate to volumes of cumulative fluid present at a particular depth level of the reservoir, e.g. based on aggregation of water volume values from a certain depth level to the surface of the reservoir, aggregation of hydrocarbon volume values from a certain depth level to the surface of the reservoir, etc. The cumulative fluid may be measured from this particular depth level to the surface of the reservoir during a particular time frame. A well may be a combination of one or more structural components that are installed within an aperture dug into one or more portions of the reservoir. The well is utilized to extract fluids from the reservoir. The dimensions of the well, the size of the aperture, etc., may vary depending on the properties of the reservoir, among other factors. In some embodiments, the data related to these fluids may be included as part of a graphical representation as depicted in
However, fluid saturation data is not depicted for years 1987-1992, 2000-2002, 2004-2006, 2008-2009, 2011, 2012, and 2017. As stated, during these time periods, data related to fluid saturation (e.g., water saturation) may be limited, inaccurate, corrupted, or non-existent, which prevents having an accurate understanding of fluid saturation levels. Thus, the likelihood of installing wells in appropriate locations in order to extract fluids effectively is reduced. The system described herein generates saturation values at different depth levels of one or more reservoirs during at least some of the years in which fluid saturation data is limited or corrupted using the techniques and processes described herein. A step in these processes includes the generation of fluid ratio values (e.g., water cut values) at various depth levels of a reservoir as are described and illustrated in
At another example year, another example water level 304 and another example oil level 306 are depicted. In contrast to example oil levels 300 and water levels 302, the amounts of oil and water levels have changed such that there appears to be approximately an equivalent amount of water for a particular oil level across multiple depths in the reservoir. In order to generate ratio values (e.g., water cut values), the fluid volume values associated with various depth levels in the reservoir are analyzed. In some embodiments, a cumulative level of oil and a cumulative level of water associated at a specific depth level (e.g., depth level 316) is determined. The cumulative level of oil and water at depth level 316 relates to a total quantity or volume of water and oil respectively that is present from the depth level 316 to the surface of the reservoir.
Additionally, the depth level 318 at a different portion of the reservoir, a proportion of water to oil is depicted as being higher relative to the depth level at 316. In other words, the proportion of water (or rate at which water may enter a perforation of a well relative to the oil in the reservoir) may have increased at depth level 318 as compared to the depth level 316, which may have been because a certain amount of hydrocarbons may have already been extracted from the reservoir. It is noted that at depth level 320 in a different portion of the reservoir, a proportion of oil (e.g., rate at which oil may enter a perforation of a well relative to the water in the reservoir) has decreased at depth level 320 as compared to a different depth level (e.g., a deeper depth level). This shift in the proportion of cumulative water and oil in the reservoir (or water and oil rates at a particular depth level) may occur as a result of the extraction of hydrocarbons, various production activities, etc.
In some embodiments, an interval water volume value (e.g., a first interval water volume value) corresponding to the depth level 316 (e.g., a first depth level) at a particular location in the reservoir and a different water volume value (e.g., a second interval water volume value) corresponding to the depth level 318 (e.g., a second depth level) at a different location in the reservoir may be determined. Additionally, a total fluid quantity value (e.g., a first interval total fluid value) corresponding to the depth level 316 in a location of the reservoir and a different total fluid volume value (e.g., a second interval total fluid value) corresponding to the depth level 320 in a different location in the reservoir may be determined.
In some embodiments, a water fraction value describing a relationship between the variations in the water volumes at depth levels 316 and 318 is determined. For example, the water fraction value may be a slope value that is determined using the interval water volume value corresponding to the depth level 316 (e.g., the first interval water volume value) and the different water volume value (e.g., the second interval water volume value) corresponding to the depth level 318. This slope value describes a variation in the water volume levels at different depths, e.g., over a particular time frame as a result of hydrocarbon extraction, production activities, etc.
In some embodiments, a fluid fraction value describing a relationship between variations in the total amount of interval fluids at depth levels 316 and 320 respectively, is determined. For example, the fluid fraction value may have a slope value that is determined using a total fluid interval volume value (e.g., the first total interval fluid value) corresponding to the depth level 316 and another total fluid volume value (e.g., the second total interval fluid value) corresponding to the depth level 320. This slope value describes a variation in the total fluid levels across different depths. The total fluid volume values describe quantities of water, hydrocarbons, and a combination of one or more fluids that may be present at any given time at a particular depth level in the reservoir. Additionally, the variations in the fluid levels from depth level 316 to depth level 318 may have occurred over a certain time frame (e.g., over months or years, during which production activities may have been conducted, which reduces the amount of oil as compared to the water in the reservoir).
Using the determined water fraction value and the total fluid fraction value, a water ratio metric (e.g., a water cut value) may be generated. Additional water fraction values and total fluid fraction values may be also be generated for intervals corresponding to various depth levels from the deepest portion of the reservoir (e.g., lowest depth levels of the reservoir) to the surface. As depicted in
The determined water cut values may be utilized to generate a fractional flow graphical representation that includes the water cut values (e.g. water ratio metrics). The fractional flow graphical representation (e.g., a fractional flow curve) may be utilized to generate saturation values associated with a plurality of intervals corresponding to the depth levels of the reservoir. In some embodiments, if a particular water fraction value and a total fluid fraction value is determined in association with two intervals at different depth levels of a reservoir is “0” (e.g., no variation), it may be determined that the particular interval is either closed or unperforated.
Additionally, a set of water cut values determined for intervals of a well in one or more reservoirs may be classified under a particular rock type. For example, the distinct properties of a particular reservoir (e.g., porosity values, permeability values, etc.) may be used to classify the reservoir as a particular rock type or under a rock classification. There may be a plurality of rock classifications or rock types with certain designations, e.g., rock type 1, rock type 2, rock type 3, rock type 4, rock type 5, etc. Each of these rock types may have a distinct fractional flow curve or fractional flow profile.
The determined water saturation values enable designers and engineers to accurately and effectively identify water quantities associated with various intervals, which enables them to better understand portions of wells that may be capable of higher levels of productivity. In other words, knowledge of these water saturation values may be enabled for the effective determination of the proportion of water to other fluids (e.g., hydrocarbons), which aids in the likelihood of a more effective extraction of hydrocarbons from one or more intervals of wells.
In some embodiments, the changes in properties of the reservoirs (e.g., changes in porosity, permeability, etc.) over a certain time frame may also be analyzed. Based on this analysis and interpolation, pseudo fluid saturation logs (e.g., the likely levels of water saturation values) at various intervals of wells (at different depth levels in one or more reservoirs) is generated. The predicted fluid saturation values (e.g., water saturation values) enables for a more accurate determination of the levels of oil production (e.g., extraction of hydrocarbons from one or more intervals of wells in one or more reservoirs) over a particular time period.
Additionally, wet interval levels 706, 708, 710 associated with different depth levels for years 2011, 2012, and 2017 may also be determined by analyzing and interpreting accurate and available data for the year 2010 (among other years) using forward propagation techniques. Forward propagation is a supervised machine learning based technique that is utilized to make predictions. For example, data is “forward propagated” or input and processed through multiple layers of a neural network, such that data is input into a first layer of a neural network, and the output from the first layer is input into another layer of the neural network. Unlike other supervised machine learning techniques, data is input and processed only in one direction, e.g., forward. In other words, there are no cycles or loops such that data is output from a particular layer of a neural network and sent back to another layer of the neural network.
In block 820, ratio values associated with intervals corresponding to depth levels of the reservoir (or reservoirs) is generated, using the data describing the plurality of fluid volume values. To generate ratio values (e.g., water cut values), the plurality of fluid volume values are analyzed. As described above with reference to
In block 830, a fractional flow graphical representation including the ratio values associated with the intervals corresponding to the depth levels of the reservoir are generated. The fractional flow graphical representation may be generated as a two-dimensional or three-dimensional representation. In some embodiments, the fractional flow graphical representation may illustrate ratio values (e.g., water cut values) on the y-axis and water saturation values on the x-axis.
In block 840, saturation values associated with intervals corresponding to the depth levels of the reservoir is determined using the fractional flow graphical representation including the ratio values. Specifically, the determined ratio values may be utilized to identify corresponding water saturation values on the fractional flow curve. It is noted that the shape of the fraction flow curve, and by extension, the relationship between the water cut values and the water saturation values, may vary depending on the properties of the reservoir. In some embodiments, the reservoir may be classified into various rock types based on different properties of the reservoir, e.g., variations in porosity and permeability values across different depth levels that may correspond to intervals of one or more wells installed in the reservoir. As such, variations in water cut values may correspond to a wide range of water saturation values depending on the fractional flow curves associated with the different rock types.
In block 850, a saturation graphical representation including the saturation values is generated. Examples of saturation graphical representations are depicted in
The memory component 140 may store operating logic 942, the calculation logic 144a, and the recommendation logic 144b. Each of these logic components may include a plurality of different pieces of logic, each of which may be embodied as a computer program, firmware, and/or hardware, as an example. A local interface 946 is also included in
The processor 930 may include any processing component operable to receive and execute instructions (such as from a data storage component 936 and/or the memory component 140). As described above, the input/output hardware 932 may include and/or be configured to interface with speakers, microphones, and/or other input/output components.
The network interface hardware 934 may include and/or be configured for communicating with any wired or wireless networking hardware, including an antenna, a modem, a LAN port, wireless fidelity (Wi-Fi) card, WiMAX card, mobile communications hardware, and/or other hardware for communicating with other networks and/or devices. From this connection, communication may be facilitated between the remote computing device 104 and other computing devices.
The operating logic 942 may include an operating system and/or other software for managing components of the remote computing device 104. As discussed above, the calculation logic 144a may reside in the memory component 140 and may be configured to cause the processor 930 to perform the calculations and depict the interfaces and plots described herein. The recommendation logic 144b may be configured to cause the processor 930 to provide the recommendations of type of water management strategy and/or provide locations and other details regarding that recommendation.
It should be understood that certain embodiments described herein are to a method of accessing data describing a plurality of fluid volume values associated with a reservoir, generating, using the data describing the plurality of fluid volume values, ratio values associated with intervals corresponding to depth levels of the reservoir, generating a fractional flow graphical representation including the ratio values associated with the intervals corresponding to the depth levels of the reservoir, determining, using the fractional flow graphical representation including the ratio values, saturation values associated with the intervals corresponding to the depth levels of the reservoir, generating a saturation graphical representation including the saturation values.
The terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms, including “at least one,” unless the content clearly indicates otherwise. “Or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof. The term “or a combination thereof” means a combination including at least one of the foregoing elements.
It is noted that the terms “substantially” and “about” may be utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
While particular embodiments have been illustrated and described herein, it should be understood that various other changes and modifications may be made without departing from the spirit and scope of the claimed subject matter. Moreover, although various aspects of the claimed subject matter have been described herein, such aspects need not be utilized in combination. It is therefore intended that the appended claims cover all such changes and modifications that are within the scope of the claimed subject matter.
This application claims priority to U.S. Provisional Application Ser. No. 63/022,863, filed on May 11, 2020. The application is also related to U.S. Patent Application Publication Number 2013/0096897, which is incorporated by reference in its entirety in this application.
Number | Name | Date | Kind |
---|---|---|---|
4441362 | Carlson | Apr 1984 | A |
6980940 | Gurpinar et al. | Dec 2005 | B1 |
7136757 | Goloshubin | Nov 2006 | B2 |
7289942 | Yang et al. | Oct 2007 | B2 |
7408150 | Flaum et al. | Aug 2008 | B1 |
7566869 | Riley et al. | Jul 2009 | B2 |
7660711 | Pita et al. | Feb 2010 | B2 |
8451683 | Chu et al. | May 2013 | B2 |
8908474 | Chu et al. | Dec 2014 | B2 |
9703006 | Stern et al. | Jul 2017 | B2 |
20060036418 | Pita et al. | Feb 2006 | A1 |
20070016389 | Ozgen | Jan 2007 | A1 |
20080167849 | Hales et al. | Jul 2008 | A1 |
20080288226 | Gurpinar et al. | Nov 2008 | A1 |
20090299714 | Kelkar et al. | Dec 2009 | A1 |
20100142323 | Chu et al. | Jun 2010 | A1 |
20100170373 | Green | Jul 2010 | A1 |
20100206559 | Sequeira, Jr. et al. | Aug 2010 | A1 |
20100309749 | Yogeswaren | Dec 2010 | A1 |
20130096896 | Al-Shahri | Apr 2013 | A1 |
20130096897 | Shahri | Apr 2013 | A1 |
20160320769 | Deffenbaugh | Nov 2016 | A1 |
20190085673 | Alshakhs | Mar 2019 | A1 |
20210310345 | Aqeel | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
101031824 | May 2010 | CN |
106600693 | Dec 2016 | CN |
110807544 | Feb 2020 | CN |
WO-9957418 | Nov 1999 | WO |
2011100009 | Aug 2011 | WO |
Entry |
---|
Sitaresmi “The Study of the Effect of Water Saturation (Sw) on Fractional Flow and Water Cut to Determine Sw Cutoff” Published by International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 vol. 5 Issue 07,Jul. 2016 (Year: 2016). |
Hans B. Helle “Fluid saturation from logs using committee neural networks”.Article in Petroleum Geoscience Jun. 2002 Petroleum Geoscience, vol. 8 2002, pp. 109-118 (Year: 2002). |
Wang et al., “Estimation of Depths of Fluid Contacts and Relative Permeability Curves by History Matching Using Iterative Ensemble-Kalman Smoothers”, Society Petroleum Engineers Journal, pp. 509-525, Jun. 2010. |
International Search Report and Written Opinion pertaining to Application No. PCT/US2012/060557 dated Mar. 15, 2013. |
European Search Report pertaining to Application No. 12787214.1 dated Nov. 26, 2015. |
International Search Report and Written Opinion dated Aug. 13, 2021 pertaining to International application No. PCT/US2021/029303 filed Apr. 27, 2021, 18 pages. |
Sitaresmi, R., “The Study of the Effect of Water Saturation (Sw) on Fractional Flow and Water Cut to Determine Sw Cutoff”, International Journal of Engineering Research & Technology, vol. 5, No. 7, Jul. 1, 2016, pp. 667-670. |
Helle, H. B. et al., “Fluid saturation from well logs using committee neural networks”, Petroleum Geoscience, vol. 8, No. 2, Jun. 1, 2002, pp. 109-118. |
Number | Date | Country | |
---|---|---|---|
20210348499 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63022863 | May 2020 | US |